1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 VNET_DEFINE(bool, udp_blackhole_local) = false; 131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 132 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 133 "Enforce net.inet.udp.blackhole for locally originated packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbinfo, udbinfo); 151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 153 #define V_udpcb_zone VNET(udpcb_zone) 154 155 #ifndef UDBHASHSIZE 156 #define UDBHASHSIZE 128 157 #endif 158 159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 160 VNET_PCPUSTAT_SYSINIT(udpstat); 161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 162 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 163 164 #ifdef VIMAGE 165 VNET_PCPUSTAT_SYSUNINIT(udpstat); 166 #endif /* VIMAGE */ 167 #ifdef INET 168 static void udp_detach(struct socket *so); 169 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 170 struct mbuf *, struct thread *, int); 171 #endif 172 173 INPCBSTORAGE_DEFINE(udpcbstor, inpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 174 INPCBSTORAGE_DEFINE(udplitecbstor, inpcb, "udpliteinp", "udplite_inpcb", 175 "udplite", "udplitehash"); 176 177 static void 178 udp_vnet_init(void *arg __unused) 179 { 180 181 /* 182 * For now default to 2-tuple UDP hashing - until the fragment 183 * reassembly code can also update the flowid. 184 * 185 * Once we can calculate the flowid that way and re-establish 186 * a 4-tuple, flip this to 4-tuple. 187 */ 188 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 189 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 190 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 191 uma_zone_set_max(V_udpcb_zone, maxsockets); 192 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 193 194 /* Additional pcbinfo for UDP-Lite */ 195 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 196 UDBHASHSIZE); 197 } 198 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 199 udp_vnet_init, NULL); 200 201 /* 202 * Kernel module interface for updating udpstat. The argument is an index 203 * into udpstat treated as an array of u_long. While this encodes the 204 * general layout of udpstat into the caller, it doesn't encode its location, 205 * so that future changes to add, for example, per-CPU stats support won't 206 * cause binary compatibility problems for kernel modules. 207 */ 208 void 209 kmod_udpstat_inc(int statnum) 210 { 211 212 counter_u64_add(VNET(udpstat)[statnum], 1); 213 } 214 215 int 216 udp_newudpcb(struct inpcb *inp) 217 { 218 struct udpcb *up; 219 220 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 221 if (up == NULL) 222 return (ENOBUFS); 223 inp->inp_ppcb = up; 224 return (0); 225 } 226 227 void 228 udp_discardcb(struct udpcb *up) 229 { 230 231 uma_zfree(V_udpcb_zone, up); 232 } 233 234 #ifdef VIMAGE 235 static void 236 udp_destroy(void *unused __unused) 237 { 238 239 in_pcbinfo_destroy(&V_udbinfo); 240 uma_zdestroy(V_udpcb_zone); 241 } 242 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 243 244 static void 245 udplite_destroy(void *unused __unused) 246 { 247 248 in_pcbinfo_destroy(&V_ulitecbinfo); 249 } 250 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 251 NULL); 252 #endif 253 254 #ifdef INET 255 /* 256 * Subroutine of udp_input(), which appends the provided mbuf chain to the 257 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 258 * contains the source address. If the socket ends up being an IPv6 socket, 259 * udp_append() will convert to a sockaddr_in6 before passing the address 260 * into the socket code. 261 * 262 * In the normal case udp_append() will return 0, indicating that you 263 * must unlock the inp. However if a tunneling protocol is in place we increment 264 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 265 * then decrement the reference count. If the inp_rele returns 1, indicating the 266 * inp is gone, we return that to the caller to tell them *not* to unlock 267 * the inp. In the case of multi-cast this will cause the distribution 268 * to stop (though most tunneling protocols known currently do *not* use 269 * multicast). 270 */ 271 static int 272 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 273 struct sockaddr_in *udp_in) 274 { 275 struct sockaddr *append_sa; 276 struct socket *so; 277 struct mbuf *tmpopts, *opts = NULL; 278 #ifdef INET6 279 struct sockaddr_in6 udp_in6; 280 #endif 281 struct udpcb *up; 282 bool filtered; 283 284 INP_LOCK_ASSERT(inp); 285 286 /* 287 * Engage the tunneling protocol. 288 */ 289 up = intoudpcb(inp); 290 if (up->u_tun_func != NULL) { 291 in_pcbref(inp); 292 INP_RUNLOCK(inp); 293 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 294 up->u_tun_ctx); 295 INP_RLOCK(inp); 296 if (filtered) 297 return (in_pcbrele_rlocked(inp)); 298 } 299 300 off += sizeof(struct udphdr); 301 302 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 303 /* Check AH/ESP integrity. */ 304 if (IPSEC_ENABLED(ipv4) && 305 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 306 m_freem(n); 307 return (0); 308 } 309 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 310 if (IPSEC_ENABLED(ipv4) && 311 UDPENCAP_INPUT(n, off, AF_INET) != 0) 312 return (0); /* Consumed. */ 313 } 314 #endif /* IPSEC */ 315 #ifdef MAC 316 if (mac_inpcb_check_deliver(inp, n) != 0) { 317 m_freem(n); 318 return (0); 319 } 320 #endif /* MAC */ 321 if (inp->inp_flags & INP_CONTROLOPTS || 322 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 323 #ifdef INET6 324 if (inp->inp_vflag & INP_IPV6) 325 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 326 else 327 #endif /* INET6 */ 328 ip_savecontrol(inp, &opts, ip, n); 329 } 330 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 331 tmpopts = sbcreatecontrol(&udp_in[1], 332 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 333 M_NOWAIT); 334 if (tmpopts) { 335 if (opts) { 336 tmpopts->m_next = opts; 337 opts = tmpopts; 338 } else 339 opts = tmpopts; 340 } 341 } 342 #ifdef INET6 343 if (inp->inp_vflag & INP_IPV6) { 344 bzero(&udp_in6, sizeof(udp_in6)); 345 udp_in6.sin6_len = sizeof(udp_in6); 346 udp_in6.sin6_family = AF_INET6; 347 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 348 append_sa = (struct sockaddr *)&udp_in6; 349 } else 350 #endif /* INET6 */ 351 append_sa = (struct sockaddr *)&udp_in[0]; 352 m_adj(n, off); 353 354 so = inp->inp_socket; 355 SOCKBUF_LOCK(&so->so_rcv); 356 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 357 soroverflow_locked(so); 358 m_freem(n); 359 if (opts) 360 m_freem(opts); 361 UDPSTAT_INC(udps_fullsock); 362 } else 363 sorwakeup_locked(so); 364 return (0); 365 } 366 367 static bool 368 udp_multi_match(const struct inpcb *inp, void *v) 369 { 370 struct ip *ip = v; 371 struct udphdr *uh = (struct udphdr *)(ip + 1); 372 373 if (inp->inp_lport != uh->uh_dport) 374 return (false); 375 #ifdef INET6 376 if ((inp->inp_vflag & INP_IPV4) == 0) 377 return (false); 378 #endif 379 if (inp->inp_laddr.s_addr != INADDR_ANY && 380 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 381 return (false); 382 if (inp->inp_faddr.s_addr != INADDR_ANY && 383 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 384 return (false); 385 if (inp->inp_fport != 0 && 386 inp->inp_fport != uh->uh_sport) 387 return (false); 388 389 return (true); 390 } 391 392 static int 393 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 394 { 395 struct ip *ip = mtod(m, struct ip *); 396 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 397 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 398 #ifdef KDTRACE_HOOKS 399 struct udphdr *uh = (struct udphdr *)(ip + 1); 400 #endif 401 struct inpcb *inp; 402 struct mbuf *n; 403 int appends = 0; 404 405 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 406 407 while ((inp = inp_next(&inpi)) != NULL) { 408 /* 409 * XXXRW: Because we weren't holding either the inpcb 410 * or the hash lock when we checked for a match 411 * before, we should probably recheck now that the 412 * inpcb lock is held. 413 */ 414 /* 415 * Handle socket delivery policy for any-source 416 * and source-specific multicast. [RFC3678] 417 */ 418 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 419 struct ip_moptions *imo; 420 struct sockaddr_in group; 421 int blocked; 422 423 imo = inp->inp_moptions; 424 if (imo == NULL) 425 continue; 426 bzero(&group, sizeof(struct sockaddr_in)); 427 group.sin_len = sizeof(struct sockaddr_in); 428 group.sin_family = AF_INET; 429 group.sin_addr = ip->ip_dst; 430 431 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 432 (struct sockaddr *)&group, 433 (struct sockaddr *)&udp_in[0]); 434 if (blocked != MCAST_PASS) { 435 if (blocked == MCAST_NOTGMEMBER) 436 IPSTAT_INC(ips_notmember); 437 if (blocked == MCAST_NOTSMEMBER || 438 blocked == MCAST_MUTED) 439 UDPSTAT_INC(udps_filtermcast); 440 continue; 441 } 442 } 443 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 444 if (proto == IPPROTO_UDPLITE) 445 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 446 else 447 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 448 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 449 break; 450 } else 451 appends++; 452 } 453 /* 454 * Don't look for additional matches if this one does 455 * not have either the SO_REUSEPORT or SO_REUSEADDR 456 * socket options set. This heuristic avoids 457 * searching through all pcbs in the common case of a 458 * non-shared port. It assumes that an application 459 * will never clear these options after setting them. 460 */ 461 if ((inp->inp_socket->so_options & 462 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 463 INP_RUNLOCK(inp); 464 break; 465 } 466 } 467 468 if (appends == 0) { 469 /* 470 * No matching pcb found; discard datagram. (No need 471 * to send an ICMP Port Unreachable for a broadcast 472 * or multicast datgram.) 473 */ 474 UDPSTAT_INC(udps_noport); 475 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 476 UDPSTAT_INC(udps_noportmcast); 477 else 478 UDPSTAT_INC(udps_noportbcast); 479 } 480 m_freem(m); 481 482 return (IPPROTO_DONE); 483 } 484 485 static int 486 udp_input(struct mbuf **mp, int *offp, int proto) 487 { 488 struct ip *ip; 489 struct udphdr *uh; 490 struct ifnet *ifp; 491 struct inpcb *inp; 492 uint16_t len, ip_len; 493 struct inpcbinfo *pcbinfo; 494 struct sockaddr_in udp_in[2]; 495 struct mbuf *m; 496 struct m_tag *fwd_tag; 497 int cscov_partial, iphlen; 498 499 m = *mp; 500 iphlen = *offp; 501 ifp = m->m_pkthdr.rcvif; 502 *mp = NULL; 503 UDPSTAT_INC(udps_ipackets); 504 505 /* 506 * Strip IP options, if any; should skip this, make available to 507 * user, and use on returned packets, but we don't yet have a way to 508 * check the checksum with options still present. 509 */ 510 if (iphlen > sizeof (struct ip)) { 511 ip_stripoptions(m); 512 iphlen = sizeof(struct ip); 513 } 514 515 /* 516 * Get IP and UDP header together in first mbuf. 517 */ 518 if (m->m_len < iphlen + sizeof(struct udphdr)) { 519 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 520 UDPSTAT_INC(udps_hdrops); 521 return (IPPROTO_DONE); 522 } 523 } 524 ip = mtod(m, struct ip *); 525 uh = (struct udphdr *)((caddr_t)ip + iphlen); 526 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 527 528 /* 529 * Destination port of 0 is illegal, based on RFC768. 530 */ 531 if (uh->uh_dport == 0) 532 goto badunlocked; 533 534 /* 535 * Construct sockaddr format source address. Stuff source address 536 * and datagram in user buffer. 537 */ 538 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 539 udp_in[0].sin_len = sizeof(struct sockaddr_in); 540 udp_in[0].sin_family = AF_INET; 541 udp_in[0].sin_port = uh->uh_sport; 542 udp_in[0].sin_addr = ip->ip_src; 543 udp_in[1].sin_len = sizeof(struct sockaddr_in); 544 udp_in[1].sin_family = AF_INET; 545 udp_in[1].sin_port = uh->uh_dport; 546 udp_in[1].sin_addr = ip->ip_dst; 547 548 /* 549 * Make mbuf data length reflect UDP length. If not enough data to 550 * reflect UDP length, drop. 551 */ 552 len = ntohs((u_short)uh->uh_ulen); 553 ip_len = ntohs(ip->ip_len) - iphlen; 554 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 555 /* Zero means checksum over the complete packet. */ 556 if (len == 0) 557 len = ip_len; 558 cscov_partial = 0; 559 } 560 if (ip_len != len) { 561 if (len > ip_len || len < sizeof(struct udphdr)) { 562 UDPSTAT_INC(udps_badlen); 563 goto badunlocked; 564 } 565 if (proto == IPPROTO_UDP) 566 m_adj(m, len - ip_len); 567 } 568 569 /* 570 * Checksum extended UDP header and data. 571 */ 572 if (uh->uh_sum) { 573 u_short uh_sum; 574 575 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 576 !cscov_partial) { 577 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 578 uh_sum = m->m_pkthdr.csum_data; 579 else 580 uh_sum = in_pseudo(ip->ip_src.s_addr, 581 ip->ip_dst.s_addr, htonl((u_short)len + 582 m->m_pkthdr.csum_data + proto)); 583 uh_sum ^= 0xffff; 584 } else { 585 char b[offsetof(struct ipovly, ih_src)]; 586 struct ipovly *ipov = (struct ipovly *)ip; 587 588 bcopy(ipov, b, sizeof(b)); 589 bzero(ipov, sizeof(ipov->ih_x1)); 590 ipov->ih_len = (proto == IPPROTO_UDP) ? 591 uh->uh_ulen : htons(ip_len); 592 uh_sum = in_cksum(m, len + sizeof (struct ip)); 593 bcopy(b, ipov, sizeof(b)); 594 } 595 if (uh_sum) { 596 UDPSTAT_INC(udps_badsum); 597 m_freem(m); 598 return (IPPROTO_DONE); 599 } 600 } else { 601 if (proto == IPPROTO_UDP) { 602 UDPSTAT_INC(udps_nosum); 603 } else { 604 /* UDPLite requires a checksum */ 605 /* XXX: What is the right UDPLite MIB counter here? */ 606 m_freem(m); 607 return (IPPROTO_DONE); 608 } 609 } 610 611 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 612 in_broadcast(ip->ip_dst, ifp)) 613 return (udp_multi_input(m, proto, udp_in)); 614 615 pcbinfo = udp_get_inpcbinfo(proto); 616 617 /* 618 * Locate pcb for datagram. 619 * 620 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 621 */ 622 if ((m->m_flags & M_IP_NEXTHOP) && 623 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 624 struct sockaddr_in *next_hop; 625 626 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 627 628 /* 629 * Transparently forwarded. Pretend to be the destination. 630 * Already got one like this? 631 */ 632 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 633 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 634 if (!inp) { 635 /* 636 * It's new. Try to find the ambushing socket. 637 * Because we've rewritten the destination address, 638 * any hardware-generated hash is ignored. 639 */ 640 inp = in_pcblookup(pcbinfo, ip->ip_src, 641 uh->uh_sport, next_hop->sin_addr, 642 next_hop->sin_port ? htons(next_hop->sin_port) : 643 uh->uh_dport, INPLOOKUP_WILDCARD | 644 INPLOOKUP_RLOCKPCB, ifp); 645 } 646 /* Remove the tag from the packet. We don't need it anymore. */ 647 m_tag_delete(m, fwd_tag); 648 m->m_flags &= ~M_IP_NEXTHOP; 649 } else 650 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 651 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 652 INPLOOKUP_RLOCKPCB, ifp, m); 653 if (inp == NULL) { 654 if (V_udp_log_in_vain) { 655 char src[INET_ADDRSTRLEN]; 656 char dst[INET_ADDRSTRLEN]; 657 658 log(LOG_INFO, 659 "Connection attempt to UDP %s:%d from %s:%d\n", 660 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 661 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 662 } 663 if (proto == IPPROTO_UDPLITE) 664 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 665 else 666 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 667 UDPSTAT_INC(udps_noport); 668 if (m->m_flags & (M_BCAST | M_MCAST)) { 669 UDPSTAT_INC(udps_noportbcast); 670 goto badunlocked; 671 } 672 if (V_udp_blackhole && (V_udp_blackhole_local || 673 !in_localip(ip->ip_src))) 674 goto badunlocked; 675 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 676 goto badunlocked; 677 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 678 return (IPPROTO_DONE); 679 } 680 681 /* 682 * Check the minimum TTL for socket. 683 */ 684 INP_RLOCK_ASSERT(inp); 685 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 686 if (proto == IPPROTO_UDPLITE) 687 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 688 else 689 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 690 INP_RUNLOCK(inp); 691 m_freem(m); 692 return (IPPROTO_DONE); 693 } 694 if (cscov_partial) { 695 struct udpcb *up; 696 697 up = intoudpcb(inp); 698 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 699 INP_RUNLOCK(inp); 700 m_freem(m); 701 return (IPPROTO_DONE); 702 } 703 } 704 705 if (proto == IPPROTO_UDPLITE) 706 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 707 else 708 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 709 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 710 INP_RUNLOCK(inp); 711 return (IPPROTO_DONE); 712 713 badunlocked: 714 m_freem(m); 715 return (IPPROTO_DONE); 716 } 717 #endif /* INET */ 718 719 /* 720 * Notify a udp user of an asynchronous error; just wake up so that they can 721 * collect error status. 722 */ 723 struct inpcb * 724 udp_notify(struct inpcb *inp, int errno) 725 { 726 727 INP_WLOCK_ASSERT(inp); 728 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 729 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 730 NH_FREE(inp->inp_route.ro_nh); 731 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 732 } 733 734 inp->inp_socket->so_error = errno; 735 sorwakeup(inp->inp_socket); 736 sowwakeup(inp->inp_socket); 737 return (inp); 738 } 739 740 #ifdef INET 741 static void 742 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 743 { 744 struct ip *ip = &icmp->icmp_ip; 745 struct udphdr *uh; 746 struct inpcb *inp; 747 748 if (icmp_errmap(icmp) == 0) 749 return; 750 751 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 752 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 753 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 754 if (inp != NULL) { 755 INP_WLOCK_ASSERT(inp); 756 if (inp->inp_socket != NULL) 757 udp_notify(inp, icmp_errmap(icmp)); 758 INP_WUNLOCK(inp); 759 } else { 760 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 761 ip->ip_src, uh->uh_sport, 762 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 763 if (inp != NULL) { 764 struct udpcb *up; 765 udp_tun_icmp_t *func; 766 767 up = intoudpcb(inp); 768 func = up->u_icmp_func; 769 INP_RUNLOCK(inp); 770 if (func != NULL) 771 func(icmp); 772 } 773 } 774 } 775 776 static void 777 udp_ctlinput(struct icmp *icmp) 778 { 779 780 return (udp_common_ctlinput(icmp, &V_udbinfo)); 781 } 782 783 static void 784 udplite_ctlinput(struct icmp *icmp) 785 { 786 787 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 788 } 789 #endif /* INET */ 790 791 static int 792 udp_pcblist(SYSCTL_HANDLER_ARGS) 793 { 794 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 795 INPLOOKUP_RLOCKPCB); 796 struct xinpgen xig; 797 struct inpcb *inp; 798 int error; 799 800 if (req->newptr != 0) 801 return (EPERM); 802 803 if (req->oldptr == 0) { 804 int n; 805 806 n = V_udbinfo.ipi_count; 807 n += imax(n / 8, 10); 808 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 809 return (0); 810 } 811 812 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 813 return (error); 814 815 bzero(&xig, sizeof(xig)); 816 xig.xig_len = sizeof xig; 817 xig.xig_count = V_udbinfo.ipi_count; 818 xig.xig_gen = V_udbinfo.ipi_gencnt; 819 xig.xig_sogen = so_gencnt; 820 error = SYSCTL_OUT(req, &xig, sizeof xig); 821 if (error) 822 return (error); 823 824 while ((inp = inp_next(&inpi)) != NULL) { 825 if (inp->inp_gencnt <= xig.xig_gen && 826 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 827 struct xinpcb xi; 828 829 in_pcbtoxinpcb(inp, &xi); 830 error = SYSCTL_OUT(req, &xi, sizeof xi); 831 if (error) { 832 INP_RUNLOCK(inp); 833 break; 834 } 835 } 836 } 837 838 if (!error) { 839 /* 840 * Give the user an updated idea of our state. If the 841 * generation differs from what we told her before, she knows 842 * that something happened while we were processing this 843 * request, and it might be necessary to retry. 844 */ 845 xig.xig_gen = V_udbinfo.ipi_gencnt; 846 xig.xig_sogen = so_gencnt; 847 xig.xig_count = V_udbinfo.ipi_count; 848 error = SYSCTL_OUT(req, &xig, sizeof xig); 849 } 850 851 return (error); 852 } 853 854 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 855 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 856 udp_pcblist, "S,xinpcb", 857 "List of active UDP sockets"); 858 859 #ifdef INET 860 static int 861 udp_getcred(SYSCTL_HANDLER_ARGS) 862 { 863 struct xucred xuc; 864 struct sockaddr_in addrs[2]; 865 struct epoch_tracker et; 866 struct inpcb *inp; 867 int error; 868 869 error = priv_check(req->td, PRIV_NETINET_GETCRED); 870 if (error) 871 return (error); 872 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 873 if (error) 874 return (error); 875 NET_EPOCH_ENTER(et); 876 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 877 addrs[0].sin_addr, addrs[0].sin_port, 878 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 879 NET_EPOCH_EXIT(et); 880 if (inp != NULL) { 881 INP_RLOCK_ASSERT(inp); 882 if (inp->inp_socket == NULL) 883 error = ENOENT; 884 if (error == 0) 885 error = cr_canseeinpcb(req->td->td_ucred, inp); 886 if (error == 0) 887 cru2x(inp->inp_cred, &xuc); 888 INP_RUNLOCK(inp); 889 } else 890 error = ENOENT; 891 if (error == 0) 892 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 893 return (error); 894 } 895 896 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 897 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 898 0, 0, udp_getcred, "S,xucred", 899 "Get the xucred of a UDP connection"); 900 #endif /* INET */ 901 902 int 903 udp_ctloutput(struct socket *so, struct sockopt *sopt) 904 { 905 struct inpcb *inp; 906 struct udpcb *up; 907 int isudplite, error, optval; 908 909 error = 0; 910 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 911 inp = sotoinpcb(so); 912 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 913 INP_WLOCK(inp); 914 if (sopt->sopt_level != so->so_proto->pr_protocol) { 915 #ifdef INET6 916 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 917 INP_WUNLOCK(inp); 918 error = ip6_ctloutput(so, sopt); 919 } 920 #endif 921 #if defined(INET) && defined(INET6) 922 else 923 #endif 924 #ifdef INET 925 { 926 INP_WUNLOCK(inp); 927 error = ip_ctloutput(so, sopt); 928 } 929 #endif 930 return (error); 931 } 932 933 switch (sopt->sopt_dir) { 934 case SOPT_SET: 935 switch (sopt->sopt_name) { 936 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 937 #ifdef INET 938 case UDP_ENCAP: 939 if (!IPSEC_ENABLED(ipv4)) { 940 INP_WUNLOCK(inp); 941 return (ENOPROTOOPT); 942 } 943 error = UDPENCAP_PCBCTL(inp, sopt); 944 break; 945 #endif /* INET */ 946 #endif /* IPSEC */ 947 case UDPLITE_SEND_CSCOV: 948 case UDPLITE_RECV_CSCOV: 949 if (!isudplite) { 950 INP_WUNLOCK(inp); 951 error = ENOPROTOOPT; 952 break; 953 } 954 INP_WUNLOCK(inp); 955 error = sooptcopyin(sopt, &optval, sizeof(optval), 956 sizeof(optval)); 957 if (error != 0) 958 break; 959 inp = sotoinpcb(so); 960 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 961 INP_WLOCK(inp); 962 up = intoudpcb(inp); 963 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 964 if ((optval != 0 && optval < 8) || (optval > 65535)) { 965 INP_WUNLOCK(inp); 966 error = EINVAL; 967 break; 968 } 969 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 970 up->u_txcslen = optval; 971 else 972 up->u_rxcslen = optval; 973 INP_WUNLOCK(inp); 974 break; 975 default: 976 INP_WUNLOCK(inp); 977 error = ENOPROTOOPT; 978 break; 979 } 980 break; 981 case SOPT_GET: 982 switch (sopt->sopt_name) { 983 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 984 #ifdef INET 985 case UDP_ENCAP: 986 if (!IPSEC_ENABLED(ipv4)) { 987 INP_WUNLOCK(inp); 988 return (ENOPROTOOPT); 989 } 990 error = UDPENCAP_PCBCTL(inp, sopt); 991 break; 992 #endif /* INET */ 993 #endif /* IPSEC */ 994 case UDPLITE_SEND_CSCOV: 995 case UDPLITE_RECV_CSCOV: 996 if (!isudplite) { 997 INP_WUNLOCK(inp); 998 error = ENOPROTOOPT; 999 break; 1000 } 1001 up = intoudpcb(inp); 1002 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1003 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1004 optval = up->u_txcslen; 1005 else 1006 optval = up->u_rxcslen; 1007 INP_WUNLOCK(inp); 1008 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1009 break; 1010 default: 1011 INP_WUNLOCK(inp); 1012 error = ENOPROTOOPT; 1013 break; 1014 } 1015 break; 1016 } 1017 return (error); 1018 } 1019 1020 #ifdef INET 1021 #ifdef INET6 1022 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1023 static int 1024 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1025 struct inpcb *inp, int flags) 1026 { 1027 struct ifnet *ifp; 1028 struct in6_pktinfo *pktinfo; 1029 struct in_addr ia; 1030 1031 if ((flags & PRUS_IPV6) == 0) 1032 return (0); 1033 1034 if (cm->cmsg_level != IPPROTO_IPV6) 1035 return (0); 1036 1037 if (cm->cmsg_type != IPV6_2292PKTINFO && 1038 cm->cmsg_type != IPV6_PKTINFO) 1039 return (0); 1040 1041 if (cm->cmsg_len != 1042 CMSG_LEN(sizeof(struct in6_pktinfo))) 1043 return (EINVAL); 1044 1045 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1046 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1047 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1048 return (EINVAL); 1049 1050 /* Validate the interface index if specified. */ 1051 if (pktinfo->ipi6_ifindex) { 1052 struct epoch_tracker et; 1053 1054 NET_EPOCH_ENTER(et); 1055 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1056 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1057 if (ifp == NULL) 1058 return (ENXIO); 1059 } else 1060 ifp = NULL; 1061 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1062 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1063 if (in_ifhasaddr(ifp, ia) == 0) 1064 return (EADDRNOTAVAIL); 1065 } 1066 1067 bzero(src, sizeof(*src)); 1068 src->sin_family = AF_INET; 1069 src->sin_len = sizeof(*src); 1070 src->sin_port = inp->inp_lport; 1071 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1072 1073 return (0); 1074 } 1075 #endif 1076 1077 static int 1078 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1079 struct mbuf *control, struct thread *td, int flags) 1080 { 1081 struct udpiphdr *ui; 1082 int len = m->m_pkthdr.len; 1083 struct in_addr faddr, laddr; 1084 struct cmsghdr *cm; 1085 struct inpcbinfo *pcbinfo; 1086 struct sockaddr_in *sin, src; 1087 struct epoch_tracker et; 1088 int cscov_partial = 0; 1089 int error = 0; 1090 int ipflags = 0; 1091 u_short fport, lport; 1092 u_char tos; 1093 uint8_t pr; 1094 uint16_t cscov = 0; 1095 uint32_t flowid = 0; 1096 uint8_t flowtype = M_HASHTYPE_NONE; 1097 1098 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1099 if (control) 1100 m_freem(control); 1101 m_freem(m); 1102 return (EMSGSIZE); 1103 } 1104 1105 src.sin_family = 0; 1106 sin = (struct sockaddr_in *)addr; 1107 1108 /* 1109 * udp_output() may need to temporarily bind or connect the current 1110 * inpcb. As such, we don't know up front whether we will need the 1111 * pcbinfo lock or not. Do any work to decide what is needed up 1112 * front before acquiring any locks. 1113 * 1114 * We will need network epoch in either case, to safely lookup into 1115 * pcb hash. 1116 */ 1117 if (sin == NULL || 1118 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1119 INP_WLOCK(inp); 1120 else 1121 INP_RLOCK(inp); 1122 NET_EPOCH_ENTER(et); 1123 tos = inp->inp_ip_tos; 1124 if (control != NULL) { 1125 /* 1126 * XXX: Currently, we assume all the optional information is 1127 * stored in a single mbuf. 1128 */ 1129 if (control->m_next) { 1130 m_freem(control); 1131 error = EINVAL; 1132 goto release; 1133 } 1134 for (; control->m_len > 0; 1135 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1136 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1137 cm = mtod(control, struct cmsghdr *); 1138 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1139 || cm->cmsg_len > control->m_len) { 1140 error = EINVAL; 1141 break; 1142 } 1143 #ifdef INET6 1144 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1145 if (error != 0) 1146 break; 1147 #endif 1148 if (cm->cmsg_level != IPPROTO_IP) 1149 continue; 1150 1151 switch (cm->cmsg_type) { 1152 case IP_SENDSRCADDR: 1153 if (cm->cmsg_len != 1154 CMSG_LEN(sizeof(struct in_addr))) { 1155 error = EINVAL; 1156 break; 1157 } 1158 bzero(&src, sizeof(src)); 1159 src.sin_family = AF_INET; 1160 src.sin_len = sizeof(src); 1161 src.sin_port = inp->inp_lport; 1162 src.sin_addr = 1163 *(struct in_addr *)CMSG_DATA(cm); 1164 break; 1165 1166 case IP_TOS: 1167 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1168 error = EINVAL; 1169 break; 1170 } 1171 tos = *(u_char *)CMSG_DATA(cm); 1172 break; 1173 1174 case IP_FLOWID: 1175 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1176 error = EINVAL; 1177 break; 1178 } 1179 flowid = *(uint32_t *) CMSG_DATA(cm); 1180 break; 1181 1182 case IP_FLOWTYPE: 1183 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1184 error = EINVAL; 1185 break; 1186 } 1187 flowtype = *(uint32_t *) CMSG_DATA(cm); 1188 break; 1189 1190 #ifdef RSS 1191 case IP_RSSBUCKETID: 1192 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1193 error = EINVAL; 1194 break; 1195 } 1196 /* This is just a placeholder for now */ 1197 break; 1198 #endif /* RSS */ 1199 default: 1200 error = ENOPROTOOPT; 1201 break; 1202 } 1203 if (error) 1204 break; 1205 } 1206 m_freem(control); 1207 control = NULL; 1208 } 1209 if (error) 1210 goto release; 1211 1212 pr = inp->inp_socket->so_proto->pr_protocol; 1213 pcbinfo = udp_get_inpcbinfo(pr); 1214 1215 /* 1216 * If the IP_SENDSRCADDR control message was specified, override the 1217 * source address for this datagram. Its use is invalidated if the 1218 * address thus specified is incomplete or clobbers other inpcbs. 1219 */ 1220 laddr = inp->inp_laddr; 1221 lport = inp->inp_lport; 1222 if (src.sin_family == AF_INET) { 1223 if ((lport == 0) || 1224 (laddr.s_addr == INADDR_ANY && 1225 src.sin_addr.s_addr == INADDR_ANY)) { 1226 error = EINVAL; 1227 goto release; 1228 } 1229 INP_HASH_WLOCK(pcbinfo); 1230 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1231 &laddr.s_addr, &lport, td->td_ucred); 1232 INP_HASH_WUNLOCK(pcbinfo); 1233 if (error) 1234 goto release; 1235 } 1236 1237 /* 1238 * If a UDP socket has been connected, then a local address/port will 1239 * have been selected and bound. 1240 * 1241 * If a UDP socket has not been connected to, then an explicit 1242 * destination address must be used, in which case a local 1243 * address/port may not have been selected and bound. 1244 */ 1245 if (sin != NULL) { 1246 INP_LOCK_ASSERT(inp); 1247 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1248 error = EISCONN; 1249 goto release; 1250 } 1251 1252 /* 1253 * Jail may rewrite the destination address, so let it do 1254 * that before we use it. 1255 */ 1256 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1257 if (error) 1258 goto release; 1259 1260 /* 1261 * If a local address or port hasn't yet been selected, or if 1262 * the destination address needs to be rewritten due to using 1263 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1264 * to do the heavy lifting. Once a port is selected, we 1265 * commit the binding back to the socket; we also commit the 1266 * binding of the address if in jail. 1267 * 1268 * If we already have a valid binding and we're not 1269 * requesting a destination address rewrite, use a fast path. 1270 */ 1271 if (inp->inp_laddr.s_addr == INADDR_ANY || 1272 inp->inp_lport == 0 || 1273 sin->sin_addr.s_addr == INADDR_ANY || 1274 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1275 INP_HASH_WLOCK(pcbinfo); 1276 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1277 &lport, &faddr.s_addr, &fport, NULL, 1278 td->td_ucred); 1279 if (error) { 1280 INP_HASH_WUNLOCK(pcbinfo); 1281 goto release; 1282 } 1283 1284 /* 1285 * XXXRW: Why not commit the port if the address is 1286 * !INADDR_ANY? 1287 */ 1288 /* Commit the local port if newly assigned. */ 1289 if (inp->inp_laddr.s_addr == INADDR_ANY && 1290 inp->inp_lport == 0) { 1291 INP_WLOCK_ASSERT(inp); 1292 /* 1293 * Remember addr if jailed, to prevent 1294 * rebinding. 1295 */ 1296 if (prison_flag(td->td_ucred, PR_IP4)) 1297 inp->inp_laddr = laddr; 1298 inp->inp_lport = lport; 1299 error = in_pcbinshash(inp); 1300 INP_HASH_WUNLOCK(pcbinfo); 1301 if (error != 0) { 1302 inp->inp_lport = 0; 1303 error = EAGAIN; 1304 goto release; 1305 } 1306 inp->inp_flags |= INP_ANONPORT; 1307 } else 1308 INP_HASH_WUNLOCK(pcbinfo); 1309 } else { 1310 faddr = sin->sin_addr; 1311 fport = sin->sin_port; 1312 } 1313 } else { 1314 INP_LOCK_ASSERT(inp); 1315 faddr = inp->inp_faddr; 1316 fport = inp->inp_fport; 1317 if (faddr.s_addr == INADDR_ANY) { 1318 error = ENOTCONN; 1319 goto release; 1320 } 1321 } 1322 1323 /* 1324 * Calculate data length and get a mbuf for UDP, IP, and possible 1325 * link-layer headers. Immediate slide the data pointer back forward 1326 * since we won't use that space at this layer. 1327 */ 1328 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1329 if (m == NULL) { 1330 error = ENOBUFS; 1331 goto release; 1332 } 1333 m->m_data += max_linkhdr; 1334 m->m_len -= max_linkhdr; 1335 m->m_pkthdr.len -= max_linkhdr; 1336 1337 /* 1338 * Fill in mbuf with extended UDP header and addresses and length put 1339 * into network format. 1340 */ 1341 ui = mtod(m, struct udpiphdr *); 1342 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1343 ui->ui_v = IPVERSION << 4; 1344 ui->ui_pr = pr; 1345 ui->ui_src = laddr; 1346 ui->ui_dst = faddr; 1347 ui->ui_sport = lport; 1348 ui->ui_dport = fport; 1349 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1350 if (pr == IPPROTO_UDPLITE) { 1351 struct udpcb *up; 1352 uint16_t plen; 1353 1354 up = intoudpcb(inp); 1355 cscov = up->u_txcslen; 1356 plen = (u_short)len + sizeof(struct udphdr); 1357 if (cscov >= plen) 1358 cscov = 0; 1359 ui->ui_len = htons(plen); 1360 ui->ui_ulen = htons(cscov); 1361 /* 1362 * For UDP-Lite, checksum coverage length of zero means 1363 * the entire UDPLite packet is covered by the checksum. 1364 */ 1365 cscov_partial = (cscov == 0) ? 0 : 1; 1366 } 1367 1368 /* 1369 * Set the Don't Fragment bit in the IP header. 1370 */ 1371 if (inp->inp_flags & INP_DONTFRAG) { 1372 struct ip *ip; 1373 1374 ip = (struct ip *)&ui->ui_i; 1375 ip->ip_off |= htons(IP_DF); 1376 } 1377 1378 if (inp->inp_socket->so_options & SO_DONTROUTE) 1379 ipflags |= IP_ROUTETOIF; 1380 if (inp->inp_socket->so_options & SO_BROADCAST) 1381 ipflags |= IP_ALLOWBROADCAST; 1382 if (inp->inp_flags & INP_ONESBCAST) 1383 ipflags |= IP_SENDONES; 1384 1385 #ifdef MAC 1386 mac_inpcb_create_mbuf(inp, m); 1387 #endif 1388 1389 /* 1390 * Set up checksum and output datagram. 1391 */ 1392 ui->ui_sum = 0; 1393 if (pr == IPPROTO_UDPLITE) { 1394 if (inp->inp_flags & INP_ONESBCAST) 1395 faddr.s_addr = INADDR_BROADCAST; 1396 if (cscov_partial) { 1397 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1398 ui->ui_sum = 0xffff; 1399 } else { 1400 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1401 ui->ui_sum = 0xffff; 1402 } 1403 } else if (V_udp_cksum) { 1404 if (inp->inp_flags & INP_ONESBCAST) 1405 faddr.s_addr = INADDR_BROADCAST; 1406 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1407 htons((u_short)len + sizeof(struct udphdr) + pr)); 1408 m->m_pkthdr.csum_flags = CSUM_UDP; 1409 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1410 } 1411 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1412 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1413 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1414 UDPSTAT_INC(udps_opackets); 1415 1416 /* 1417 * Setup flowid / RSS information for outbound socket. 1418 * 1419 * Once the UDP code decides to set a flowid some other way, 1420 * this allows the flowid to be overridden by userland. 1421 */ 1422 if (flowtype != M_HASHTYPE_NONE) { 1423 m->m_pkthdr.flowid = flowid; 1424 M_HASHTYPE_SET(m, flowtype); 1425 } 1426 #if defined(ROUTE_MPATH) || defined(RSS) 1427 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1428 uint32_t hash_val, hash_type; 1429 1430 hash_val = fib4_calc_packet_hash(laddr, faddr, 1431 lport, fport, pr, &hash_type); 1432 m->m_pkthdr.flowid = hash_val; 1433 M_HASHTYPE_SET(m, hash_type); 1434 } 1435 1436 /* 1437 * Don't override with the inp cached flowid value. 1438 * 1439 * Depending upon the kind of send being done, the inp 1440 * flowid/flowtype values may actually not be appropriate 1441 * for this particular socket send. 1442 * 1443 * We should either leave the flowid at zero (which is what is 1444 * currently done) or set it to some software generated 1445 * hash value based on the packet contents. 1446 */ 1447 ipflags |= IP_NODEFAULTFLOWID; 1448 #endif /* RSS */ 1449 1450 if (pr == IPPROTO_UDPLITE) 1451 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1452 else 1453 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1454 error = ip_output(m, inp->inp_options, 1455 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1456 inp->inp_moptions, inp); 1457 INP_UNLOCK(inp); 1458 NET_EPOCH_EXIT(et); 1459 return (error); 1460 1461 release: 1462 INP_UNLOCK(inp); 1463 NET_EPOCH_EXIT(et); 1464 m_freem(m); 1465 return (error); 1466 } 1467 1468 pr_abort_t udp_abort; /* shared with udp6_usrreq.c */ 1469 void 1470 udp_abort(struct socket *so) 1471 { 1472 struct inpcb *inp; 1473 struct inpcbinfo *pcbinfo; 1474 1475 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1476 inp = sotoinpcb(so); 1477 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1478 INP_WLOCK(inp); 1479 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1480 INP_HASH_WLOCK(pcbinfo); 1481 in_pcbdisconnect(inp); 1482 inp->inp_laddr.s_addr = INADDR_ANY; 1483 INP_HASH_WUNLOCK(pcbinfo); 1484 soisdisconnected(so); 1485 } 1486 INP_WUNLOCK(inp); 1487 } 1488 1489 static int 1490 udp_attach(struct socket *so, int proto, struct thread *td) 1491 { 1492 static uint32_t udp_flowid; 1493 struct inpcb *inp; 1494 struct inpcbinfo *pcbinfo; 1495 int error; 1496 1497 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1498 inp = sotoinpcb(so); 1499 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1500 error = soreserve(so, udp_sendspace, udp_recvspace); 1501 if (error) 1502 return (error); 1503 error = in_pcballoc(so, pcbinfo); 1504 if (error) 1505 return (error); 1506 1507 inp = sotoinpcb(so); 1508 inp->inp_ip_ttl = V_ip_defttl; 1509 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1510 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1511 1512 error = udp_newudpcb(inp); 1513 if (error) { 1514 in_pcbdetach(inp); 1515 in_pcbfree(inp); 1516 return (error); 1517 } 1518 INP_WUNLOCK(inp); 1519 1520 return (0); 1521 } 1522 #endif /* INET */ 1523 1524 int 1525 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1526 { 1527 struct inpcb *inp; 1528 struct udpcb *up; 1529 1530 KASSERT(so->so_type == SOCK_DGRAM, 1531 ("udp_set_kernel_tunneling: !dgram")); 1532 inp = sotoinpcb(so); 1533 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1534 INP_WLOCK(inp); 1535 up = intoudpcb(inp); 1536 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1537 (up->u_icmp_func != NULL))) { 1538 INP_WUNLOCK(inp); 1539 return (EBUSY); 1540 } 1541 up->u_tun_func = f; 1542 up->u_icmp_func = i; 1543 up->u_tun_ctx = ctx; 1544 INP_WUNLOCK(inp); 1545 return (0); 1546 } 1547 1548 #ifdef INET 1549 static int 1550 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1551 { 1552 struct inpcb *inp; 1553 struct inpcbinfo *pcbinfo; 1554 struct sockaddr_in *sinp; 1555 int error; 1556 1557 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1558 inp = sotoinpcb(so); 1559 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1560 1561 sinp = (struct sockaddr_in *)nam; 1562 if (nam->sa_family != AF_INET) { 1563 /* 1564 * Preserve compatibility with old programs. 1565 */ 1566 if (nam->sa_family != AF_UNSPEC || 1567 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1568 sinp->sin_addr.s_addr != INADDR_ANY) 1569 return (EAFNOSUPPORT); 1570 nam->sa_family = AF_INET; 1571 } 1572 if (nam->sa_len != sizeof(struct sockaddr_in)) 1573 return (EINVAL); 1574 1575 INP_WLOCK(inp); 1576 INP_HASH_WLOCK(pcbinfo); 1577 error = in_pcbbind(inp, nam, td->td_ucred); 1578 INP_HASH_WUNLOCK(pcbinfo); 1579 INP_WUNLOCK(inp); 1580 return (error); 1581 } 1582 1583 static void 1584 udp_close(struct socket *so) 1585 { 1586 struct inpcb *inp; 1587 struct inpcbinfo *pcbinfo; 1588 1589 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1590 inp = sotoinpcb(so); 1591 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1592 INP_WLOCK(inp); 1593 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1594 INP_HASH_WLOCK(pcbinfo); 1595 in_pcbdisconnect(inp); 1596 inp->inp_laddr.s_addr = INADDR_ANY; 1597 INP_HASH_WUNLOCK(pcbinfo); 1598 soisdisconnected(so); 1599 } 1600 INP_WUNLOCK(inp); 1601 } 1602 1603 static int 1604 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1605 { 1606 struct epoch_tracker et; 1607 struct inpcb *inp; 1608 struct inpcbinfo *pcbinfo; 1609 struct sockaddr_in *sin; 1610 int error; 1611 1612 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1613 inp = sotoinpcb(so); 1614 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1615 1616 sin = (struct sockaddr_in *)nam; 1617 if (sin->sin_family != AF_INET) 1618 return (EAFNOSUPPORT); 1619 if (sin->sin_len != sizeof(*sin)) 1620 return (EINVAL); 1621 1622 INP_WLOCK(inp); 1623 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1624 INP_WUNLOCK(inp); 1625 return (EISCONN); 1626 } 1627 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1628 if (error != 0) { 1629 INP_WUNLOCK(inp); 1630 return (error); 1631 } 1632 NET_EPOCH_ENTER(et); 1633 INP_HASH_WLOCK(pcbinfo); 1634 error = in_pcbconnect(inp, nam, td->td_ucred, true); 1635 INP_HASH_WUNLOCK(pcbinfo); 1636 NET_EPOCH_EXIT(et); 1637 if (error == 0) 1638 soisconnected(so); 1639 INP_WUNLOCK(inp); 1640 return (error); 1641 } 1642 1643 static void 1644 udp_detach(struct socket *so) 1645 { 1646 struct inpcb *inp; 1647 struct udpcb *up; 1648 1649 inp = sotoinpcb(so); 1650 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1651 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1652 ("udp_detach: not disconnected")); 1653 INP_WLOCK(inp); 1654 up = intoudpcb(inp); 1655 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1656 inp->inp_ppcb = NULL; 1657 in_pcbdetach(inp); 1658 in_pcbfree(inp); 1659 udp_discardcb(up); 1660 } 1661 1662 pr_disconnect_t udp_disconnect; /* shared with udp6_usrreq.c */ 1663 int 1664 udp_disconnect(struct socket *so) 1665 { 1666 struct inpcb *inp; 1667 struct inpcbinfo *pcbinfo; 1668 1669 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1670 inp = sotoinpcb(so); 1671 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1672 INP_WLOCK(inp); 1673 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1674 INP_WUNLOCK(inp); 1675 return (ENOTCONN); 1676 } 1677 INP_HASH_WLOCK(pcbinfo); 1678 in_pcbdisconnect(inp); 1679 inp->inp_laddr.s_addr = INADDR_ANY; 1680 INP_HASH_WUNLOCK(pcbinfo); 1681 SOCK_LOCK(so); 1682 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1683 SOCK_UNLOCK(so); 1684 INP_WUNLOCK(inp); 1685 return (0); 1686 } 1687 1688 pr_send_t udp_send; /* shared with udp6_usrreq.c */ 1689 int 1690 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1691 struct mbuf *control, struct thread *td) 1692 { 1693 struct inpcb *inp; 1694 int error; 1695 1696 inp = sotoinpcb(so); 1697 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1698 1699 if (addr != NULL) { 1700 error = 0; 1701 if (addr->sa_family != AF_INET) 1702 error = EAFNOSUPPORT; 1703 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1704 error = EINVAL; 1705 if (__predict_false(error != 0)) { 1706 m_freem(control); 1707 m_freem(m); 1708 return (error); 1709 } 1710 } 1711 return (udp_output(inp, m, addr, control, td, flags)); 1712 } 1713 #endif /* INET */ 1714 1715 int 1716 udp_shutdown(struct socket *so) 1717 { 1718 struct inpcb *inp; 1719 1720 inp = sotoinpcb(so); 1721 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1722 INP_WLOCK(inp); 1723 socantsendmore(so); 1724 INP_WUNLOCK(inp); 1725 return (0); 1726 } 1727 1728 #ifdef INET 1729 #define UDP_PROTOSW \ 1730 .pr_type = SOCK_DGRAM, \ 1731 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1732 .pr_ctloutput = udp_ctloutput, \ 1733 .pr_abort = udp_abort, \ 1734 .pr_attach = udp_attach, \ 1735 .pr_bind = udp_bind, \ 1736 .pr_connect = udp_connect, \ 1737 .pr_control = in_control, \ 1738 .pr_detach = udp_detach, \ 1739 .pr_disconnect = udp_disconnect, \ 1740 .pr_peeraddr = in_getpeeraddr, \ 1741 .pr_send = udp_send, \ 1742 .pr_soreceive = soreceive_dgram, \ 1743 .pr_sosend = sosend_dgram, \ 1744 .pr_shutdown = udp_shutdown, \ 1745 .pr_sockaddr = in_getsockaddr, \ 1746 .pr_sosetlabel = in_pcbsosetlabel, \ 1747 .pr_close = udp_close 1748 1749 struct protosw udp_protosw = { 1750 .pr_protocol = IPPROTO_UDP, 1751 UDP_PROTOSW 1752 }; 1753 1754 struct protosw udplite_protosw = { 1755 .pr_protocol = IPPROTO_UDPLITE, 1756 UDP_PROTOSW 1757 }; 1758 1759 static void 1760 udp_init(void *arg __unused) 1761 { 1762 1763 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1764 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1765 } 1766 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1767 #endif /* INET */ 1768