1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_inet.h" 41 #include "opt_inet6.h" 42 #include "opt_ipsec.h" 43 #include "opt_route.h" 44 #include "opt_rss.h" 45 46 #include <sys/param.h> 47 #include <sys/domain.h> 48 #include <sys/eventhandler.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/protosw.h> 57 #include <sys/sdt.h> 58 #include <sys/signalvar.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sx.h> 62 #include <sys/sysctl.h> 63 #include <sys/syslog.h> 64 #include <sys/systm.h> 65 66 #include <vm/uma.h> 67 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/route.h> 71 #include <net/route/nhop.h> 72 #include <net/rss_config.h> 73 74 #include <netinet/in.h> 75 #include <netinet/in_kdtrace.h> 76 #include <netinet/in_fib.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #include <netipsec/ipsec_support.h> 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 /* 103 * UDP and UDP-Lite protocols implementation. 104 * Per RFC 768, August, 1980. 105 * Per RFC 3828, July, 2004. 106 */ 107 108 VNET_DEFINE(int, udp_bind_all_fibs) = 1; 109 SYSCTL_INT(_net_inet_udp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN, 110 &VNET_NAME(udp_bind_all_fibs), 0, 111 "Bound sockets receive traffic from all FIBs"); 112 113 /* 114 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 115 * removes the only data integrity mechanism for packets and malformed 116 * packets that would otherwise be discarded due to bad checksums, and may 117 * cause problems (especially for NFS data blocks). 118 */ 119 VNET_DEFINE(int, udp_cksum) = 1; 120 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 121 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 122 123 VNET_DEFINE(int, udp_log_in_vain) = 0; 124 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 125 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 126 127 VNET_DEFINE(int, udp_blackhole) = 0; 128 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 129 &VNET_NAME(udp_blackhole), 0, 130 "Do not send port unreachables for refused connects"); 131 VNET_DEFINE(bool, udp_blackhole_local) = false; 132 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 133 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 134 "Enforce net.inet.udp.blackhole for locally originated packets"); 135 136 u_long udp_sendspace = 9216; /* really max datagram size */ 137 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 138 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 139 140 u_long udp_recvspace = 40 * (1024 + 141 #ifdef INET6 142 sizeof(struct sockaddr_in6) 143 #else 144 sizeof(struct sockaddr_in) 145 #endif 146 ); /* 40 1K datagrams */ 147 148 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 149 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 150 151 VNET_DEFINE(struct inpcbinfo, udbinfo); 152 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 153 154 #ifndef UDBHASHSIZE 155 #define UDBHASHSIZE 128 156 #endif 157 158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 159 VNET_PCPUSTAT_SYSINIT(udpstat); 160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 161 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 162 163 #ifdef VIMAGE 164 VNET_PCPUSTAT_SYSUNINIT(udpstat); 165 #endif /* VIMAGE */ 166 #ifdef INET 167 static void udp_detach(struct socket *so); 168 #endif 169 170 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 171 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", 172 "udplite", "udplitehash"); 173 174 static void 175 udp_vnet_init(void *arg __unused) 176 { 177 178 /* 179 * For now default to 2-tuple UDP hashing - until the fragment 180 * reassembly code can also update the flowid. 181 * 182 * Once we can calculate the flowid that way and re-establish 183 * a 4-tuple, flip this to 4-tuple. 184 */ 185 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 186 /* Additional pcbinfo for UDP-Lite */ 187 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 188 UDBHASHSIZE); 189 } 190 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 191 udp_vnet_init, NULL); 192 193 /* 194 * Kernel module interface for updating udpstat. The argument is an index 195 * into udpstat treated as an array of u_long. While this encodes the 196 * general layout of udpstat into the caller, it doesn't encode its location, 197 * so that future changes to add, for example, per-CPU stats support won't 198 * cause binary compatibility problems for kernel modules. 199 */ 200 void 201 kmod_udpstat_inc(int statnum) 202 { 203 204 counter_u64_add(VNET(udpstat)[statnum], 1); 205 } 206 207 #ifdef VIMAGE 208 static void 209 udp_destroy(void *unused __unused) 210 { 211 212 in_pcbinfo_destroy(&V_udbinfo); 213 in_pcbinfo_destroy(&V_ulitecbinfo); 214 } 215 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 216 #endif 217 218 #ifdef INET 219 /* 220 * Subroutine of udp_input(), which appends the provided mbuf chain to the 221 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 222 * contains the source address. If the socket ends up being an IPv6 socket, 223 * udp_append() will convert to a sockaddr_in6 before passing the address 224 * into the socket code. 225 * 226 * In the normal case udp_append() will return 0, indicating that you 227 * must unlock the inp. However if a tunneling protocol is in place we increment 228 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 229 * then decrement the reference count. If the inp_rele returns 1, indicating the 230 * inp is gone, we return that to the caller to tell them *not* to unlock 231 * the inp. In the case of multi-cast this will cause the distribution 232 * to stop (though most tunneling protocols known currently do *not* use 233 * multicast). 234 */ 235 static int 236 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 237 struct sockaddr_in *udp_in) 238 { 239 struct sockaddr *append_sa; 240 struct socket *so; 241 struct mbuf *tmpopts, *opts = NULL; 242 #ifdef INET6 243 struct sockaddr_in6 udp_in6; 244 #endif 245 struct udpcb *up; 246 247 INP_LOCK_ASSERT(inp); 248 249 /* 250 * Engage the tunneling protocol. 251 */ 252 up = intoudpcb(inp); 253 if (up->u_tun_func != NULL) { 254 bool filtered; 255 256 in_pcbref(inp); 257 INP_RUNLOCK(inp); 258 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 259 up->u_tun_ctx); 260 INP_RLOCK(inp); 261 if (in_pcbrele_rlocked(inp)) 262 return (1); 263 if (filtered) { 264 INP_RUNLOCK(inp); 265 return (1); 266 } 267 } 268 269 off += sizeof(struct udphdr); 270 271 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 272 /* Check AH/ESP integrity. */ 273 if (IPSEC_ENABLED(ipv4) && 274 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 275 m_freem(n); 276 return (0); 277 } 278 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 279 if (IPSEC_ENABLED(ipv4) && 280 UDPENCAP_INPUT(ipv4, n, off, AF_INET) != 0) 281 return (0); /* Consumed. */ 282 } 283 #endif /* IPSEC */ 284 #ifdef MAC 285 if (mac_inpcb_check_deliver(inp, n) != 0) { 286 m_freem(n); 287 return (0); 288 } 289 #endif /* MAC */ 290 if (inp->inp_flags & INP_CONTROLOPTS || 291 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 292 #ifdef INET6 293 if (inp->inp_vflag & INP_IPV6) 294 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 295 else 296 #endif /* INET6 */ 297 ip_savecontrol(inp, &opts, ip, n); 298 } 299 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 300 tmpopts = sbcreatecontrol(&udp_in[1], 301 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 302 M_NOWAIT); 303 if (tmpopts) { 304 if (opts) { 305 tmpopts->m_next = opts; 306 opts = tmpopts; 307 } else 308 opts = tmpopts; 309 } 310 } 311 #ifdef INET6 312 if (inp->inp_vflag & INP_IPV6) { 313 bzero(&udp_in6, sizeof(udp_in6)); 314 udp_in6.sin6_len = sizeof(udp_in6); 315 udp_in6.sin6_family = AF_INET6; 316 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 317 append_sa = (struct sockaddr *)&udp_in6; 318 } else 319 #endif /* INET6 */ 320 append_sa = (struct sockaddr *)&udp_in[0]; 321 m_adj(n, off); 322 323 so = inp->inp_socket; 324 SOCKBUF_LOCK(&so->so_rcv); 325 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 326 soroverflow_locked(so); 327 m_freem(n); 328 if (opts) 329 m_freem(opts); 330 UDPSTAT_INC(udps_fullsock); 331 } else 332 sorwakeup_locked(so); 333 return (0); 334 } 335 336 static bool 337 udp_multi_match(const struct inpcb *inp, void *v) 338 { 339 struct ip *ip = v; 340 struct udphdr *uh = (struct udphdr *)(ip + 1); 341 342 if (inp->inp_lport != uh->uh_dport) 343 return (false); 344 #ifdef INET6 345 if ((inp->inp_vflag & INP_IPV4) == 0) 346 return (false); 347 #endif 348 if (inp->inp_laddr.s_addr != INADDR_ANY && 349 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 350 return (false); 351 if (inp->inp_faddr.s_addr != INADDR_ANY && 352 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 353 return (false); 354 if (inp->inp_fport != 0 && 355 inp->inp_fport != uh->uh_sport) 356 return (false); 357 358 return (true); 359 } 360 361 static int 362 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 363 { 364 struct ip *ip = mtod(m, struct ip *); 365 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 366 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 367 #ifdef KDTRACE_HOOKS 368 struct udphdr *uh = (struct udphdr *)(ip + 1); 369 #endif 370 struct inpcb *inp; 371 struct mbuf *n; 372 int appends = 0, fib; 373 374 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 375 376 fib = M_GETFIB(m); 377 378 while ((inp = inp_next(&inpi)) != NULL) { 379 /* 380 * XXXRW: Because we weren't holding either the inpcb 381 * or the hash lock when we checked for a match 382 * before, we should probably recheck now that the 383 * inpcb lock is held. 384 */ 385 386 if (V_udp_bind_all_fibs == 0 && fib != inp->inp_inc.inc_fibnum) 387 /* 388 * Sockets bound to a specific FIB can only receive 389 * packets from that FIB. 390 */ 391 continue; 392 393 /* 394 * Handle socket delivery policy for any-source 395 * and source-specific multicast. [RFC3678] 396 */ 397 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 398 struct ip_moptions *imo; 399 struct sockaddr_in group; 400 int blocked; 401 402 imo = inp->inp_moptions; 403 if (imo == NULL) 404 continue; 405 bzero(&group, sizeof(struct sockaddr_in)); 406 group.sin_len = sizeof(struct sockaddr_in); 407 group.sin_family = AF_INET; 408 group.sin_addr = ip->ip_dst; 409 410 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 411 (struct sockaddr *)&group, 412 (struct sockaddr *)&udp_in[0]); 413 if (blocked != MCAST_PASS) { 414 if (blocked == MCAST_NOTGMEMBER) 415 IPSTAT_INC(ips_notmember); 416 if (blocked == MCAST_NOTSMEMBER || 417 blocked == MCAST_MUTED) 418 UDPSTAT_INC(udps_filtermcast); 419 continue; 420 } 421 } 422 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 423 if (proto == IPPROTO_UDPLITE) 424 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 425 else 426 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 427 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 428 break; 429 } else 430 appends++; 431 } 432 /* 433 * Don't look for additional matches if this one does 434 * not have either the SO_REUSEPORT or SO_REUSEADDR 435 * socket options set. This heuristic avoids 436 * searching through all pcbs in the common case of a 437 * non-shared port. It assumes that an application 438 * will never clear these options after setting them. 439 */ 440 if ((inp->inp_socket->so_options & 441 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 442 INP_RUNLOCK(inp); 443 break; 444 } 445 } 446 447 if (appends == 0) { 448 /* 449 * No matching pcb found; discard datagram. (No need 450 * to send an ICMP Port Unreachable for a broadcast 451 * or multicast datgram.) 452 */ 453 UDPSTAT_INC(udps_noport); 454 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 455 UDPSTAT_INC(udps_noportmcast); 456 else 457 UDPSTAT_INC(udps_noportbcast); 458 } 459 m_freem(m); 460 461 return (IPPROTO_DONE); 462 } 463 464 static int 465 udp_input(struct mbuf **mp, int *offp, int proto) 466 { 467 struct ip *ip; 468 struct udphdr *uh; 469 struct ifnet *ifp; 470 struct inpcb *inp; 471 uint16_t len, ip_len; 472 struct inpcbinfo *pcbinfo; 473 struct sockaddr_in udp_in[2]; 474 struct mbuf *m; 475 struct m_tag *fwd_tag; 476 int cscov_partial, iphlen, lookupflags; 477 478 m = *mp; 479 iphlen = *offp; 480 ifp = m->m_pkthdr.rcvif; 481 *mp = NULL; 482 UDPSTAT_INC(udps_ipackets); 483 484 /* 485 * Strip IP options, if any; should skip this, make available to 486 * user, and use on returned packets, but we don't yet have a way to 487 * check the checksum with options still present. 488 */ 489 if (iphlen > sizeof (struct ip)) { 490 ip_stripoptions(m); 491 iphlen = sizeof(struct ip); 492 } 493 494 /* 495 * Get IP and UDP header together in first mbuf. 496 */ 497 if (m->m_len < iphlen + sizeof(struct udphdr)) { 498 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 499 UDPSTAT_INC(udps_hdrops); 500 return (IPPROTO_DONE); 501 } 502 } 503 ip = mtod(m, struct ip *); 504 uh = (struct udphdr *)((caddr_t)ip + iphlen); 505 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 506 507 /* 508 * Destination port of 0 is illegal, based on RFC768. 509 */ 510 if (uh->uh_dport == 0) 511 goto badunlocked; 512 513 /* 514 * Construct sockaddr format source address. Stuff source address 515 * and datagram in user buffer. 516 */ 517 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 518 udp_in[0].sin_len = sizeof(struct sockaddr_in); 519 udp_in[0].sin_family = AF_INET; 520 udp_in[0].sin_port = uh->uh_sport; 521 udp_in[0].sin_addr = ip->ip_src; 522 udp_in[1].sin_len = sizeof(struct sockaddr_in); 523 udp_in[1].sin_family = AF_INET; 524 udp_in[1].sin_port = uh->uh_dport; 525 udp_in[1].sin_addr = ip->ip_dst; 526 527 /* 528 * Make mbuf data length reflect UDP length. If not enough data to 529 * reflect UDP length, drop. 530 */ 531 len = ntohs((u_short)uh->uh_ulen); 532 ip_len = ntohs(ip->ip_len) - iphlen; 533 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 534 /* Zero means checksum over the complete packet. */ 535 if (len == 0) 536 len = ip_len; 537 cscov_partial = 0; 538 } 539 if (ip_len != len) { 540 if (len > ip_len || len < sizeof(struct udphdr)) { 541 UDPSTAT_INC(udps_badlen); 542 goto badunlocked; 543 } 544 if (proto == IPPROTO_UDP) 545 m_adj(m, len - ip_len); 546 } 547 548 /* 549 * Checksum extended UDP header and data. 550 */ 551 if (uh->uh_sum) { 552 u_short uh_sum; 553 554 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 555 !cscov_partial) { 556 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 557 uh_sum = m->m_pkthdr.csum_data; 558 else 559 uh_sum = in_pseudo(ip->ip_src.s_addr, 560 ip->ip_dst.s_addr, htonl((u_short)len + 561 m->m_pkthdr.csum_data + proto)); 562 uh_sum ^= 0xffff; 563 } else { 564 char b[offsetof(struct ipovly, ih_src)]; 565 struct ipovly *ipov = (struct ipovly *)ip; 566 567 memcpy(b, ipov, sizeof(b)); 568 bzero(ipov, sizeof(ipov->ih_x1)); 569 ipov->ih_len = (proto == IPPROTO_UDP) ? 570 uh->uh_ulen : htons(ip_len); 571 uh_sum = in_cksum(m, len + sizeof (struct ip)); 572 memcpy(ipov, b, sizeof(b)); 573 } 574 if (uh_sum) { 575 UDPSTAT_INC(udps_badsum); 576 m_freem(m); 577 return (IPPROTO_DONE); 578 } 579 } else { 580 if (proto == IPPROTO_UDP) { 581 UDPSTAT_INC(udps_nosum); 582 } else { 583 /* UDPLite requires a checksum */ 584 /* XXX: What is the right UDPLite MIB counter here? */ 585 m_freem(m); 586 return (IPPROTO_DONE); 587 } 588 } 589 590 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 591 in_ifnet_broadcast(ip->ip_dst, ifp)) 592 return (udp_multi_input(m, proto, udp_in)); 593 594 pcbinfo = udp_get_inpcbinfo(proto); 595 596 /* 597 * Locate pcb for datagram. 598 */ 599 lookupflags = INPLOOKUP_RLOCKPCB | 600 (V_udp_bind_all_fibs ? 0 : INPLOOKUP_FIB); 601 602 /* 603 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 604 */ 605 if ((m->m_flags & M_IP_NEXTHOP) && 606 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 607 struct sockaddr_in *next_hop; 608 609 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 610 611 /* 612 * Transparently forwarded. Pretend to be the destination. 613 * Already got one like this? 614 */ 615 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 616 ip->ip_dst, uh->uh_dport, lookupflags, ifp, m); 617 if (!inp) { 618 /* 619 * It's new. Try to find the ambushing socket. 620 * Because we've rewritten the destination address, 621 * any hardware-generated hash is ignored. 622 */ 623 inp = in_pcblookup(pcbinfo, ip->ip_src, 624 uh->uh_sport, next_hop->sin_addr, 625 next_hop->sin_port ? htons(next_hop->sin_port) : 626 uh->uh_dport, INPLOOKUP_WILDCARD | lookupflags, 627 ifp); 628 } 629 /* Remove the tag from the packet. We don't need it anymore. */ 630 m_tag_delete(m, fwd_tag); 631 m->m_flags &= ~M_IP_NEXTHOP; 632 } else 633 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 634 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 635 lookupflags, ifp, m); 636 if (inp == NULL) { 637 if (V_udp_log_in_vain) { 638 char src[INET_ADDRSTRLEN]; 639 char dst[INET_ADDRSTRLEN]; 640 641 log(LOG_INFO, 642 "Connection attempt to UDP %s:%d from %s:%d\n", 643 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 644 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 645 } 646 if (proto == IPPROTO_UDPLITE) 647 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 648 else 649 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 650 UDPSTAT_INC(udps_noport); 651 if (m->m_flags & (M_BCAST | M_MCAST)) { 652 UDPSTAT_INC(udps_noportbcast); 653 goto badunlocked; 654 } 655 if (V_udp_blackhole && (V_udp_blackhole_local || 656 !in_localip(ip->ip_src))) 657 goto badunlocked; 658 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 659 goto badunlocked; 660 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 661 return (IPPROTO_DONE); 662 } 663 664 /* 665 * Check the minimum TTL for socket. 666 */ 667 INP_RLOCK_ASSERT(inp); 668 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 669 if (proto == IPPROTO_UDPLITE) 670 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 671 else 672 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 673 INP_RUNLOCK(inp); 674 m_freem(m); 675 return (IPPROTO_DONE); 676 } 677 if (cscov_partial) { 678 struct udpcb *up; 679 680 up = intoudpcb(inp); 681 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 682 INP_RUNLOCK(inp); 683 m_freem(m); 684 return (IPPROTO_DONE); 685 } 686 } 687 688 if (proto == IPPROTO_UDPLITE) 689 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 690 else 691 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 692 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 693 INP_RUNLOCK(inp); 694 return (IPPROTO_DONE); 695 696 badunlocked: 697 m_freem(m); 698 return (IPPROTO_DONE); 699 } 700 #endif /* INET */ 701 702 /* 703 * Notify a udp user of an asynchronous error; just wake up so that they can 704 * collect error status. 705 */ 706 struct inpcb * 707 udp_notify(struct inpcb *inp, int errno) 708 { 709 710 INP_WLOCK_ASSERT(inp); 711 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 712 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 713 NH_FREE(inp->inp_route.ro_nh); 714 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 715 } 716 717 inp->inp_socket->so_error = errno; 718 sorwakeup(inp->inp_socket); 719 sowwakeup(inp->inp_socket); 720 return (inp); 721 } 722 723 #ifdef INET 724 static void 725 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 726 { 727 struct ip *ip = &icmp->icmp_ip; 728 struct udphdr *uh; 729 struct inpcb *inp; 730 731 if (icmp_errmap(icmp) == 0) 732 return; 733 734 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 735 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 736 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 737 if (inp != NULL) { 738 INP_WLOCK_ASSERT(inp); 739 if (inp->inp_socket != NULL) 740 udp_notify(inp, icmp_errmap(icmp)); 741 INP_WUNLOCK(inp); 742 } else { 743 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 744 ip->ip_src, uh->uh_sport, 745 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 746 if (inp != NULL) { 747 struct udpcb *up; 748 udp_tun_icmp_t *func; 749 750 up = intoudpcb(inp); 751 func = up->u_icmp_func; 752 INP_RUNLOCK(inp); 753 if (func != NULL) 754 func(icmp); 755 } 756 } 757 } 758 759 static void 760 udp_ctlinput(struct icmp *icmp) 761 { 762 763 return (udp_common_ctlinput(icmp, &V_udbinfo)); 764 } 765 766 static void 767 udplite_ctlinput(struct icmp *icmp) 768 { 769 770 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 771 } 772 #endif /* INET */ 773 774 static int 775 udp_pcblist(SYSCTL_HANDLER_ARGS) 776 { 777 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 778 INPLOOKUP_RLOCKPCB); 779 struct xinpgen xig; 780 struct inpcb *inp; 781 int error; 782 783 if (req->newptr != 0) 784 return (EPERM); 785 786 if (req->oldptr == 0) { 787 int n; 788 789 n = V_udbinfo.ipi_count; 790 n += imax(n / 8, 10); 791 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 792 return (0); 793 } 794 795 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 796 return (error); 797 798 bzero(&xig, sizeof(xig)); 799 xig.xig_len = sizeof xig; 800 xig.xig_count = V_udbinfo.ipi_count; 801 xig.xig_gen = V_udbinfo.ipi_gencnt; 802 xig.xig_sogen = so_gencnt; 803 error = SYSCTL_OUT(req, &xig, sizeof xig); 804 if (error) 805 return (error); 806 807 while ((inp = inp_next(&inpi)) != NULL) { 808 if (inp->inp_gencnt <= xig.xig_gen && 809 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 810 struct xinpcb xi; 811 812 in_pcbtoxinpcb(inp, &xi); 813 error = SYSCTL_OUT(req, &xi, sizeof xi); 814 if (error) { 815 INP_RUNLOCK(inp); 816 break; 817 } 818 } 819 } 820 821 if (!error) { 822 /* 823 * Give the user an updated idea of our state. If the 824 * generation differs from what we told her before, she knows 825 * that something happened while we were processing this 826 * request, and it might be necessary to retry. 827 */ 828 xig.xig_gen = V_udbinfo.ipi_gencnt; 829 xig.xig_sogen = so_gencnt; 830 xig.xig_count = V_udbinfo.ipi_count; 831 error = SYSCTL_OUT(req, &xig, sizeof xig); 832 } 833 834 return (error); 835 } 836 837 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 838 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 839 udp_pcblist, "S,xinpcb", 840 "List of active UDP sockets"); 841 842 #ifdef INET 843 static int 844 udp_getcred(SYSCTL_HANDLER_ARGS) 845 { 846 struct xucred xuc; 847 struct sockaddr_in addrs[2]; 848 struct epoch_tracker et; 849 struct inpcb *inp; 850 int error; 851 852 if (req->newptr == NULL) 853 return (EINVAL); 854 error = priv_check(req->td, PRIV_NETINET_GETCRED); 855 if (error) 856 return (error); 857 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 858 if (error) 859 return (error); 860 NET_EPOCH_ENTER(et); 861 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 862 addrs[0].sin_addr, addrs[0].sin_port, 863 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 864 NET_EPOCH_EXIT(et); 865 if (inp != NULL) { 866 INP_RLOCK_ASSERT(inp); 867 if (inp->inp_socket == NULL) 868 error = ENOENT; 869 if (error == 0) 870 error = cr_canseeinpcb(req->td->td_ucred, inp); 871 if (error == 0) 872 cru2x(inp->inp_cred, &xuc); 873 INP_RUNLOCK(inp); 874 } else 875 error = ENOENT; 876 if (error == 0) 877 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 878 return (error); 879 } 880 881 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 882 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 883 0, 0, udp_getcred, "S,xucred", 884 "Get the xucred of a UDP connection"); 885 #endif /* INET */ 886 887 int 888 udp_ctloutput(struct socket *so, struct sockopt *sopt) 889 { 890 struct inpcb *inp; 891 struct udpcb *up; 892 int isudplite, error, optval; 893 894 error = 0; 895 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 896 inp = sotoinpcb(so); 897 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 898 INP_WLOCK(inp); 899 if (sopt->sopt_level != so->so_proto->pr_protocol) { 900 #ifdef INET6 901 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 902 INP_WUNLOCK(inp); 903 error = ip6_ctloutput(so, sopt); 904 } 905 #endif 906 #if defined(INET) && defined(INET6) 907 else 908 #endif 909 #ifdef INET 910 { 911 INP_WUNLOCK(inp); 912 error = ip_ctloutput(so, sopt); 913 } 914 #endif 915 return (error); 916 } 917 918 switch (sopt->sopt_dir) { 919 case SOPT_SET: 920 switch (sopt->sopt_name) { 921 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 922 #if defined(INET) || defined(INET6) 923 case UDP_ENCAP: 924 #ifdef INET 925 if (INP_SOCKAF(so) == AF_INET) { 926 if (!IPSEC_ENABLED(ipv4)) { 927 INP_WUNLOCK(inp); 928 return (ENOPROTOOPT); 929 } 930 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 931 break; 932 } 933 #endif /* INET */ 934 #ifdef INET6 935 if (INP_SOCKAF(so) == AF_INET6) { 936 if (!IPSEC_ENABLED(ipv6)) { 937 INP_WUNLOCK(inp); 938 return (ENOPROTOOPT); 939 } 940 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 941 break; 942 } 943 #endif /* INET6 */ 944 INP_WUNLOCK(inp); 945 return (EINVAL); 946 #endif /* INET || INET6 */ 947 948 #endif /* IPSEC */ 949 case UDPLITE_SEND_CSCOV: 950 case UDPLITE_RECV_CSCOV: 951 if (!isudplite) { 952 INP_WUNLOCK(inp); 953 error = ENOPROTOOPT; 954 break; 955 } 956 INP_WUNLOCK(inp); 957 error = sooptcopyin(sopt, &optval, sizeof(optval), 958 sizeof(optval)); 959 if (error != 0) 960 break; 961 inp = sotoinpcb(so); 962 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 963 INP_WLOCK(inp); 964 up = intoudpcb(inp); 965 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 966 if ((optval != 0 && optval < 8) || (optval > 65535)) { 967 INP_WUNLOCK(inp); 968 error = EINVAL; 969 break; 970 } 971 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 972 up->u_txcslen = optval; 973 else 974 up->u_rxcslen = optval; 975 INP_WUNLOCK(inp); 976 break; 977 default: 978 INP_WUNLOCK(inp); 979 error = ENOPROTOOPT; 980 break; 981 } 982 break; 983 case SOPT_GET: 984 switch (sopt->sopt_name) { 985 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 986 #if defined(INET) || defined(INET6) 987 case UDP_ENCAP: 988 #ifdef INET 989 if (INP_SOCKAF(so) == AF_INET) { 990 if (!IPSEC_ENABLED(ipv4)) { 991 INP_WUNLOCK(inp); 992 return (ENOPROTOOPT); 993 } 994 error = UDPENCAP_PCBCTL(ipv4, inp, sopt); 995 break; 996 } 997 #endif /* INET */ 998 #ifdef INET6 999 if (INP_SOCKAF(so) == AF_INET6) { 1000 if (!IPSEC_ENABLED(ipv6)) { 1001 INP_WUNLOCK(inp); 1002 return (ENOPROTOOPT); 1003 } 1004 error = UDPENCAP_PCBCTL(ipv6, inp, sopt); 1005 break; 1006 } 1007 #endif /* INET6 */ 1008 INP_WUNLOCK(inp); 1009 return (EINVAL); 1010 #endif /* INET || INET6 */ 1011 1012 #endif /* IPSEC */ 1013 case UDPLITE_SEND_CSCOV: 1014 case UDPLITE_RECV_CSCOV: 1015 if (!isudplite) { 1016 INP_WUNLOCK(inp); 1017 error = ENOPROTOOPT; 1018 break; 1019 } 1020 up = intoudpcb(inp); 1021 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1022 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1023 optval = up->u_txcslen; 1024 else 1025 optval = up->u_rxcslen; 1026 INP_WUNLOCK(inp); 1027 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1028 break; 1029 default: 1030 INP_WUNLOCK(inp); 1031 error = ENOPROTOOPT; 1032 break; 1033 } 1034 break; 1035 } 1036 return (error); 1037 } 1038 1039 #ifdef INET 1040 #ifdef INET6 1041 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 1042 static int 1043 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 1044 struct inpcb *inp, int flags) 1045 { 1046 struct ifnet *ifp; 1047 struct in6_pktinfo *pktinfo; 1048 struct in_addr ia; 1049 1050 NET_EPOCH_ASSERT(); 1051 1052 if ((flags & PRUS_IPV6) == 0) 1053 return (0); 1054 1055 if (cm->cmsg_level != IPPROTO_IPV6) 1056 return (0); 1057 1058 if (cm->cmsg_type != IPV6_2292PKTINFO && 1059 cm->cmsg_type != IPV6_PKTINFO) 1060 return (0); 1061 1062 if (cm->cmsg_len != 1063 CMSG_LEN(sizeof(struct in6_pktinfo))) 1064 return (EINVAL); 1065 1066 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1067 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1068 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1069 return (EINVAL); 1070 1071 /* Validate the interface index if specified. */ 1072 if (pktinfo->ipi6_ifindex) { 1073 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1074 if (ifp == NULL) 1075 return (ENXIO); 1076 } else 1077 ifp = NULL; 1078 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1079 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1080 if (!in_ifhasaddr(ifp, ia)) 1081 return (EADDRNOTAVAIL); 1082 } 1083 1084 bzero(src, sizeof(*src)); 1085 src->sin_family = AF_INET; 1086 src->sin_len = sizeof(*src); 1087 src->sin_port = inp->inp_lport; 1088 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1089 1090 return (0); 1091 } 1092 #endif /* INET6 */ 1093 1094 int 1095 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1096 struct mbuf *control, struct thread *td) 1097 { 1098 struct inpcb *inp; 1099 struct udpiphdr *ui; 1100 int len, error = 0; 1101 struct in_addr faddr, laddr; 1102 struct cmsghdr *cm; 1103 struct inpcbinfo *pcbinfo; 1104 struct sockaddr_in *sin, src; 1105 struct epoch_tracker et; 1106 int cscov_partial = 0; 1107 int ipflags = 0; 1108 u_short fport, lport; 1109 u_char tos, vflagsav; 1110 uint8_t pr; 1111 uint16_t cscov = 0; 1112 uint32_t flowid = 0; 1113 uint8_t flowtype = M_HASHTYPE_NONE; 1114 bool use_cached_route; 1115 1116 inp = sotoinpcb(so); 1117 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1118 1119 if (addr != NULL) { 1120 if (addr->sa_family != AF_INET) 1121 error = EAFNOSUPPORT; 1122 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1123 error = EINVAL; 1124 if (__predict_false(error != 0)) { 1125 m_freem(control); 1126 m_freem(m); 1127 return (error); 1128 } 1129 } 1130 1131 len = m->m_pkthdr.len; 1132 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1133 if (control) 1134 m_freem(control); 1135 m_freem(m); 1136 return (EMSGSIZE); 1137 } 1138 1139 src.sin_family = 0; 1140 sin = (struct sockaddr_in *)addr; 1141 1142 /* 1143 * udp_send() may need to bind the current inpcb. As such, we don't 1144 * know up front whether we will need the pcbinfo lock or not. Do any 1145 * work to decide what is needed up front before acquiring any locks. 1146 * 1147 * We will need network epoch in either case, to safely lookup into 1148 * pcb hash. 1149 */ 1150 use_cached_route = sin == NULL || (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0); 1151 if (use_cached_route || (flags & PRUS_IPV6) != 0) 1152 INP_WLOCK(inp); 1153 else 1154 INP_RLOCK(inp); 1155 NET_EPOCH_ENTER(et); 1156 tos = inp->inp_ip_tos; 1157 if (control != NULL) { 1158 /* 1159 * XXX: Currently, we assume all the optional information is 1160 * stored in a single mbuf. 1161 */ 1162 if (control->m_next) { 1163 m_freem(control); 1164 error = EINVAL; 1165 goto release; 1166 } 1167 for (; control->m_len > 0; 1168 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1169 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1170 cm = mtod(control, struct cmsghdr *); 1171 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1172 || cm->cmsg_len > control->m_len) { 1173 error = EINVAL; 1174 break; 1175 } 1176 #ifdef INET6 1177 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1178 if (error != 0) 1179 break; 1180 #endif 1181 if (cm->cmsg_level != IPPROTO_IP) 1182 continue; 1183 1184 switch (cm->cmsg_type) { 1185 case IP_SENDSRCADDR: 1186 if (cm->cmsg_len != 1187 CMSG_LEN(sizeof(struct in_addr))) { 1188 error = EINVAL; 1189 break; 1190 } 1191 bzero(&src, sizeof(src)); 1192 src.sin_family = AF_INET; 1193 src.sin_len = sizeof(src); 1194 src.sin_port = inp->inp_lport; 1195 src.sin_addr = 1196 *(struct in_addr *)CMSG_DATA(cm); 1197 break; 1198 1199 case IP_TOS: 1200 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1201 error = EINVAL; 1202 break; 1203 } 1204 tos = *(u_char *)CMSG_DATA(cm); 1205 break; 1206 1207 case IP_FLOWID: 1208 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1209 error = EINVAL; 1210 break; 1211 } 1212 flowid = *(uint32_t *) CMSG_DATA(cm); 1213 break; 1214 1215 case IP_FLOWTYPE: 1216 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1217 error = EINVAL; 1218 break; 1219 } 1220 flowtype = *(uint32_t *) CMSG_DATA(cm); 1221 break; 1222 1223 #ifdef RSS 1224 case IP_RSSBUCKETID: 1225 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1226 error = EINVAL; 1227 break; 1228 } 1229 /* This is just a placeholder for now */ 1230 break; 1231 #endif /* RSS */ 1232 default: 1233 error = ENOPROTOOPT; 1234 break; 1235 } 1236 if (error) 1237 break; 1238 } 1239 m_freem(control); 1240 control = NULL; 1241 } 1242 if (error) 1243 goto release; 1244 1245 pr = inp->inp_socket->so_proto->pr_protocol; 1246 pcbinfo = udp_get_inpcbinfo(pr); 1247 1248 /* 1249 * If the IP_SENDSRCADDR control message was specified, override the 1250 * source address for this datagram. Its use is invalidated if the 1251 * address thus specified is incomplete or clobbers other inpcbs. 1252 */ 1253 laddr = inp->inp_laddr; 1254 lport = inp->inp_lport; 1255 if (src.sin_family == AF_INET) { 1256 if ((lport == 0) || 1257 (laddr.s_addr == INADDR_ANY && 1258 src.sin_addr.s_addr == INADDR_ANY)) { 1259 error = EINVAL; 1260 goto release; 1261 } 1262 if ((flags & PRUS_IPV6) != 0) { 1263 vflagsav = inp->inp_vflag; 1264 inp->inp_vflag |= INP_IPV4; 1265 inp->inp_vflag &= ~INP_IPV6; 1266 } 1267 INP_HASH_WLOCK(pcbinfo); 1268 error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport, 1269 V_udp_bind_all_fibs ? 0 : INPBIND_FIB, td->td_ucred); 1270 INP_HASH_WUNLOCK(pcbinfo); 1271 if ((flags & PRUS_IPV6) != 0) 1272 inp->inp_vflag = vflagsav; 1273 if (error) 1274 goto release; 1275 } 1276 1277 /* 1278 * If a UDP socket has been connected, then a local address/port will 1279 * have been selected and bound. 1280 * 1281 * If a UDP socket has not been connected to, then an explicit 1282 * destination address must be used, in which case a local 1283 * address/port may not have been selected and bound. 1284 */ 1285 if (sin != NULL) { 1286 INP_LOCK_ASSERT(inp); 1287 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1288 error = EISCONN; 1289 goto release; 1290 } 1291 1292 /* 1293 * Jail may rewrite the destination address, so let it do 1294 * that before we use it. 1295 */ 1296 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1297 if (error) 1298 goto release; 1299 /* 1300 * sendto(2) on unconnected UDP socket results in implicit 1301 * binding to INADDR_ANY and anonymous port. This has two 1302 * side effects: 1303 * 1) after first sendto(2) the socket will receive datagrams 1304 * destined to the selected port. 1305 * 2) subsequent sendto(2) calls will use the same source port. 1306 */ 1307 if (inp->inp_lport == 0) { 1308 struct sockaddr_in wild = { 1309 .sin_family = AF_INET, 1310 .sin_len = sizeof(struct sockaddr_in), 1311 }; 1312 1313 INP_HASH_WLOCK(pcbinfo); 1314 error = in_pcbbind(inp, &wild, V_udp_bind_all_fibs ? 1315 0 : INPBIND_FIB, td->td_ucred); 1316 INP_HASH_WUNLOCK(pcbinfo); 1317 if (error) 1318 goto release; 1319 lport = inp->inp_lport; 1320 laddr = inp->inp_laddr; 1321 } 1322 if (laddr.s_addr == INADDR_ANY) { 1323 error = in_pcbladdr(inp, &sin->sin_addr, &laddr, 1324 td->td_ucred); 1325 if (error) 1326 goto release; 1327 } 1328 faddr = sin->sin_addr; 1329 fport = sin->sin_port; 1330 } else { 1331 INP_LOCK_ASSERT(inp); 1332 faddr = inp->inp_faddr; 1333 fport = inp->inp_fport; 1334 if (faddr.s_addr == INADDR_ANY) { 1335 error = ENOTCONN; 1336 goto release; 1337 } 1338 } 1339 1340 /* 1341 * Calculate data length and get a mbuf for UDP, IP, and possible 1342 * link-layer headers. Immediate slide the data pointer back forward 1343 * since we won't use that space at this layer. 1344 */ 1345 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1346 if (m == NULL) { 1347 error = ENOBUFS; 1348 goto release; 1349 } 1350 m->m_data += max_linkhdr; 1351 m->m_len -= max_linkhdr; 1352 m->m_pkthdr.len -= max_linkhdr; 1353 1354 /* 1355 * Fill in mbuf with extended UDP header and addresses and length put 1356 * into network format. 1357 */ 1358 ui = mtod(m, struct udpiphdr *); 1359 /* 1360 * Filling only those fields of udpiphdr that participate in the 1361 * checksum calculation. The rest must be zeroed and will be filled 1362 * later. 1363 */ 1364 bzero(ui->ui_x1, sizeof(ui->ui_x1)); 1365 ui->ui_pr = pr; 1366 ui->ui_src = laddr; 1367 ui->ui_dst = faddr; 1368 ui->ui_sport = lport; 1369 ui->ui_dport = fport; 1370 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1371 if (pr == IPPROTO_UDPLITE) { 1372 struct udpcb *up; 1373 uint16_t plen; 1374 1375 up = intoudpcb(inp); 1376 cscov = up->u_txcslen; 1377 plen = (u_short)len + sizeof(struct udphdr); 1378 if (cscov >= plen) 1379 cscov = 0; 1380 ui->ui_len = htons(plen); 1381 ui->ui_ulen = htons(cscov); 1382 /* 1383 * For UDP-Lite, checksum coverage length of zero means 1384 * the entire UDPLite packet is covered by the checksum. 1385 */ 1386 cscov_partial = (cscov == 0) ? 0 : 1; 1387 } 1388 1389 if (inp->inp_socket->so_options & SO_DONTROUTE) 1390 ipflags |= IP_ROUTETOIF; 1391 if (inp->inp_socket->so_options & SO_BROADCAST) 1392 ipflags |= IP_ALLOWBROADCAST; 1393 if (inp->inp_flags & INP_ONESBCAST) 1394 ipflags |= IP_SENDONES; 1395 1396 #ifdef MAC 1397 mac_inpcb_create_mbuf(inp, m); 1398 #endif 1399 1400 /* 1401 * Set up checksum and output datagram. 1402 */ 1403 ui->ui_sum = 0; 1404 if (pr == IPPROTO_UDPLITE) { 1405 if (inp->inp_flags & INP_ONESBCAST) 1406 faddr.s_addr = INADDR_BROADCAST; 1407 if (cscov_partial) { 1408 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1409 ui->ui_sum = 0xffff; 1410 } else { 1411 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1412 ui->ui_sum = 0xffff; 1413 } 1414 } else if (V_udp_cksum) { 1415 if (inp->inp_flags & INP_ONESBCAST) 1416 faddr.s_addr = INADDR_BROADCAST; 1417 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1418 htons((u_short)len + sizeof(struct udphdr) + pr)); 1419 m->m_pkthdr.csum_flags = CSUM_UDP; 1420 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1421 } 1422 /* 1423 * After finishing the checksum computation, fill the remaining fields 1424 * of udpiphdr. 1425 */ 1426 ((struct ip *)ui)->ip_v = IPVERSION; 1427 ((struct ip *)ui)->ip_tos = tos; 1428 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1429 if (inp->inp_flags & INP_DONTFRAG) 1430 ((struct ip *)ui)->ip_off |= htons(IP_DF); 1431 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; 1432 UDPSTAT_INC(udps_opackets); 1433 1434 /* 1435 * Setup flowid / RSS information for outbound socket. 1436 * 1437 * Once the UDP code decides to set a flowid some other way, 1438 * this allows the flowid to be overridden by userland. 1439 */ 1440 if (flowtype != M_HASHTYPE_NONE) { 1441 m->m_pkthdr.flowid = flowid; 1442 M_HASHTYPE_SET(m, flowtype); 1443 } 1444 #if defined(ROUTE_MPATH) || defined(RSS) 1445 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1446 uint32_t hash_val, hash_type; 1447 1448 hash_val = fib4_calc_packet_hash(laddr, faddr, 1449 lport, fport, pr, &hash_type); 1450 m->m_pkthdr.flowid = hash_val; 1451 M_HASHTYPE_SET(m, hash_type); 1452 } 1453 1454 /* 1455 * Don't override with the inp cached flowid value. 1456 * 1457 * Depending upon the kind of send being done, the inp 1458 * flowid/flowtype values may actually not be appropriate 1459 * for this particular socket send. 1460 * 1461 * We should either leave the flowid at zero (which is what is 1462 * currently done) or set it to some software generated 1463 * hash value based on the packet contents. 1464 */ 1465 ipflags |= IP_NODEFAULTFLOWID; 1466 #endif /* RSS */ 1467 1468 if (pr == IPPROTO_UDPLITE) 1469 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1470 else 1471 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1472 error = ip_output(m, inp->inp_options, 1473 use_cached_route ? &inp->inp_route : NULL, ipflags, 1474 inp->inp_moptions, inp); 1475 INP_UNLOCK(inp); 1476 NET_EPOCH_EXIT(et); 1477 return (error); 1478 1479 release: 1480 INP_UNLOCK(inp); 1481 NET_EPOCH_EXIT(et); 1482 m_freem(m); 1483 return (error); 1484 } 1485 1486 void 1487 udp_abort(struct socket *so) 1488 { 1489 struct inpcb *inp; 1490 struct inpcbinfo *pcbinfo; 1491 1492 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1493 inp = sotoinpcb(so); 1494 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1495 INP_WLOCK(inp); 1496 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1497 INP_HASH_WLOCK(pcbinfo); 1498 in_pcbdisconnect(inp); 1499 INP_HASH_WUNLOCK(pcbinfo); 1500 soisdisconnected(so); 1501 } 1502 INP_WUNLOCK(inp); 1503 } 1504 1505 static int 1506 udp_attach(struct socket *so, int proto, struct thread *td) 1507 { 1508 static uint32_t udp_flowid; 1509 struct inpcbinfo *pcbinfo; 1510 struct inpcb *inp; 1511 struct udpcb *up; 1512 int error; 1513 1514 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1515 inp = sotoinpcb(so); 1516 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1517 error = soreserve(so, udp_sendspace, udp_recvspace); 1518 if (error) 1519 return (error); 1520 error = in_pcballoc(so, pcbinfo); 1521 if (error) 1522 return (error); 1523 1524 inp = sotoinpcb(so); 1525 inp->inp_ip_ttl = V_ip_defttl; 1526 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1527 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1528 up = intoudpcb(inp); 1529 bzero(&up->u_start_zero, u_zero_size); 1530 INP_WUNLOCK(inp); 1531 1532 return (0); 1533 } 1534 #endif /* INET */ 1535 1536 int 1537 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1538 { 1539 struct inpcb *inp; 1540 struct udpcb *up; 1541 1542 KASSERT(so->so_type == SOCK_DGRAM, 1543 ("udp_set_kernel_tunneling: !dgram")); 1544 inp = sotoinpcb(so); 1545 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1546 INP_WLOCK(inp); 1547 up = intoudpcb(inp); 1548 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1549 (up->u_icmp_func != NULL))) { 1550 INP_WUNLOCK(inp); 1551 return (EBUSY); 1552 } 1553 up->u_tun_func = f; 1554 up->u_icmp_func = i; 1555 up->u_tun_ctx = ctx; 1556 INP_WUNLOCK(inp); 1557 return (0); 1558 } 1559 1560 #ifdef INET 1561 static int 1562 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1563 { 1564 struct inpcb *inp; 1565 struct inpcbinfo *pcbinfo; 1566 struct sockaddr_in *sinp; 1567 int error; 1568 1569 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1570 inp = sotoinpcb(so); 1571 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1572 1573 sinp = (struct sockaddr_in *)nam; 1574 if (nam->sa_family != AF_INET) { 1575 /* 1576 * Preserve compatibility with old programs. 1577 */ 1578 if (nam->sa_family != AF_UNSPEC || 1579 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1580 sinp->sin_addr.s_addr != INADDR_ANY) 1581 return (EAFNOSUPPORT); 1582 nam->sa_family = AF_INET; 1583 } 1584 if (nam->sa_len != sizeof(struct sockaddr_in)) 1585 return (EINVAL); 1586 1587 INP_WLOCK(inp); 1588 INP_HASH_WLOCK(pcbinfo); 1589 error = in_pcbbind(inp, sinp, V_udp_bind_all_fibs ? 0 : INPBIND_FIB, 1590 td->td_ucred); 1591 INP_HASH_WUNLOCK(pcbinfo); 1592 INP_WUNLOCK(inp); 1593 return (error); 1594 } 1595 1596 static void 1597 udp_close(struct socket *so) 1598 { 1599 struct inpcb *inp; 1600 struct inpcbinfo *pcbinfo; 1601 1602 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1603 inp = sotoinpcb(so); 1604 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1605 INP_WLOCK(inp); 1606 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1607 INP_HASH_WLOCK(pcbinfo); 1608 in_pcbdisconnect(inp); 1609 INP_HASH_WUNLOCK(pcbinfo); 1610 soisdisconnected(so); 1611 } 1612 INP_WUNLOCK(inp); 1613 } 1614 1615 static int 1616 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1617 { 1618 struct epoch_tracker et; 1619 struct inpcb *inp; 1620 struct inpcbinfo *pcbinfo; 1621 struct sockaddr_in *sin; 1622 int error; 1623 1624 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1625 inp = sotoinpcb(so); 1626 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1627 1628 sin = (struct sockaddr_in *)nam; 1629 if (sin->sin_family != AF_INET) 1630 return (EAFNOSUPPORT); 1631 if (sin->sin_len != sizeof(*sin)) 1632 return (EINVAL); 1633 1634 INP_WLOCK(inp); 1635 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1636 INP_WUNLOCK(inp); 1637 return (EISCONN); 1638 } 1639 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1640 if (error != 0) { 1641 INP_WUNLOCK(inp); 1642 return (error); 1643 } 1644 NET_EPOCH_ENTER(et); 1645 INP_HASH_WLOCK(pcbinfo); 1646 error = in_pcbconnect(inp, sin, td->td_ucred); 1647 INP_HASH_WUNLOCK(pcbinfo); 1648 NET_EPOCH_EXIT(et); 1649 if (error == 0) 1650 soisconnected(so); 1651 INP_WUNLOCK(inp); 1652 return (error); 1653 } 1654 1655 static void 1656 udp_detach(struct socket *so) 1657 { 1658 struct inpcb *inp; 1659 1660 inp = sotoinpcb(so); 1661 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1662 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1663 ("udp_detach: not disconnected")); 1664 INP_WLOCK(inp); 1665 in_pcbfree(inp); 1666 } 1667 1668 int 1669 udp_disconnect(struct socket *so) 1670 { 1671 struct inpcb *inp; 1672 struct inpcbinfo *pcbinfo; 1673 1674 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1675 inp = sotoinpcb(so); 1676 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1677 INP_WLOCK(inp); 1678 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1679 INP_WUNLOCK(inp); 1680 return (ENOTCONN); 1681 } 1682 INP_HASH_WLOCK(pcbinfo); 1683 in_pcbdisconnect(inp); 1684 INP_HASH_WUNLOCK(pcbinfo); 1685 SOCK_LOCK(so); 1686 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1687 SOCK_UNLOCK(so); 1688 INP_WUNLOCK(inp); 1689 return (0); 1690 } 1691 #endif /* INET */ 1692 1693 int 1694 udp_shutdown(struct socket *so, enum shutdown_how how) 1695 { 1696 int error; 1697 1698 SOCK_LOCK(so); 1699 if (!(so->so_state & SS_ISCONNECTED)) 1700 /* 1701 * POSIX mandates us to just return ENOTCONN when shutdown(2) is 1702 * invoked on a datagram sockets, however historically we would 1703 * actually tear socket down. This is known to be leveraged by 1704 * some applications to unblock process waiting in recv(2) by 1705 * other process that it shares that socket with. Try to meet 1706 * both backward-compatibility and POSIX requirements by forcing 1707 * ENOTCONN but still flushing buffers and performing wakeup(9). 1708 * 1709 * XXXGL: it remains unknown what applications expect this 1710 * behavior and is this isolated to unix/dgram or inet/dgram or 1711 * both. See: D10351, D3039. 1712 */ 1713 error = ENOTCONN; 1714 else 1715 error = 0; 1716 SOCK_UNLOCK(so); 1717 1718 switch (how) { 1719 case SHUT_RD: 1720 sorflush(so); 1721 break; 1722 case SHUT_RDWR: 1723 sorflush(so); 1724 /* FALLTHROUGH */ 1725 case SHUT_WR: 1726 socantsendmore(so); 1727 } 1728 1729 return (error); 1730 } 1731 1732 #ifdef INET 1733 #define UDP_PROTOSW \ 1734 .pr_type = SOCK_DGRAM, \ 1735 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1736 .pr_ctloutput = udp_ctloutput, \ 1737 .pr_abort = udp_abort, \ 1738 .pr_attach = udp_attach, \ 1739 .pr_bind = udp_bind, \ 1740 .pr_connect = udp_connect, \ 1741 .pr_control = in_control, \ 1742 .pr_detach = udp_detach, \ 1743 .pr_disconnect = udp_disconnect, \ 1744 .pr_peeraddr = in_getpeeraddr, \ 1745 .pr_send = udp_send, \ 1746 .pr_soreceive = soreceive_dgram, \ 1747 .pr_sosend = sosend_dgram, \ 1748 .pr_shutdown = udp_shutdown, \ 1749 .pr_sockaddr = in_getsockaddr, \ 1750 .pr_sosetlabel = in_pcbsosetlabel, \ 1751 .pr_close = udp_close 1752 1753 struct protosw udp_protosw = { 1754 .pr_protocol = IPPROTO_UDP, 1755 UDP_PROTOSW 1756 }; 1757 1758 struct protosw udplite_protosw = { 1759 .pr_protocol = IPPROTO_UDPLITE, 1760 UDP_PROTOSW 1761 }; 1762 1763 static void 1764 udp_init(void *arg __unused) 1765 { 1766 1767 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1768 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1769 } 1770 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1771 #endif /* INET */ 1772