1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ipsec.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/domain.h> 52 #include <sys/eventhandler.h> 53 #include <sys/jail.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/sdt.h> 62 #include <sys/signalvar.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sx.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/systm.h> 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/route.h> 75 #include <net/route/nhop.h> 76 #include <net/rss_config.h> 77 78 #include <netinet/in.h> 79 #include <netinet/in_kdtrace.h> 80 #include <netinet/in_fib.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/in_var.h> 84 #include <netinet/ip.h> 85 #ifdef INET6 86 #include <netinet/ip6.h> 87 #endif 88 #include <netinet/ip_icmp.h> 89 #include <netinet/icmp_var.h> 90 #include <netinet/ip_var.h> 91 #include <netinet/ip_options.h> 92 #ifdef INET6 93 #include <netinet6/ip6_var.h> 94 #endif 95 #include <netinet/udp.h> 96 #include <netinet/udp_var.h> 97 #include <netinet/udplite.h> 98 #include <netinet/in_rss.h> 99 100 #include <netipsec/ipsec_support.h> 101 102 #include <machine/in_cksum.h> 103 104 #include <security/mac/mac_framework.h> 105 106 /* 107 * UDP and UDP-Lite protocols implementation. 108 * Per RFC 768, August, 1980. 109 * Per RFC 3828, July, 2004. 110 */ 111 112 /* 113 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 114 * removes the only data integrity mechanism for packets and malformed 115 * packets that would otherwise be discarded due to bad checksums, and may 116 * cause problems (especially for NFS data blocks). 117 */ 118 VNET_DEFINE(int, udp_cksum) = 1; 119 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 120 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 121 122 VNET_DEFINE(int, udp_log_in_vain) = 0; 123 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 124 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 125 126 VNET_DEFINE(int, udp_blackhole) = 0; 127 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 128 &VNET_NAME(udp_blackhole), 0, 129 "Do not send port unreachables for refused connects"); 130 VNET_DEFINE(bool, udp_blackhole_local) = false; 131 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 132 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 133 "Enforce net.inet.udp.blackhole for locally originated packets"); 134 135 u_long udp_sendspace = 9216; /* really max datagram size */ 136 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 137 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 138 139 u_long udp_recvspace = 40 * (1024 + 140 #ifdef INET6 141 sizeof(struct sockaddr_in6) 142 #else 143 sizeof(struct sockaddr_in) 144 #endif 145 ); /* 40 1K datagrams */ 146 147 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 148 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 149 150 VNET_DEFINE(struct inpcbinfo, udbinfo); 151 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 152 VNET_DEFINE_STATIC(uma_zone_t, udpcb_zone); 153 #define V_udpcb_zone VNET(udpcb_zone) 154 155 #ifndef UDBHASHSIZE 156 #define UDBHASHSIZE 128 157 #endif 158 159 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 160 VNET_PCPUSTAT_SYSINIT(udpstat); 161 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 162 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 163 164 #ifdef VIMAGE 165 VNET_PCPUSTAT_SYSUNINIT(udpstat); 166 #endif /* VIMAGE */ 167 #ifdef INET 168 static void udp_detach(struct socket *so); 169 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 170 struct mbuf *, struct thread *, int); 171 #endif 172 173 INPCBSTORAGE_DEFINE(udpcbstor, "udpinp", "udp_inpcb", "udp", "udphash"); 174 INPCBSTORAGE_DEFINE(udplitecbstor, "udpliteinp", "udplite_inpcb", "udplite", 175 "udplitehash"); 176 177 static void 178 udp_init(void *arg __unused) 179 { 180 181 /* 182 * For now default to 2-tuple UDP hashing - until the fragment 183 * reassembly code can also update the flowid. 184 * 185 * Once we can calculate the flowid that way and re-establish 186 * a 4-tuple, flip this to 4-tuple. 187 */ 188 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 189 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 190 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 191 uma_zone_set_max(V_udpcb_zone, maxsockets); 192 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 193 194 /* Additional pcbinfo for UDP-Lite */ 195 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 196 UDBHASHSIZE); 197 } 198 VNET_SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 199 200 /* 201 * Kernel module interface for updating udpstat. The argument is an index 202 * into udpstat treated as an array of u_long. While this encodes the 203 * general layout of udpstat into the caller, it doesn't encode its location, 204 * so that future changes to add, for example, per-CPU stats support won't 205 * cause binary compatibility problems for kernel modules. 206 */ 207 void 208 kmod_udpstat_inc(int statnum) 209 { 210 211 counter_u64_add(VNET(udpstat)[statnum], 1); 212 } 213 214 int 215 udp_newudpcb(struct inpcb *inp) 216 { 217 struct udpcb *up; 218 219 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 220 if (up == NULL) 221 return (ENOBUFS); 222 inp->inp_ppcb = up; 223 return (0); 224 } 225 226 void 227 udp_discardcb(struct udpcb *up) 228 { 229 230 uma_zfree(V_udpcb_zone, up); 231 } 232 233 #ifdef VIMAGE 234 static void 235 udp_destroy(void *unused __unused) 236 { 237 238 in_pcbinfo_destroy(&V_udbinfo); 239 uma_zdestroy(V_udpcb_zone); 240 } 241 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 242 243 static void 244 udplite_destroy(void *unused __unused) 245 { 246 247 in_pcbinfo_destroy(&V_ulitecbinfo); 248 } 249 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy, 250 NULL); 251 #endif 252 253 #ifdef INET 254 /* 255 * Subroutine of udp_input(), which appends the provided mbuf chain to the 256 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 257 * contains the source address. If the socket ends up being an IPv6 socket, 258 * udp_append() will convert to a sockaddr_in6 before passing the address 259 * into the socket code. 260 * 261 * In the normal case udp_append() will return 0, indicating that you 262 * must unlock the inp. However if a tunneling protocol is in place we increment 263 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 264 * then decrement the reference count. If the inp_rele returns 1, indicating the 265 * inp is gone, we return that to the caller to tell them *not* to unlock 266 * the inp. In the case of multi-cast this will cause the distribution 267 * to stop (though most tunneling protocols known currently do *not* use 268 * multicast). 269 */ 270 static int 271 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 272 struct sockaddr_in *udp_in) 273 { 274 struct sockaddr *append_sa; 275 struct socket *so; 276 struct mbuf *tmpopts, *opts = NULL; 277 #ifdef INET6 278 struct sockaddr_in6 udp_in6; 279 #endif 280 struct udpcb *up; 281 bool filtered; 282 283 INP_LOCK_ASSERT(inp); 284 285 /* 286 * Engage the tunneling protocol. 287 */ 288 up = intoudpcb(inp); 289 if (up->u_tun_func != NULL) { 290 in_pcbref(inp); 291 INP_RUNLOCK(inp); 292 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 293 up->u_tun_ctx); 294 INP_RLOCK(inp); 295 if (filtered) 296 return (in_pcbrele_rlocked(inp)); 297 } 298 299 off += sizeof(struct udphdr); 300 301 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 302 /* Check AH/ESP integrity. */ 303 if (IPSEC_ENABLED(ipv4) && 304 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 305 m_freem(n); 306 return (0); 307 } 308 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 309 if (IPSEC_ENABLED(ipv4) && 310 UDPENCAP_INPUT(n, off, AF_INET) != 0) 311 return (0); /* Consumed. */ 312 } 313 #endif /* IPSEC */ 314 #ifdef MAC 315 if (mac_inpcb_check_deliver(inp, n) != 0) { 316 m_freem(n); 317 return (0); 318 } 319 #endif /* MAC */ 320 if (inp->inp_flags & INP_CONTROLOPTS || 321 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 322 #ifdef INET6 323 if (inp->inp_vflag & INP_IPV6) 324 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 325 else 326 #endif /* INET6 */ 327 ip_savecontrol(inp, &opts, ip, n); 328 } 329 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 330 tmpopts = sbcreatecontrol(&udp_in[1], 331 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 332 M_NOWAIT); 333 if (tmpopts) { 334 if (opts) { 335 tmpopts->m_next = opts; 336 opts = tmpopts; 337 } else 338 opts = tmpopts; 339 } 340 } 341 #ifdef INET6 342 if (inp->inp_vflag & INP_IPV6) { 343 bzero(&udp_in6, sizeof(udp_in6)); 344 udp_in6.sin6_len = sizeof(udp_in6); 345 udp_in6.sin6_family = AF_INET6; 346 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 347 append_sa = (struct sockaddr *)&udp_in6; 348 } else 349 #endif /* INET6 */ 350 append_sa = (struct sockaddr *)&udp_in[0]; 351 m_adj(n, off); 352 353 so = inp->inp_socket; 354 SOCKBUF_LOCK(&so->so_rcv); 355 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 356 soroverflow_locked(so); 357 m_freem(n); 358 if (opts) 359 m_freem(opts); 360 UDPSTAT_INC(udps_fullsock); 361 } else 362 sorwakeup_locked(so); 363 return (0); 364 } 365 366 static bool 367 udp_multi_match(const struct inpcb *inp, void *v) 368 { 369 struct ip *ip = v; 370 struct udphdr *uh = (struct udphdr *)(ip + 1); 371 372 if (inp->inp_lport != uh->uh_dport) 373 return (false); 374 #ifdef INET6 375 if ((inp->inp_vflag & INP_IPV4) == 0) 376 return (false); 377 #endif 378 if (inp->inp_laddr.s_addr != INADDR_ANY && 379 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 380 return (false); 381 if (inp->inp_faddr.s_addr != INADDR_ANY && 382 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 383 return (false); 384 if (inp->inp_fport != 0 && 385 inp->inp_fport != uh->uh_sport) 386 return (false); 387 388 return (true); 389 } 390 391 static int 392 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 393 { 394 struct ip *ip = mtod(m, struct ip *); 395 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 396 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 397 #ifdef KDTRACE_HOOKS 398 struct udphdr *uh = (struct udphdr *)(ip + 1); 399 #endif 400 struct inpcb *inp; 401 struct mbuf *n; 402 int appends = 0; 403 404 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 405 406 while ((inp = inp_next(&inpi)) != NULL) { 407 /* 408 * XXXRW: Because we weren't holding either the inpcb 409 * or the hash lock when we checked for a match 410 * before, we should probably recheck now that the 411 * inpcb lock is held. 412 */ 413 /* 414 * Handle socket delivery policy for any-source 415 * and source-specific multicast. [RFC3678] 416 */ 417 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 418 struct ip_moptions *imo; 419 struct sockaddr_in group; 420 int blocked; 421 422 imo = inp->inp_moptions; 423 if (imo == NULL) 424 continue; 425 bzero(&group, sizeof(struct sockaddr_in)); 426 group.sin_len = sizeof(struct sockaddr_in); 427 group.sin_family = AF_INET; 428 group.sin_addr = ip->ip_dst; 429 430 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 431 (struct sockaddr *)&group, 432 (struct sockaddr *)&udp_in[0]); 433 if (blocked != MCAST_PASS) { 434 if (blocked == MCAST_NOTGMEMBER) 435 IPSTAT_INC(ips_notmember); 436 if (blocked == MCAST_NOTSMEMBER || 437 blocked == MCAST_MUTED) 438 UDPSTAT_INC(udps_filtermcast); 439 continue; 440 } 441 } 442 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 443 if (proto == IPPROTO_UDPLITE) 444 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 445 else 446 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 447 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 448 INP_RUNLOCK(inp); 449 break; 450 } else 451 appends++; 452 } 453 /* 454 * Don't look for additional matches if this one does 455 * not have either the SO_REUSEPORT or SO_REUSEADDR 456 * socket options set. This heuristic avoids 457 * searching through all pcbs in the common case of a 458 * non-shared port. It assumes that an application 459 * will never clear these options after setting them. 460 */ 461 if ((inp->inp_socket->so_options & 462 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 463 INP_RUNLOCK(inp); 464 break; 465 } 466 } 467 468 if (appends == 0) { 469 /* 470 * No matching pcb found; discard datagram. (No need 471 * to send an ICMP Port Unreachable for a broadcast 472 * or multicast datgram.) 473 */ 474 UDPSTAT_INC(udps_noport); 475 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 476 UDPSTAT_INC(udps_noportmcast); 477 else 478 UDPSTAT_INC(udps_noportbcast); 479 } 480 m_freem(m); 481 482 return (IPPROTO_DONE); 483 } 484 485 int 486 udp_input(struct mbuf **mp, int *offp, int proto) 487 { 488 struct ip *ip; 489 struct udphdr *uh; 490 struct ifnet *ifp; 491 struct inpcb *inp; 492 uint16_t len, ip_len; 493 struct inpcbinfo *pcbinfo; 494 struct sockaddr_in udp_in[2]; 495 struct mbuf *m; 496 struct m_tag *fwd_tag; 497 int cscov_partial, iphlen; 498 499 m = *mp; 500 iphlen = *offp; 501 ifp = m->m_pkthdr.rcvif; 502 *mp = NULL; 503 UDPSTAT_INC(udps_ipackets); 504 505 /* 506 * Strip IP options, if any; should skip this, make available to 507 * user, and use on returned packets, but we don't yet have a way to 508 * check the checksum with options still present. 509 */ 510 if (iphlen > sizeof (struct ip)) { 511 ip_stripoptions(m); 512 iphlen = sizeof(struct ip); 513 } 514 515 /* 516 * Get IP and UDP header together in first mbuf. 517 */ 518 if (m->m_len < iphlen + sizeof(struct udphdr)) { 519 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 520 UDPSTAT_INC(udps_hdrops); 521 return (IPPROTO_DONE); 522 } 523 } 524 ip = mtod(m, struct ip *); 525 uh = (struct udphdr *)((caddr_t)ip + iphlen); 526 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 527 528 /* 529 * Destination port of 0 is illegal, based on RFC768. 530 */ 531 if (uh->uh_dport == 0) 532 goto badunlocked; 533 534 /* 535 * Construct sockaddr format source address. Stuff source address 536 * and datagram in user buffer. 537 */ 538 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 539 udp_in[0].sin_len = sizeof(struct sockaddr_in); 540 udp_in[0].sin_family = AF_INET; 541 udp_in[0].sin_port = uh->uh_sport; 542 udp_in[0].sin_addr = ip->ip_src; 543 udp_in[1].sin_len = sizeof(struct sockaddr_in); 544 udp_in[1].sin_family = AF_INET; 545 udp_in[1].sin_port = uh->uh_dport; 546 udp_in[1].sin_addr = ip->ip_dst; 547 548 /* 549 * Make mbuf data length reflect UDP length. If not enough data to 550 * reflect UDP length, drop. 551 */ 552 len = ntohs((u_short)uh->uh_ulen); 553 ip_len = ntohs(ip->ip_len) - iphlen; 554 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 555 /* Zero means checksum over the complete packet. */ 556 if (len == 0) 557 len = ip_len; 558 cscov_partial = 0; 559 } 560 if (ip_len != len) { 561 if (len > ip_len || len < sizeof(struct udphdr)) { 562 UDPSTAT_INC(udps_badlen); 563 goto badunlocked; 564 } 565 if (proto == IPPROTO_UDP) 566 m_adj(m, len - ip_len); 567 } 568 569 /* 570 * Checksum extended UDP header and data. 571 */ 572 if (uh->uh_sum) { 573 u_short uh_sum; 574 575 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 576 !cscov_partial) { 577 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 578 uh_sum = m->m_pkthdr.csum_data; 579 else 580 uh_sum = in_pseudo(ip->ip_src.s_addr, 581 ip->ip_dst.s_addr, htonl((u_short)len + 582 m->m_pkthdr.csum_data + proto)); 583 uh_sum ^= 0xffff; 584 } else { 585 char b[offsetof(struct ipovly, ih_src)]; 586 struct ipovly *ipov = (struct ipovly *)ip; 587 588 bcopy(ipov, b, sizeof(b)); 589 bzero(ipov, sizeof(ipov->ih_x1)); 590 ipov->ih_len = (proto == IPPROTO_UDP) ? 591 uh->uh_ulen : htons(ip_len); 592 uh_sum = in_cksum(m, len + sizeof (struct ip)); 593 bcopy(b, ipov, sizeof(b)); 594 } 595 if (uh_sum) { 596 UDPSTAT_INC(udps_badsum); 597 m_freem(m); 598 return (IPPROTO_DONE); 599 } 600 } else { 601 if (proto == IPPROTO_UDP) { 602 UDPSTAT_INC(udps_nosum); 603 } else { 604 /* UDPLite requires a checksum */ 605 /* XXX: What is the right UDPLite MIB counter here? */ 606 m_freem(m); 607 return (IPPROTO_DONE); 608 } 609 } 610 611 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 612 in_broadcast(ip->ip_dst, ifp)) 613 return (udp_multi_input(m, proto, udp_in)); 614 615 pcbinfo = udp_get_inpcbinfo(proto); 616 617 /* 618 * Locate pcb for datagram. 619 * 620 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 621 */ 622 if ((m->m_flags & M_IP_NEXTHOP) && 623 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 624 struct sockaddr_in *next_hop; 625 626 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 627 628 /* 629 * Transparently forwarded. Pretend to be the destination. 630 * Already got one like this? 631 */ 632 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 633 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 634 if (!inp) { 635 /* 636 * It's new. Try to find the ambushing socket. 637 * Because we've rewritten the destination address, 638 * any hardware-generated hash is ignored. 639 */ 640 inp = in_pcblookup(pcbinfo, ip->ip_src, 641 uh->uh_sport, next_hop->sin_addr, 642 next_hop->sin_port ? htons(next_hop->sin_port) : 643 uh->uh_dport, INPLOOKUP_WILDCARD | 644 INPLOOKUP_RLOCKPCB, ifp); 645 } 646 /* Remove the tag from the packet. We don't need it anymore. */ 647 m_tag_delete(m, fwd_tag); 648 m->m_flags &= ~M_IP_NEXTHOP; 649 } else 650 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 651 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 652 INPLOOKUP_RLOCKPCB, ifp, m); 653 if (inp == NULL) { 654 if (V_udp_log_in_vain) { 655 char src[INET_ADDRSTRLEN]; 656 char dst[INET_ADDRSTRLEN]; 657 658 log(LOG_INFO, 659 "Connection attempt to UDP %s:%d from %s:%d\n", 660 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 661 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 662 } 663 if (proto == IPPROTO_UDPLITE) 664 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 665 else 666 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 667 UDPSTAT_INC(udps_noport); 668 if (m->m_flags & (M_BCAST | M_MCAST)) { 669 UDPSTAT_INC(udps_noportbcast); 670 goto badunlocked; 671 } 672 if (V_udp_blackhole && (V_udp_blackhole_local || 673 !in_localip(ip->ip_src))) 674 goto badunlocked; 675 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 676 goto badunlocked; 677 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 678 return (IPPROTO_DONE); 679 } 680 681 /* 682 * Check the minimum TTL for socket. 683 */ 684 INP_RLOCK_ASSERT(inp); 685 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 686 if (proto == IPPROTO_UDPLITE) 687 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 688 else 689 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 690 INP_RUNLOCK(inp); 691 m_freem(m); 692 return (IPPROTO_DONE); 693 } 694 if (cscov_partial) { 695 struct udpcb *up; 696 697 up = intoudpcb(inp); 698 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 699 INP_RUNLOCK(inp); 700 m_freem(m); 701 return (IPPROTO_DONE); 702 } 703 } 704 705 if (proto == IPPROTO_UDPLITE) 706 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 707 else 708 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 709 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 710 INP_RUNLOCK(inp); 711 return (IPPROTO_DONE); 712 713 badunlocked: 714 m_freem(m); 715 return (IPPROTO_DONE); 716 } 717 #endif /* INET */ 718 719 /* 720 * Notify a udp user of an asynchronous error; just wake up so that they can 721 * collect error status. 722 */ 723 struct inpcb * 724 udp_notify(struct inpcb *inp, int errno) 725 { 726 727 INP_WLOCK_ASSERT(inp); 728 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 729 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 730 NH_FREE(inp->inp_route.ro_nh); 731 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 732 } 733 734 inp->inp_socket->so_error = errno; 735 sorwakeup(inp->inp_socket); 736 sowwakeup(inp->inp_socket); 737 return (inp); 738 } 739 740 #ifdef INET 741 static void 742 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 743 struct inpcbinfo *pcbinfo) 744 { 745 struct ip *ip = vip; 746 struct udphdr *uh; 747 struct in_addr faddr; 748 struct inpcb *inp; 749 750 faddr = ((struct sockaddr_in *)sa)->sin_addr; 751 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 752 return; 753 754 if (PRC_IS_REDIRECT(cmd)) { 755 /* signal EHOSTDOWN, as it flushes the cached route */ 756 in_pcbnotifyall(pcbinfo, faddr, EHOSTDOWN, udp_notify); 757 return; 758 } 759 760 /* 761 * Hostdead is ugly because it goes linearly through all PCBs. 762 * 763 * XXX: We never get this from ICMP, otherwise it makes an excellent 764 * DoS attack on machines with many connections. 765 */ 766 if (cmd == PRC_HOSTDEAD) 767 ip = NULL; 768 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 769 return; 770 if (ip != NULL) { 771 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 772 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 773 ip->ip_src, uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 774 if (inp != NULL) { 775 INP_WLOCK_ASSERT(inp); 776 if (inp->inp_socket != NULL) { 777 udp_notify(inp, inetctlerrmap[cmd]); 778 } 779 INP_WUNLOCK(inp); 780 } else { 781 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 782 ip->ip_src, uh->uh_sport, 783 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 784 if (inp != NULL) { 785 struct udpcb *up; 786 void *ctx; 787 udp_tun_icmp_t func; 788 789 up = intoudpcb(inp); 790 ctx = up->u_tun_ctx; 791 func = up->u_icmp_func; 792 INP_RUNLOCK(inp); 793 if (func != NULL) 794 (*func)(cmd, sa, vip, ctx); 795 } 796 } 797 } else 798 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 799 udp_notify); 800 } 801 void 802 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 803 { 804 805 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 806 } 807 808 void 809 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 810 { 811 812 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 813 } 814 #endif /* INET */ 815 816 static int 817 udp_pcblist(SYSCTL_HANDLER_ARGS) 818 { 819 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 820 INPLOOKUP_RLOCKPCB); 821 struct xinpgen xig; 822 struct inpcb *inp; 823 int error; 824 825 if (req->newptr != 0) 826 return (EPERM); 827 828 if (req->oldptr == 0) { 829 int n; 830 831 n = V_udbinfo.ipi_count; 832 n += imax(n / 8, 10); 833 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 834 return (0); 835 } 836 837 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 838 return (error); 839 840 bzero(&xig, sizeof(xig)); 841 xig.xig_len = sizeof xig; 842 xig.xig_count = V_udbinfo.ipi_count; 843 xig.xig_gen = V_udbinfo.ipi_gencnt; 844 xig.xig_sogen = so_gencnt; 845 error = SYSCTL_OUT(req, &xig, sizeof xig); 846 if (error) 847 return (error); 848 849 while ((inp = inp_next(&inpi)) != NULL) { 850 if (inp->inp_gencnt <= xig.xig_gen && 851 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 852 struct xinpcb xi; 853 854 in_pcbtoxinpcb(inp, &xi); 855 error = SYSCTL_OUT(req, &xi, sizeof xi); 856 if (error) { 857 INP_RUNLOCK(inp); 858 break; 859 } 860 } 861 } 862 863 if (!error) { 864 /* 865 * Give the user an updated idea of our state. If the 866 * generation differs from what we told her before, she knows 867 * that something happened while we were processing this 868 * request, and it might be necessary to retry. 869 */ 870 xig.xig_gen = V_udbinfo.ipi_gencnt; 871 xig.xig_sogen = so_gencnt; 872 xig.xig_count = V_udbinfo.ipi_count; 873 error = SYSCTL_OUT(req, &xig, sizeof xig); 874 } 875 876 return (error); 877 } 878 879 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 880 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 881 udp_pcblist, "S,xinpcb", 882 "List of active UDP sockets"); 883 884 #ifdef INET 885 static int 886 udp_getcred(SYSCTL_HANDLER_ARGS) 887 { 888 struct xucred xuc; 889 struct sockaddr_in addrs[2]; 890 struct epoch_tracker et; 891 struct inpcb *inp; 892 int error; 893 894 error = priv_check(req->td, PRIV_NETINET_GETCRED); 895 if (error) 896 return (error); 897 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 898 if (error) 899 return (error); 900 NET_EPOCH_ENTER(et); 901 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 902 addrs[0].sin_addr, addrs[0].sin_port, 903 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 904 NET_EPOCH_EXIT(et); 905 if (inp != NULL) { 906 INP_RLOCK_ASSERT(inp); 907 if (inp->inp_socket == NULL) 908 error = ENOENT; 909 if (error == 0) 910 error = cr_canseeinpcb(req->td->td_ucred, inp); 911 if (error == 0) 912 cru2x(inp->inp_cred, &xuc); 913 INP_RUNLOCK(inp); 914 } else 915 error = ENOENT; 916 if (error == 0) 917 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 918 return (error); 919 } 920 921 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 922 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 923 0, 0, udp_getcred, "S,xucred", 924 "Get the xucred of a UDP connection"); 925 #endif /* INET */ 926 927 int 928 udp_ctloutput(struct socket *so, struct sockopt *sopt) 929 { 930 struct inpcb *inp; 931 struct udpcb *up; 932 int isudplite, error, optval; 933 934 error = 0; 935 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 936 inp = sotoinpcb(so); 937 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 938 INP_WLOCK(inp); 939 if (sopt->sopt_level != so->so_proto->pr_protocol) { 940 #ifdef INET6 941 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 942 INP_WUNLOCK(inp); 943 error = ip6_ctloutput(so, sopt); 944 } 945 #endif 946 #if defined(INET) && defined(INET6) 947 else 948 #endif 949 #ifdef INET 950 { 951 INP_WUNLOCK(inp); 952 error = ip_ctloutput(so, sopt); 953 } 954 #endif 955 return (error); 956 } 957 958 switch (sopt->sopt_dir) { 959 case SOPT_SET: 960 switch (sopt->sopt_name) { 961 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 962 #ifdef INET 963 case UDP_ENCAP: 964 if (!IPSEC_ENABLED(ipv4)) { 965 INP_WUNLOCK(inp); 966 return (ENOPROTOOPT); 967 } 968 error = UDPENCAP_PCBCTL(inp, sopt); 969 break; 970 #endif /* INET */ 971 #endif /* IPSEC */ 972 case UDPLITE_SEND_CSCOV: 973 case UDPLITE_RECV_CSCOV: 974 if (!isudplite) { 975 INP_WUNLOCK(inp); 976 error = ENOPROTOOPT; 977 break; 978 } 979 INP_WUNLOCK(inp); 980 error = sooptcopyin(sopt, &optval, sizeof(optval), 981 sizeof(optval)); 982 if (error != 0) 983 break; 984 inp = sotoinpcb(so); 985 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 986 INP_WLOCK(inp); 987 up = intoudpcb(inp); 988 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 989 if ((optval != 0 && optval < 8) || (optval > 65535)) { 990 INP_WUNLOCK(inp); 991 error = EINVAL; 992 break; 993 } 994 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 995 up->u_txcslen = optval; 996 else 997 up->u_rxcslen = optval; 998 INP_WUNLOCK(inp); 999 break; 1000 default: 1001 INP_WUNLOCK(inp); 1002 error = ENOPROTOOPT; 1003 break; 1004 } 1005 break; 1006 case SOPT_GET: 1007 switch (sopt->sopt_name) { 1008 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1009 #ifdef INET 1010 case UDP_ENCAP: 1011 if (!IPSEC_ENABLED(ipv4)) { 1012 INP_WUNLOCK(inp); 1013 return (ENOPROTOOPT); 1014 } 1015 error = UDPENCAP_PCBCTL(inp, sopt); 1016 break; 1017 #endif /* INET */ 1018 #endif /* IPSEC */ 1019 case UDPLITE_SEND_CSCOV: 1020 case UDPLITE_RECV_CSCOV: 1021 if (!isudplite) { 1022 INP_WUNLOCK(inp); 1023 error = ENOPROTOOPT; 1024 break; 1025 } 1026 up = intoudpcb(inp); 1027 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1028 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1029 optval = up->u_txcslen; 1030 else 1031 optval = up->u_rxcslen; 1032 INP_WUNLOCK(inp); 1033 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1034 break; 1035 default: 1036 INP_WUNLOCK(inp); 1037 error = ENOPROTOOPT; 1038 break; 1039 } 1040 break; 1041 } 1042 return (error); 1043 } 1044 1045 #ifdef INET 1046 #ifdef INET6 1047 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1048 static int 1049 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1050 struct inpcb *inp, int flags) 1051 { 1052 struct ifnet *ifp; 1053 struct in6_pktinfo *pktinfo; 1054 struct in_addr ia; 1055 1056 if ((flags & PRUS_IPV6) == 0) 1057 return (0); 1058 1059 if (cm->cmsg_level != IPPROTO_IPV6) 1060 return (0); 1061 1062 if (cm->cmsg_type != IPV6_2292PKTINFO && 1063 cm->cmsg_type != IPV6_PKTINFO) 1064 return (0); 1065 1066 if (cm->cmsg_len != 1067 CMSG_LEN(sizeof(struct in6_pktinfo))) 1068 return (EINVAL); 1069 1070 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1071 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1072 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1073 return (EINVAL); 1074 1075 /* Validate the interface index if specified. */ 1076 if (pktinfo->ipi6_ifindex) { 1077 struct epoch_tracker et; 1078 1079 NET_EPOCH_ENTER(et); 1080 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1081 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1082 if (ifp == NULL) 1083 return (ENXIO); 1084 } else 1085 ifp = NULL; 1086 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1087 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1088 if (in_ifhasaddr(ifp, ia) == 0) 1089 return (EADDRNOTAVAIL); 1090 } 1091 1092 bzero(src, sizeof(*src)); 1093 src->sin_family = AF_INET; 1094 src->sin_len = sizeof(*src); 1095 src->sin_port = inp->inp_lport; 1096 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1097 1098 return (0); 1099 } 1100 #endif 1101 1102 static int 1103 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1104 struct mbuf *control, struct thread *td, int flags) 1105 { 1106 struct udpiphdr *ui; 1107 int len = m->m_pkthdr.len; 1108 struct in_addr faddr, laddr; 1109 struct cmsghdr *cm; 1110 struct inpcbinfo *pcbinfo; 1111 struct sockaddr_in *sin, src; 1112 struct epoch_tracker et; 1113 int cscov_partial = 0; 1114 int error = 0; 1115 int ipflags = 0; 1116 u_short fport, lport; 1117 u_char tos; 1118 uint8_t pr; 1119 uint16_t cscov = 0; 1120 uint32_t flowid = 0; 1121 uint8_t flowtype = M_HASHTYPE_NONE; 1122 1123 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1124 if (control) 1125 m_freem(control); 1126 m_freem(m); 1127 return (EMSGSIZE); 1128 } 1129 1130 src.sin_family = 0; 1131 sin = (struct sockaddr_in *)addr; 1132 1133 /* 1134 * udp_output() may need to temporarily bind or connect the current 1135 * inpcb. As such, we don't know up front whether we will need the 1136 * pcbinfo lock or not. Do any work to decide what is needed up 1137 * front before acquiring any locks. 1138 * 1139 * We will need network epoch in either case, to safely lookup into 1140 * pcb hash. 1141 */ 1142 if (sin == NULL || 1143 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) 1144 INP_WLOCK(inp); 1145 else 1146 INP_RLOCK(inp); 1147 NET_EPOCH_ENTER(et); 1148 tos = inp->inp_ip_tos; 1149 if (control != NULL) { 1150 /* 1151 * XXX: Currently, we assume all the optional information is 1152 * stored in a single mbuf. 1153 */ 1154 if (control->m_next) { 1155 m_freem(control); 1156 error = EINVAL; 1157 goto release; 1158 } 1159 for (; control->m_len > 0; 1160 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1161 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1162 cm = mtod(control, struct cmsghdr *); 1163 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1164 || cm->cmsg_len > control->m_len) { 1165 error = EINVAL; 1166 break; 1167 } 1168 #ifdef INET6 1169 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1170 if (error != 0) 1171 break; 1172 #endif 1173 if (cm->cmsg_level != IPPROTO_IP) 1174 continue; 1175 1176 switch (cm->cmsg_type) { 1177 case IP_SENDSRCADDR: 1178 if (cm->cmsg_len != 1179 CMSG_LEN(sizeof(struct in_addr))) { 1180 error = EINVAL; 1181 break; 1182 } 1183 bzero(&src, sizeof(src)); 1184 src.sin_family = AF_INET; 1185 src.sin_len = sizeof(src); 1186 src.sin_port = inp->inp_lport; 1187 src.sin_addr = 1188 *(struct in_addr *)CMSG_DATA(cm); 1189 break; 1190 1191 case IP_TOS: 1192 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1193 error = EINVAL; 1194 break; 1195 } 1196 tos = *(u_char *)CMSG_DATA(cm); 1197 break; 1198 1199 case IP_FLOWID: 1200 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1201 error = EINVAL; 1202 break; 1203 } 1204 flowid = *(uint32_t *) CMSG_DATA(cm); 1205 break; 1206 1207 case IP_FLOWTYPE: 1208 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1209 error = EINVAL; 1210 break; 1211 } 1212 flowtype = *(uint32_t *) CMSG_DATA(cm); 1213 break; 1214 1215 #ifdef RSS 1216 case IP_RSSBUCKETID: 1217 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1218 error = EINVAL; 1219 break; 1220 } 1221 /* This is just a placeholder for now */ 1222 break; 1223 #endif /* RSS */ 1224 default: 1225 error = ENOPROTOOPT; 1226 break; 1227 } 1228 if (error) 1229 break; 1230 } 1231 m_freem(control); 1232 control = NULL; 1233 } 1234 if (error) 1235 goto release; 1236 1237 pr = inp->inp_socket->so_proto->pr_protocol; 1238 pcbinfo = udp_get_inpcbinfo(pr); 1239 1240 /* 1241 * If the IP_SENDSRCADDR control message was specified, override the 1242 * source address for this datagram. Its use is invalidated if the 1243 * address thus specified is incomplete or clobbers other inpcbs. 1244 */ 1245 laddr = inp->inp_laddr; 1246 lport = inp->inp_lport; 1247 if (src.sin_family == AF_INET) { 1248 if ((lport == 0) || 1249 (laddr.s_addr == INADDR_ANY && 1250 src.sin_addr.s_addr == INADDR_ANY)) { 1251 error = EINVAL; 1252 goto release; 1253 } 1254 INP_HASH_WLOCK(pcbinfo); 1255 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1256 &laddr.s_addr, &lport, td->td_ucred); 1257 INP_HASH_WUNLOCK(pcbinfo); 1258 if (error) 1259 goto release; 1260 } 1261 1262 /* 1263 * If a UDP socket has been connected, then a local address/port will 1264 * have been selected and bound. 1265 * 1266 * If a UDP socket has not been connected to, then an explicit 1267 * destination address must be used, in which case a local 1268 * address/port may not have been selected and bound. 1269 */ 1270 if (sin != NULL) { 1271 INP_LOCK_ASSERT(inp); 1272 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1273 error = EISCONN; 1274 goto release; 1275 } 1276 1277 /* 1278 * Jail may rewrite the destination address, so let it do 1279 * that before we use it. 1280 */ 1281 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1282 if (error) 1283 goto release; 1284 1285 /* 1286 * If a local address or port hasn't yet been selected, or if 1287 * the destination address needs to be rewritten due to using 1288 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1289 * to do the heavy lifting. Once a port is selected, we 1290 * commit the binding back to the socket; we also commit the 1291 * binding of the address if in jail. 1292 * 1293 * If we already have a valid binding and we're not 1294 * requesting a destination address rewrite, use a fast path. 1295 */ 1296 if (inp->inp_laddr.s_addr == INADDR_ANY || 1297 inp->inp_lport == 0 || 1298 sin->sin_addr.s_addr == INADDR_ANY || 1299 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1300 INP_HASH_WLOCK(pcbinfo); 1301 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1302 &lport, &faddr.s_addr, &fport, NULL, 1303 td->td_ucred); 1304 if (error) { 1305 INP_HASH_WUNLOCK(pcbinfo); 1306 goto release; 1307 } 1308 1309 /* 1310 * XXXRW: Why not commit the port if the address is 1311 * !INADDR_ANY? 1312 */ 1313 /* Commit the local port if newly assigned. */ 1314 if (inp->inp_laddr.s_addr == INADDR_ANY && 1315 inp->inp_lport == 0) { 1316 INP_WLOCK_ASSERT(inp); 1317 /* 1318 * Remember addr if jailed, to prevent 1319 * rebinding. 1320 */ 1321 if (prison_flag(td->td_ucred, PR_IP4)) 1322 inp->inp_laddr = laddr; 1323 inp->inp_lport = lport; 1324 error = in_pcbinshash(inp); 1325 INP_HASH_WUNLOCK(pcbinfo); 1326 if (error != 0) { 1327 inp->inp_lport = 0; 1328 error = EAGAIN; 1329 goto release; 1330 } 1331 inp->inp_flags |= INP_ANONPORT; 1332 } else 1333 INP_HASH_WUNLOCK(pcbinfo); 1334 } else { 1335 faddr = sin->sin_addr; 1336 fport = sin->sin_port; 1337 } 1338 } else { 1339 INP_LOCK_ASSERT(inp); 1340 faddr = inp->inp_faddr; 1341 fport = inp->inp_fport; 1342 if (faddr.s_addr == INADDR_ANY) { 1343 error = ENOTCONN; 1344 goto release; 1345 } 1346 } 1347 1348 /* 1349 * Calculate data length and get a mbuf for UDP, IP, and possible 1350 * link-layer headers. Immediate slide the data pointer back forward 1351 * since we won't use that space at this layer. 1352 */ 1353 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1354 if (m == NULL) { 1355 error = ENOBUFS; 1356 goto release; 1357 } 1358 m->m_data += max_linkhdr; 1359 m->m_len -= max_linkhdr; 1360 m->m_pkthdr.len -= max_linkhdr; 1361 1362 /* 1363 * Fill in mbuf with extended UDP header and addresses and length put 1364 * into network format. 1365 */ 1366 ui = mtod(m, struct udpiphdr *); 1367 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1368 ui->ui_v = IPVERSION << 4; 1369 ui->ui_pr = pr; 1370 ui->ui_src = laddr; 1371 ui->ui_dst = faddr; 1372 ui->ui_sport = lport; 1373 ui->ui_dport = fport; 1374 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1375 if (pr == IPPROTO_UDPLITE) { 1376 struct udpcb *up; 1377 uint16_t plen; 1378 1379 up = intoudpcb(inp); 1380 cscov = up->u_txcslen; 1381 plen = (u_short)len + sizeof(struct udphdr); 1382 if (cscov >= plen) 1383 cscov = 0; 1384 ui->ui_len = htons(plen); 1385 ui->ui_ulen = htons(cscov); 1386 /* 1387 * For UDP-Lite, checksum coverage length of zero means 1388 * the entire UDPLite packet is covered by the checksum. 1389 */ 1390 cscov_partial = (cscov == 0) ? 0 : 1; 1391 } 1392 1393 /* 1394 * Set the Don't Fragment bit in the IP header. 1395 */ 1396 if (inp->inp_flags & INP_DONTFRAG) { 1397 struct ip *ip; 1398 1399 ip = (struct ip *)&ui->ui_i; 1400 ip->ip_off |= htons(IP_DF); 1401 } 1402 1403 if (inp->inp_socket->so_options & SO_DONTROUTE) 1404 ipflags |= IP_ROUTETOIF; 1405 if (inp->inp_socket->so_options & SO_BROADCAST) 1406 ipflags |= IP_ALLOWBROADCAST; 1407 if (inp->inp_flags & INP_ONESBCAST) 1408 ipflags |= IP_SENDONES; 1409 1410 #ifdef MAC 1411 mac_inpcb_create_mbuf(inp, m); 1412 #endif 1413 1414 /* 1415 * Set up checksum and output datagram. 1416 */ 1417 ui->ui_sum = 0; 1418 if (pr == IPPROTO_UDPLITE) { 1419 if (inp->inp_flags & INP_ONESBCAST) 1420 faddr.s_addr = INADDR_BROADCAST; 1421 if (cscov_partial) { 1422 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1423 ui->ui_sum = 0xffff; 1424 } else { 1425 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1426 ui->ui_sum = 0xffff; 1427 } 1428 } else if (V_udp_cksum) { 1429 if (inp->inp_flags & INP_ONESBCAST) 1430 faddr.s_addr = INADDR_BROADCAST; 1431 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1432 htons((u_short)len + sizeof(struct udphdr) + pr)); 1433 m->m_pkthdr.csum_flags = CSUM_UDP; 1434 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1435 } 1436 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1437 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1438 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1439 UDPSTAT_INC(udps_opackets); 1440 1441 /* 1442 * Setup flowid / RSS information for outbound socket. 1443 * 1444 * Once the UDP code decides to set a flowid some other way, 1445 * this allows the flowid to be overridden by userland. 1446 */ 1447 if (flowtype != M_HASHTYPE_NONE) { 1448 m->m_pkthdr.flowid = flowid; 1449 M_HASHTYPE_SET(m, flowtype); 1450 } 1451 #if defined(ROUTE_MPATH) || defined(RSS) 1452 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1453 uint32_t hash_val, hash_type; 1454 1455 hash_val = fib4_calc_packet_hash(laddr, faddr, 1456 lport, fport, pr, &hash_type); 1457 m->m_pkthdr.flowid = hash_val; 1458 M_HASHTYPE_SET(m, hash_type); 1459 } 1460 1461 /* 1462 * Don't override with the inp cached flowid value. 1463 * 1464 * Depending upon the kind of send being done, the inp 1465 * flowid/flowtype values may actually not be appropriate 1466 * for this particular socket send. 1467 * 1468 * We should either leave the flowid at zero (which is what is 1469 * currently done) or set it to some software generated 1470 * hash value based on the packet contents. 1471 */ 1472 ipflags |= IP_NODEFAULTFLOWID; 1473 #endif /* RSS */ 1474 1475 if (pr == IPPROTO_UDPLITE) 1476 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1477 else 1478 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1479 error = ip_output(m, inp->inp_options, 1480 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1481 inp->inp_moptions, inp); 1482 INP_UNLOCK(inp); 1483 NET_EPOCH_EXIT(et); 1484 return (error); 1485 1486 release: 1487 INP_UNLOCK(inp); 1488 NET_EPOCH_EXIT(et); 1489 m_freem(m); 1490 return (error); 1491 } 1492 1493 static void 1494 udp_abort(struct socket *so) 1495 { 1496 struct inpcb *inp; 1497 struct inpcbinfo *pcbinfo; 1498 1499 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1500 inp = sotoinpcb(so); 1501 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1502 INP_WLOCK(inp); 1503 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1504 INP_HASH_WLOCK(pcbinfo); 1505 in_pcbdisconnect(inp); 1506 inp->inp_laddr.s_addr = INADDR_ANY; 1507 INP_HASH_WUNLOCK(pcbinfo); 1508 soisdisconnected(so); 1509 } 1510 INP_WUNLOCK(inp); 1511 } 1512 1513 static int 1514 udp_attach(struct socket *so, int proto, struct thread *td) 1515 { 1516 static uint32_t udp_flowid; 1517 struct inpcb *inp; 1518 struct inpcbinfo *pcbinfo; 1519 int error; 1520 1521 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1522 inp = sotoinpcb(so); 1523 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1524 error = soreserve(so, udp_sendspace, udp_recvspace); 1525 if (error) 1526 return (error); 1527 error = in_pcballoc(so, pcbinfo); 1528 if (error) 1529 return (error); 1530 1531 inp = sotoinpcb(so); 1532 inp->inp_ip_ttl = V_ip_defttl; 1533 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1534 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1535 1536 error = udp_newudpcb(inp); 1537 if (error) { 1538 in_pcbdetach(inp); 1539 in_pcbfree(inp); 1540 return (error); 1541 } 1542 INP_WUNLOCK(inp); 1543 1544 return (0); 1545 } 1546 #endif /* INET */ 1547 1548 int 1549 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1550 { 1551 struct inpcb *inp; 1552 struct udpcb *up; 1553 1554 KASSERT(so->so_type == SOCK_DGRAM, 1555 ("udp_set_kernel_tunneling: !dgram")); 1556 inp = sotoinpcb(so); 1557 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1558 INP_WLOCK(inp); 1559 up = intoudpcb(inp); 1560 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1561 (up->u_icmp_func != NULL))) { 1562 INP_WUNLOCK(inp); 1563 return (EBUSY); 1564 } 1565 up->u_tun_func = f; 1566 up->u_icmp_func = i; 1567 up->u_tun_ctx = ctx; 1568 INP_WUNLOCK(inp); 1569 return (0); 1570 } 1571 1572 #ifdef INET 1573 static int 1574 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1575 { 1576 struct inpcb *inp; 1577 struct inpcbinfo *pcbinfo; 1578 struct sockaddr_in *sinp; 1579 int error; 1580 1581 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1582 inp = sotoinpcb(so); 1583 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1584 1585 sinp = (struct sockaddr_in *)nam; 1586 if (nam->sa_family != AF_INET) { 1587 /* 1588 * Preserve compatibility with old programs. 1589 */ 1590 if (nam->sa_family != AF_UNSPEC || 1591 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1592 sinp->sin_addr.s_addr != INADDR_ANY) 1593 return (EAFNOSUPPORT); 1594 nam->sa_family = AF_INET; 1595 } 1596 if (nam->sa_len != sizeof(struct sockaddr_in)) 1597 return (EINVAL); 1598 1599 INP_WLOCK(inp); 1600 INP_HASH_WLOCK(pcbinfo); 1601 error = in_pcbbind(inp, nam, td->td_ucred); 1602 INP_HASH_WUNLOCK(pcbinfo); 1603 INP_WUNLOCK(inp); 1604 return (error); 1605 } 1606 1607 static void 1608 udp_close(struct socket *so) 1609 { 1610 struct inpcb *inp; 1611 struct inpcbinfo *pcbinfo; 1612 1613 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1614 inp = sotoinpcb(so); 1615 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1616 INP_WLOCK(inp); 1617 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1618 INP_HASH_WLOCK(pcbinfo); 1619 in_pcbdisconnect(inp); 1620 inp->inp_laddr.s_addr = INADDR_ANY; 1621 INP_HASH_WUNLOCK(pcbinfo); 1622 soisdisconnected(so); 1623 } 1624 INP_WUNLOCK(inp); 1625 } 1626 1627 static int 1628 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1629 { 1630 struct epoch_tracker et; 1631 struct inpcb *inp; 1632 struct inpcbinfo *pcbinfo; 1633 struct sockaddr_in *sin; 1634 int error; 1635 1636 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1637 inp = sotoinpcb(so); 1638 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1639 1640 sin = (struct sockaddr_in *)nam; 1641 if (sin->sin_family != AF_INET) 1642 return (EAFNOSUPPORT); 1643 if (sin->sin_len != sizeof(*sin)) 1644 return (EINVAL); 1645 1646 INP_WLOCK(inp); 1647 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1648 INP_WUNLOCK(inp); 1649 return (EISCONN); 1650 } 1651 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1652 if (error != 0) { 1653 INP_WUNLOCK(inp); 1654 return (error); 1655 } 1656 NET_EPOCH_ENTER(et); 1657 INP_HASH_WLOCK(pcbinfo); 1658 error = in_pcbconnect(inp, nam, td->td_ucred, true); 1659 INP_HASH_WUNLOCK(pcbinfo); 1660 NET_EPOCH_EXIT(et); 1661 if (error == 0) 1662 soisconnected(so); 1663 INP_WUNLOCK(inp); 1664 return (error); 1665 } 1666 1667 static void 1668 udp_detach(struct socket *so) 1669 { 1670 struct inpcb *inp; 1671 struct udpcb *up; 1672 1673 inp = sotoinpcb(so); 1674 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1675 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1676 ("udp_detach: not disconnected")); 1677 INP_WLOCK(inp); 1678 up = intoudpcb(inp); 1679 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1680 inp->inp_ppcb = NULL; 1681 in_pcbdetach(inp); 1682 in_pcbfree(inp); 1683 udp_discardcb(up); 1684 } 1685 1686 static int 1687 udp_disconnect(struct socket *so) 1688 { 1689 struct inpcb *inp; 1690 struct inpcbinfo *pcbinfo; 1691 1692 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1693 inp = sotoinpcb(so); 1694 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1695 INP_WLOCK(inp); 1696 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1697 INP_WUNLOCK(inp); 1698 return (ENOTCONN); 1699 } 1700 INP_HASH_WLOCK(pcbinfo); 1701 in_pcbdisconnect(inp); 1702 inp->inp_laddr.s_addr = INADDR_ANY; 1703 INP_HASH_WUNLOCK(pcbinfo); 1704 SOCK_LOCK(so); 1705 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1706 SOCK_UNLOCK(so); 1707 INP_WUNLOCK(inp); 1708 return (0); 1709 } 1710 1711 static int 1712 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1713 struct mbuf *control, struct thread *td) 1714 { 1715 struct inpcb *inp; 1716 int error; 1717 1718 inp = sotoinpcb(so); 1719 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1720 1721 if (addr != NULL) { 1722 error = 0; 1723 if (addr->sa_family != AF_INET) 1724 error = EAFNOSUPPORT; 1725 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1726 error = EINVAL; 1727 if (__predict_false(error != 0)) { 1728 m_freem(control); 1729 m_freem(m); 1730 return (error); 1731 } 1732 } 1733 return (udp_output(inp, m, addr, control, td, flags)); 1734 } 1735 #endif /* INET */ 1736 1737 int 1738 udp_shutdown(struct socket *so) 1739 { 1740 struct inpcb *inp; 1741 1742 inp = sotoinpcb(so); 1743 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1744 INP_WLOCK(inp); 1745 socantsendmore(so); 1746 INP_WUNLOCK(inp); 1747 return (0); 1748 } 1749 1750 #ifdef INET 1751 struct pr_usrreqs udp_usrreqs = { 1752 .pru_abort = udp_abort, 1753 .pru_attach = udp_attach, 1754 .pru_bind = udp_bind, 1755 .pru_connect = udp_connect, 1756 .pru_control = in_control, 1757 .pru_detach = udp_detach, 1758 .pru_disconnect = udp_disconnect, 1759 .pru_peeraddr = in_getpeeraddr, 1760 .pru_send = udp_send, 1761 .pru_soreceive = soreceive_dgram, 1762 .pru_sosend = sosend_dgram, 1763 .pru_shutdown = udp_shutdown, 1764 .pru_sockaddr = in_getsockaddr, 1765 .pru_sosetlabel = in_pcbsosetlabel, 1766 .pru_close = udp_close, 1767 }; 1768 #endif /* INET */ 1769