1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 VNET_DEFINE(bool, udp_blackhole_local) = false; 131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 132 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 133 "Enforce net.inet.udp.blackhole for locally originated packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbinfo, udbinfo); 151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 153 #define V_udpcb_zone VNET(udpcb_zone) 154 155 #ifndef UDBHASHSIZE 156 #define UDBHASHSIZE 128 157 #endif 158 159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 160 VNET_PCPUSTAT_SYSINIT(udpstat); 161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 162 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 163 164 #ifdef VIMAGE 165 VNET_PCPUSTAT_SYSUNINIT(udpstat); 166 #endif /* VIMAGE */ 167 #ifdef INET 168 static void udp_detach(struct socket *so); 169 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 170 struct mbuf *, struct thread *, int); 171 #endif 172 173 INPCBSTORAGE_DEFINE(udpcbstor, "udpinp", "udp_inpcb", "udp", "udphash"); 174 INPCBSTORAGE_DEFINE(udplitecbstor, "udpliteinp", "udplite_inpcb", "udplite", 175 "udplitehash"); 176 177 static void 178 udp_init(void *arg __unused) 179 { 180 181 /* 182 * For now default to 2-tuple UDP hashing - until the fragment 183 * reassembly code can also update the flowid. 184 * 185 * Once we can calculate the flowid that way and re-establish 186 * a 4-tuple, flip this to 4-tuple. 187 */ 188 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 189 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 190 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 191 uma_zone_set_max(V_udpcb_zone, maxsockets); 192 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 193 194 /* Additional pcbinfo for UDP-Lite */ 195 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 196 UDBHASHSIZE); 197 } 198 VNET_SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 199 200 /* 201 * Kernel module interface for updating udpstat. The argument is an index 202 * into udpstat treated as an array of u_long. While this encodes the 203 * general layout of udpstat into the caller, it doesn't encode its location, 204 * so that future changes to add, for example, per-CPU stats support won't 205 * cause binary compatibility problems for kernel modules. 206 */ 207 void 208 kmod_udpstat_inc(int statnum) 209 { 210 211 counter_u64_add(VNET(udpstat)[statnum], 1); 212 } 213 214 int 215 udp_newudpcb(struct inpcb *inp) 216 { 217 struct udpcb *up; 218 219 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 220 if (up == NULL) 221 return (ENOBUFS); 222 inp->inp_ppcb = up; 223 return (0); 224 } 225 226 void 227 udp_discardcb(struct udpcb *up) 228 { 229 230 uma_zfree(V_udpcb_zone, up); 231 } 232 233 #ifdef VIMAGE 234 static void 235 udp_destroy(void *unused __unused) 236 { 237 238 in_pcbinfo_destroy(&V_udbinfo); 239 uma_zdestroy(V_udpcb_zone); 240 } 241 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 242 243 static void 244 udplite_destroy(void *unused __unused) 245 { 246 247 in_pcbinfo_destroy(&V_ulitecbinfo); 248 } 249 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 250 NULL); 251 #endif 252 253 #ifdef INET 254 /* 255 * Subroutine of udp_input(), which appends the provided mbuf chain to the 256 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 257 * contains the source address. If the socket ends up being an IPv6 socket, 258 * udp_append() will convert to a sockaddr_in6 before passing the address 259 * into the socket code. 260 * 261 * In the normal case udp_append() will return 0, indicating that you 262 * must unlock the inp. However if a tunneling protocol is in place we increment 263 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 264 * then decrement the reference count. If the inp_rele returns 1, indicating the 265 * inp is gone, we return that to the caller to tell them *not* to unlock 266 * the inp. In the case of multi-cast this will cause the distribution 267 * to stop (though most tunneling protocols known currently do *not* use 268 * multicast). 269 */ 270 static int 271 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 272 struct sockaddr_in *udp_in) 273 { 274 struct sockaddr *append_sa; 275 struct socket *so; 276 struct mbuf *tmpopts, *opts = NULL; 277 #ifdef INET6 278 struct sockaddr_in6 udp_in6; 279 #endif 280 struct udpcb *up; 281 282 INP_LOCK_ASSERT(inp); 283 284 /* 285 * Engage the tunneling protocol. 286 */ 287 up = intoudpcb(inp); 288 if (up->u_tun_func != NULL) { 289 in_pcbref(inp); 290 INP_RUNLOCK(inp); 291 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 292 up->u_tun_ctx); 293 INP_RLOCK(inp); 294 return (in_pcbrele_rlocked(inp)); 295 } 296 297 off += sizeof(struct udphdr); 298 299 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 300 /* Check AH/ESP integrity. */ 301 if (IPSEC_ENABLED(ipv4) && 302 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 303 m_freem(n); 304 return (0); 305 } 306 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 307 if (IPSEC_ENABLED(ipv4) && 308 UDPENCAP_INPUT(n, off, AF_INET) != 0) 309 return (0); /* Consumed. */ 310 } 311 #endif /* IPSEC */ 312 #ifdef MAC 313 if (mac_inpcb_check_deliver(inp, n) != 0) { 314 m_freem(n); 315 return (0); 316 } 317 #endif /* MAC */ 318 if (inp->inp_flags & INP_CONTROLOPTS || 319 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 320 #ifdef INET6 321 if (inp->inp_vflag & INP_IPV6) 322 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 323 else 324 #endif /* INET6 */ 325 ip_savecontrol(inp, &opts, ip, n); 326 } 327 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 328 tmpopts = sbcreatecontrol((caddr_t)&udp_in[1], 329 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP); 330 if (tmpopts) { 331 if (opts) { 332 tmpopts->m_next = opts; 333 opts = tmpopts; 334 } else 335 opts = tmpopts; 336 } 337 } 338 #ifdef INET6 339 if (inp->inp_vflag & INP_IPV6) { 340 bzero(&udp_in6, sizeof(udp_in6)); 341 udp_in6.sin6_len = sizeof(udp_in6); 342 udp_in6.sin6_family = AF_INET6; 343 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 344 append_sa = (struct sockaddr *)&udp_in6; 345 } else 346 #endif /* INET6 */ 347 append_sa = (struct sockaddr *)&udp_in[0]; 348 m_adj(n, off); 349 350 so = inp->inp_socket; 351 SOCKBUF_LOCK(&so->so_rcv); 352 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 353 soroverflow_locked(so); 354 m_freem(n); 355 if (opts) 356 m_freem(opts); 357 UDPSTAT_INC(udps_fullsock); 358 } else 359 sorwakeup_locked(so); 360 return (0); 361 } 362 363 static bool 364 udp_multi_match(const struct inpcb *inp, void *v) 365 { 366 struct ip *ip = v; 367 struct udphdr *uh = (struct udphdr *)(ip + 1); 368 369 if (inp->inp_lport != uh->uh_dport) 370 return (false); 371 #ifdef INET6 372 if ((inp->inp_vflag & INP_IPV4) == 0) 373 return (false); 374 #endif 375 if (inp->inp_laddr.s_addr != INADDR_ANY && 376 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 377 return (false); 378 if (inp->inp_faddr.s_addr != INADDR_ANY && 379 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 380 return (false); 381 if (inp->inp_fport != 0 && 382 inp->inp_fport != uh->uh_sport) 383 return (false); 384 385 return (true); 386 } 387 388 static int 389 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 390 { 391 struct ip *ip = mtod(m, struct ip *); 392 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 393 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 394 #ifdef KDTRACE_HOOKS 395 struct udphdr *uh = (struct udphdr *)(ip + 1); 396 #endif 397 struct inpcb *inp; 398 struct mbuf *n; 399 int appends = 0; 400 401 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 402 403 while ((inp = inp_next(&inpi)) != NULL) { 404 /* 405 * XXXRW: Because we weren't holding either the inpcb 406 * or the hash lock when we checked for a match 407 * before, we should probably recheck now that the 408 * inpcb lock is held. 409 */ 410 /* 411 * Handle socket delivery policy for any-source 412 * and source-specific multicast. [RFC3678] 413 */ 414 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 415 struct ip_moptions *imo; 416 struct sockaddr_in group; 417 int blocked; 418 419 imo = inp->inp_moptions; 420 if (imo == NULL) 421 continue; 422 bzero(&group, sizeof(struct sockaddr_in)); 423 group.sin_len = sizeof(struct sockaddr_in); 424 group.sin_family = AF_INET; 425 group.sin_addr = ip->ip_dst; 426 427 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 428 (struct sockaddr *)&group, 429 (struct sockaddr *)&udp_in[0]); 430 if (blocked != MCAST_PASS) { 431 if (blocked == MCAST_NOTGMEMBER) 432 IPSTAT_INC(ips_notmember); 433 if (blocked == MCAST_NOTSMEMBER || 434 blocked == MCAST_MUTED) 435 UDPSTAT_INC(udps_filtermcast); 436 continue; 437 } 438 } 439 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 440 if (proto == IPPROTO_UDPLITE) 441 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 442 else 443 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 444 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 445 INP_RUNLOCK(inp); 446 break; 447 } else 448 appends++; 449 } 450 /* 451 * Don't look for additional matches if this one does 452 * not have either the SO_REUSEPORT or SO_REUSEADDR 453 * socket options set. This heuristic avoids 454 * searching through all pcbs in the common case of a 455 * non-shared port. It assumes that an application 456 * will never clear these options after setting them. 457 */ 458 if ((inp->inp_socket->so_options & 459 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 460 INP_RUNLOCK(inp); 461 break; 462 } 463 } 464 465 if (appends == 0) { 466 /* 467 * No matching pcb found; discard datagram. (No need 468 * to send an ICMP Port Unreachable for a broadcast 469 * or multicast datgram.) 470 */ 471 UDPSTAT_INC(udps_noport); 472 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 473 UDPSTAT_INC(udps_noportmcast); 474 else 475 UDPSTAT_INC(udps_noportbcast); 476 } 477 m_freem(m); 478 479 return (IPPROTO_DONE); 480 } 481 482 int 483 udp_input(struct mbuf **mp, int *offp, int proto) 484 { 485 struct ip *ip; 486 struct udphdr *uh; 487 struct ifnet *ifp; 488 struct inpcb *inp; 489 uint16_t len, ip_len; 490 struct inpcbinfo *pcbinfo; 491 struct sockaddr_in udp_in[2]; 492 struct mbuf *m; 493 struct m_tag *fwd_tag; 494 int cscov_partial, iphlen; 495 496 m = *mp; 497 iphlen = *offp; 498 ifp = m->m_pkthdr.rcvif; 499 *mp = NULL; 500 UDPSTAT_INC(udps_ipackets); 501 502 /* 503 * Strip IP options, if any; should skip this, make available to 504 * user, and use on returned packets, but we don't yet have a way to 505 * check the checksum with options still present. 506 */ 507 if (iphlen > sizeof (struct ip)) { 508 ip_stripoptions(m); 509 iphlen = sizeof(struct ip); 510 } 511 512 /* 513 * Get IP and UDP header together in first mbuf. 514 */ 515 if (m->m_len < iphlen + sizeof(struct udphdr)) { 516 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 517 UDPSTAT_INC(udps_hdrops); 518 return (IPPROTO_DONE); 519 } 520 } 521 ip = mtod(m, struct ip *); 522 uh = (struct udphdr *)((caddr_t)ip + iphlen); 523 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 524 525 /* 526 * Destination port of 0 is illegal, based on RFC768. 527 */ 528 if (uh->uh_dport == 0) 529 goto badunlocked; 530 531 /* 532 * Construct sockaddr format source address. Stuff source address 533 * and datagram in user buffer. 534 */ 535 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 536 udp_in[0].sin_len = sizeof(struct sockaddr_in); 537 udp_in[0].sin_family = AF_INET; 538 udp_in[0].sin_port = uh->uh_sport; 539 udp_in[0].sin_addr = ip->ip_src; 540 udp_in[1].sin_len = sizeof(struct sockaddr_in); 541 udp_in[1].sin_family = AF_INET; 542 udp_in[1].sin_port = uh->uh_dport; 543 udp_in[1].sin_addr = ip->ip_dst; 544 545 /* 546 * Make mbuf data length reflect UDP length. If not enough data to 547 * reflect UDP length, drop. 548 */ 549 len = ntohs((u_short)uh->uh_ulen); 550 ip_len = ntohs(ip->ip_len) - iphlen; 551 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 552 /* Zero means checksum over the complete packet. */ 553 if (len == 0) 554 len = ip_len; 555 cscov_partial = 0; 556 } 557 if (ip_len != len) { 558 if (len > ip_len || len < sizeof(struct udphdr)) { 559 UDPSTAT_INC(udps_badlen); 560 goto badunlocked; 561 } 562 if (proto == IPPROTO_UDP) 563 m_adj(m, len - ip_len); 564 } 565 566 /* 567 * Checksum extended UDP header and data. 568 */ 569 if (uh->uh_sum) { 570 u_short uh_sum; 571 572 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 573 !cscov_partial) { 574 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 575 uh_sum = m->m_pkthdr.csum_data; 576 else 577 uh_sum = in_pseudo(ip->ip_src.s_addr, 578 ip->ip_dst.s_addr, htonl((u_short)len + 579 m->m_pkthdr.csum_data + proto)); 580 uh_sum ^= 0xffff; 581 } else { 582 char b[offsetof(struct ipovly, ih_src)]; 583 struct ipovly *ipov = (struct ipovly *)ip; 584 585 bcopy(ipov, b, sizeof(b)); 586 bzero(ipov, sizeof(ipov->ih_x1)); 587 ipov->ih_len = (proto == IPPROTO_UDP) ? 588 uh->uh_ulen : htons(ip_len); 589 uh_sum = in_cksum(m, len + sizeof (struct ip)); 590 bcopy(b, ipov, sizeof(b)); 591 } 592 if (uh_sum) { 593 UDPSTAT_INC(udps_badsum); 594 m_freem(m); 595 return (IPPROTO_DONE); 596 } 597 } else { 598 if (proto == IPPROTO_UDP) { 599 UDPSTAT_INC(udps_nosum); 600 } else { 601 /* UDPLite requires a checksum */ 602 /* XXX: What is the right UDPLite MIB counter here? */ 603 m_freem(m); 604 return (IPPROTO_DONE); 605 } 606 } 607 608 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 609 in_broadcast(ip->ip_dst, ifp)) 610 return (udp_multi_input(m, proto, udp_in)); 611 612 pcbinfo = udp_get_inpcbinfo(proto); 613 614 /* 615 * Locate pcb for datagram. 616 * 617 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 618 */ 619 if ((m->m_flags & M_IP_NEXTHOP) && 620 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 621 struct sockaddr_in *next_hop; 622 623 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 624 625 /* 626 * Transparently forwarded. Pretend to be the destination. 627 * Already got one like this? 628 */ 629 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 630 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 631 if (!inp) { 632 /* 633 * It's new. Try to find the ambushing socket. 634 * Because we've rewritten the destination address, 635 * any hardware-generated hash is ignored. 636 */ 637 inp = in_pcblookup(pcbinfo, ip->ip_src, 638 uh->uh_sport, next_hop->sin_addr, 639 next_hop->sin_port ? htons(next_hop->sin_port) : 640 uh->uh_dport, INPLOOKUP_WILDCARD | 641 INPLOOKUP_RLOCKPCB, ifp); 642 } 643 /* Remove the tag from the packet. We don't need it anymore. */ 644 m_tag_delete(m, fwd_tag); 645 m->m_flags &= ~M_IP_NEXTHOP; 646 } else 647 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 648 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 649 INPLOOKUP_RLOCKPCB, ifp, m); 650 if (inp == NULL) { 651 if (V_udp_log_in_vain) { 652 char src[INET_ADDRSTRLEN]; 653 char dst[INET_ADDRSTRLEN]; 654 655 log(LOG_INFO, 656 "Connection attempt to UDP %s:%d from %s:%d\n", 657 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 658 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 659 } 660 if (proto == IPPROTO_UDPLITE) 661 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 662 else 663 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 664 UDPSTAT_INC(udps_noport); 665 if (m->m_flags & (M_BCAST | M_MCAST)) { 666 UDPSTAT_INC(udps_noportbcast); 667 goto badunlocked; 668 } 669 if (V_udp_blackhole && (V_udp_blackhole_local || 670 !in_localip(ip->ip_src))) 671 goto badunlocked; 672 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 673 goto badunlocked; 674 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 675 return (IPPROTO_DONE); 676 } 677 678 /* 679 * Check the minimum TTL for socket. 680 */ 681 INP_RLOCK_ASSERT(inp); 682 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 683 if (proto == IPPROTO_UDPLITE) 684 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 685 else 686 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 687 INP_RUNLOCK(inp); 688 m_freem(m); 689 return (IPPROTO_DONE); 690 } 691 if (cscov_partial) { 692 struct udpcb *up; 693 694 up = intoudpcb(inp); 695 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 696 INP_RUNLOCK(inp); 697 m_freem(m); 698 return (IPPROTO_DONE); 699 } 700 } 701 702 if (proto == IPPROTO_UDPLITE) 703 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 704 else 705 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 706 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 707 INP_RUNLOCK(inp); 708 return (IPPROTO_DONE); 709 710 badunlocked: 711 m_freem(m); 712 return (IPPROTO_DONE); 713 } 714 #endif /* INET */ 715 716 /* 717 * Notify a udp user of an asynchronous error; just wake up so that they can 718 * collect error status. 719 */ 720 struct inpcb * 721 udp_notify(struct inpcb *inp, int errno) 722 { 723 724 INP_WLOCK_ASSERT(inp); 725 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 726 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 727 NH_FREE(inp->inp_route.ro_nh); 728 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 729 } 730 731 inp->inp_socket->so_error = errno; 732 sorwakeup(inp->inp_socket); 733 sowwakeup(inp->inp_socket); 734 return (inp); 735 } 736 737 #ifdef INET 738 static void 739 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 740 struct inpcbinfo *pcbinfo) 741 { 742 struct ip *ip = vip; 743 struct udphdr *uh; 744 struct in_addr faddr; 745 struct inpcb *inp; 746 747 faddr = ((struct sockaddr_in *)sa)->sin_addr; 748 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 749 return; 750 751 if (PRC_IS_REDIRECT(cmd)) { 752 /* signal EHOSTDOWN, as it flushes the cached route */ 753 in_pcbnotifyall(pcbinfo, faddr, EHOSTDOWN, udp_notify); 754 return; 755 } 756 757 /* 758 * Hostdead is ugly because it goes linearly through all PCBs. 759 * 760 * XXX: We never get this from ICMP, otherwise it makes an excellent 761 * DoS attack on machines with many connections. 762 */ 763 if (cmd == PRC_HOSTDEAD) 764 ip = NULL; 765 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 766 return; 767 if (ip != NULL) { 768 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 769 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 770 ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 771 if (inp != NULL) { 772 INP_WLOCK_ASSERT(inp); 773 if (inp->inp_socket != NULL) { 774 udp_notify(inp, inetctlerrmap[cmd]); 775 } 776 INP_WUNLOCK(inp); 777 } else { 778 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 779 ip->ip_src, uh->uh_sport, 780 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 781 if (inp != NULL) { 782 struct udpcb *up; 783 void *ctx; 784 udp_tun_icmp_t func; 785 786 up = intoudpcb(inp); 787 ctx = up->u_tun_ctx; 788 func = up->u_icmp_func; 789 INP_RUNLOCK(inp); 790 if (func != NULL) 791 (*func)(cmd, sa, vip, ctx); 792 } 793 } 794 } else 795 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 796 udp_notify); 797 } 798 void 799 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 800 { 801 802 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 803 } 804 805 void 806 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 807 { 808 809 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 810 } 811 #endif /* INET */ 812 813 static int 814 udp_pcblist(SYSCTL_HANDLER_ARGS) 815 { 816 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 817 INPLOOKUP_RLOCKPCB); 818 struct xinpgen xig; 819 struct inpcb *inp; 820 int error; 821 822 if (req->newptr != 0) 823 return (EPERM); 824 825 if (req->oldptr == 0) { 826 int n; 827 828 n = V_udbinfo.ipi_count; 829 n += imax(n / 8, 10); 830 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 831 return (0); 832 } 833 834 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 835 return (error); 836 837 bzero(&xig, sizeof(xig)); 838 xig.xig_len = sizeof xig; 839 xig.xig_count = V_udbinfo.ipi_count; 840 xig.xig_gen = V_udbinfo.ipi_gencnt; 841 xig.xig_sogen = so_gencnt; 842 error = SYSCTL_OUT(req, &xig, sizeof xig); 843 if (error) 844 return (error); 845 846 while ((inp = inp_next(&inpi)) != NULL) { 847 if (inp->inp_gencnt <= xig.xig_gen && 848 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 849 struct xinpcb xi; 850 851 in_pcbtoxinpcb(inp, &xi); 852 error = SYSCTL_OUT(req, &xi, sizeof xi); 853 if (error) { 854 INP_RUNLOCK(inp); 855 break; 856 } 857 } 858 } 859 860 if (!error) { 861 /* 862 * Give the user an updated idea of our state. If the 863 * generation differs from what we told her before, she knows 864 * that something happened while we were processing this 865 * request, and it might be necessary to retry. 866 */ 867 xig.xig_gen = V_udbinfo.ipi_gencnt; 868 xig.xig_sogen = so_gencnt; 869 xig.xig_count = V_udbinfo.ipi_count; 870 error = SYSCTL_OUT(req, &xig, sizeof xig); 871 } 872 873 return (error); 874 } 875 876 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 877 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 878 udp_pcblist, "S,xinpcb", 879 "List of active UDP sockets"); 880 881 #ifdef INET 882 static int 883 udp_getcred(SYSCTL_HANDLER_ARGS) 884 { 885 struct xucred xuc; 886 struct sockaddr_in addrs[2]; 887 struct epoch_tracker et; 888 struct inpcb *inp; 889 int error; 890 891 error = priv_check(req->td, PRIV_NETINET_GETCRED); 892 if (error) 893 return (error); 894 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 895 if (error) 896 return (error); 897 NET_EPOCH_ENTER(et); 898 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 899 addrs[0].sin_addr, addrs[0].sin_port, 900 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 901 NET_EPOCH_EXIT(et); 902 if (inp != NULL) { 903 INP_RLOCK_ASSERT(inp); 904 if (inp->inp_socket == NULL) 905 error = ENOENT; 906 if (error == 0) 907 error = cr_canseeinpcb(req->td->td_ucred, inp); 908 if (error == 0) 909 cru2x(inp->inp_cred, &xuc); 910 INP_RUNLOCK(inp); 911 } else 912 error = ENOENT; 913 if (error == 0) 914 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 915 return (error); 916 } 917 918 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 919 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 920 0, 0, udp_getcred, "S,xucred", 921 "Get the xucred of a UDP connection"); 922 #endif /* INET */ 923 924 int 925 udp_ctloutput(struct socket *so, struct sockopt *sopt) 926 { 927 struct inpcb *inp; 928 struct udpcb *up; 929 int isudplite, error, optval; 930 931 error = 0; 932 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 933 inp = sotoinpcb(so); 934 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 935 INP_WLOCK(inp); 936 if (sopt->sopt_level != so->so_proto->pr_protocol) { 937 #ifdef INET6 938 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 939 INP_WUNLOCK(inp); 940 error = ip6_ctloutput(so, sopt); 941 } 942 #endif 943 #if defined(INET) && defined(INET6) 944 else 945 #endif 946 #ifdef INET 947 { 948 INP_WUNLOCK(inp); 949 error = ip_ctloutput(so, sopt); 950 } 951 #endif 952 return (error); 953 } 954 955 switch (sopt->sopt_dir) { 956 case SOPT_SET: 957 switch (sopt->sopt_name) { 958 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 959 #ifdef INET 960 case UDP_ENCAP: 961 if (!IPSEC_ENABLED(ipv4)) { 962 INP_WUNLOCK(inp); 963 return (ENOPROTOOPT); 964 } 965 error = UDPENCAP_PCBCTL(inp, sopt); 966 break; 967 #endif /* INET */ 968 #endif /* IPSEC */ 969 case UDPLITE_SEND_CSCOV: 970 case UDPLITE_RECV_CSCOV: 971 if (!isudplite) { 972 INP_WUNLOCK(inp); 973 error = ENOPROTOOPT; 974 break; 975 } 976 INP_WUNLOCK(inp); 977 error = sooptcopyin(sopt, &optval, sizeof(optval), 978 sizeof(optval)); 979 if (error != 0) 980 break; 981 inp = sotoinpcb(so); 982 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 983 INP_WLOCK(inp); 984 up = intoudpcb(inp); 985 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 986 if ((optval != 0 && optval < 8) || (optval > 65535)) { 987 INP_WUNLOCK(inp); 988 error = EINVAL; 989 break; 990 } 991 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 992 up->u_txcslen = optval; 993 else 994 up->u_rxcslen = optval; 995 INP_WUNLOCK(inp); 996 break; 997 default: 998 INP_WUNLOCK(inp); 999 error = ENOPROTOOPT; 1000 break; 1001 } 1002 break; 1003 case SOPT_GET: 1004 switch (sopt->sopt_name) { 1005 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1006 #ifdef INET 1007 case UDP_ENCAP: 1008 if (!IPSEC_ENABLED(ipv4)) { 1009 INP_WUNLOCK(inp); 1010 return (ENOPROTOOPT); 1011 } 1012 error = UDPENCAP_PCBCTL(inp, sopt); 1013 break; 1014 #endif /* INET */ 1015 #endif /* IPSEC */ 1016 case UDPLITE_SEND_CSCOV: 1017 case UDPLITE_RECV_CSCOV: 1018 if (!isudplite) { 1019 INP_WUNLOCK(inp); 1020 error = ENOPROTOOPT; 1021 break; 1022 } 1023 up = intoudpcb(inp); 1024 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1025 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1026 optval = up->u_txcslen; 1027 else 1028 optval = up->u_rxcslen; 1029 INP_WUNLOCK(inp); 1030 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1031 break; 1032 default: 1033 INP_WUNLOCK(inp); 1034 error = ENOPROTOOPT; 1035 break; 1036 } 1037 break; 1038 } 1039 return (error); 1040 } 1041 1042 #ifdef INET 1043 #ifdef INET6 1044 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1045 static int 1046 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1047 struct inpcb *inp, int flags) 1048 { 1049 struct ifnet *ifp; 1050 struct in6_pktinfo *pktinfo; 1051 struct in_addr ia; 1052 1053 if ((flags & PRUS_IPV6) == 0) 1054 return (0); 1055 1056 if (cm->cmsg_level != IPPROTO_IPV6) 1057 return (0); 1058 1059 if (cm->cmsg_type != IPV6_2292PKTINFO && 1060 cm->cmsg_type != IPV6_PKTINFO) 1061 return (0); 1062 1063 if (cm->cmsg_len != 1064 CMSG_LEN(sizeof(struct in6_pktinfo))) 1065 return (EINVAL); 1066 1067 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1068 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1069 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1070 return (EINVAL); 1071 1072 /* Validate the interface index if specified. */ 1073 if (pktinfo->ipi6_ifindex) { 1074 struct epoch_tracker et; 1075 1076 NET_EPOCH_ENTER(et); 1077 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1078 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1079 if (ifp == NULL) 1080 return (ENXIO); 1081 } else 1082 ifp = NULL; 1083 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1084 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1085 if (in_ifhasaddr(ifp, ia) == 0) 1086 return (EADDRNOTAVAIL); 1087 } 1088 1089 bzero(src, sizeof(*src)); 1090 src->sin_family = AF_INET; 1091 src->sin_len = sizeof(*src); 1092 src->sin_port = inp->inp_lport; 1093 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1094 1095 return (0); 1096 } 1097 #endif 1098 1099 static int 1100 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1101 struct mbuf *control, struct thread *td, int flags) 1102 { 1103 struct udpiphdr *ui; 1104 int len = m->m_pkthdr.len; 1105 struct in_addr faddr, laddr; 1106 struct cmsghdr *cm; 1107 struct inpcbinfo *pcbinfo; 1108 struct sockaddr_in *sin, src; 1109 struct epoch_tracker et; 1110 int cscov_partial = 0; 1111 int error = 0; 1112 int ipflags = 0; 1113 u_short fport, lport; 1114 u_char tos; 1115 uint8_t pr; 1116 uint16_t cscov = 0; 1117 uint32_t flowid = 0; 1118 uint8_t flowtype = M_HASHTYPE_NONE; 1119 1120 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1121 if (control) 1122 m_freem(control); 1123 m_freem(m); 1124 return (EMSGSIZE); 1125 } 1126 1127 src.sin_family = 0; 1128 sin = (struct sockaddr_in *)addr; 1129 1130 /* 1131 * udp_output() may need to temporarily bind or connect the current 1132 * inpcb. As such, we don't know up front whether we will need the 1133 * pcbinfo lock or not. Do any work to decide what is needed up 1134 * front before acquiring any locks. 1135 * 1136 * We will need network epoch in either case, to safely lookup into 1137 * pcb hash. 1138 */ 1139 if (sin == NULL || 1140 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1141 INP_WLOCK(inp); 1142 else 1143 INP_RLOCK(inp); 1144 NET_EPOCH_ENTER(et); 1145 tos = inp->inp_ip_tos; 1146 if (control != NULL) { 1147 /* 1148 * XXX: Currently, we assume all the optional information is 1149 * stored in a single mbuf. 1150 */ 1151 if (control->m_next) { 1152 m_freem(control); 1153 error = EINVAL; 1154 goto release; 1155 } 1156 for (; control->m_len > 0; 1157 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1158 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1159 cm = mtod(control, struct cmsghdr *); 1160 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1161 || cm->cmsg_len > control->m_len) { 1162 error = EINVAL; 1163 break; 1164 } 1165 #ifdef INET6 1166 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1167 if (error != 0) 1168 break; 1169 #endif 1170 if (cm->cmsg_level != IPPROTO_IP) 1171 continue; 1172 1173 switch (cm->cmsg_type) { 1174 case IP_SENDSRCADDR: 1175 if (cm->cmsg_len != 1176 CMSG_LEN(sizeof(struct in_addr))) { 1177 error = EINVAL; 1178 break; 1179 } 1180 bzero(&src, sizeof(src)); 1181 src.sin_family = AF_INET; 1182 src.sin_len = sizeof(src); 1183 src.sin_port = inp->inp_lport; 1184 src.sin_addr = 1185 *(struct in_addr *)CMSG_DATA(cm); 1186 break; 1187 1188 case IP_TOS: 1189 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1190 error = EINVAL; 1191 break; 1192 } 1193 tos = *(u_char *)CMSG_DATA(cm); 1194 break; 1195 1196 case IP_FLOWID: 1197 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1198 error = EINVAL; 1199 break; 1200 } 1201 flowid = *(uint32_t *) CMSG_DATA(cm); 1202 break; 1203 1204 case IP_FLOWTYPE: 1205 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1206 error = EINVAL; 1207 break; 1208 } 1209 flowtype = *(uint32_t *) CMSG_DATA(cm); 1210 break; 1211 1212 #ifdef RSS 1213 case IP_RSSBUCKETID: 1214 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1215 error = EINVAL; 1216 break; 1217 } 1218 /* This is just a placeholder for now */ 1219 break; 1220 #endif /* RSS */ 1221 default: 1222 error = ENOPROTOOPT; 1223 break; 1224 } 1225 if (error) 1226 break; 1227 } 1228 m_freem(control); 1229 control = NULL; 1230 } 1231 if (error) 1232 goto release; 1233 1234 pr = inp->inp_socket->so_proto->pr_protocol; 1235 pcbinfo = udp_get_inpcbinfo(pr); 1236 1237 /* 1238 * If the IP_SENDSRCADDR control message was specified, override the 1239 * source address for this datagram. Its use is invalidated if the 1240 * address thus specified is incomplete or clobbers other inpcbs. 1241 */ 1242 laddr = inp->inp_laddr; 1243 lport = inp->inp_lport; 1244 if (src.sin_family == AF_INET) { 1245 if ((lport == 0) || 1246 (laddr.s_addr == INADDR_ANY && 1247 src.sin_addr.s_addr == INADDR_ANY)) { 1248 error = EINVAL; 1249 goto release; 1250 } 1251 INP_HASH_WLOCK(pcbinfo); 1252 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1253 &laddr.s_addr, &lport, td->td_ucred); 1254 INP_HASH_WUNLOCK(pcbinfo); 1255 if (error) 1256 goto release; 1257 } 1258 1259 /* 1260 * If a UDP socket has been connected, then a local address/port will 1261 * have been selected and bound. 1262 * 1263 * If a UDP socket has not been connected to, then an explicit 1264 * destination address must be used, in which case a local 1265 * address/port may not have been selected and bound. 1266 */ 1267 if (sin != NULL) { 1268 INP_LOCK_ASSERT(inp); 1269 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1270 error = EISCONN; 1271 goto release; 1272 } 1273 1274 /* 1275 * Jail may rewrite the destination address, so let it do 1276 * that before we use it. 1277 */ 1278 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1279 if (error) 1280 goto release; 1281 1282 /* 1283 * If a local address or port hasn't yet been selected, or if 1284 * the destination address needs to be rewritten due to using 1285 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1286 * to do the heavy lifting. Once a port is selected, we 1287 * commit the binding back to the socket; we also commit the 1288 * binding of the address if in jail. 1289 * 1290 * If we already have a valid binding and we're not 1291 * requesting a destination address rewrite, use a fast path. 1292 */ 1293 if (inp->inp_laddr.s_addr == INADDR_ANY || 1294 inp->inp_lport == 0 || 1295 sin->sin_addr.s_addr == INADDR_ANY || 1296 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1297 INP_HASH_WLOCK(pcbinfo); 1298 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1299 &lport, &faddr.s_addr, &fport, NULL, 1300 td->td_ucred); 1301 if (error) { 1302 INP_HASH_WUNLOCK(pcbinfo); 1303 goto release; 1304 } 1305 1306 /* 1307 * XXXRW: Why not commit the port if the address is 1308 * !INADDR_ANY? 1309 */ 1310 /* Commit the local port if newly assigned. */ 1311 if (inp->inp_laddr.s_addr == INADDR_ANY && 1312 inp->inp_lport == 0) { 1313 INP_WLOCK_ASSERT(inp); 1314 /* 1315 * Remember addr if jailed, to prevent 1316 * rebinding. 1317 */ 1318 if (prison_flag(td->td_ucred, PR_IP4)) 1319 inp->inp_laddr = laddr; 1320 inp->inp_lport = lport; 1321 error = in_pcbinshash(inp); 1322 INP_HASH_WUNLOCK(pcbinfo); 1323 if (error != 0) { 1324 inp->inp_lport = 0; 1325 error = EAGAIN; 1326 goto release; 1327 } 1328 inp->inp_flags |= INP_ANONPORT; 1329 } else 1330 INP_HASH_WUNLOCK(pcbinfo); 1331 } else { 1332 faddr = sin->sin_addr; 1333 fport = sin->sin_port; 1334 } 1335 } else { 1336 INP_LOCK_ASSERT(inp); 1337 faddr = inp->inp_faddr; 1338 fport = inp->inp_fport; 1339 if (faddr.s_addr == INADDR_ANY) { 1340 error = ENOTCONN; 1341 goto release; 1342 } 1343 } 1344 1345 /* 1346 * Calculate data length and get a mbuf for UDP, IP, and possible 1347 * link-layer headers. Immediate slide the data pointer back forward 1348 * since we won't use that space at this layer. 1349 */ 1350 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1351 if (m == NULL) { 1352 error = ENOBUFS; 1353 goto release; 1354 } 1355 m->m_data += max_linkhdr; 1356 m->m_len -= max_linkhdr; 1357 m->m_pkthdr.len -= max_linkhdr; 1358 1359 /* 1360 * Fill in mbuf with extended UDP header and addresses and length put 1361 * into network format. 1362 */ 1363 ui = mtod(m, struct udpiphdr *); 1364 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1365 ui->ui_v = IPVERSION << 4; 1366 ui->ui_pr = pr; 1367 ui->ui_src = laddr; 1368 ui->ui_dst = faddr; 1369 ui->ui_sport = lport; 1370 ui->ui_dport = fport; 1371 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1372 if (pr == IPPROTO_UDPLITE) { 1373 struct udpcb *up; 1374 uint16_t plen; 1375 1376 up = intoudpcb(inp); 1377 cscov = up->u_txcslen; 1378 plen = (u_short)len + sizeof(struct udphdr); 1379 if (cscov >= plen) 1380 cscov = 0; 1381 ui->ui_len = htons(plen); 1382 ui->ui_ulen = htons(cscov); 1383 /* 1384 * For UDP-Lite, checksum coverage length of zero means 1385 * the entire UDPLite packet is covered by the checksum. 1386 */ 1387 cscov_partial = (cscov == 0) ? 0 : 1; 1388 } 1389 1390 /* 1391 * Set the Don't Fragment bit in the IP header. 1392 */ 1393 if (inp->inp_flags & INP_DONTFRAG) { 1394 struct ip *ip; 1395 1396 ip = (struct ip *)&ui->ui_i; 1397 ip->ip_off |= htons(IP_DF); 1398 } 1399 1400 if (inp->inp_socket->so_options & SO_DONTROUTE) 1401 ipflags |= IP_ROUTETOIF; 1402 if (inp->inp_socket->so_options & SO_BROADCAST) 1403 ipflags |= IP_ALLOWBROADCAST; 1404 if (inp->inp_flags & INP_ONESBCAST) 1405 ipflags |= IP_SENDONES; 1406 1407 #ifdef MAC 1408 mac_inpcb_create_mbuf(inp, m); 1409 #endif 1410 1411 /* 1412 * Set up checksum and output datagram. 1413 */ 1414 ui->ui_sum = 0; 1415 if (pr == IPPROTO_UDPLITE) { 1416 if (inp->inp_flags & INP_ONESBCAST) 1417 faddr.s_addr = INADDR_BROADCAST; 1418 if (cscov_partial) { 1419 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1420 ui->ui_sum = 0xffff; 1421 } else { 1422 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1423 ui->ui_sum = 0xffff; 1424 } 1425 } else if (V_udp_cksum) { 1426 if (inp->inp_flags & INP_ONESBCAST) 1427 faddr.s_addr = INADDR_BROADCAST; 1428 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1429 htons((u_short)len + sizeof(struct udphdr) + pr)); 1430 m->m_pkthdr.csum_flags = CSUM_UDP; 1431 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1432 } 1433 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1434 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1435 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1436 UDPSTAT_INC(udps_opackets); 1437 1438 /* 1439 * Setup flowid / RSS information for outbound socket. 1440 * 1441 * Once the UDP code decides to set a flowid some other way, 1442 * this allows the flowid to be overridden by userland. 1443 */ 1444 if (flowtype != M_HASHTYPE_NONE) { 1445 m->m_pkthdr.flowid = flowid; 1446 M_HASHTYPE_SET(m, flowtype); 1447 } 1448 #if defined(ROUTE_MPATH) || defined(RSS) 1449 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1450 uint32_t hash_val, hash_type; 1451 1452 hash_val = fib4_calc_packet_hash(laddr, faddr, 1453 lport, fport, pr, &hash_type); 1454 m->m_pkthdr.flowid = hash_val; 1455 M_HASHTYPE_SET(m, hash_type); 1456 } 1457 1458 /* 1459 * Don't override with the inp cached flowid value. 1460 * 1461 * Depending upon the kind of send being done, the inp 1462 * flowid/flowtype values may actually not be appropriate 1463 * for this particular socket send. 1464 * 1465 * We should either leave the flowid at zero (which is what is 1466 * currently done) or set it to some software generated 1467 * hash value based on the packet contents. 1468 */ 1469 ipflags |= IP_NODEFAULTFLOWID; 1470 #endif /* RSS */ 1471 1472 if (pr == IPPROTO_UDPLITE) 1473 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1474 else 1475 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1476 error = ip_output(m, inp->inp_options, 1477 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1478 inp->inp_moptions, inp); 1479 INP_UNLOCK(inp); 1480 NET_EPOCH_EXIT(et); 1481 return (error); 1482 1483 release: 1484 INP_UNLOCK(inp); 1485 NET_EPOCH_EXIT(et); 1486 m_freem(m); 1487 return (error); 1488 } 1489 1490 static void 1491 udp_abort(struct socket *so) 1492 { 1493 struct inpcb *inp; 1494 struct inpcbinfo *pcbinfo; 1495 1496 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1497 inp = sotoinpcb(so); 1498 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1499 INP_WLOCK(inp); 1500 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1501 INP_HASH_WLOCK(pcbinfo); 1502 in_pcbdisconnect(inp); 1503 inp->inp_laddr.s_addr = INADDR_ANY; 1504 INP_HASH_WUNLOCK(pcbinfo); 1505 soisdisconnected(so); 1506 } 1507 INP_WUNLOCK(inp); 1508 } 1509 1510 static int 1511 udp_attach(struct socket *so, int proto, struct thread *td) 1512 { 1513 static uint32_t udp_flowid; 1514 struct inpcb *inp; 1515 struct inpcbinfo *pcbinfo; 1516 int error; 1517 1518 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1519 inp = sotoinpcb(so); 1520 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1521 error = soreserve(so, udp_sendspace, udp_recvspace); 1522 if (error) 1523 return (error); 1524 error = in_pcballoc(so, pcbinfo); 1525 if (error) 1526 return (error); 1527 1528 inp = sotoinpcb(so); 1529 inp->inp_vflag |= INP_IPV4; 1530 inp->inp_ip_ttl = V_ip_defttl; 1531 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1532 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1533 1534 error = udp_newudpcb(inp); 1535 if (error) { 1536 in_pcbdetach(inp); 1537 in_pcbfree(inp); 1538 return (error); 1539 } 1540 INP_WUNLOCK(inp); 1541 1542 return (0); 1543 } 1544 #endif /* INET */ 1545 1546 int 1547 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1548 { 1549 struct inpcb *inp; 1550 struct udpcb *up; 1551 1552 KASSERT(so->so_type == SOCK_DGRAM, 1553 ("udp_set_kernel_tunneling: !dgram")); 1554 inp = sotoinpcb(so); 1555 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1556 INP_WLOCK(inp); 1557 up = intoudpcb(inp); 1558 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1559 (up->u_icmp_func != NULL))) { 1560 INP_WUNLOCK(inp); 1561 return (EBUSY); 1562 } 1563 up->u_tun_func = f; 1564 up->u_icmp_func = i; 1565 up->u_tun_ctx = ctx; 1566 INP_WUNLOCK(inp); 1567 return (0); 1568 } 1569 1570 #ifdef INET 1571 static int 1572 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1573 { 1574 struct inpcb *inp; 1575 struct inpcbinfo *pcbinfo; 1576 struct sockaddr_in *sinp; 1577 int error; 1578 1579 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1580 inp = sotoinpcb(so); 1581 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1582 1583 sinp = (struct sockaddr_in *)nam; 1584 if (nam->sa_family != AF_INET) { 1585 /* 1586 * Preserve compatibility with old programs. 1587 */ 1588 if (nam->sa_family != AF_UNSPEC || 1589 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1590 sinp->sin_addr.s_addr != INADDR_ANY) 1591 return (EAFNOSUPPORT); 1592 nam->sa_family = AF_INET; 1593 } 1594 if (nam->sa_len != sizeof(struct sockaddr_in)) 1595 return (EINVAL); 1596 1597 INP_WLOCK(inp); 1598 INP_HASH_WLOCK(pcbinfo); 1599 error = in_pcbbind(inp, nam, td->td_ucred); 1600 INP_HASH_WUNLOCK(pcbinfo); 1601 INP_WUNLOCK(inp); 1602 return (error); 1603 } 1604 1605 static void 1606 udp_close(struct socket *so) 1607 { 1608 struct inpcb *inp; 1609 struct inpcbinfo *pcbinfo; 1610 1611 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1612 inp = sotoinpcb(so); 1613 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1614 INP_WLOCK(inp); 1615 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1616 INP_HASH_WLOCK(pcbinfo); 1617 in_pcbdisconnect(inp); 1618 inp->inp_laddr.s_addr = INADDR_ANY; 1619 INP_HASH_WUNLOCK(pcbinfo); 1620 soisdisconnected(so); 1621 } 1622 INP_WUNLOCK(inp); 1623 } 1624 1625 static int 1626 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1627 { 1628 struct epoch_tracker et; 1629 struct inpcb *inp; 1630 struct inpcbinfo *pcbinfo; 1631 struct sockaddr_in *sin; 1632 int error; 1633 1634 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1635 inp = sotoinpcb(so); 1636 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1637 1638 sin = (struct sockaddr_in *)nam; 1639 if (sin->sin_family != AF_INET) 1640 return (EAFNOSUPPORT); 1641 if (sin->sin_len != sizeof(*sin)) 1642 return (EINVAL); 1643 1644 INP_WLOCK(inp); 1645 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1646 INP_WUNLOCK(inp); 1647 return (EISCONN); 1648 } 1649 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1650 if (error != 0) { 1651 INP_WUNLOCK(inp); 1652 return (error); 1653 } 1654 NET_EPOCH_ENTER(et); 1655 INP_HASH_WLOCK(pcbinfo); 1656 error = in_pcbconnect(inp, nam, td->td_ucred, true); 1657 INP_HASH_WUNLOCK(pcbinfo); 1658 NET_EPOCH_EXIT(et); 1659 if (error == 0) 1660 soisconnected(so); 1661 INP_WUNLOCK(inp); 1662 return (error); 1663 } 1664 1665 static void 1666 udp_detach(struct socket *so) 1667 { 1668 struct inpcb *inp; 1669 struct udpcb *up; 1670 1671 inp = sotoinpcb(so); 1672 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1673 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1674 ("udp_detach: not disconnected")); 1675 INP_WLOCK(inp); 1676 up = intoudpcb(inp); 1677 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1678 inp->inp_ppcb = NULL; 1679 in_pcbdetach(inp); 1680 in_pcbfree(inp); 1681 udp_discardcb(up); 1682 } 1683 1684 static int 1685 udp_disconnect(struct socket *so) 1686 { 1687 struct inpcb *inp; 1688 struct inpcbinfo *pcbinfo; 1689 1690 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1691 inp = sotoinpcb(so); 1692 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1693 INP_WLOCK(inp); 1694 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1695 INP_WUNLOCK(inp); 1696 return (ENOTCONN); 1697 } 1698 INP_HASH_WLOCK(pcbinfo); 1699 in_pcbdisconnect(inp); 1700 inp->inp_laddr.s_addr = INADDR_ANY; 1701 INP_HASH_WUNLOCK(pcbinfo); 1702 SOCK_LOCK(so); 1703 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1704 SOCK_UNLOCK(so); 1705 INP_WUNLOCK(inp); 1706 return (0); 1707 } 1708 1709 static int 1710 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1711 struct mbuf *control, struct thread *td) 1712 { 1713 struct inpcb *inp; 1714 int error; 1715 1716 inp = sotoinpcb(so); 1717 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1718 1719 if (addr != NULL) { 1720 error = 0; 1721 if (addr->sa_family != AF_INET) 1722 error = EAFNOSUPPORT; 1723 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1724 error = EINVAL; 1725 if (__predict_false(error != 0)) { 1726 m_freem(control); 1727 m_freem(m); 1728 return (error); 1729 } 1730 } 1731 return (udp_output(inp, m, addr, control, td, flags)); 1732 } 1733 #endif /* INET */ 1734 1735 int 1736 udp_shutdown(struct socket *so) 1737 { 1738 struct inpcb *inp; 1739 1740 inp = sotoinpcb(so); 1741 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1742 INP_WLOCK(inp); 1743 socantsendmore(so); 1744 INP_WUNLOCK(inp); 1745 return (0); 1746 } 1747 1748 #ifdef INET 1749 struct pr_usrreqs udp_usrreqs = { 1750 .pru_abort = udp_abort, 1751 .pru_attach = udp_attach, 1752 .pru_bind = udp_bind, 1753 .pru_connect = udp_connect, 1754 .pru_control = in_control, 1755 .pru_detach = udp_detach, 1756 .pru_disconnect = udp_disconnect, 1757 .pru_peeraddr = in_getpeeraddr, 1758 .pru_send = udp_send, 1759 .pru_soreceive = soreceive_dgram, 1760 .pru_sosend = sosend_dgram, 1761 .pru_shutdown = udp_shutdown, 1762 .pru_sockaddr = in_getsockaddr, 1763 .pru_sosetlabel = in_pcbsosetlabel, 1764 .pru_close = udp_close, 1765 }; 1766 #endif /* INET */ 1767