1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ipsec.h" 45 #include "opt_rss.h" 46 47 #include <sys/param.h> 48 #include <sys/domain.h> 49 #include <sys/eventhandler.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/priv.h> 56 #include <sys/proc.h> 57 #include <sys/protosw.h> 58 #include <sys/sdt.h> 59 #include <sys/signalvar.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sx.h> 63 #include <sys/sysctl.h> 64 #include <sys/syslog.h> 65 #include <sys/systm.h> 66 67 #include <vm/uma.h> 68 69 #include <net/if.h> 70 #include <net/if_var.h> 71 #include <net/route.h> 72 #include <net/rss_config.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_pcb.h> 77 #include <netinet/in_systm.h> 78 #include <netinet/in_var.h> 79 #include <netinet/ip.h> 80 #ifdef INET6 81 #include <netinet/ip6.h> 82 #endif 83 #include <netinet/ip_icmp.h> 84 #include <netinet/icmp_var.h> 85 #include <netinet/ip_var.h> 86 #include <netinet/ip_options.h> 87 #ifdef INET6 88 #include <netinet6/ip6_var.h> 89 #endif 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 #include <netinet/udplite.h> 93 #include <netinet/in_rss.h> 94 95 #ifdef IPSEC 96 #include <netipsec/ipsec.h> 97 #include <netipsec/esp.h> 98 #endif 99 100 #include <machine/in_cksum.h> 101 102 #include <security/mac/mac_framework.h> 103 104 /* 105 * UDP and UDP-Lite protocols implementation. 106 * Per RFC 768, August, 1980. 107 * Per RFC 3828, July, 2004. 108 */ 109 110 /* 111 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 112 * removes the only data integrity mechanism for packets and malformed 113 * packets that would otherwise be discarded due to bad checksums, and may 114 * cause problems (especially for NFS data blocks). 115 */ 116 VNET_DEFINE(int, udp_cksum) = 1; 117 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 118 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 119 120 int udp_log_in_vain = 0; 121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 122 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 123 124 VNET_DEFINE(int, udp_blackhole) = 0; 125 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 126 &VNET_NAME(udp_blackhole), 0, 127 "Do not send port unreachables for refused connects"); 128 129 static VNET_DEFINE(int, udp_require_l2_bcast) = 0; 130 #define V_udp_require_l2_bcast VNET(udp_require_l2_bcast) 131 SYSCTL_INT(_net_inet_udp, OID_AUTO, require_l2_bcast, CTLFLAG_VNET | CTLFLAG_RW, 132 &VNET_NAME(udp_require_l2_bcast), 0, 133 "Only treat packets sent to an L2 broadcast address as broadcast packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 151 VNET_DEFINE(struct inpcbinfo, udbinfo); 152 VNET_DEFINE(struct inpcbhead, ulitecb); 153 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 154 static VNET_DEFINE(uma_zone_t, udpcb_zone); 155 #define V_udpcb_zone VNET(udpcb_zone) 156 157 #ifndef UDBHASHSIZE 158 #define UDBHASHSIZE 128 159 #endif 160 161 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 162 VNET_PCPUSTAT_SYSINIT(udpstat); 163 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 164 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 165 166 #ifdef VIMAGE 167 VNET_PCPUSTAT_SYSUNINIT(udpstat); 168 #endif /* VIMAGE */ 169 #ifdef INET 170 static void udp_detach(struct socket *so); 171 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 172 struct mbuf *, struct thread *); 173 #endif 174 175 #ifdef IPSEC 176 #ifdef IPSEC_NAT_T 177 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 178 #ifdef INET 179 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 180 #endif 181 #endif /* IPSEC_NAT_T */ 182 #endif /* IPSEC */ 183 184 static void 185 udp_zone_change(void *tag) 186 { 187 188 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 189 uma_zone_set_max(V_udpcb_zone, maxsockets); 190 } 191 192 static int 193 udp_inpcb_init(void *mem, int size, int flags) 194 { 195 struct inpcb *inp; 196 197 inp = mem; 198 INP_LOCK_INIT(inp, "inp", "udpinp"); 199 return (0); 200 } 201 202 static int 203 udplite_inpcb_init(void *mem, int size, int flags) 204 { 205 struct inpcb *inp; 206 207 inp = mem; 208 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 209 return (0); 210 } 211 212 void 213 udp_init(void) 214 { 215 216 /* 217 * For now default to 2-tuple UDP hashing - until the fragment 218 * reassembly code can also update the flowid. 219 * 220 * Once we can calculate the flowid that way and re-establish 221 * a 4-tuple, flip this to 4-tuple. 222 */ 223 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 224 "udp_inpcb", udp_inpcb_init, NULL, 0, 225 IPI_HASHFIELDS_2TUPLE); 226 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 227 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 228 uma_zone_set_max(V_udpcb_zone, maxsockets); 229 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 230 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 231 EVENTHANDLER_PRI_ANY); 232 } 233 234 void 235 udplite_init(void) 236 { 237 238 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 239 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 240 0, IPI_HASHFIELDS_2TUPLE); 241 } 242 243 /* 244 * Kernel module interface for updating udpstat. The argument is an index 245 * into udpstat treated as an array of u_long. While this encodes the 246 * general layout of udpstat into the caller, it doesn't encode its location, 247 * so that future changes to add, for example, per-CPU stats support won't 248 * cause binary compatibility problems for kernel modules. 249 */ 250 void 251 kmod_udpstat_inc(int statnum) 252 { 253 254 counter_u64_add(VNET(udpstat)[statnum], 1); 255 } 256 257 int 258 udp_newudpcb(struct inpcb *inp) 259 { 260 struct udpcb *up; 261 262 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 263 if (up == NULL) 264 return (ENOBUFS); 265 inp->inp_ppcb = up; 266 return (0); 267 } 268 269 void 270 udp_discardcb(struct udpcb *up) 271 { 272 273 uma_zfree(V_udpcb_zone, up); 274 } 275 276 #ifdef VIMAGE 277 static void 278 udp_destroy(void *unused __unused) 279 { 280 281 in_pcbinfo_destroy(&V_udbinfo); 282 uma_zdestroy(V_udpcb_zone); 283 } 284 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 285 286 static void 287 udplite_destroy(void *unused __unused) 288 { 289 290 in_pcbinfo_destroy(&V_ulitecbinfo); 291 } 292 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 293 NULL); 294 #endif 295 296 #ifdef INET 297 /* 298 * Subroutine of udp_input(), which appends the provided mbuf chain to the 299 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 300 * contains the source address. If the socket ends up being an IPv6 socket, 301 * udp_append() will convert to a sockaddr_in6 before passing the address 302 * into the socket code. 303 * 304 * In the normal case udp_append() will return 0, indicating that you 305 * must unlock the inp. However if a tunneling protocol is in place we increment 306 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 307 * then decrement the reference count. If the inp_rele returns 1, indicating the 308 * inp is gone, we return that to the caller to tell them *not* to unlock 309 * the inp. In the case of multi-cast this will cause the distribution 310 * to stop (though most tunneling protocols known currently do *not* use 311 * multicast). 312 */ 313 static int 314 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 315 struct sockaddr_in *udp_in) 316 { 317 struct sockaddr *append_sa; 318 struct socket *so; 319 struct mbuf *opts = NULL; 320 #ifdef INET6 321 struct sockaddr_in6 udp_in6; 322 #endif 323 struct udpcb *up; 324 325 INP_LOCK_ASSERT(inp); 326 327 /* 328 * Engage the tunneling protocol. 329 */ 330 up = intoudpcb(inp); 331 if (up->u_tun_func != NULL) { 332 in_pcbref(inp); 333 INP_RUNLOCK(inp); 334 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in, 335 up->u_tun_ctx); 336 INP_RLOCK(inp); 337 return (in_pcbrele_rlocked(inp)); 338 } 339 340 off += sizeof(struct udphdr); 341 342 #ifdef IPSEC 343 /* Check AH/ESP integrity. */ 344 if (ipsec4_in_reject(n, inp)) { 345 m_freem(n); 346 return (0); 347 } 348 #ifdef IPSEC_NAT_T 349 up = intoudpcb(inp); 350 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 351 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 352 n = udp4_espdecap(inp, n, off); 353 if (n == NULL) /* Consumed. */ 354 return (0); 355 } 356 #endif /* IPSEC_NAT_T */ 357 #endif /* IPSEC */ 358 #ifdef MAC 359 if (mac_inpcb_check_deliver(inp, n) != 0) { 360 m_freem(n); 361 return (0); 362 } 363 #endif /* MAC */ 364 if (inp->inp_flags & INP_CONTROLOPTS || 365 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 366 #ifdef INET6 367 if (inp->inp_vflag & INP_IPV6) 368 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 369 else 370 #endif /* INET6 */ 371 ip_savecontrol(inp, &opts, ip, n); 372 } 373 #ifdef INET6 374 if (inp->inp_vflag & INP_IPV6) { 375 bzero(&udp_in6, sizeof(udp_in6)); 376 udp_in6.sin6_len = sizeof(udp_in6); 377 udp_in6.sin6_family = AF_INET6; 378 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 379 append_sa = (struct sockaddr *)&udp_in6; 380 } else 381 #endif /* INET6 */ 382 append_sa = (struct sockaddr *)udp_in; 383 m_adj(n, off); 384 385 so = inp->inp_socket; 386 SOCKBUF_LOCK(&so->so_rcv); 387 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 388 SOCKBUF_UNLOCK(&so->so_rcv); 389 m_freem(n); 390 if (opts) 391 m_freem(opts); 392 UDPSTAT_INC(udps_fullsock); 393 } else 394 sorwakeup_locked(so); 395 return (0); 396 } 397 398 int 399 udp_input(struct mbuf **mp, int *offp, int proto) 400 { 401 struct ip *ip; 402 struct udphdr *uh; 403 struct ifnet *ifp; 404 struct inpcb *inp; 405 uint16_t len, ip_len; 406 struct inpcbinfo *pcbinfo; 407 struct ip save_ip; 408 struct sockaddr_in udp_in; 409 struct mbuf *m; 410 struct m_tag *fwd_tag; 411 int cscov_partial, iphlen; 412 413 m = *mp; 414 iphlen = *offp; 415 ifp = m->m_pkthdr.rcvif; 416 *mp = NULL; 417 UDPSTAT_INC(udps_ipackets); 418 419 /* 420 * Strip IP options, if any; should skip this, make available to 421 * user, and use on returned packets, but we don't yet have a way to 422 * check the checksum with options still present. 423 */ 424 if (iphlen > sizeof (struct ip)) { 425 ip_stripoptions(m); 426 iphlen = sizeof(struct ip); 427 } 428 429 /* 430 * Get IP and UDP header together in first mbuf. 431 */ 432 ip = mtod(m, struct ip *); 433 if (m->m_len < iphlen + sizeof(struct udphdr)) { 434 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 435 UDPSTAT_INC(udps_hdrops); 436 return (IPPROTO_DONE); 437 } 438 ip = mtod(m, struct ip *); 439 } 440 uh = (struct udphdr *)((caddr_t)ip + iphlen); 441 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 442 443 /* 444 * Destination port of 0 is illegal, based on RFC768. 445 */ 446 if (uh->uh_dport == 0) 447 goto badunlocked; 448 449 /* 450 * Construct sockaddr format source address. Stuff source address 451 * and datagram in user buffer. 452 */ 453 bzero(&udp_in, sizeof(udp_in)); 454 udp_in.sin_len = sizeof(udp_in); 455 udp_in.sin_family = AF_INET; 456 udp_in.sin_port = uh->uh_sport; 457 udp_in.sin_addr = ip->ip_src; 458 459 /* 460 * Make mbuf data length reflect UDP length. If not enough data to 461 * reflect UDP length, drop. 462 */ 463 len = ntohs((u_short)uh->uh_ulen); 464 ip_len = ntohs(ip->ip_len) - iphlen; 465 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 466 /* Zero means checksum over the complete packet. */ 467 if (len == 0) 468 len = ip_len; 469 cscov_partial = 0; 470 } 471 if (ip_len != len) { 472 if (len > ip_len || len < sizeof(struct udphdr)) { 473 UDPSTAT_INC(udps_badlen); 474 goto badunlocked; 475 } 476 if (proto == IPPROTO_UDP) 477 m_adj(m, len - ip_len); 478 } 479 480 /* 481 * Save a copy of the IP header in case we want restore it for 482 * sending an ICMP error message in response. 483 */ 484 if (!V_udp_blackhole) 485 save_ip = *ip; 486 else 487 memset(&save_ip, 0, sizeof(save_ip)); 488 489 /* 490 * Checksum extended UDP header and data. 491 */ 492 if (uh->uh_sum) { 493 u_short uh_sum; 494 495 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 496 !cscov_partial) { 497 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 498 uh_sum = m->m_pkthdr.csum_data; 499 else 500 uh_sum = in_pseudo(ip->ip_src.s_addr, 501 ip->ip_dst.s_addr, htonl((u_short)len + 502 m->m_pkthdr.csum_data + proto)); 503 uh_sum ^= 0xffff; 504 } else { 505 char b[9]; 506 507 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 508 bzero(((struct ipovly *)ip)->ih_x1, 9); 509 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 510 uh->uh_ulen : htons(ip_len); 511 uh_sum = in_cksum(m, len + sizeof (struct ip)); 512 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 513 } 514 if (uh_sum) { 515 UDPSTAT_INC(udps_badsum); 516 m_freem(m); 517 return (IPPROTO_DONE); 518 } 519 } else { 520 if (proto == IPPROTO_UDP) { 521 UDPSTAT_INC(udps_nosum); 522 } else { 523 /* UDPLite requires a checksum */ 524 /* XXX: What is the right UDPLite MIB counter here? */ 525 m_freem(m); 526 return (IPPROTO_DONE); 527 } 528 } 529 530 pcbinfo = udp_get_inpcbinfo(proto); 531 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 532 ((!V_udp_require_l2_bcast || m->m_flags & M_BCAST) && 533 in_broadcast(ip->ip_dst, ifp))) { 534 struct inpcb *last; 535 struct inpcbhead *pcblist; 536 struct ip_moptions *imo; 537 538 INP_INFO_RLOCK(pcbinfo); 539 pcblist = udp_get_pcblist(proto); 540 last = NULL; 541 LIST_FOREACH(inp, pcblist, inp_list) { 542 if (inp->inp_lport != uh->uh_dport) 543 continue; 544 #ifdef INET6 545 if ((inp->inp_vflag & INP_IPV4) == 0) 546 continue; 547 #endif 548 if (inp->inp_laddr.s_addr != INADDR_ANY && 549 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 550 continue; 551 if (inp->inp_faddr.s_addr != INADDR_ANY && 552 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 553 continue; 554 if (inp->inp_fport != 0 && 555 inp->inp_fport != uh->uh_sport) 556 continue; 557 558 INP_RLOCK(inp); 559 560 /* 561 * XXXRW: Because we weren't holding either the inpcb 562 * or the hash lock when we checked for a match 563 * before, we should probably recheck now that the 564 * inpcb lock is held. 565 */ 566 567 /* 568 * Handle socket delivery policy for any-source 569 * and source-specific multicast. [RFC3678] 570 */ 571 imo = inp->inp_moptions; 572 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 573 struct sockaddr_in group; 574 int blocked; 575 if (imo == NULL) { 576 INP_RUNLOCK(inp); 577 continue; 578 } 579 bzero(&group, sizeof(struct sockaddr_in)); 580 group.sin_len = sizeof(struct sockaddr_in); 581 group.sin_family = AF_INET; 582 group.sin_addr = ip->ip_dst; 583 584 blocked = imo_multi_filter(imo, ifp, 585 (struct sockaddr *)&group, 586 (struct sockaddr *)&udp_in); 587 if (blocked != MCAST_PASS) { 588 if (blocked == MCAST_NOTGMEMBER) 589 IPSTAT_INC(ips_notmember); 590 if (blocked == MCAST_NOTSMEMBER || 591 blocked == MCAST_MUTED) 592 UDPSTAT_INC(udps_filtermcast); 593 INP_RUNLOCK(inp); 594 continue; 595 } 596 } 597 if (last != NULL) { 598 struct mbuf *n; 599 600 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { 601 UDP_PROBE(receive, NULL, last, ip, 602 last, uh); 603 if (udp_append(last, ip, n, iphlen, 604 &udp_in)) { 605 goto inp_lost; 606 } 607 } 608 INP_RUNLOCK(last); 609 } 610 last = inp; 611 /* 612 * Don't look for additional matches if this one does 613 * not have either the SO_REUSEPORT or SO_REUSEADDR 614 * socket options set. This heuristic avoids 615 * searching through all pcbs in the common case of a 616 * non-shared port. It assumes that an application 617 * will never clear these options after setting them. 618 */ 619 if ((last->inp_socket->so_options & 620 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 621 break; 622 } 623 624 if (last == NULL) { 625 /* 626 * No matching pcb found; discard datagram. (No need 627 * to send an ICMP Port Unreachable for a broadcast 628 * or multicast datgram.) 629 */ 630 UDPSTAT_INC(udps_noportbcast); 631 if (inp) 632 INP_RUNLOCK(inp); 633 INP_INFO_RUNLOCK(pcbinfo); 634 goto badunlocked; 635 } 636 UDP_PROBE(receive, NULL, last, ip, last, uh); 637 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 638 INP_RUNLOCK(last); 639 inp_lost: 640 INP_INFO_RUNLOCK(pcbinfo); 641 return (IPPROTO_DONE); 642 } 643 644 /* 645 * Locate pcb for datagram. 646 */ 647 648 /* 649 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 650 */ 651 if ((m->m_flags & M_IP_NEXTHOP) && 652 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 653 struct sockaddr_in *next_hop; 654 655 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 656 657 /* 658 * Transparently forwarded. Pretend to be the destination. 659 * Already got one like this? 660 */ 661 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 662 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 663 if (!inp) { 664 /* 665 * It's new. Try to find the ambushing socket. 666 * Because we've rewritten the destination address, 667 * any hardware-generated hash is ignored. 668 */ 669 inp = in_pcblookup(pcbinfo, ip->ip_src, 670 uh->uh_sport, next_hop->sin_addr, 671 next_hop->sin_port ? htons(next_hop->sin_port) : 672 uh->uh_dport, INPLOOKUP_WILDCARD | 673 INPLOOKUP_RLOCKPCB, ifp); 674 } 675 /* Remove the tag from the packet. We don't need it anymore. */ 676 m_tag_delete(m, fwd_tag); 677 m->m_flags &= ~M_IP_NEXTHOP; 678 } else 679 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 680 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 681 INPLOOKUP_RLOCKPCB, ifp, m); 682 if (inp == NULL) { 683 if (udp_log_in_vain) { 684 char buf[4*sizeof "123"]; 685 686 strcpy(buf, inet_ntoa(ip->ip_dst)); 687 log(LOG_INFO, 688 "Connection attempt to UDP %s:%d from %s:%d\n", 689 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 690 ntohs(uh->uh_sport)); 691 } 692 UDPSTAT_INC(udps_noport); 693 if (m->m_flags & (M_BCAST | M_MCAST)) { 694 UDPSTAT_INC(udps_noportbcast); 695 goto badunlocked; 696 } 697 if (V_udp_blackhole) 698 goto badunlocked; 699 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 700 goto badunlocked; 701 *ip = save_ip; 702 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 703 return (IPPROTO_DONE); 704 } 705 706 /* 707 * Check the minimum TTL for socket. 708 */ 709 INP_RLOCK_ASSERT(inp); 710 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 711 INP_RUNLOCK(inp); 712 m_freem(m); 713 return (IPPROTO_DONE); 714 } 715 if (cscov_partial) { 716 struct udpcb *up; 717 718 up = intoudpcb(inp); 719 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 720 INP_RUNLOCK(inp); 721 m_freem(m); 722 return (IPPROTO_DONE); 723 } 724 } 725 726 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 727 if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 728 INP_RUNLOCK(inp); 729 return (IPPROTO_DONE); 730 731 badunlocked: 732 m_freem(m); 733 return (IPPROTO_DONE); 734 } 735 #endif /* INET */ 736 737 /* 738 * Notify a udp user of an asynchronous error; just wake up so that they can 739 * collect error status. 740 */ 741 struct inpcb * 742 udp_notify(struct inpcb *inp, int errno) 743 { 744 745 /* 746 * While udp_ctlinput() always calls udp_notify() with a read lock 747 * when invoking it directly, in_pcbnotifyall() currently uses write 748 * locks due to sharing code with TCP. For now, accept either a read 749 * or a write lock, but a read lock is sufficient. 750 */ 751 INP_LOCK_ASSERT(inp); 752 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 753 errno == EHOSTDOWN) && inp->inp_route.ro_rt) { 754 RTFREE(inp->inp_route.ro_rt); 755 inp->inp_route.ro_rt = (struct rtentry *)NULL; 756 } 757 758 inp->inp_socket->so_error = errno; 759 sorwakeup(inp->inp_socket); 760 sowwakeup(inp->inp_socket); 761 return (inp); 762 } 763 764 #ifdef INET 765 static void 766 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 767 struct inpcbinfo *pcbinfo) 768 { 769 struct ip *ip = vip; 770 struct udphdr *uh; 771 struct in_addr faddr; 772 struct inpcb *inp; 773 774 faddr = ((struct sockaddr_in *)sa)->sin_addr; 775 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 776 return; 777 778 if (PRC_IS_REDIRECT(cmd)) { 779 /* signal EHOSTDOWN, as it flushes the cached route */ 780 in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify); 781 return; 782 } 783 784 /* 785 * Hostdead is ugly because it goes linearly through all PCBs. 786 * 787 * XXX: We never get this from ICMP, otherwise it makes an excellent 788 * DoS attack on machines with many connections. 789 */ 790 if (cmd == PRC_HOSTDEAD) 791 ip = NULL; 792 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 793 return; 794 if (ip != NULL) { 795 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 796 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 797 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 798 if (inp != NULL) { 799 INP_RLOCK_ASSERT(inp); 800 if (inp->inp_socket != NULL) { 801 udp_notify(inp, inetctlerrmap[cmd]); 802 } 803 INP_RUNLOCK(inp); 804 } else { 805 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 806 ip->ip_src, uh->uh_sport, 807 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 808 if (inp != NULL) { 809 struct udpcb *up; 810 811 up = intoudpcb(inp); 812 if (up->u_icmp_func != NULL) { 813 INP_RUNLOCK(inp); 814 (*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx); 815 } else { 816 INP_RUNLOCK(inp); 817 } 818 } 819 } 820 } else 821 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 822 udp_notify); 823 } 824 void 825 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 826 { 827 828 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 829 } 830 831 void 832 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 833 { 834 835 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 836 } 837 #endif /* INET */ 838 839 static int 840 udp_pcblist(SYSCTL_HANDLER_ARGS) 841 { 842 int error, i, n; 843 struct inpcb *inp, **inp_list; 844 inp_gen_t gencnt; 845 struct xinpgen xig; 846 847 /* 848 * The process of preparing the PCB list is too time-consuming and 849 * resource-intensive to repeat twice on every request. 850 */ 851 if (req->oldptr == 0) { 852 n = V_udbinfo.ipi_count; 853 n += imax(n / 8, 10); 854 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 855 return (0); 856 } 857 858 if (req->newptr != 0) 859 return (EPERM); 860 861 /* 862 * OK, now we're committed to doing something. 863 */ 864 INP_INFO_RLOCK(&V_udbinfo); 865 gencnt = V_udbinfo.ipi_gencnt; 866 n = V_udbinfo.ipi_count; 867 INP_INFO_RUNLOCK(&V_udbinfo); 868 869 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 870 + n * sizeof(struct xinpcb)); 871 if (error != 0) 872 return (error); 873 874 xig.xig_len = sizeof xig; 875 xig.xig_count = n; 876 xig.xig_gen = gencnt; 877 xig.xig_sogen = so_gencnt; 878 error = SYSCTL_OUT(req, &xig, sizeof xig); 879 if (error) 880 return (error); 881 882 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 883 if (inp_list == NULL) 884 return (ENOMEM); 885 886 INP_INFO_RLOCK(&V_udbinfo); 887 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 888 inp = LIST_NEXT(inp, inp_list)) { 889 INP_WLOCK(inp); 890 if (inp->inp_gencnt <= gencnt && 891 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 892 in_pcbref(inp); 893 inp_list[i++] = inp; 894 } 895 INP_WUNLOCK(inp); 896 } 897 INP_INFO_RUNLOCK(&V_udbinfo); 898 n = i; 899 900 error = 0; 901 for (i = 0; i < n; i++) { 902 inp = inp_list[i]; 903 INP_RLOCK(inp); 904 if (inp->inp_gencnt <= gencnt) { 905 struct xinpcb xi; 906 907 bzero(&xi, sizeof(xi)); 908 xi.xi_len = sizeof xi; 909 /* XXX should avoid extra copy */ 910 bcopy(inp, &xi.xi_inp, sizeof *inp); 911 if (inp->inp_socket) 912 sotoxsocket(inp->inp_socket, &xi.xi_socket); 913 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 914 INP_RUNLOCK(inp); 915 error = SYSCTL_OUT(req, &xi, sizeof xi); 916 } else 917 INP_RUNLOCK(inp); 918 } 919 INP_INFO_WLOCK(&V_udbinfo); 920 for (i = 0; i < n; i++) { 921 inp = inp_list[i]; 922 INP_RLOCK(inp); 923 if (!in_pcbrele_rlocked(inp)) 924 INP_RUNLOCK(inp); 925 } 926 INP_INFO_WUNLOCK(&V_udbinfo); 927 928 if (!error) { 929 /* 930 * Give the user an updated idea of our state. If the 931 * generation differs from what we told her before, she knows 932 * that something happened while we were processing this 933 * request, and it might be necessary to retry. 934 */ 935 INP_INFO_RLOCK(&V_udbinfo); 936 xig.xig_gen = V_udbinfo.ipi_gencnt; 937 xig.xig_sogen = so_gencnt; 938 xig.xig_count = V_udbinfo.ipi_count; 939 INP_INFO_RUNLOCK(&V_udbinfo); 940 error = SYSCTL_OUT(req, &xig, sizeof xig); 941 } 942 free(inp_list, M_TEMP); 943 return (error); 944 } 945 946 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 947 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 948 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 949 950 #ifdef INET 951 static int 952 udp_getcred(SYSCTL_HANDLER_ARGS) 953 { 954 struct xucred xuc; 955 struct sockaddr_in addrs[2]; 956 struct inpcb *inp; 957 int error; 958 959 error = priv_check(req->td, PRIV_NETINET_GETCRED); 960 if (error) 961 return (error); 962 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 963 if (error) 964 return (error); 965 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 966 addrs[0].sin_addr, addrs[0].sin_port, 967 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 968 if (inp != NULL) { 969 INP_RLOCK_ASSERT(inp); 970 if (inp->inp_socket == NULL) 971 error = ENOENT; 972 if (error == 0) 973 error = cr_canseeinpcb(req->td->td_ucred, inp); 974 if (error == 0) 975 cru2x(inp->inp_cred, &xuc); 976 INP_RUNLOCK(inp); 977 } else 978 error = ENOENT; 979 if (error == 0) 980 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 981 return (error); 982 } 983 984 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 985 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 986 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 987 #endif /* INET */ 988 989 int 990 udp_ctloutput(struct socket *so, struct sockopt *sopt) 991 { 992 struct inpcb *inp; 993 struct udpcb *up; 994 int isudplite, error, optval; 995 996 error = 0; 997 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 998 inp = sotoinpcb(so); 999 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1000 INP_WLOCK(inp); 1001 if (sopt->sopt_level != so->so_proto->pr_protocol) { 1002 #ifdef INET6 1003 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 1004 INP_WUNLOCK(inp); 1005 error = ip6_ctloutput(so, sopt); 1006 } 1007 #endif 1008 #if defined(INET) && defined(INET6) 1009 else 1010 #endif 1011 #ifdef INET 1012 { 1013 INP_WUNLOCK(inp); 1014 error = ip_ctloutput(so, sopt); 1015 } 1016 #endif 1017 return (error); 1018 } 1019 1020 switch (sopt->sopt_dir) { 1021 case SOPT_SET: 1022 switch (sopt->sopt_name) { 1023 case UDP_ENCAP: 1024 INP_WUNLOCK(inp); 1025 error = sooptcopyin(sopt, &optval, sizeof optval, 1026 sizeof optval); 1027 if (error) 1028 break; 1029 inp = sotoinpcb(so); 1030 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1031 INP_WLOCK(inp); 1032 #ifdef IPSEC_NAT_T 1033 up = intoudpcb(inp); 1034 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1035 #endif 1036 switch (optval) { 1037 case 0: 1038 /* Clear all UDP encap. */ 1039 #ifdef IPSEC_NAT_T 1040 up->u_flags &= ~UF_ESPINUDP_ALL; 1041 #endif 1042 break; 1043 #ifdef IPSEC_NAT_T 1044 case UDP_ENCAP_ESPINUDP: 1045 case UDP_ENCAP_ESPINUDP_NON_IKE: 1046 up->u_flags &= ~UF_ESPINUDP_ALL; 1047 if (optval == UDP_ENCAP_ESPINUDP) 1048 up->u_flags |= UF_ESPINUDP; 1049 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 1050 up->u_flags |= UF_ESPINUDP_NON_IKE; 1051 break; 1052 #endif 1053 default: 1054 error = EINVAL; 1055 break; 1056 } 1057 INP_WUNLOCK(inp); 1058 break; 1059 case UDPLITE_SEND_CSCOV: 1060 case UDPLITE_RECV_CSCOV: 1061 if (!isudplite) { 1062 INP_WUNLOCK(inp); 1063 error = ENOPROTOOPT; 1064 break; 1065 } 1066 INP_WUNLOCK(inp); 1067 error = sooptcopyin(sopt, &optval, sizeof(optval), 1068 sizeof(optval)); 1069 if (error != 0) 1070 break; 1071 inp = sotoinpcb(so); 1072 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1073 INP_WLOCK(inp); 1074 up = intoudpcb(inp); 1075 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1076 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1077 INP_WUNLOCK(inp); 1078 error = EINVAL; 1079 break; 1080 } 1081 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1082 up->u_txcslen = optval; 1083 else 1084 up->u_rxcslen = optval; 1085 INP_WUNLOCK(inp); 1086 break; 1087 default: 1088 INP_WUNLOCK(inp); 1089 error = ENOPROTOOPT; 1090 break; 1091 } 1092 break; 1093 case SOPT_GET: 1094 switch (sopt->sopt_name) { 1095 #ifdef IPSEC_NAT_T 1096 case UDP_ENCAP: 1097 up = intoudpcb(inp); 1098 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1099 optval = up->u_flags & UF_ESPINUDP_ALL; 1100 INP_WUNLOCK(inp); 1101 error = sooptcopyout(sopt, &optval, sizeof optval); 1102 break; 1103 #endif 1104 case UDPLITE_SEND_CSCOV: 1105 case UDPLITE_RECV_CSCOV: 1106 if (!isudplite) { 1107 INP_WUNLOCK(inp); 1108 error = ENOPROTOOPT; 1109 break; 1110 } 1111 up = intoudpcb(inp); 1112 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1113 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1114 optval = up->u_txcslen; 1115 else 1116 optval = up->u_rxcslen; 1117 INP_WUNLOCK(inp); 1118 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1119 break; 1120 default: 1121 INP_WUNLOCK(inp); 1122 error = ENOPROTOOPT; 1123 break; 1124 } 1125 break; 1126 } 1127 return (error); 1128 } 1129 1130 #ifdef INET 1131 #define UH_WLOCKED 2 1132 #define UH_RLOCKED 1 1133 #define UH_UNLOCKED 0 1134 static int 1135 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1136 struct mbuf *control, struct thread *td) 1137 { 1138 struct udpiphdr *ui; 1139 int len = m->m_pkthdr.len; 1140 struct in_addr faddr, laddr; 1141 struct cmsghdr *cm; 1142 struct inpcbinfo *pcbinfo; 1143 struct sockaddr_in *sin, src; 1144 int cscov_partial = 0; 1145 int error = 0; 1146 int ipflags; 1147 u_short fport, lport; 1148 int unlock_udbinfo, unlock_inp; 1149 u_char tos; 1150 uint8_t pr; 1151 uint16_t cscov = 0; 1152 uint32_t flowid = 0; 1153 uint8_t flowtype = M_HASHTYPE_NONE; 1154 1155 /* 1156 * udp_output() may need to temporarily bind or connect the current 1157 * inpcb. As such, we don't know up front whether we will need the 1158 * pcbinfo lock or not. Do any work to decide what is needed up 1159 * front before acquiring any locks. 1160 */ 1161 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1162 if (control) 1163 m_freem(control); 1164 m_freem(m); 1165 return (EMSGSIZE); 1166 } 1167 1168 src.sin_family = 0; 1169 sin = (struct sockaddr_in *)addr; 1170 if (sin == NULL || 1171 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1172 INP_WLOCK(inp); 1173 unlock_inp = UH_WLOCKED; 1174 } else { 1175 INP_RLOCK(inp); 1176 unlock_inp = UH_RLOCKED; 1177 } 1178 tos = inp->inp_ip_tos; 1179 if (control != NULL) { 1180 /* 1181 * XXX: Currently, we assume all the optional information is 1182 * stored in a single mbuf. 1183 */ 1184 if (control->m_next) { 1185 if (unlock_inp == UH_WLOCKED) 1186 INP_WUNLOCK(inp); 1187 else 1188 INP_RUNLOCK(inp); 1189 m_freem(control); 1190 m_freem(m); 1191 return (EINVAL); 1192 } 1193 for (; control->m_len > 0; 1194 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1195 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1196 cm = mtod(control, struct cmsghdr *); 1197 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1198 || cm->cmsg_len > control->m_len) { 1199 error = EINVAL; 1200 break; 1201 } 1202 if (cm->cmsg_level != IPPROTO_IP) 1203 continue; 1204 1205 switch (cm->cmsg_type) { 1206 case IP_SENDSRCADDR: 1207 if (cm->cmsg_len != 1208 CMSG_LEN(sizeof(struct in_addr))) { 1209 error = EINVAL; 1210 break; 1211 } 1212 bzero(&src, sizeof(src)); 1213 src.sin_family = AF_INET; 1214 src.sin_len = sizeof(src); 1215 src.sin_port = inp->inp_lport; 1216 src.sin_addr = 1217 *(struct in_addr *)CMSG_DATA(cm); 1218 break; 1219 1220 case IP_TOS: 1221 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1222 error = EINVAL; 1223 break; 1224 } 1225 tos = *(u_char *)CMSG_DATA(cm); 1226 break; 1227 1228 case IP_FLOWID: 1229 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1230 error = EINVAL; 1231 break; 1232 } 1233 flowid = *(uint32_t *) CMSG_DATA(cm); 1234 break; 1235 1236 case IP_FLOWTYPE: 1237 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1238 error = EINVAL; 1239 break; 1240 } 1241 flowtype = *(uint32_t *) CMSG_DATA(cm); 1242 break; 1243 1244 #ifdef RSS 1245 case IP_RSSBUCKETID: 1246 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1247 error = EINVAL; 1248 break; 1249 } 1250 /* This is just a placeholder for now */ 1251 break; 1252 #endif /* RSS */ 1253 default: 1254 error = ENOPROTOOPT; 1255 break; 1256 } 1257 if (error) 1258 break; 1259 } 1260 m_freem(control); 1261 } 1262 if (error) { 1263 if (unlock_inp == UH_WLOCKED) 1264 INP_WUNLOCK(inp); 1265 else 1266 INP_RUNLOCK(inp); 1267 m_freem(m); 1268 return (error); 1269 } 1270 1271 /* 1272 * Depending on whether or not the application has bound or connected 1273 * the socket, we may have to do varying levels of work. The optimal 1274 * case is for a connected UDP socket, as a global lock isn't 1275 * required at all. 1276 * 1277 * In order to decide which we need, we require stability of the 1278 * inpcb binding, which we ensure by acquiring a read lock on the 1279 * inpcb. This doesn't strictly follow the lock order, so we play 1280 * the trylock and retry game; note that we may end up with more 1281 * conservative locks than required the second time around, so later 1282 * assertions have to accept that. Further analysis of the number of 1283 * misses under contention is required. 1284 * 1285 * XXXRW: Check that hash locking update here is correct. 1286 */ 1287 pr = inp->inp_socket->so_proto->pr_protocol; 1288 pcbinfo = udp_get_inpcbinfo(pr); 1289 sin = (struct sockaddr_in *)addr; 1290 if (sin != NULL && 1291 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1292 INP_HASH_WLOCK(pcbinfo); 1293 unlock_udbinfo = UH_WLOCKED; 1294 } else if ((sin != NULL && ( 1295 (sin->sin_addr.s_addr == INADDR_ANY) || 1296 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1297 (inp->inp_laddr.s_addr == INADDR_ANY) || 1298 (inp->inp_lport == 0))) || 1299 (src.sin_family == AF_INET)) { 1300 INP_HASH_RLOCK(pcbinfo); 1301 unlock_udbinfo = UH_RLOCKED; 1302 } else 1303 unlock_udbinfo = UH_UNLOCKED; 1304 1305 /* 1306 * If the IP_SENDSRCADDR control message was specified, override the 1307 * source address for this datagram. Its use is invalidated if the 1308 * address thus specified is incomplete or clobbers other inpcbs. 1309 */ 1310 laddr = inp->inp_laddr; 1311 lport = inp->inp_lport; 1312 if (src.sin_family == AF_INET) { 1313 INP_HASH_LOCK_ASSERT(pcbinfo); 1314 if ((lport == 0) || 1315 (laddr.s_addr == INADDR_ANY && 1316 src.sin_addr.s_addr == INADDR_ANY)) { 1317 error = EINVAL; 1318 goto release; 1319 } 1320 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1321 &laddr.s_addr, &lport, td->td_ucred); 1322 if (error) 1323 goto release; 1324 } 1325 1326 /* 1327 * If a UDP socket has been connected, then a local address/port will 1328 * have been selected and bound. 1329 * 1330 * If a UDP socket has not been connected to, then an explicit 1331 * destination address must be used, in which case a local 1332 * address/port may not have been selected and bound. 1333 */ 1334 if (sin != NULL) { 1335 INP_LOCK_ASSERT(inp); 1336 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1337 error = EISCONN; 1338 goto release; 1339 } 1340 1341 /* 1342 * Jail may rewrite the destination address, so let it do 1343 * that before we use it. 1344 */ 1345 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1346 if (error) 1347 goto release; 1348 1349 /* 1350 * If a local address or port hasn't yet been selected, or if 1351 * the destination address needs to be rewritten due to using 1352 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1353 * to do the heavy lifting. Once a port is selected, we 1354 * commit the binding back to the socket; we also commit the 1355 * binding of the address if in jail. 1356 * 1357 * If we already have a valid binding and we're not 1358 * requesting a destination address rewrite, use a fast path. 1359 */ 1360 if (inp->inp_laddr.s_addr == INADDR_ANY || 1361 inp->inp_lport == 0 || 1362 sin->sin_addr.s_addr == INADDR_ANY || 1363 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1364 INP_HASH_LOCK_ASSERT(pcbinfo); 1365 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1366 &lport, &faddr.s_addr, &fport, NULL, 1367 td->td_ucred); 1368 if (error) 1369 goto release; 1370 1371 /* 1372 * XXXRW: Why not commit the port if the address is 1373 * !INADDR_ANY? 1374 */ 1375 /* Commit the local port if newly assigned. */ 1376 if (inp->inp_laddr.s_addr == INADDR_ANY && 1377 inp->inp_lport == 0) { 1378 INP_WLOCK_ASSERT(inp); 1379 INP_HASH_WLOCK_ASSERT(pcbinfo); 1380 /* 1381 * Remember addr if jailed, to prevent 1382 * rebinding. 1383 */ 1384 if (prison_flag(td->td_ucred, PR_IP4)) 1385 inp->inp_laddr = laddr; 1386 inp->inp_lport = lport; 1387 if (in_pcbinshash(inp) != 0) { 1388 inp->inp_lport = 0; 1389 error = EAGAIN; 1390 goto release; 1391 } 1392 inp->inp_flags |= INP_ANONPORT; 1393 } 1394 } else { 1395 faddr = sin->sin_addr; 1396 fport = sin->sin_port; 1397 } 1398 } else { 1399 INP_LOCK_ASSERT(inp); 1400 faddr = inp->inp_faddr; 1401 fport = inp->inp_fport; 1402 if (faddr.s_addr == INADDR_ANY) { 1403 error = ENOTCONN; 1404 goto release; 1405 } 1406 } 1407 1408 /* 1409 * Calculate data length and get a mbuf for UDP, IP, and possible 1410 * link-layer headers. Immediate slide the data pointer back forward 1411 * since we won't use that space at this layer. 1412 */ 1413 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1414 if (m == NULL) { 1415 error = ENOBUFS; 1416 goto release; 1417 } 1418 m->m_data += max_linkhdr; 1419 m->m_len -= max_linkhdr; 1420 m->m_pkthdr.len -= max_linkhdr; 1421 1422 /* 1423 * Fill in mbuf with extended UDP header and addresses and length put 1424 * into network format. 1425 */ 1426 ui = mtod(m, struct udpiphdr *); 1427 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1428 ui->ui_pr = pr; 1429 ui->ui_src = laddr; 1430 ui->ui_dst = faddr; 1431 ui->ui_sport = lport; 1432 ui->ui_dport = fport; 1433 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1434 if (pr == IPPROTO_UDPLITE) { 1435 struct udpcb *up; 1436 uint16_t plen; 1437 1438 up = intoudpcb(inp); 1439 cscov = up->u_txcslen; 1440 plen = (u_short)len + sizeof(struct udphdr); 1441 if (cscov >= plen) 1442 cscov = 0; 1443 ui->ui_len = htons(plen); 1444 ui->ui_ulen = htons(cscov); 1445 /* 1446 * For UDP-Lite, checksum coverage length of zero means 1447 * the entire UDPLite packet is covered by the checksum. 1448 */ 1449 cscov_partial = (cscov == 0) ? 0 : 1; 1450 } else 1451 ui->ui_v = IPVERSION << 4; 1452 1453 /* 1454 * Set the Don't Fragment bit in the IP header. 1455 */ 1456 if (inp->inp_flags & INP_DONTFRAG) { 1457 struct ip *ip; 1458 1459 ip = (struct ip *)&ui->ui_i; 1460 ip->ip_off |= htons(IP_DF); 1461 } 1462 1463 ipflags = 0; 1464 if (inp->inp_socket->so_options & SO_DONTROUTE) 1465 ipflags |= IP_ROUTETOIF; 1466 if (inp->inp_socket->so_options & SO_BROADCAST) 1467 ipflags |= IP_ALLOWBROADCAST; 1468 if (inp->inp_flags & INP_ONESBCAST) 1469 ipflags |= IP_SENDONES; 1470 1471 #ifdef MAC 1472 mac_inpcb_create_mbuf(inp, m); 1473 #endif 1474 1475 /* 1476 * Set up checksum and output datagram. 1477 */ 1478 ui->ui_sum = 0; 1479 if (pr == IPPROTO_UDPLITE) { 1480 if (inp->inp_flags & INP_ONESBCAST) 1481 faddr.s_addr = INADDR_BROADCAST; 1482 if (cscov_partial) { 1483 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1484 ui->ui_sum = 0xffff; 1485 } else { 1486 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1487 ui->ui_sum = 0xffff; 1488 } 1489 } else if (V_udp_cksum) { 1490 if (inp->inp_flags & INP_ONESBCAST) 1491 faddr.s_addr = INADDR_BROADCAST; 1492 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1493 htons((u_short)len + sizeof(struct udphdr) + pr)); 1494 m->m_pkthdr.csum_flags = CSUM_UDP; 1495 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1496 } 1497 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1498 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1499 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1500 UDPSTAT_INC(udps_opackets); 1501 1502 /* 1503 * Setup flowid / RSS information for outbound socket. 1504 * 1505 * Once the UDP code decides to set a flowid some other way, 1506 * this allows the flowid to be overridden by userland. 1507 */ 1508 if (flowtype != M_HASHTYPE_NONE) { 1509 m->m_pkthdr.flowid = flowid; 1510 M_HASHTYPE_SET(m, flowtype); 1511 #ifdef RSS 1512 } else { 1513 uint32_t hash_val, hash_type; 1514 /* 1515 * Calculate an appropriate RSS hash for UDP and 1516 * UDP Lite. 1517 * 1518 * The called function will take care of figuring out 1519 * whether a 2-tuple or 4-tuple hash is required based 1520 * on the currently configured scheme. 1521 * 1522 * Later later on connected socket values should be 1523 * cached in the inpcb and reused, rather than constantly 1524 * re-calculating it. 1525 * 1526 * UDP Lite is a different protocol number and will 1527 * likely end up being hashed as a 2-tuple until 1528 * RSS / NICs grow UDP Lite protocol awareness. 1529 */ 1530 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1531 pr, &hash_val, &hash_type) == 0) { 1532 m->m_pkthdr.flowid = hash_val; 1533 M_HASHTYPE_SET(m, hash_type); 1534 } 1535 #endif 1536 } 1537 1538 #ifdef RSS 1539 /* 1540 * Don't override with the inp cached flowid value. 1541 * 1542 * Depending upon the kind of send being done, the inp 1543 * flowid/flowtype values may actually not be appropriate 1544 * for this particular socket send. 1545 * 1546 * We should either leave the flowid at zero (which is what is 1547 * currently done) or set it to some software generated 1548 * hash value based on the packet contents. 1549 */ 1550 ipflags |= IP_NODEFAULTFLOWID; 1551 #endif /* RSS */ 1552 1553 if (unlock_udbinfo == UH_WLOCKED) 1554 INP_HASH_WUNLOCK(pcbinfo); 1555 else if (unlock_udbinfo == UH_RLOCKED) 1556 INP_HASH_RUNLOCK(pcbinfo); 1557 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1558 error = ip_output(m, inp->inp_options, 1559 (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags, 1560 inp->inp_moptions, inp); 1561 if (unlock_inp == UH_WLOCKED) 1562 INP_WUNLOCK(inp); 1563 else 1564 INP_RUNLOCK(inp); 1565 return (error); 1566 1567 release: 1568 if (unlock_udbinfo == UH_WLOCKED) { 1569 INP_HASH_WUNLOCK(pcbinfo); 1570 INP_WUNLOCK(inp); 1571 } else if (unlock_udbinfo == UH_RLOCKED) { 1572 INP_HASH_RUNLOCK(pcbinfo); 1573 INP_RUNLOCK(inp); 1574 } else 1575 INP_RUNLOCK(inp); 1576 m_freem(m); 1577 return (error); 1578 } 1579 1580 1581 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1582 /* 1583 * Potentially decap ESP in UDP frame. Check for an ESP header 1584 * and optional marker; if present, strip the UDP header and 1585 * push the result through IPSec. 1586 * 1587 * Returns mbuf to be processed (potentially re-allocated) or 1588 * NULL if consumed and/or processed. 1589 */ 1590 static struct mbuf * 1591 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1592 { 1593 size_t minlen, payload, skip, iphlen; 1594 caddr_t data; 1595 struct udpcb *up; 1596 struct m_tag *tag; 1597 struct udphdr *udphdr; 1598 struct ip *ip; 1599 1600 INP_RLOCK_ASSERT(inp); 1601 1602 /* 1603 * Pull up data so the longest case is contiguous: 1604 * IP/UDP hdr + non ESP marker + ESP hdr. 1605 */ 1606 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1607 if (minlen > m->m_pkthdr.len) 1608 minlen = m->m_pkthdr.len; 1609 if ((m = m_pullup(m, minlen)) == NULL) { 1610 IPSECSTAT_INC(ips_in_inval); 1611 return (NULL); /* Bypass caller processing. */ 1612 } 1613 data = mtod(m, caddr_t); /* Points to ip header. */ 1614 payload = m->m_len - off; /* Size of payload. */ 1615 1616 if (payload == 1 && data[off] == '\xff') 1617 return (m); /* NB: keepalive packet, no decap. */ 1618 1619 up = intoudpcb(inp); 1620 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1621 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1622 ("u_flags 0x%x", up->u_flags)); 1623 1624 /* 1625 * Check that the payload is large enough to hold an 1626 * ESP header and compute the amount of data to remove. 1627 * 1628 * NB: the caller has already done a pullup for us. 1629 * XXX can we assume alignment and eliminate bcopys? 1630 */ 1631 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1632 /* 1633 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1634 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1635 * possible AH mode non-IKE marker+non-ESP marker 1636 * from draft-ietf-ipsec-udp-encaps-00.txt. 1637 */ 1638 uint64_t marker; 1639 1640 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1641 return (m); /* NB: no decap. */ 1642 bcopy(data + off, &marker, sizeof(uint64_t)); 1643 if (marker != 0) /* Non-IKE marker. */ 1644 return (m); /* NB: no decap. */ 1645 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1646 } else { 1647 uint32_t spi; 1648 1649 if (payload <= sizeof(struct esp)) { 1650 IPSECSTAT_INC(ips_in_inval); 1651 m_freem(m); 1652 return (NULL); /* Discard. */ 1653 } 1654 bcopy(data + off, &spi, sizeof(uint32_t)); 1655 if (spi == 0) /* Non-ESP marker. */ 1656 return (m); /* NB: no decap. */ 1657 skip = sizeof(struct udphdr); 1658 } 1659 1660 /* 1661 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1662 * the UDP ports. This is required if we want to select 1663 * the right SPD for multiple hosts behind same NAT. 1664 * 1665 * NB: ports are maintained in network byte order everywhere 1666 * in the NAT-T code. 1667 */ 1668 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1669 2 * sizeof(uint16_t), M_NOWAIT); 1670 if (tag == NULL) { 1671 IPSECSTAT_INC(ips_in_nomem); 1672 m_freem(m); 1673 return (NULL); /* Discard. */ 1674 } 1675 iphlen = off - sizeof(struct udphdr); 1676 udphdr = (struct udphdr *)(data + iphlen); 1677 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1678 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1679 m_tag_prepend(m, tag); 1680 1681 /* 1682 * Remove the UDP header (and possibly the non ESP marker) 1683 * IP header length is iphlen 1684 * Before: 1685 * <--- off ---> 1686 * +----+------+-----+ 1687 * | IP | UDP | ESP | 1688 * +----+------+-----+ 1689 * <-skip-> 1690 * After: 1691 * +----+-----+ 1692 * | IP | ESP | 1693 * +----+-----+ 1694 * <-skip-> 1695 */ 1696 ovbcopy(data, data + skip, iphlen); 1697 m_adj(m, skip); 1698 1699 ip = mtod(m, struct ip *); 1700 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1701 ip->ip_p = IPPROTO_ESP; 1702 1703 /* 1704 * We cannot yet update the cksums so clear any 1705 * h/w cksum flags as they are no longer valid. 1706 */ 1707 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1708 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1709 1710 (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p), 1711 AF_INET, ip->ip_p); 1712 return (NULL); /* NB: consumed, bypass processing. */ 1713 } 1714 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1715 1716 static void 1717 udp_abort(struct socket *so) 1718 { 1719 struct inpcb *inp; 1720 struct inpcbinfo *pcbinfo; 1721 1722 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1723 inp = sotoinpcb(so); 1724 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1725 INP_WLOCK(inp); 1726 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1727 INP_HASH_WLOCK(pcbinfo); 1728 in_pcbdisconnect(inp); 1729 inp->inp_laddr.s_addr = INADDR_ANY; 1730 INP_HASH_WUNLOCK(pcbinfo); 1731 soisdisconnected(so); 1732 } 1733 INP_WUNLOCK(inp); 1734 } 1735 1736 static int 1737 udp_attach(struct socket *so, int proto, struct thread *td) 1738 { 1739 struct inpcb *inp; 1740 struct inpcbinfo *pcbinfo; 1741 int error; 1742 1743 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1744 inp = sotoinpcb(so); 1745 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1746 error = soreserve(so, udp_sendspace, udp_recvspace); 1747 if (error) 1748 return (error); 1749 INP_INFO_WLOCK(pcbinfo); 1750 error = in_pcballoc(so, pcbinfo); 1751 if (error) { 1752 INP_INFO_WUNLOCK(pcbinfo); 1753 return (error); 1754 } 1755 1756 inp = sotoinpcb(so); 1757 inp->inp_vflag |= INP_IPV4; 1758 inp->inp_ip_ttl = V_ip_defttl; 1759 1760 error = udp_newudpcb(inp); 1761 if (error) { 1762 in_pcbdetach(inp); 1763 in_pcbfree(inp); 1764 INP_INFO_WUNLOCK(pcbinfo); 1765 return (error); 1766 } 1767 1768 INP_WUNLOCK(inp); 1769 INP_INFO_WUNLOCK(pcbinfo); 1770 return (0); 1771 } 1772 #endif /* INET */ 1773 1774 int 1775 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1776 { 1777 struct inpcb *inp; 1778 struct udpcb *up; 1779 1780 KASSERT(so->so_type == SOCK_DGRAM, 1781 ("udp_set_kernel_tunneling: !dgram")); 1782 inp = sotoinpcb(so); 1783 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1784 INP_WLOCK(inp); 1785 up = intoudpcb(inp); 1786 if ((up->u_tun_func != NULL) || 1787 (up->u_icmp_func != NULL)) { 1788 INP_WUNLOCK(inp); 1789 return (EBUSY); 1790 } 1791 up->u_tun_func = f; 1792 up->u_icmp_func = i; 1793 up->u_tun_ctx = ctx; 1794 INP_WUNLOCK(inp); 1795 return (0); 1796 } 1797 1798 #ifdef INET 1799 static int 1800 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1801 { 1802 struct inpcb *inp; 1803 struct inpcbinfo *pcbinfo; 1804 int error; 1805 1806 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1807 inp = sotoinpcb(so); 1808 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1809 INP_WLOCK(inp); 1810 INP_HASH_WLOCK(pcbinfo); 1811 error = in_pcbbind(inp, nam, td->td_ucred); 1812 INP_HASH_WUNLOCK(pcbinfo); 1813 INP_WUNLOCK(inp); 1814 return (error); 1815 } 1816 1817 static void 1818 udp_close(struct socket *so) 1819 { 1820 struct inpcb *inp; 1821 struct inpcbinfo *pcbinfo; 1822 1823 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1824 inp = sotoinpcb(so); 1825 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1826 INP_WLOCK(inp); 1827 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1828 INP_HASH_WLOCK(pcbinfo); 1829 in_pcbdisconnect(inp); 1830 inp->inp_laddr.s_addr = INADDR_ANY; 1831 INP_HASH_WUNLOCK(pcbinfo); 1832 soisdisconnected(so); 1833 } 1834 INP_WUNLOCK(inp); 1835 } 1836 1837 static int 1838 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1839 { 1840 struct inpcb *inp; 1841 struct inpcbinfo *pcbinfo; 1842 struct sockaddr_in *sin; 1843 int error; 1844 1845 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1846 inp = sotoinpcb(so); 1847 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1848 INP_WLOCK(inp); 1849 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1850 INP_WUNLOCK(inp); 1851 return (EISCONN); 1852 } 1853 sin = (struct sockaddr_in *)nam; 1854 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1855 if (error != 0) { 1856 INP_WUNLOCK(inp); 1857 return (error); 1858 } 1859 INP_HASH_WLOCK(pcbinfo); 1860 error = in_pcbconnect(inp, nam, td->td_ucred); 1861 INP_HASH_WUNLOCK(pcbinfo); 1862 if (error == 0) 1863 soisconnected(so); 1864 INP_WUNLOCK(inp); 1865 return (error); 1866 } 1867 1868 static void 1869 udp_detach(struct socket *so) 1870 { 1871 struct inpcb *inp; 1872 struct inpcbinfo *pcbinfo; 1873 struct udpcb *up; 1874 1875 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1876 inp = sotoinpcb(so); 1877 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1878 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1879 ("udp_detach: not disconnected")); 1880 INP_INFO_WLOCK(pcbinfo); 1881 INP_WLOCK(inp); 1882 up = intoudpcb(inp); 1883 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1884 inp->inp_ppcb = NULL; 1885 in_pcbdetach(inp); 1886 in_pcbfree(inp); 1887 INP_INFO_WUNLOCK(pcbinfo); 1888 udp_discardcb(up); 1889 } 1890 1891 static int 1892 udp_disconnect(struct socket *so) 1893 { 1894 struct inpcb *inp; 1895 struct inpcbinfo *pcbinfo; 1896 1897 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1898 inp = sotoinpcb(so); 1899 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1900 INP_WLOCK(inp); 1901 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1902 INP_WUNLOCK(inp); 1903 return (ENOTCONN); 1904 } 1905 INP_HASH_WLOCK(pcbinfo); 1906 in_pcbdisconnect(inp); 1907 inp->inp_laddr.s_addr = INADDR_ANY; 1908 INP_HASH_WUNLOCK(pcbinfo); 1909 SOCK_LOCK(so); 1910 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1911 SOCK_UNLOCK(so); 1912 INP_WUNLOCK(inp); 1913 return (0); 1914 } 1915 1916 static int 1917 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1918 struct mbuf *control, struct thread *td) 1919 { 1920 struct inpcb *inp; 1921 1922 inp = sotoinpcb(so); 1923 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1924 return (udp_output(inp, m, addr, control, td)); 1925 } 1926 #endif /* INET */ 1927 1928 int 1929 udp_shutdown(struct socket *so) 1930 { 1931 struct inpcb *inp; 1932 1933 inp = sotoinpcb(so); 1934 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1935 INP_WLOCK(inp); 1936 socantsendmore(so); 1937 INP_WUNLOCK(inp); 1938 return (0); 1939 } 1940 1941 #ifdef INET 1942 struct pr_usrreqs udp_usrreqs = { 1943 .pru_abort = udp_abort, 1944 .pru_attach = udp_attach, 1945 .pru_bind = udp_bind, 1946 .pru_connect = udp_connect, 1947 .pru_control = in_control, 1948 .pru_detach = udp_detach, 1949 .pru_disconnect = udp_disconnect, 1950 .pru_peeraddr = in_getpeeraddr, 1951 .pru_send = udp_send, 1952 .pru_soreceive = soreceive_dgram, 1953 .pru_sosend = sosend_dgram, 1954 .pru_shutdown = udp_shutdown, 1955 .pru_sockaddr = in_getsockaddr, 1956 .pru_sosetlabel = in_pcbsosetlabel, 1957 .pru_close = udp_close, 1958 }; 1959 #endif /* INET */ 1960