xref: /freebsd/sys/netinet/udp_usrreq.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2008 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2014 Kevin Lo
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_ipsec.h"
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/domain.h>
51 #include <sys/eventhandler.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/protosw.h>
60 #include <sys/sdt.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/systm.h>
68 
69 #include <vm/uma.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/route.h>
74 #include <net/rss_config.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/in_kdtrace.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #ifdef INET6
83 #include <netinet/ip6.h>
84 #endif
85 #include <netinet/ip_icmp.h>
86 #include <netinet/icmp_var.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/ip_options.h>
89 #ifdef INET6
90 #include <netinet6/ip6_var.h>
91 #endif
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/udplite.h>
95 #include <netinet/in_rss.h>
96 
97 #include <netipsec/ipsec_support.h>
98 
99 #include <machine/in_cksum.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 /*
104  * UDP and UDP-Lite protocols implementation.
105  * Per RFC 768, August, 1980.
106  * Per RFC 3828, July, 2004.
107  */
108 
109 /*
110  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
111  * removes the only data integrity mechanism for packets and malformed
112  * packets that would otherwise be discarded due to bad checksums, and may
113  * cause problems (especially for NFS data blocks).
114  */
115 VNET_DEFINE(int, udp_cksum) = 1;
116 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
117     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
118 
119 int	udp_log_in_vain = 0;
120 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
121     &udp_log_in_vain, 0, "Log all incoming UDP packets");
122 
123 VNET_DEFINE(int, udp_blackhole) = 0;
124 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
125     &VNET_NAME(udp_blackhole), 0,
126     "Do not send port unreachables for refused connects");
127 
128 u_long	udp_sendspace = 9216;		/* really max datagram size */
129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131 
132 u_long	udp_recvspace = 40 * (1024 +
133 #ifdef INET6
134 				      sizeof(struct sockaddr_in6)
135 #else
136 				      sizeof(struct sockaddr_in)
137 #endif
138 				      );	/* 40 1K datagrams */
139 
140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142 
143 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144 VNET_DEFINE(struct inpcbinfo, udbinfo);
145 VNET_DEFINE(struct inpcbhead, ulitecb);
146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147 static VNET_DEFINE(uma_zone_t, udpcb_zone);
148 #define	V_udpcb_zone			VNET(udpcb_zone)
149 
150 #ifndef UDBHASHSIZE
151 #define	UDBHASHSIZE	128
152 #endif
153 
154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155 VNET_PCPUSTAT_SYSINIT(udpstat);
156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158 
159 #ifdef VIMAGE
160 VNET_PCPUSTAT_SYSUNINIT(udpstat);
161 #endif /* VIMAGE */
162 #ifdef INET
163 static void	udp_detach(struct socket *so);
164 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165 		    struct mbuf *, struct thread *);
166 #endif
167 
168 static void
169 udp_zone_change(void *tag)
170 {
171 
172 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
173 	uma_zone_set_max(V_udpcb_zone, maxsockets);
174 }
175 
176 static int
177 udp_inpcb_init(void *mem, int size, int flags)
178 {
179 	struct inpcb *inp;
180 
181 	inp = mem;
182 	INP_LOCK_INIT(inp, "inp", "udpinp");
183 	return (0);
184 }
185 
186 static int
187 udplite_inpcb_init(void *mem, int size, int flags)
188 {
189 	struct inpcb *inp;
190 
191 	inp = mem;
192 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
193 	return (0);
194 }
195 
196 void
197 udp_init(void)
198 {
199 
200 	/*
201 	 * For now default to 2-tuple UDP hashing - until the fragment
202 	 * reassembly code can also update the flowid.
203 	 *
204 	 * Once we can calculate the flowid that way and re-establish
205 	 * a 4-tuple, flip this to 4-tuple.
206 	 */
207 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
208 	    "udp_inpcb", udp_inpcb_init, IPI_HASHFIELDS_2TUPLE);
209 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 	uma_zone_set_max(V_udpcb_zone, maxsockets);
212 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
213 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
214 	    EVENTHANDLER_PRI_ANY);
215 }
216 
217 void
218 udplite_init(void)
219 {
220 
221 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
222 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init,
223 	    IPI_HASHFIELDS_2TUPLE);
224 }
225 
226 /*
227  * Kernel module interface for updating udpstat.  The argument is an index
228  * into udpstat treated as an array of u_long.  While this encodes the
229  * general layout of udpstat into the caller, it doesn't encode its location,
230  * so that future changes to add, for example, per-CPU stats support won't
231  * cause binary compatibility problems for kernel modules.
232  */
233 void
234 kmod_udpstat_inc(int statnum)
235 {
236 
237 	counter_u64_add(VNET(udpstat)[statnum], 1);
238 }
239 
240 int
241 udp_newudpcb(struct inpcb *inp)
242 {
243 	struct udpcb *up;
244 
245 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
246 	if (up == NULL)
247 		return (ENOBUFS);
248 	inp->inp_ppcb = up;
249 	return (0);
250 }
251 
252 void
253 udp_discardcb(struct udpcb *up)
254 {
255 
256 	uma_zfree(V_udpcb_zone, up);
257 }
258 
259 #ifdef VIMAGE
260 static void
261 udp_destroy(void *unused __unused)
262 {
263 
264 	in_pcbinfo_destroy(&V_udbinfo);
265 	uma_zdestroy(V_udpcb_zone);
266 }
267 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
268 
269 static void
270 udplite_destroy(void *unused __unused)
271 {
272 
273 	in_pcbinfo_destroy(&V_ulitecbinfo);
274 }
275 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
276     NULL);
277 #endif
278 
279 #ifdef INET
280 /*
281  * Subroutine of udp_input(), which appends the provided mbuf chain to the
282  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283  * contains the source address.  If the socket ends up being an IPv6 socket,
284  * udp_append() will convert to a sockaddr_in6 before passing the address
285  * into the socket code.
286  *
287  * In the normal case udp_append() will return 0, indicating that you
288  * must unlock the inp. However if a tunneling protocol is in place we increment
289  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
290  * then decrement the reference count. If the inp_rele returns 1, indicating the
291  * inp is gone, we return that to the caller to tell them *not* to unlock
292  * the inp. In the case of multi-cast this will cause the distribution
293  * to stop (though most tunneling protocols known currently do *not* use
294  * multicast).
295  */
296 static int
297 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
298     struct sockaddr_in *udp_in)
299 {
300 	struct sockaddr *append_sa;
301 	struct socket *so;
302 	struct mbuf *tmpopts, *opts = NULL;
303 #ifdef INET6
304 	struct sockaddr_in6 udp_in6;
305 #endif
306 	struct udpcb *up;
307 
308 	INP_LOCK_ASSERT(inp);
309 
310 	/*
311 	 * Engage the tunneling protocol.
312 	 */
313 	up = intoudpcb(inp);
314 	if (up->u_tun_func != NULL) {
315 		in_pcbref(inp);
316 		INP_RUNLOCK(inp);
317 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0],
318 		    up->u_tun_ctx);
319 		INP_RLOCK(inp);
320 		return (in_pcbrele_rlocked(inp));
321 	}
322 
323 	off += sizeof(struct udphdr);
324 
325 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
326 	/* Check AH/ESP integrity. */
327 	if (IPSEC_ENABLED(ipv4) &&
328 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
329 		m_freem(n);
330 		return (0);
331 	}
332 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
333 		if (IPSEC_ENABLED(ipv4) &&
334 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
335 			return (0);	/* Consumed. */
336 	}
337 #endif /* IPSEC */
338 #ifdef MAC
339 	if (mac_inpcb_check_deliver(inp, n) != 0) {
340 		m_freem(n);
341 		return (0);
342 	}
343 #endif /* MAC */
344 	if (inp->inp_flags & INP_CONTROLOPTS ||
345 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
346 #ifdef INET6
347 		if (inp->inp_vflag & INP_IPV6)
348 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
349 		else
350 #endif /* INET6 */
351 			ip_savecontrol(inp, &opts, ip, n);
352 	}
353 	if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) {
354 		tmpopts = sbcreatecontrol((caddr_t)&udp_in[1],
355 			sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP);
356 		if (tmpopts) {
357 			if (opts) {
358 				tmpopts->m_next = opts;
359 				opts = tmpopts;
360 			} else
361 				opts = tmpopts;
362 		}
363 	}
364 #ifdef INET6
365 	if (inp->inp_vflag & INP_IPV6) {
366 		bzero(&udp_in6, sizeof(udp_in6));
367 		udp_in6.sin6_len = sizeof(udp_in6);
368 		udp_in6.sin6_family = AF_INET6;
369 		in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6);
370 		append_sa = (struct sockaddr *)&udp_in6;
371 	} else
372 #endif /* INET6 */
373 		append_sa = (struct sockaddr *)&udp_in[0];
374 	m_adj(n, off);
375 
376 	so = inp->inp_socket;
377 	SOCKBUF_LOCK(&so->so_rcv);
378 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
379 		SOCKBUF_UNLOCK(&so->so_rcv);
380 		m_freem(n);
381 		if (opts)
382 			m_freem(opts);
383 		UDPSTAT_INC(udps_fullsock);
384 	} else
385 		sorwakeup_locked(so);
386 	return (0);
387 }
388 
389 int
390 udp_input(struct mbuf **mp, int *offp, int proto)
391 {
392 	struct ip *ip;
393 	struct udphdr *uh;
394 	struct ifnet *ifp;
395 	struct inpcb *inp;
396 	uint16_t len, ip_len;
397 	struct inpcbinfo *pcbinfo;
398 	struct ip save_ip;
399 	struct sockaddr_in udp_in[2];
400 	struct mbuf *m;
401 	struct m_tag *fwd_tag;
402 	int cscov_partial, iphlen;
403 
404 	m = *mp;
405 	iphlen = *offp;
406 	ifp = m->m_pkthdr.rcvif;
407 	*mp = NULL;
408 	UDPSTAT_INC(udps_ipackets);
409 
410 	/*
411 	 * Strip IP options, if any; should skip this, make available to
412 	 * user, and use on returned packets, but we don't yet have a way to
413 	 * check the checksum with options still present.
414 	 */
415 	if (iphlen > sizeof (struct ip)) {
416 		ip_stripoptions(m);
417 		iphlen = sizeof(struct ip);
418 	}
419 
420 	/*
421 	 * Get IP and UDP header together in first mbuf.
422 	 */
423 	ip = mtod(m, struct ip *);
424 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
425 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
426 			UDPSTAT_INC(udps_hdrops);
427 			return (IPPROTO_DONE);
428 		}
429 		ip = mtod(m, struct ip *);
430 	}
431 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
432 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
433 
434 	/*
435 	 * Destination port of 0 is illegal, based on RFC768.
436 	 */
437 	if (uh->uh_dport == 0)
438 		goto badunlocked;
439 
440 	/*
441 	 * Construct sockaddr format source address.  Stuff source address
442 	 * and datagram in user buffer.
443 	 */
444 	bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2);
445 	udp_in[0].sin_len = sizeof(struct sockaddr_in);
446 	udp_in[0].sin_family = AF_INET;
447 	udp_in[0].sin_port = uh->uh_sport;
448 	udp_in[0].sin_addr = ip->ip_src;
449 	udp_in[1].sin_len = sizeof(struct sockaddr_in);
450 	udp_in[1].sin_family = AF_INET;
451 	udp_in[1].sin_port = uh->uh_dport;
452 	udp_in[1].sin_addr = ip->ip_dst;
453 
454 	/*
455 	 * Make mbuf data length reflect UDP length.  If not enough data to
456 	 * reflect UDP length, drop.
457 	 */
458 	len = ntohs((u_short)uh->uh_ulen);
459 	ip_len = ntohs(ip->ip_len) - iphlen;
460 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
461 		/* Zero means checksum over the complete packet. */
462 		if (len == 0)
463 			len = ip_len;
464 		cscov_partial = 0;
465 	}
466 	if (ip_len != len) {
467 		if (len > ip_len || len < sizeof(struct udphdr)) {
468 			UDPSTAT_INC(udps_badlen);
469 			goto badunlocked;
470 		}
471 		if (proto == IPPROTO_UDP)
472 			m_adj(m, len - ip_len);
473 	}
474 
475 	/*
476 	 * Save a copy of the IP header in case we want restore it for
477 	 * sending an ICMP error message in response.
478 	 */
479 	if (!V_udp_blackhole)
480 		save_ip = *ip;
481 	else
482 		memset(&save_ip, 0, sizeof(save_ip));
483 
484 	/*
485 	 * Checksum extended UDP header and data.
486 	 */
487 	if (uh->uh_sum) {
488 		u_short uh_sum;
489 
490 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
491 		    !cscov_partial) {
492 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
493 				uh_sum = m->m_pkthdr.csum_data;
494 			else
495 				uh_sum = in_pseudo(ip->ip_src.s_addr,
496 				    ip->ip_dst.s_addr, htonl((u_short)len +
497 				    m->m_pkthdr.csum_data + proto));
498 			uh_sum ^= 0xffff;
499 		} else {
500 			char b[9];
501 
502 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
503 			bzero(((struct ipovly *)ip)->ih_x1, 9);
504 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
505 			    uh->uh_ulen : htons(ip_len);
506 			uh_sum = in_cksum(m, len + sizeof (struct ip));
507 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
508 		}
509 		if (uh_sum) {
510 			UDPSTAT_INC(udps_badsum);
511 			m_freem(m);
512 			return (IPPROTO_DONE);
513 		}
514 	} else {
515 		if (proto == IPPROTO_UDP) {
516 			UDPSTAT_INC(udps_nosum);
517 		} else {
518 			/* UDPLite requires a checksum */
519 			/* XXX: What is the right UDPLite MIB counter here? */
520 			m_freem(m);
521 			return (IPPROTO_DONE);
522 		}
523 	}
524 
525 	pcbinfo = udp_get_inpcbinfo(proto);
526 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
527 	    in_broadcast(ip->ip_dst, ifp)) {
528 		struct inpcb *last;
529 		struct inpcbhead *pcblist;
530 		struct ip_moptions *imo;
531 
532 		INP_INFO_RLOCK(pcbinfo);
533 		pcblist = udp_get_pcblist(proto);
534 		last = NULL;
535 		LIST_FOREACH(inp, pcblist, inp_list) {
536 			if (inp->inp_lport != uh->uh_dport)
537 				continue;
538 #ifdef INET6
539 			if ((inp->inp_vflag & INP_IPV4) == 0)
540 				continue;
541 #endif
542 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
543 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
544 				continue;
545 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
546 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
547 				continue;
548 			if (inp->inp_fport != 0 &&
549 			    inp->inp_fport != uh->uh_sport)
550 				continue;
551 
552 			INP_RLOCK(inp);
553 
554 			/*
555 			 * XXXRW: Because we weren't holding either the inpcb
556 			 * or the hash lock when we checked for a match
557 			 * before, we should probably recheck now that the
558 			 * inpcb lock is held.
559 			 */
560 
561 			/*
562 			 * Handle socket delivery policy for any-source
563 			 * and source-specific multicast. [RFC3678]
564 			 */
565 			imo = inp->inp_moptions;
566 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
567 				struct sockaddr_in	 group;
568 				int			 blocked;
569 				if (imo == NULL) {
570 					INP_RUNLOCK(inp);
571 					continue;
572 				}
573 				bzero(&group, sizeof(struct sockaddr_in));
574 				group.sin_len = sizeof(struct sockaddr_in);
575 				group.sin_family = AF_INET;
576 				group.sin_addr = ip->ip_dst;
577 
578 				blocked = imo_multi_filter(imo, ifp,
579 					(struct sockaddr *)&group,
580 					(struct sockaddr *)&udp_in[0]);
581 				if (blocked != MCAST_PASS) {
582 					if (blocked == MCAST_NOTGMEMBER)
583 						IPSTAT_INC(ips_notmember);
584 					if (blocked == MCAST_NOTSMEMBER ||
585 					    blocked == MCAST_MUTED)
586 						UDPSTAT_INC(udps_filtermcast);
587 					INP_RUNLOCK(inp);
588 					continue;
589 				}
590 			}
591 			if (last != NULL) {
592 				struct mbuf *n;
593 
594 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
595 				    NULL) {
596 					UDP_PROBE(receive, NULL, last, ip,
597 					    last, uh);
598 					if (udp_append(last, ip, n, iphlen,
599 						udp_in)) {
600 						goto inp_lost;
601 					}
602 				}
603 				INP_RUNLOCK(last);
604 			}
605 			last = inp;
606 			/*
607 			 * Don't look for additional matches if this one does
608 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
609 			 * socket options set.  This heuristic avoids
610 			 * searching through all pcbs in the common case of a
611 			 * non-shared port.  It assumes that an application
612 			 * will never clear these options after setting them.
613 			 */
614 			if ((last->inp_socket->so_options &
615 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
616 				break;
617 		}
618 
619 		if (last == NULL) {
620 			/*
621 			 * No matching pcb found; discard datagram.  (No need
622 			 * to send an ICMP Port Unreachable for a broadcast
623 			 * or multicast datgram.)
624 			 */
625 			UDPSTAT_INC(udps_noportbcast);
626 			if (inp)
627 				INP_RUNLOCK(inp);
628 			INP_INFO_RUNLOCK(pcbinfo);
629 			goto badunlocked;
630 		}
631 		UDP_PROBE(receive, NULL, last, ip, last, uh);
632 		if (udp_append(last, ip, m, iphlen, udp_in) == 0)
633 			INP_RUNLOCK(last);
634 	inp_lost:
635 		INP_INFO_RUNLOCK(pcbinfo);
636 		return (IPPROTO_DONE);
637 	}
638 
639 	/*
640 	 * Locate pcb for datagram.
641 	 */
642 
643 	/*
644 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
645 	 */
646 	if ((m->m_flags & M_IP_NEXTHOP) &&
647 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
648 		struct sockaddr_in *next_hop;
649 
650 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
651 
652 		/*
653 		 * Transparently forwarded. Pretend to be the destination.
654 		 * Already got one like this?
655 		 */
656 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
657 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
658 		if (!inp) {
659 			/*
660 			 * It's new.  Try to find the ambushing socket.
661 			 * Because we've rewritten the destination address,
662 			 * any hardware-generated hash is ignored.
663 			 */
664 			inp = in_pcblookup(pcbinfo, ip->ip_src,
665 			    uh->uh_sport, next_hop->sin_addr,
666 			    next_hop->sin_port ? htons(next_hop->sin_port) :
667 			    uh->uh_dport, INPLOOKUP_WILDCARD |
668 			    INPLOOKUP_RLOCKPCB, ifp);
669 		}
670 		/* Remove the tag from the packet. We don't need it anymore. */
671 		m_tag_delete(m, fwd_tag);
672 		m->m_flags &= ~M_IP_NEXTHOP;
673 	} else
674 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
675 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
676 		    INPLOOKUP_RLOCKPCB, ifp, m);
677 	if (inp == NULL) {
678 		if (udp_log_in_vain) {
679 			char src[INET_ADDRSTRLEN];
680 			char dst[INET_ADDRSTRLEN];
681 
682 			log(LOG_INFO,
683 			    "Connection attempt to UDP %s:%d from %s:%d\n",
684 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
685 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
686 		}
687 		UDPSTAT_INC(udps_noport);
688 		if (m->m_flags & (M_BCAST | M_MCAST)) {
689 			UDPSTAT_INC(udps_noportbcast);
690 			goto badunlocked;
691 		}
692 		if (V_udp_blackhole)
693 			goto badunlocked;
694 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
695 			goto badunlocked;
696 		*ip = save_ip;
697 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
698 		return (IPPROTO_DONE);
699 	}
700 
701 	/*
702 	 * Check the minimum TTL for socket.
703 	 */
704 	INP_RLOCK_ASSERT(inp);
705 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
706 		INP_RUNLOCK(inp);
707 		m_freem(m);
708 		return (IPPROTO_DONE);
709 	}
710 	if (cscov_partial) {
711 		struct udpcb *up;
712 
713 		up = intoudpcb(inp);
714 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
715 			INP_RUNLOCK(inp);
716 			m_freem(m);
717 			return (IPPROTO_DONE);
718 		}
719 	}
720 
721 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
722 	if (udp_append(inp, ip, m, iphlen, udp_in) == 0)
723 		INP_RUNLOCK(inp);
724 	return (IPPROTO_DONE);
725 
726 badunlocked:
727 	m_freem(m);
728 	return (IPPROTO_DONE);
729 }
730 #endif /* INET */
731 
732 /*
733  * Notify a udp user of an asynchronous error; just wake up so that they can
734  * collect error status.
735  */
736 struct inpcb *
737 udp_notify(struct inpcb *inp, int errno)
738 {
739 
740 	/*
741 	 * While udp_ctlinput() always calls udp_notify() with a read lock
742 	 * when invoking it directly, in_pcbnotifyall() currently uses write
743 	 * locks due to sharing code with TCP.  For now, accept either a read
744 	 * or a write lock, but a read lock is sufficient.
745 	 */
746 	INP_LOCK_ASSERT(inp);
747 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
748 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
749 		RTFREE(inp->inp_route.ro_rt);
750 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
751 	}
752 
753 	inp->inp_socket->so_error = errno;
754 	sorwakeup(inp->inp_socket);
755 	sowwakeup(inp->inp_socket);
756 	return (inp);
757 }
758 
759 #ifdef INET
760 static void
761 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
762     struct inpcbinfo *pcbinfo)
763 {
764 	struct ip *ip = vip;
765 	struct udphdr *uh;
766 	struct in_addr faddr;
767 	struct inpcb *inp;
768 
769 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
770 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
771 		return;
772 
773 	if (PRC_IS_REDIRECT(cmd)) {
774 		/* signal EHOSTDOWN, as it flushes the cached route */
775 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
776 		return;
777 	}
778 
779 	/*
780 	 * Hostdead is ugly because it goes linearly through all PCBs.
781 	 *
782 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
783 	 * DoS attack on machines with many connections.
784 	 */
785 	if (cmd == PRC_HOSTDEAD)
786 		ip = NULL;
787 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
788 		return;
789 	if (ip != NULL) {
790 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
791 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
792 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
793 		if (inp != NULL) {
794 			INP_RLOCK_ASSERT(inp);
795 			if (inp->inp_socket != NULL) {
796 				udp_notify(inp, inetctlerrmap[cmd]);
797 			}
798 			INP_RUNLOCK(inp);
799 		} else {
800 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
801 					   ip->ip_src, uh->uh_sport,
802 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
803 			if (inp != NULL) {
804 				struct udpcb *up;
805 
806 				up = intoudpcb(inp);
807 				if (up->u_icmp_func != NULL) {
808 					INP_RUNLOCK(inp);
809 					(*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
810 				} else {
811 					INP_RUNLOCK(inp);
812 				}
813 			}
814 		}
815 	} else
816 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
817 		    udp_notify);
818 }
819 void
820 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
821 {
822 
823 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
824 }
825 
826 void
827 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
828 {
829 
830 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
831 }
832 #endif /* INET */
833 
834 static int
835 udp_pcblist(SYSCTL_HANDLER_ARGS)
836 {
837 	int error, i, n;
838 	struct inpcb *inp, **inp_list;
839 	struct in_pcblist *il;
840 	inp_gen_t gencnt;
841 	struct xinpgen xig;
842 
843 	/*
844 	 * The process of preparing the PCB list is too time-consuming and
845 	 * resource-intensive to repeat twice on every request.
846 	 */
847 	if (req->oldptr == 0) {
848 		n = V_udbinfo.ipi_count;
849 		n += imax(n / 8, 10);
850 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
851 		return (0);
852 	}
853 
854 	if (req->newptr != 0)
855 		return (EPERM);
856 
857 	/*
858 	 * OK, now we're committed to doing something.
859 	 */
860 	INP_INFO_RLOCK(&V_udbinfo);
861 	gencnt = V_udbinfo.ipi_gencnt;
862 	n = V_udbinfo.ipi_count;
863 	INP_INFO_RUNLOCK(&V_udbinfo);
864 
865 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
866 		+ n * sizeof(struct xinpcb));
867 	if (error != 0)
868 		return (error);
869 
870 	xig.xig_len = sizeof xig;
871 	xig.xig_count = n;
872 	xig.xig_gen = gencnt;
873 	xig.xig_sogen = so_gencnt;
874 	error = SYSCTL_OUT(req, &xig, sizeof xig);
875 	if (error)
876 		return (error);
877 	il = malloc(sizeof(struct in_pcblist) + n * sizeof(struct inpcb *), M_TEMP, M_WAITOK|M_ZERO);
878 	inp_list = il->il_inp_list;
879 
880 	INP_INFO_RLOCK(&V_udbinfo);
881 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
882 	     inp = LIST_NEXT(inp, inp_list)) {
883 		INP_WLOCK(inp);
884 		if (inp->inp_gencnt <= gencnt &&
885 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
886 			in_pcbref(inp);
887 			inp_list[i++] = inp;
888 		}
889 		INP_WUNLOCK(inp);
890 	}
891 	INP_INFO_RUNLOCK(&V_udbinfo);
892 	n = i;
893 
894 	error = 0;
895 	for (i = 0; i < n; i++) {
896 		inp = inp_list[i];
897 		INP_RLOCK(inp);
898 		if (inp->inp_gencnt <= gencnt) {
899 			struct xinpcb xi;
900 
901 			in_pcbtoxinpcb(inp, &xi);
902 			INP_RUNLOCK(inp);
903 			error = SYSCTL_OUT(req, &xi, sizeof xi);
904 		} else
905 			INP_RUNLOCK(inp);
906 	}
907 	il->il_count = n;
908 	il->il_pcbinfo = &V_udbinfo;
909 	epoch_call(net_epoch_preempt, &il->il_epoch_ctx, in_pcblist_rele_rlocked);
910 
911 	if (!error) {
912 		/*
913 		 * Give the user an updated idea of our state.  If the
914 		 * generation differs from what we told her before, she knows
915 		 * that something happened while we were processing this
916 		 * request, and it might be necessary to retry.
917 		 */
918 		INP_INFO_RLOCK(&V_udbinfo);
919 		xig.xig_gen = V_udbinfo.ipi_gencnt;
920 		xig.xig_sogen = so_gencnt;
921 		xig.xig_count = V_udbinfo.ipi_count;
922 		INP_INFO_RUNLOCK(&V_udbinfo);
923 		error = SYSCTL_OUT(req, &xig, sizeof xig);
924 	}
925 	return (error);
926 }
927 
928 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
929     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
930     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
931 
932 #ifdef INET
933 static int
934 udp_getcred(SYSCTL_HANDLER_ARGS)
935 {
936 	struct xucred xuc;
937 	struct sockaddr_in addrs[2];
938 	struct inpcb *inp;
939 	int error;
940 
941 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
942 	if (error)
943 		return (error);
944 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
945 	if (error)
946 		return (error);
947 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
948 	    addrs[0].sin_addr, addrs[0].sin_port,
949 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
950 	if (inp != NULL) {
951 		INP_RLOCK_ASSERT(inp);
952 		if (inp->inp_socket == NULL)
953 			error = ENOENT;
954 		if (error == 0)
955 			error = cr_canseeinpcb(req->td->td_ucred, inp);
956 		if (error == 0)
957 			cru2x(inp->inp_cred, &xuc);
958 		INP_RUNLOCK(inp);
959 	} else
960 		error = ENOENT;
961 	if (error == 0)
962 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
963 	return (error);
964 }
965 
966 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
967     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
968     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
969 #endif /* INET */
970 
971 int
972 udp_ctloutput(struct socket *so, struct sockopt *sopt)
973 {
974 	struct inpcb *inp;
975 	struct udpcb *up;
976 	int isudplite, error, optval;
977 
978 	error = 0;
979 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
980 	inp = sotoinpcb(so);
981 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
982 	INP_WLOCK(inp);
983 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
984 #ifdef INET6
985 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
986 			INP_WUNLOCK(inp);
987 			error = ip6_ctloutput(so, sopt);
988 		}
989 #endif
990 #if defined(INET) && defined(INET6)
991 		else
992 #endif
993 #ifdef INET
994 		{
995 			INP_WUNLOCK(inp);
996 			error = ip_ctloutput(so, sopt);
997 		}
998 #endif
999 		return (error);
1000 	}
1001 
1002 	switch (sopt->sopt_dir) {
1003 	case SOPT_SET:
1004 		switch (sopt->sopt_name) {
1005 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1006 #ifdef INET
1007 		case UDP_ENCAP:
1008 			if (!IPSEC_ENABLED(ipv4)) {
1009 				INP_WUNLOCK(inp);
1010 				return (ENOPROTOOPT);
1011 			}
1012 			error = UDPENCAP_PCBCTL(inp, sopt);
1013 			break;
1014 #endif /* INET */
1015 #endif /* IPSEC */
1016 		case UDPLITE_SEND_CSCOV:
1017 		case UDPLITE_RECV_CSCOV:
1018 			if (!isudplite) {
1019 				INP_WUNLOCK(inp);
1020 				error = ENOPROTOOPT;
1021 				break;
1022 			}
1023 			INP_WUNLOCK(inp);
1024 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1025 			    sizeof(optval));
1026 			if (error != 0)
1027 				break;
1028 			inp = sotoinpcb(so);
1029 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1030 			INP_WLOCK(inp);
1031 			up = intoudpcb(inp);
1032 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1033 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1034 				INP_WUNLOCK(inp);
1035 				error = EINVAL;
1036 				break;
1037 			}
1038 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1039 				up->u_txcslen = optval;
1040 			else
1041 				up->u_rxcslen = optval;
1042 			INP_WUNLOCK(inp);
1043 			break;
1044 		default:
1045 			INP_WUNLOCK(inp);
1046 			error = ENOPROTOOPT;
1047 			break;
1048 		}
1049 		break;
1050 	case SOPT_GET:
1051 		switch (sopt->sopt_name) {
1052 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1053 #ifdef INET
1054 		case UDP_ENCAP:
1055 			if (!IPSEC_ENABLED(ipv4)) {
1056 				INP_WUNLOCK(inp);
1057 				return (ENOPROTOOPT);
1058 			}
1059 			error = UDPENCAP_PCBCTL(inp, sopt);
1060 			break;
1061 #endif /* INET */
1062 #endif /* IPSEC */
1063 		case UDPLITE_SEND_CSCOV:
1064 		case UDPLITE_RECV_CSCOV:
1065 			if (!isudplite) {
1066 				INP_WUNLOCK(inp);
1067 				error = ENOPROTOOPT;
1068 				break;
1069 			}
1070 			up = intoudpcb(inp);
1071 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1072 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1073 				optval = up->u_txcslen;
1074 			else
1075 				optval = up->u_rxcslen;
1076 			INP_WUNLOCK(inp);
1077 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1078 			break;
1079 		default:
1080 			INP_WUNLOCK(inp);
1081 			error = ENOPROTOOPT;
1082 			break;
1083 		}
1084 		break;
1085 	}
1086 	return (error);
1087 }
1088 
1089 #ifdef INET
1090 #define	UH_WLOCKED	2
1091 #define	UH_RLOCKED	1
1092 #define	UH_UNLOCKED	0
1093 static int
1094 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1095     struct mbuf *control, struct thread *td)
1096 {
1097 	struct udpiphdr *ui;
1098 	int len = m->m_pkthdr.len;
1099 	struct in_addr faddr, laddr;
1100 	struct cmsghdr *cm;
1101 	struct inpcbinfo *pcbinfo;
1102 	struct sockaddr_in *sin, src;
1103 	int cscov_partial = 0;
1104 	int error = 0;
1105 	int ipflags;
1106 	u_short fport, lport;
1107 	int unlock_udbinfo, unlock_inp;
1108 	u_char tos;
1109 	uint8_t pr;
1110 	uint16_t cscov = 0;
1111 	uint32_t flowid = 0;
1112 	uint8_t flowtype = M_HASHTYPE_NONE;
1113 
1114 	/*
1115 	 * udp_output() may need to temporarily bind or connect the current
1116 	 * inpcb.  As such, we don't know up front whether we will need the
1117 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1118 	 * front before acquiring any locks.
1119 	 */
1120 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1121 		if (control)
1122 			m_freem(control);
1123 		m_freem(m);
1124 		return (EMSGSIZE);
1125 	}
1126 
1127 	src.sin_family = 0;
1128 	sin = (struct sockaddr_in *)addr;
1129 	if (sin == NULL ||
1130 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1131 		INP_WLOCK(inp);
1132 		unlock_inp = UH_WLOCKED;
1133 	} else {
1134 		INP_RLOCK(inp);
1135 		unlock_inp = UH_RLOCKED;
1136 	}
1137 	tos = inp->inp_ip_tos;
1138 	if (control != NULL) {
1139 		/*
1140 		 * XXX: Currently, we assume all the optional information is
1141 		 * stored in a single mbuf.
1142 		 */
1143 		if (control->m_next) {
1144 			if (unlock_inp == UH_WLOCKED)
1145 				INP_WUNLOCK(inp);
1146 			else
1147 				INP_RUNLOCK(inp);
1148 			m_freem(control);
1149 			m_freem(m);
1150 			return (EINVAL);
1151 		}
1152 		for (; control->m_len > 0;
1153 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1154 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1155 			cm = mtod(control, struct cmsghdr *);
1156 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1157 			    || cm->cmsg_len > control->m_len) {
1158 				error = EINVAL;
1159 				break;
1160 			}
1161 			if (cm->cmsg_level != IPPROTO_IP)
1162 				continue;
1163 
1164 			switch (cm->cmsg_type) {
1165 			case IP_SENDSRCADDR:
1166 				if (cm->cmsg_len !=
1167 				    CMSG_LEN(sizeof(struct in_addr))) {
1168 					error = EINVAL;
1169 					break;
1170 				}
1171 				bzero(&src, sizeof(src));
1172 				src.sin_family = AF_INET;
1173 				src.sin_len = sizeof(src);
1174 				src.sin_port = inp->inp_lport;
1175 				src.sin_addr =
1176 				    *(struct in_addr *)CMSG_DATA(cm);
1177 				break;
1178 
1179 			case IP_TOS:
1180 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1181 					error = EINVAL;
1182 					break;
1183 				}
1184 				tos = *(u_char *)CMSG_DATA(cm);
1185 				break;
1186 
1187 			case IP_FLOWID:
1188 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1189 					error = EINVAL;
1190 					break;
1191 				}
1192 				flowid = *(uint32_t *) CMSG_DATA(cm);
1193 				break;
1194 
1195 			case IP_FLOWTYPE:
1196 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1197 					error = EINVAL;
1198 					break;
1199 				}
1200 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1201 				break;
1202 
1203 #ifdef	RSS
1204 			case IP_RSSBUCKETID:
1205 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1206 					error = EINVAL;
1207 					break;
1208 				}
1209 				/* This is just a placeholder for now */
1210 				break;
1211 #endif	/* RSS */
1212 			default:
1213 				error = ENOPROTOOPT;
1214 				break;
1215 			}
1216 			if (error)
1217 				break;
1218 		}
1219 		m_freem(control);
1220 	}
1221 	if (error) {
1222 		if (unlock_inp == UH_WLOCKED)
1223 			INP_WUNLOCK(inp);
1224 		else
1225 			INP_RUNLOCK(inp);
1226 		m_freem(m);
1227 		return (error);
1228 	}
1229 
1230 	/*
1231 	 * Depending on whether or not the application has bound or connected
1232 	 * the socket, we may have to do varying levels of work.  The optimal
1233 	 * case is for a connected UDP socket, as a global lock isn't
1234 	 * required at all.
1235 	 *
1236 	 * In order to decide which we need, we require stability of the
1237 	 * inpcb binding, which we ensure by acquiring a read lock on the
1238 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1239 	 * the trylock and retry game; note that we may end up with more
1240 	 * conservative locks than required the second time around, so later
1241 	 * assertions have to accept that.  Further analysis of the number of
1242 	 * misses under contention is required.
1243 	 *
1244 	 * XXXRW: Check that hash locking update here is correct.
1245 	 */
1246 	pr = inp->inp_socket->so_proto->pr_protocol;
1247 	pcbinfo = udp_get_inpcbinfo(pr);
1248 	sin = (struct sockaddr_in *)addr;
1249 	if (sin != NULL &&
1250 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1251 		INP_HASH_WLOCK(pcbinfo);
1252 		unlock_udbinfo = UH_WLOCKED;
1253 	} else if ((sin != NULL && (
1254 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1255 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1256 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1257 	    (inp->inp_lport == 0))) ||
1258 	    (src.sin_family == AF_INET)) {
1259 		INP_HASH_RLOCK(pcbinfo);
1260 		unlock_udbinfo = UH_RLOCKED;
1261 	} else
1262 		unlock_udbinfo = UH_UNLOCKED;
1263 
1264 	/*
1265 	 * If the IP_SENDSRCADDR control message was specified, override the
1266 	 * source address for this datagram.  Its use is invalidated if the
1267 	 * address thus specified is incomplete or clobbers other inpcbs.
1268 	 */
1269 	laddr = inp->inp_laddr;
1270 	lport = inp->inp_lport;
1271 	if (src.sin_family == AF_INET) {
1272 		INP_HASH_LOCK_ASSERT(pcbinfo);
1273 		if ((lport == 0) ||
1274 		    (laddr.s_addr == INADDR_ANY &&
1275 		     src.sin_addr.s_addr == INADDR_ANY)) {
1276 			error = EINVAL;
1277 			goto release;
1278 		}
1279 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1280 		    &laddr.s_addr, &lport, td->td_ucred);
1281 		if (error)
1282 			goto release;
1283 	}
1284 
1285 	/*
1286 	 * If a UDP socket has been connected, then a local address/port will
1287 	 * have been selected and bound.
1288 	 *
1289 	 * If a UDP socket has not been connected to, then an explicit
1290 	 * destination address must be used, in which case a local
1291 	 * address/port may not have been selected and bound.
1292 	 */
1293 	if (sin != NULL) {
1294 		INP_LOCK_ASSERT(inp);
1295 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1296 			error = EISCONN;
1297 			goto release;
1298 		}
1299 
1300 		/*
1301 		 * Jail may rewrite the destination address, so let it do
1302 		 * that before we use it.
1303 		 */
1304 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1305 		if (error)
1306 			goto release;
1307 
1308 		/*
1309 		 * If a local address or port hasn't yet been selected, or if
1310 		 * the destination address needs to be rewritten due to using
1311 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1312 		 * to do the heavy lifting.  Once a port is selected, we
1313 		 * commit the binding back to the socket; we also commit the
1314 		 * binding of the address if in jail.
1315 		 *
1316 		 * If we already have a valid binding and we're not
1317 		 * requesting a destination address rewrite, use a fast path.
1318 		 */
1319 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1320 		    inp->inp_lport == 0 ||
1321 		    sin->sin_addr.s_addr == INADDR_ANY ||
1322 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1323 			INP_HASH_LOCK_ASSERT(pcbinfo);
1324 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1325 			    &lport, &faddr.s_addr, &fport, NULL,
1326 			    td->td_ucred);
1327 			if (error)
1328 				goto release;
1329 
1330 			/*
1331 			 * XXXRW: Why not commit the port if the address is
1332 			 * !INADDR_ANY?
1333 			 */
1334 			/* Commit the local port if newly assigned. */
1335 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1336 			    inp->inp_lport == 0) {
1337 				INP_WLOCK_ASSERT(inp);
1338 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1339 				/*
1340 				 * Remember addr if jailed, to prevent
1341 				 * rebinding.
1342 				 */
1343 				if (prison_flag(td->td_ucred, PR_IP4))
1344 					inp->inp_laddr = laddr;
1345 				inp->inp_lport = lport;
1346 				if (in_pcbinshash(inp) != 0) {
1347 					inp->inp_lport = 0;
1348 					error = EAGAIN;
1349 					goto release;
1350 				}
1351 				inp->inp_flags |= INP_ANONPORT;
1352 			}
1353 		} else {
1354 			faddr = sin->sin_addr;
1355 			fport = sin->sin_port;
1356 		}
1357 	} else {
1358 		INP_LOCK_ASSERT(inp);
1359 		faddr = inp->inp_faddr;
1360 		fport = inp->inp_fport;
1361 		if (faddr.s_addr == INADDR_ANY) {
1362 			error = ENOTCONN;
1363 			goto release;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1369 	 * link-layer headers.  Immediate slide the data pointer back forward
1370 	 * since we won't use that space at this layer.
1371 	 */
1372 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1373 	if (m == NULL) {
1374 		error = ENOBUFS;
1375 		goto release;
1376 	}
1377 	m->m_data += max_linkhdr;
1378 	m->m_len -= max_linkhdr;
1379 	m->m_pkthdr.len -= max_linkhdr;
1380 
1381 	/*
1382 	 * Fill in mbuf with extended UDP header and addresses and length put
1383 	 * into network format.
1384 	 */
1385 	ui = mtod(m, struct udpiphdr *);
1386 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1387 	ui->ui_pr = pr;
1388 	ui->ui_src = laddr;
1389 	ui->ui_dst = faddr;
1390 	ui->ui_sport = lport;
1391 	ui->ui_dport = fport;
1392 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1393 	if (pr == IPPROTO_UDPLITE) {
1394 		struct udpcb *up;
1395 		uint16_t plen;
1396 
1397 		up = intoudpcb(inp);
1398 		cscov = up->u_txcslen;
1399 		plen = (u_short)len + sizeof(struct udphdr);
1400 		if (cscov >= plen)
1401 			cscov = 0;
1402 		ui->ui_len = htons(plen);
1403 		ui->ui_ulen = htons(cscov);
1404 		/*
1405 		 * For UDP-Lite, checksum coverage length of zero means
1406 		 * the entire UDPLite packet is covered by the checksum.
1407 		 */
1408 		cscov_partial = (cscov == 0) ? 0 : 1;
1409 	} else
1410 		ui->ui_v = IPVERSION << 4;
1411 
1412 	/*
1413 	 * Set the Don't Fragment bit in the IP header.
1414 	 */
1415 	if (inp->inp_flags & INP_DONTFRAG) {
1416 		struct ip *ip;
1417 
1418 		ip = (struct ip *)&ui->ui_i;
1419 		ip->ip_off |= htons(IP_DF);
1420 	}
1421 
1422 	ipflags = 0;
1423 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1424 		ipflags |= IP_ROUTETOIF;
1425 	if (inp->inp_socket->so_options & SO_BROADCAST)
1426 		ipflags |= IP_ALLOWBROADCAST;
1427 	if (inp->inp_flags & INP_ONESBCAST)
1428 		ipflags |= IP_SENDONES;
1429 
1430 #ifdef MAC
1431 	mac_inpcb_create_mbuf(inp, m);
1432 #endif
1433 
1434 	/*
1435 	 * Set up checksum and output datagram.
1436 	 */
1437 	ui->ui_sum = 0;
1438 	if (pr == IPPROTO_UDPLITE) {
1439 		if (inp->inp_flags & INP_ONESBCAST)
1440 			faddr.s_addr = INADDR_BROADCAST;
1441 		if (cscov_partial) {
1442 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1443 				ui->ui_sum = 0xffff;
1444 		} else {
1445 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1446 				ui->ui_sum = 0xffff;
1447 		}
1448 	} else if (V_udp_cksum) {
1449 		if (inp->inp_flags & INP_ONESBCAST)
1450 			faddr.s_addr = INADDR_BROADCAST;
1451 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1452 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1453 		m->m_pkthdr.csum_flags = CSUM_UDP;
1454 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1455 	}
1456 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1457 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1458 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1459 	UDPSTAT_INC(udps_opackets);
1460 
1461 	/*
1462 	 * Setup flowid / RSS information for outbound socket.
1463 	 *
1464 	 * Once the UDP code decides to set a flowid some other way,
1465 	 * this allows the flowid to be overridden by userland.
1466 	 */
1467 	if (flowtype != M_HASHTYPE_NONE) {
1468 		m->m_pkthdr.flowid = flowid;
1469 		M_HASHTYPE_SET(m, flowtype);
1470 #ifdef	RSS
1471 	} else {
1472 		uint32_t hash_val, hash_type;
1473 		/*
1474 		 * Calculate an appropriate RSS hash for UDP and
1475 		 * UDP Lite.
1476 		 *
1477 		 * The called function will take care of figuring out
1478 		 * whether a 2-tuple or 4-tuple hash is required based
1479 		 * on the currently configured scheme.
1480 		 *
1481 		 * Later later on connected socket values should be
1482 		 * cached in the inpcb and reused, rather than constantly
1483 		 * re-calculating it.
1484 		 *
1485 		 * UDP Lite is a different protocol number and will
1486 		 * likely end up being hashed as a 2-tuple until
1487 		 * RSS / NICs grow UDP Lite protocol awareness.
1488 		 */
1489 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1490 		    pr, &hash_val, &hash_type) == 0) {
1491 			m->m_pkthdr.flowid = hash_val;
1492 			M_HASHTYPE_SET(m, hash_type);
1493 		}
1494 #endif
1495 	}
1496 
1497 #ifdef	RSS
1498 	/*
1499 	 * Don't override with the inp cached flowid value.
1500 	 *
1501 	 * Depending upon the kind of send being done, the inp
1502 	 * flowid/flowtype values may actually not be appropriate
1503 	 * for this particular socket send.
1504 	 *
1505 	 * We should either leave the flowid at zero (which is what is
1506 	 * currently done) or set it to some software generated
1507 	 * hash value based on the packet contents.
1508 	 */
1509 	ipflags |= IP_NODEFAULTFLOWID;
1510 #endif	/* RSS */
1511 
1512 	if (unlock_udbinfo == UH_WLOCKED)
1513 		INP_HASH_WUNLOCK(pcbinfo);
1514 	else if (unlock_udbinfo == UH_RLOCKED)
1515 		INP_HASH_RUNLOCK(pcbinfo);
1516 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1517 	error = ip_output(m, inp->inp_options,
1518 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1519 	    inp->inp_moptions, inp);
1520 	if (unlock_inp == UH_WLOCKED)
1521 		INP_WUNLOCK(inp);
1522 	else
1523 		INP_RUNLOCK(inp);
1524 	return (error);
1525 
1526 release:
1527 	if (unlock_udbinfo == UH_WLOCKED) {
1528 		KASSERT(unlock_inp == UH_WLOCKED,
1529 		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1530 		INP_HASH_WUNLOCK(pcbinfo);
1531 		INP_WUNLOCK(inp);
1532 	} else if (unlock_udbinfo == UH_RLOCKED) {
1533 		KASSERT(unlock_inp == UH_RLOCKED,
1534 		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1535 		INP_HASH_RUNLOCK(pcbinfo);
1536 		INP_RUNLOCK(inp);
1537 	} else if (unlock_inp == UH_WLOCKED)
1538 		INP_WUNLOCK(inp);
1539 	else
1540 		INP_RUNLOCK(inp);
1541 	m_freem(m);
1542 	return (error);
1543 }
1544 
1545 static void
1546 udp_abort(struct socket *so)
1547 {
1548 	struct inpcb *inp;
1549 	struct inpcbinfo *pcbinfo;
1550 
1551 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1552 	inp = sotoinpcb(so);
1553 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1554 	INP_WLOCK(inp);
1555 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1556 		INP_HASH_WLOCK(pcbinfo);
1557 		in_pcbdisconnect(inp);
1558 		inp->inp_laddr.s_addr = INADDR_ANY;
1559 		INP_HASH_WUNLOCK(pcbinfo);
1560 		soisdisconnected(so);
1561 	}
1562 	INP_WUNLOCK(inp);
1563 }
1564 
1565 static int
1566 udp_attach(struct socket *so, int proto, struct thread *td)
1567 {
1568 	struct inpcb *inp;
1569 	struct inpcbinfo *pcbinfo;
1570 	int error;
1571 
1572 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1573 	inp = sotoinpcb(so);
1574 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1575 	error = soreserve(so, udp_sendspace, udp_recvspace);
1576 	if (error)
1577 		return (error);
1578 	INP_INFO_WLOCK(pcbinfo);
1579 	error = in_pcballoc(so, pcbinfo);
1580 	if (error) {
1581 		INP_INFO_WUNLOCK(pcbinfo);
1582 		return (error);
1583 	}
1584 
1585 	inp = sotoinpcb(so);
1586 	inp->inp_vflag |= INP_IPV4;
1587 	inp->inp_ip_ttl = V_ip_defttl;
1588 
1589 	error = udp_newudpcb(inp);
1590 	if (error) {
1591 		in_pcbdetach(inp);
1592 		in_pcbfree(inp);
1593 		INP_INFO_WUNLOCK(pcbinfo);
1594 		return (error);
1595 	}
1596 
1597 	INP_WUNLOCK(inp);
1598 	INP_INFO_WUNLOCK(pcbinfo);
1599 	return (0);
1600 }
1601 #endif /* INET */
1602 
1603 int
1604 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1605 {
1606 	struct inpcb *inp;
1607 	struct udpcb *up;
1608 
1609 	KASSERT(so->so_type == SOCK_DGRAM,
1610 	    ("udp_set_kernel_tunneling: !dgram"));
1611 	inp = sotoinpcb(so);
1612 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1613 	INP_WLOCK(inp);
1614 	up = intoudpcb(inp);
1615 	if ((up->u_tun_func != NULL) ||
1616 	    (up->u_icmp_func != NULL)) {
1617 		INP_WUNLOCK(inp);
1618 		return (EBUSY);
1619 	}
1620 	up->u_tun_func = f;
1621 	up->u_icmp_func = i;
1622 	up->u_tun_ctx = ctx;
1623 	INP_WUNLOCK(inp);
1624 	return (0);
1625 }
1626 
1627 #ifdef INET
1628 static int
1629 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1630 {
1631 	struct inpcb *inp;
1632 	struct inpcbinfo *pcbinfo;
1633 	int error;
1634 
1635 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1636 	inp = sotoinpcb(so);
1637 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1638 	INP_WLOCK(inp);
1639 	INP_HASH_WLOCK(pcbinfo);
1640 	error = in_pcbbind(inp, nam, td->td_ucred);
1641 	INP_HASH_WUNLOCK(pcbinfo);
1642 	INP_WUNLOCK(inp);
1643 	return (error);
1644 }
1645 
1646 static void
1647 udp_close(struct socket *so)
1648 {
1649 	struct inpcb *inp;
1650 	struct inpcbinfo *pcbinfo;
1651 
1652 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1653 	inp = sotoinpcb(so);
1654 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1655 	INP_WLOCK(inp);
1656 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1657 		INP_HASH_WLOCK(pcbinfo);
1658 		in_pcbdisconnect(inp);
1659 		inp->inp_laddr.s_addr = INADDR_ANY;
1660 		INP_HASH_WUNLOCK(pcbinfo);
1661 		soisdisconnected(so);
1662 	}
1663 	INP_WUNLOCK(inp);
1664 }
1665 
1666 static int
1667 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1668 {
1669 	struct inpcb *inp;
1670 	struct inpcbinfo *pcbinfo;
1671 	struct sockaddr_in *sin;
1672 	int error;
1673 
1674 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1675 	inp = sotoinpcb(so);
1676 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1677 	INP_WLOCK(inp);
1678 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1679 		INP_WUNLOCK(inp);
1680 		return (EISCONN);
1681 	}
1682 	sin = (struct sockaddr_in *)nam;
1683 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1684 	if (error != 0) {
1685 		INP_WUNLOCK(inp);
1686 		return (error);
1687 	}
1688 	INP_HASH_WLOCK(pcbinfo);
1689 	error = in_pcbconnect(inp, nam, td->td_ucred);
1690 	INP_HASH_WUNLOCK(pcbinfo);
1691 	if (error == 0)
1692 		soisconnected(so);
1693 	INP_WUNLOCK(inp);
1694 	return (error);
1695 }
1696 
1697 static void
1698 udp_detach(struct socket *so)
1699 {
1700 	struct inpcb *inp;
1701 	struct inpcbinfo *pcbinfo;
1702 	struct udpcb *up;
1703 
1704 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1705 	inp = sotoinpcb(so);
1706 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1707 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1708 	    ("udp_detach: not disconnected"));
1709 	INP_INFO_WLOCK(pcbinfo);
1710 	INP_WLOCK(inp);
1711 	up = intoudpcb(inp);
1712 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1713 	/* XXX defer to epoch_call */
1714 	inp->inp_ppcb = NULL;
1715 	in_pcbdetach(inp);
1716 	in_pcbfree(inp);
1717 	INP_INFO_WUNLOCK(pcbinfo);
1718 	udp_discardcb(up);
1719 }
1720 
1721 static int
1722 udp_disconnect(struct socket *so)
1723 {
1724 	struct inpcb *inp;
1725 	struct inpcbinfo *pcbinfo;
1726 
1727 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1728 	inp = sotoinpcb(so);
1729 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1730 	INP_WLOCK(inp);
1731 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1732 		INP_WUNLOCK(inp);
1733 		return (ENOTCONN);
1734 	}
1735 	INP_HASH_WLOCK(pcbinfo);
1736 	in_pcbdisconnect(inp);
1737 	inp->inp_laddr.s_addr = INADDR_ANY;
1738 	INP_HASH_WUNLOCK(pcbinfo);
1739 	SOCK_LOCK(so);
1740 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1741 	SOCK_UNLOCK(so);
1742 	INP_WUNLOCK(inp);
1743 	return (0);
1744 }
1745 
1746 static int
1747 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1748     struct mbuf *control, struct thread *td)
1749 {
1750 	struct inpcb *inp;
1751 
1752 	inp = sotoinpcb(so);
1753 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1754 	return (udp_output(inp, m, addr, control, td));
1755 }
1756 #endif /* INET */
1757 
1758 int
1759 udp_shutdown(struct socket *so)
1760 {
1761 	struct inpcb *inp;
1762 
1763 	inp = sotoinpcb(so);
1764 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1765 	INP_WLOCK(inp);
1766 	socantsendmore(so);
1767 	INP_WUNLOCK(inp);
1768 	return (0);
1769 }
1770 
1771 #ifdef INET
1772 struct pr_usrreqs udp_usrreqs = {
1773 	.pru_abort =		udp_abort,
1774 	.pru_attach =		udp_attach,
1775 	.pru_bind =		udp_bind,
1776 	.pru_connect =		udp_connect,
1777 	.pru_control =		in_control,
1778 	.pru_detach =		udp_detach,
1779 	.pru_disconnect =	udp_disconnect,
1780 	.pru_peeraddr =		in_getpeeraddr,
1781 	.pru_send =		udp_send,
1782 	.pru_soreceive =	soreceive_dgram,
1783 	.pru_sosend =		sosend_dgram,
1784 	.pru_shutdown =		udp_shutdown,
1785 	.pru_sockaddr =		in_getsockaddr,
1786 	.pru_sosetlabel =	in_pcbsosetlabel,
1787 	.pru_close =		udp_close,
1788 };
1789 #endif /* INET */
1790