1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ipfw.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ipsec.h" 46 47 #include <sys/param.h> 48 #include <sys/domain.h> 49 #include <sys/eventhandler.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/priv.h> 56 #include <sys/proc.h> 57 #include <sys/protosw.h> 58 #include <sys/sdt.h> 59 #include <sys/signalvar.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sx.h> 63 #include <sys/sysctl.h> 64 #include <sys/syslog.h> 65 #include <sys/systm.h> 66 67 #include <vm/uma.h> 68 69 #include <net/if.h> 70 #include <net/if_var.h> 71 #include <net/route.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_kdtrace.h> 75 #include <netinet/in_pcb.h> 76 #include <netinet/in_systm.h> 77 #include <netinet/in_var.h> 78 #include <netinet/ip.h> 79 #ifdef INET6 80 #include <netinet/ip6.h> 81 #endif 82 #include <netinet/ip_icmp.h> 83 #include <netinet/icmp_var.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/ip_options.h> 86 #ifdef INET6 87 #include <netinet6/ip6_var.h> 88 #endif 89 #include <netinet/udp.h> 90 #include <netinet/udp_var.h> 91 #include <netinet/udplite.h> 92 93 #ifdef IPSEC 94 #include <netipsec/ipsec.h> 95 #include <netipsec/esp.h> 96 #endif 97 98 #include <machine/in_cksum.h> 99 100 #include <security/mac/mac_framework.h> 101 102 /* 103 * UDP and UDP-Lite protocols implementation. 104 * Per RFC 768, August, 1980. 105 * Per RFC 3828, July, 2004. 106 */ 107 108 /* 109 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 110 * removes the only data integrity mechanism for packets and malformed 111 * packets that would otherwise be discarded due to bad checksums, and may 112 * cause problems (especially for NFS data blocks). 113 */ 114 VNET_DEFINE(int, udp_cksum) = 1; 115 SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, 116 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 117 118 int udp_log_in_vain = 0; 119 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 120 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 121 122 VNET_DEFINE(int, udp_blackhole) = 0; 123 SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW, 124 &VNET_NAME(udp_blackhole), 0, 125 "Do not send port unreachables for refused connects"); 126 127 u_long udp_sendspace = 9216; /* really max datagram size */ 128 /* 40 1K datagrams */ 129 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 130 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 131 132 u_long udp_recvspace = 40 * (1024 + 133 #ifdef INET6 134 sizeof(struct sockaddr_in6) 135 #else 136 sizeof(struct sockaddr_in) 137 #endif 138 ); 139 140 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 141 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 142 143 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 144 VNET_DEFINE(struct inpcbinfo, udbinfo); 145 VNET_DEFINE(struct inpcbhead, ulitecb); 146 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 147 static VNET_DEFINE(uma_zone_t, udpcb_zone); 148 #define V_udpcb_zone VNET(udpcb_zone) 149 150 #ifndef UDBHASHSIZE 151 #define UDBHASHSIZE 128 152 #endif 153 154 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 155 VNET_PCPUSTAT_SYSINIT(udpstat); 156 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 157 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 158 159 #ifdef VIMAGE 160 VNET_PCPUSTAT_SYSUNINIT(udpstat); 161 #endif /* VIMAGE */ 162 #ifdef INET 163 static void udp_detach(struct socket *so); 164 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 165 struct mbuf *, struct thread *); 166 #endif 167 168 #ifdef IPSEC 169 #ifdef IPSEC_NAT_T 170 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 171 #ifdef INET 172 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 173 #endif 174 #endif /* IPSEC_NAT_T */ 175 #endif /* IPSEC */ 176 177 static void 178 udp_zone_change(void *tag) 179 { 180 181 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 182 uma_zone_set_max(V_udpcb_zone, maxsockets); 183 } 184 185 static int 186 udp_inpcb_init(void *mem, int size, int flags) 187 { 188 struct inpcb *inp; 189 190 inp = mem; 191 INP_LOCK_INIT(inp, "inp", "udpinp"); 192 return (0); 193 } 194 195 static int 196 udplite_inpcb_init(void *mem, int size, int flags) 197 { 198 struct inpcb *inp; 199 200 inp = mem; 201 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 202 return (0); 203 } 204 205 void 206 udp_init(void) 207 { 208 209 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 210 "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE, 211 IPI_HASHFIELDS_2TUPLE); 212 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 214 uma_zone_set_max(V_udpcb_zone, maxsockets); 215 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 216 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 217 EVENTHANDLER_PRI_ANY); 218 } 219 220 void 221 udplite_init(void) 222 { 223 224 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 225 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 226 UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE); 227 } 228 229 /* 230 * Kernel module interface for updating udpstat. The argument is an index 231 * into udpstat treated as an array of u_long. While this encodes the 232 * general layout of udpstat into the caller, it doesn't encode its location, 233 * so that future changes to add, for example, per-CPU stats support won't 234 * cause binary compatibility problems for kernel modules. 235 */ 236 void 237 kmod_udpstat_inc(int statnum) 238 { 239 240 counter_u64_add(VNET(udpstat)[statnum], 1); 241 } 242 243 int 244 udp_newudpcb(struct inpcb *inp) 245 { 246 struct udpcb *up; 247 248 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 249 if (up == NULL) 250 return (ENOBUFS); 251 inp->inp_ppcb = up; 252 return (0); 253 } 254 255 void 256 udp_discardcb(struct udpcb *up) 257 { 258 259 uma_zfree(V_udpcb_zone, up); 260 } 261 262 #ifdef VIMAGE 263 void 264 udp_destroy(void) 265 { 266 267 in_pcbinfo_destroy(&V_udbinfo); 268 uma_zdestroy(V_udpcb_zone); 269 } 270 271 void 272 udplite_destroy(void) 273 { 274 275 in_pcbinfo_destroy(&V_ulitecbinfo); 276 } 277 #endif 278 279 #ifdef INET 280 /* 281 * Subroutine of udp_input(), which appends the provided mbuf chain to the 282 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 283 * contains the source address. If the socket ends up being an IPv6 socket, 284 * udp_append() will convert to a sockaddr_in6 before passing the address 285 * into the socket code. 286 */ 287 static void 288 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 289 struct sockaddr_in *udp_in) 290 { 291 struct sockaddr *append_sa; 292 struct socket *so; 293 struct mbuf *opts = 0; 294 #ifdef INET6 295 struct sockaddr_in6 udp_in6; 296 #endif 297 struct udpcb *up; 298 299 INP_LOCK_ASSERT(inp); 300 301 /* 302 * Engage the tunneling protocol. 303 */ 304 up = intoudpcb(inp); 305 if (up->u_tun_func != NULL) { 306 (*up->u_tun_func)(n, off, inp); 307 return; 308 } 309 310 if (n == NULL) 311 return; 312 313 off += sizeof(struct udphdr); 314 315 #ifdef IPSEC 316 /* Check AH/ESP integrity. */ 317 if (ipsec4_in_reject(n, inp)) { 318 m_freem(n); 319 IPSECSTAT_INC(ips_in_polvio); 320 return; 321 } 322 #ifdef IPSEC_NAT_T 323 up = intoudpcb(inp); 324 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 325 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 326 n = udp4_espdecap(inp, n, off); 327 if (n == NULL) /* Consumed. */ 328 return; 329 } 330 #endif /* IPSEC_NAT_T */ 331 #endif /* IPSEC */ 332 #ifdef MAC 333 if (mac_inpcb_check_deliver(inp, n) != 0) { 334 m_freem(n); 335 return; 336 } 337 #endif /* MAC */ 338 if (inp->inp_flags & INP_CONTROLOPTS || 339 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 340 #ifdef INET6 341 if (inp->inp_vflag & INP_IPV6) 342 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 343 else 344 #endif /* INET6 */ 345 ip_savecontrol(inp, &opts, ip, n); 346 } 347 #ifdef INET6 348 if (inp->inp_vflag & INP_IPV6) { 349 bzero(&udp_in6, sizeof(udp_in6)); 350 udp_in6.sin6_len = sizeof(udp_in6); 351 udp_in6.sin6_family = AF_INET6; 352 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 353 append_sa = (struct sockaddr *)&udp_in6; 354 } else 355 #endif /* INET6 */ 356 append_sa = (struct sockaddr *)udp_in; 357 m_adj(n, off); 358 359 so = inp->inp_socket; 360 SOCKBUF_LOCK(&so->so_rcv); 361 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 362 SOCKBUF_UNLOCK(&so->so_rcv); 363 m_freem(n); 364 if (opts) 365 m_freem(opts); 366 UDPSTAT_INC(udps_fullsock); 367 } else 368 sorwakeup_locked(so); 369 } 370 371 void 372 udp_input(struct mbuf *m, int off) 373 { 374 int iphlen = off; 375 struct ip *ip; 376 struct udphdr *uh; 377 struct ifnet *ifp; 378 struct inpcb *inp; 379 uint16_t len, ip_len; 380 struct inpcbinfo *pcbinfo; 381 struct ip save_ip; 382 struct sockaddr_in udp_in; 383 struct m_tag *fwd_tag; 384 int cscov_partial; 385 uint8_t pr; 386 387 ifp = m->m_pkthdr.rcvif; 388 UDPSTAT_INC(udps_ipackets); 389 390 /* 391 * Strip IP options, if any; should skip this, make available to 392 * user, and use on returned packets, but we don't yet have a way to 393 * check the checksum with options still present. 394 */ 395 if (iphlen > sizeof (struct ip)) { 396 ip_stripoptions(m); 397 iphlen = sizeof(struct ip); 398 } 399 400 /* 401 * Get IP and UDP header together in first mbuf. 402 */ 403 ip = mtod(m, struct ip *); 404 if (m->m_len < iphlen + sizeof(struct udphdr)) { 405 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 406 UDPSTAT_INC(udps_hdrops); 407 return; 408 } 409 ip = mtod(m, struct ip *); 410 } 411 uh = (struct udphdr *)((caddr_t)ip + iphlen); 412 pr = ip->ip_p; 413 cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0; 414 415 /* 416 * Destination port of 0 is illegal, based on RFC768. 417 */ 418 if (uh->uh_dport == 0) 419 goto badunlocked; 420 421 /* 422 * Construct sockaddr format source address. Stuff source address 423 * and datagram in user buffer. 424 */ 425 bzero(&udp_in, sizeof(udp_in)); 426 udp_in.sin_len = sizeof(udp_in); 427 udp_in.sin_family = AF_INET; 428 udp_in.sin_port = uh->uh_sport; 429 udp_in.sin_addr = ip->ip_src; 430 431 /* 432 * Make mbuf data length reflect UDP length. If not enough data to 433 * reflect UDP length, drop. 434 */ 435 len = ntohs((u_short)uh->uh_ulen); 436 ip_len = ntohs(ip->ip_len) - iphlen; 437 if (pr == IPPROTO_UDPLITE && len == 0) { 438 /* Zero means checksum over the complete packet. */ 439 len = ip_len; 440 cscov_partial = 0; 441 } 442 if (ip_len != len) { 443 if (len > ip_len || len < sizeof(struct udphdr)) { 444 UDPSTAT_INC(udps_badlen); 445 goto badunlocked; 446 } 447 if (pr == IPPROTO_UDP) 448 m_adj(m, len - ip_len); 449 } 450 451 /* 452 * Save a copy of the IP header in case we want restore it for 453 * sending an ICMP error message in response. 454 */ 455 if (!V_udp_blackhole) 456 save_ip = *ip; 457 else 458 memset(&save_ip, 0, sizeof(save_ip)); 459 460 /* 461 * Checksum extended UDP header and data. 462 */ 463 if (uh->uh_sum) { 464 u_short uh_sum; 465 466 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 467 !cscov_partial) { 468 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 469 uh_sum = m->m_pkthdr.csum_data; 470 else 471 uh_sum = in_pseudo(ip->ip_src.s_addr, 472 ip->ip_dst.s_addr, htonl((u_short)len + 473 m->m_pkthdr.csum_data + pr)); 474 uh_sum ^= 0xffff; 475 } else { 476 char b[9]; 477 478 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 479 bzero(((struct ipovly *)ip)->ih_x1, 9); 480 ((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ? 481 uh->uh_ulen : htons(ip_len); 482 uh_sum = in_cksum(m, len + sizeof (struct ip)); 483 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 484 } 485 if (uh_sum) { 486 UDPSTAT_INC(udps_badsum); 487 m_freem(m); 488 return; 489 } 490 } else 491 UDPSTAT_INC(udps_nosum); 492 493 pcbinfo = get_inpcbinfo(pr); 494 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 495 in_broadcast(ip->ip_dst, ifp)) { 496 struct inpcb *last; 497 struct inpcbhead *pcblist; 498 struct ip_moptions *imo; 499 500 INP_INFO_RLOCK(pcbinfo); 501 pcblist = get_pcblist(pr); 502 last = NULL; 503 LIST_FOREACH(inp, pcblist, inp_list) { 504 if (inp->inp_lport != uh->uh_dport) 505 continue; 506 #ifdef INET6 507 if ((inp->inp_vflag & INP_IPV4) == 0) 508 continue; 509 #endif 510 if (inp->inp_laddr.s_addr != INADDR_ANY && 511 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 512 continue; 513 if (inp->inp_faddr.s_addr != INADDR_ANY && 514 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 515 continue; 516 if (inp->inp_fport != 0 && 517 inp->inp_fport != uh->uh_sport) 518 continue; 519 520 INP_RLOCK(inp); 521 522 /* 523 * XXXRW: Because we weren't holding either the inpcb 524 * or the hash lock when we checked for a match 525 * before, we should probably recheck now that the 526 * inpcb lock is held. 527 */ 528 529 /* 530 * Handle socket delivery policy for any-source 531 * and source-specific multicast. [RFC3678] 532 */ 533 imo = inp->inp_moptions; 534 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 535 struct sockaddr_in group; 536 int blocked; 537 if (imo == NULL) { 538 INP_RUNLOCK(inp); 539 continue; 540 } 541 bzero(&group, sizeof(struct sockaddr_in)); 542 group.sin_len = sizeof(struct sockaddr_in); 543 group.sin_family = AF_INET; 544 group.sin_addr = ip->ip_dst; 545 546 blocked = imo_multi_filter(imo, ifp, 547 (struct sockaddr *)&group, 548 (struct sockaddr *)&udp_in); 549 if (blocked != MCAST_PASS) { 550 if (blocked == MCAST_NOTGMEMBER) 551 IPSTAT_INC(ips_notmember); 552 if (blocked == MCAST_NOTSMEMBER || 553 blocked == MCAST_MUTED) 554 UDPSTAT_INC(udps_filtermcast); 555 INP_RUNLOCK(inp); 556 continue; 557 } 558 } 559 if (last != NULL) { 560 struct mbuf *n; 561 562 n = m_copy(m, 0, M_COPYALL); 563 udp_append(last, ip, n, iphlen, &udp_in); 564 INP_RUNLOCK(last); 565 } 566 last = inp; 567 /* 568 * Don't look for additional matches if this one does 569 * not have either the SO_REUSEPORT or SO_REUSEADDR 570 * socket options set. This heuristic avoids 571 * searching through all pcbs in the common case of a 572 * non-shared port. It assumes that an application 573 * will never clear these options after setting them. 574 */ 575 if ((last->inp_socket->so_options & 576 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 577 break; 578 } 579 580 if (last == NULL) { 581 /* 582 * No matching pcb found; discard datagram. (No need 583 * to send an ICMP Port Unreachable for a broadcast 584 * or multicast datgram.) 585 */ 586 UDPSTAT_INC(udps_noportbcast); 587 if (inp) 588 INP_RUNLOCK(inp); 589 INP_INFO_RUNLOCK(pcbinfo); 590 goto badunlocked; 591 } 592 udp_append(last, ip, m, iphlen, &udp_in); 593 INP_RUNLOCK(last); 594 INP_INFO_RUNLOCK(pcbinfo); 595 return; 596 } 597 598 /* 599 * Locate pcb for datagram. 600 */ 601 602 /* 603 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 604 */ 605 if ((m->m_flags & M_IP_NEXTHOP) && 606 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 607 struct sockaddr_in *next_hop; 608 609 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 610 611 /* 612 * Transparently forwarded. Pretend to be the destination. 613 * Already got one like this? 614 */ 615 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 616 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 617 if (!inp) { 618 /* 619 * It's new. Try to find the ambushing socket. 620 * Because we've rewritten the destination address, 621 * any hardware-generated hash is ignored. 622 */ 623 inp = in_pcblookup(pcbinfo, ip->ip_src, 624 uh->uh_sport, next_hop->sin_addr, 625 next_hop->sin_port ? htons(next_hop->sin_port) : 626 uh->uh_dport, INPLOOKUP_WILDCARD | 627 INPLOOKUP_RLOCKPCB, ifp); 628 } 629 /* Remove the tag from the packet. We don't need it anymore. */ 630 m_tag_delete(m, fwd_tag); 631 m->m_flags &= ~M_IP_NEXTHOP; 632 } else 633 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 634 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 635 INPLOOKUP_RLOCKPCB, ifp, m); 636 if (inp == NULL) { 637 if (udp_log_in_vain) { 638 char buf[4*sizeof "123"]; 639 640 strcpy(buf, inet_ntoa(ip->ip_dst)); 641 log(LOG_INFO, 642 "Connection attempt to UDP %s:%d from %s:%d\n", 643 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 644 ntohs(uh->uh_sport)); 645 } 646 UDPSTAT_INC(udps_noport); 647 if (m->m_flags & (M_BCAST | M_MCAST)) { 648 UDPSTAT_INC(udps_noportbcast); 649 goto badunlocked; 650 } 651 if (V_udp_blackhole) 652 goto badunlocked; 653 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 654 goto badunlocked; 655 *ip = save_ip; 656 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 657 return; 658 } 659 660 /* 661 * Check the minimum TTL for socket. 662 */ 663 INP_RLOCK_ASSERT(inp); 664 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 665 INP_RUNLOCK(inp); 666 m_freem(m); 667 return; 668 } 669 if (cscov_partial) { 670 struct udpcb *up; 671 672 up = intoudpcb(inp); 673 if (up->u_rxcslen > len) { 674 INP_RUNLOCK(inp); 675 m_freem(m); 676 return; 677 } 678 } 679 680 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 681 udp_append(inp, ip, m, iphlen, &udp_in); 682 INP_RUNLOCK(inp); 683 return; 684 685 badunlocked: 686 m_freem(m); 687 } 688 #endif /* INET */ 689 690 /* 691 * Notify a udp user of an asynchronous error; just wake up so that they can 692 * collect error status. 693 */ 694 struct inpcb * 695 udp_notify(struct inpcb *inp, int errno) 696 { 697 698 /* 699 * While udp_ctlinput() always calls udp_notify() with a read lock 700 * when invoking it directly, in_pcbnotifyall() currently uses write 701 * locks due to sharing code with TCP. For now, accept either a read 702 * or a write lock, but a read lock is sufficient. 703 */ 704 INP_LOCK_ASSERT(inp); 705 706 inp->inp_socket->so_error = errno; 707 sorwakeup(inp->inp_socket); 708 sowwakeup(inp->inp_socket); 709 return (inp); 710 } 711 712 #ifdef INET 713 static void 714 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 715 struct inpcbinfo *pcbinfo) 716 { 717 struct ip *ip = vip; 718 struct udphdr *uh; 719 struct in_addr faddr; 720 struct inpcb *inp; 721 722 faddr = ((struct sockaddr_in *)sa)->sin_addr; 723 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 724 return; 725 726 /* 727 * Redirects don't need to be handled up here. 728 */ 729 if (PRC_IS_REDIRECT(cmd)) 730 return; 731 732 /* 733 * Hostdead is ugly because it goes linearly through all PCBs. 734 * 735 * XXX: We never get this from ICMP, otherwise it makes an excellent 736 * DoS attack on machines with many connections. 737 */ 738 if (cmd == PRC_HOSTDEAD) 739 ip = NULL; 740 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 741 return; 742 if (ip != NULL) { 743 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 744 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 745 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 746 if (inp != NULL) { 747 INP_RLOCK_ASSERT(inp); 748 if (inp->inp_socket != NULL) { 749 udp_notify(inp, inetctlerrmap[cmd]); 750 } 751 INP_RUNLOCK(inp); 752 } 753 } else 754 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 755 udp_notify); 756 } 757 void 758 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 759 { 760 761 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 762 } 763 764 void 765 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 766 { 767 768 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 769 } 770 #endif /* INET */ 771 772 static int 773 udp_pcblist(SYSCTL_HANDLER_ARGS) 774 { 775 int error, i, n; 776 struct inpcb *inp, **inp_list; 777 inp_gen_t gencnt; 778 struct xinpgen xig; 779 780 /* 781 * The process of preparing the PCB list is too time-consuming and 782 * resource-intensive to repeat twice on every request. 783 */ 784 if (req->oldptr == 0) { 785 n = V_udbinfo.ipi_count; 786 n += imax(n / 8, 10); 787 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 788 return (0); 789 } 790 791 if (req->newptr != 0) 792 return (EPERM); 793 794 /* 795 * OK, now we're committed to doing something. 796 */ 797 INP_INFO_RLOCK(&V_udbinfo); 798 gencnt = V_udbinfo.ipi_gencnt; 799 n = V_udbinfo.ipi_count; 800 INP_INFO_RUNLOCK(&V_udbinfo); 801 802 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 803 + n * sizeof(struct xinpcb)); 804 if (error != 0) 805 return (error); 806 807 xig.xig_len = sizeof xig; 808 xig.xig_count = n; 809 xig.xig_gen = gencnt; 810 xig.xig_sogen = so_gencnt; 811 error = SYSCTL_OUT(req, &xig, sizeof xig); 812 if (error) 813 return (error); 814 815 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 816 if (inp_list == 0) 817 return (ENOMEM); 818 819 INP_INFO_RLOCK(&V_udbinfo); 820 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 821 inp = LIST_NEXT(inp, inp_list)) { 822 INP_WLOCK(inp); 823 if (inp->inp_gencnt <= gencnt && 824 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 825 in_pcbref(inp); 826 inp_list[i++] = inp; 827 } 828 INP_WUNLOCK(inp); 829 } 830 INP_INFO_RUNLOCK(&V_udbinfo); 831 n = i; 832 833 error = 0; 834 for (i = 0; i < n; i++) { 835 inp = inp_list[i]; 836 INP_RLOCK(inp); 837 if (inp->inp_gencnt <= gencnt) { 838 struct xinpcb xi; 839 840 bzero(&xi, sizeof(xi)); 841 xi.xi_len = sizeof xi; 842 /* XXX should avoid extra copy */ 843 bcopy(inp, &xi.xi_inp, sizeof *inp); 844 if (inp->inp_socket) 845 sotoxsocket(inp->inp_socket, &xi.xi_socket); 846 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 847 INP_RUNLOCK(inp); 848 error = SYSCTL_OUT(req, &xi, sizeof xi); 849 } else 850 INP_RUNLOCK(inp); 851 } 852 INP_INFO_WLOCK(&V_udbinfo); 853 for (i = 0; i < n; i++) { 854 inp = inp_list[i]; 855 INP_RLOCK(inp); 856 if (!in_pcbrele_rlocked(inp)) 857 INP_RUNLOCK(inp); 858 } 859 INP_INFO_WUNLOCK(&V_udbinfo); 860 861 if (!error) { 862 /* 863 * Give the user an updated idea of our state. If the 864 * generation differs from what we told her before, she knows 865 * that something happened while we were processing this 866 * request, and it might be necessary to retry. 867 */ 868 INP_INFO_RLOCK(&V_udbinfo); 869 xig.xig_gen = V_udbinfo.ipi_gencnt; 870 xig.xig_sogen = so_gencnt; 871 xig.xig_count = V_udbinfo.ipi_count; 872 INP_INFO_RUNLOCK(&V_udbinfo); 873 error = SYSCTL_OUT(req, &xig, sizeof xig); 874 } 875 free(inp_list, M_TEMP); 876 return (error); 877 } 878 879 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 880 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 881 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 882 883 #ifdef INET 884 static int 885 udp_getcred(SYSCTL_HANDLER_ARGS) 886 { 887 struct xucred xuc; 888 struct sockaddr_in addrs[2]; 889 struct inpcb *inp; 890 int error; 891 892 error = priv_check(req->td, PRIV_NETINET_GETCRED); 893 if (error) 894 return (error); 895 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 896 if (error) 897 return (error); 898 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 899 addrs[0].sin_addr, addrs[0].sin_port, 900 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 901 if (inp != NULL) { 902 INP_RLOCK_ASSERT(inp); 903 if (inp->inp_socket == NULL) 904 error = ENOENT; 905 if (error == 0) 906 error = cr_canseeinpcb(req->td->td_ucred, inp); 907 if (error == 0) 908 cru2x(inp->inp_cred, &xuc); 909 INP_RUNLOCK(inp); 910 } else 911 error = ENOENT; 912 if (error == 0) 913 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 914 return (error); 915 } 916 917 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 918 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 919 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 920 #endif /* INET */ 921 922 int 923 udp_ctloutput(struct socket *so, struct sockopt *sopt) 924 { 925 struct inpcb *inp; 926 struct udpcb *up; 927 int isudplite, error, optval; 928 929 error = 0; 930 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 931 inp = sotoinpcb(so); 932 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 933 INP_WLOCK(inp); 934 if (sopt->sopt_level != so->so_proto->pr_protocol) { 935 #ifdef INET6 936 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 937 INP_WUNLOCK(inp); 938 error = ip6_ctloutput(so, sopt); 939 } 940 #endif 941 #if defined(INET) && defined(INET6) 942 else 943 #endif 944 #ifdef INET 945 { 946 INP_WUNLOCK(inp); 947 error = ip_ctloutput(so, sopt); 948 } 949 #endif 950 return (error); 951 } 952 953 switch (sopt->sopt_dir) { 954 case SOPT_SET: 955 switch (sopt->sopt_name) { 956 case UDP_ENCAP: 957 INP_WUNLOCK(inp); 958 error = sooptcopyin(sopt, &optval, sizeof optval, 959 sizeof optval); 960 if (error) 961 break; 962 inp = sotoinpcb(so); 963 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 964 INP_WLOCK(inp); 965 #ifdef IPSEC_NAT_T 966 up = intoudpcb(inp); 967 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 968 #endif 969 switch (optval) { 970 case 0: 971 /* Clear all UDP encap. */ 972 #ifdef IPSEC_NAT_T 973 up->u_flags &= ~UF_ESPINUDP_ALL; 974 #endif 975 break; 976 #ifdef IPSEC_NAT_T 977 case UDP_ENCAP_ESPINUDP: 978 case UDP_ENCAP_ESPINUDP_NON_IKE: 979 up->u_flags &= ~UF_ESPINUDP_ALL; 980 if (optval == UDP_ENCAP_ESPINUDP) 981 up->u_flags |= UF_ESPINUDP; 982 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 983 up->u_flags |= UF_ESPINUDP_NON_IKE; 984 break; 985 #endif 986 default: 987 error = EINVAL; 988 break; 989 } 990 INP_WUNLOCK(inp); 991 break; 992 case UDPLITE_SEND_CSCOV: 993 case UDPLITE_RECV_CSCOV: 994 if (!isudplite) { 995 INP_WUNLOCK(inp); 996 error = ENOPROTOOPT; 997 break; 998 } 999 INP_WUNLOCK(inp); 1000 error = sooptcopyin(sopt, &optval, sizeof(optval), 1001 sizeof(optval)); 1002 if (error != 0) 1003 break; 1004 inp = sotoinpcb(so); 1005 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1006 INP_WLOCK(inp); 1007 up = intoudpcb(inp); 1008 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1009 if (optval != 0 && optval < 8) { 1010 INP_WUNLOCK(inp); 1011 error = EINVAL; 1012 break; 1013 } 1014 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1015 up->u_txcslen = optval; 1016 else 1017 up->u_rxcslen = optval; 1018 INP_WUNLOCK(inp); 1019 break; 1020 default: 1021 INP_WUNLOCK(inp); 1022 error = ENOPROTOOPT; 1023 break; 1024 } 1025 break; 1026 case SOPT_GET: 1027 switch (sopt->sopt_name) { 1028 #ifdef IPSEC_NAT_T 1029 case UDP_ENCAP: 1030 up = intoudpcb(inp); 1031 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1032 optval = up->u_flags & UF_ESPINUDP_ALL; 1033 INP_WUNLOCK(inp); 1034 error = sooptcopyout(sopt, &optval, sizeof optval); 1035 break; 1036 #endif 1037 case UDPLITE_SEND_CSCOV: 1038 case UDPLITE_RECV_CSCOV: 1039 if (!isudplite) { 1040 INP_WUNLOCK(inp); 1041 error = ENOPROTOOPT; 1042 break; 1043 } 1044 up = intoudpcb(inp); 1045 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1046 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1047 optval = up->u_txcslen; 1048 else 1049 optval = up->u_rxcslen; 1050 INP_WUNLOCK(inp); 1051 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1052 break; 1053 default: 1054 INP_WUNLOCK(inp); 1055 error = ENOPROTOOPT; 1056 break; 1057 } 1058 break; 1059 } 1060 return (error); 1061 } 1062 1063 #ifdef INET 1064 #define UH_WLOCKED 2 1065 #define UH_RLOCKED 1 1066 #define UH_UNLOCKED 0 1067 static int 1068 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1069 struct mbuf *control, struct thread *td) 1070 { 1071 struct udpiphdr *ui; 1072 int len = m->m_pkthdr.len; 1073 struct in_addr faddr, laddr; 1074 struct cmsghdr *cm; 1075 struct inpcbinfo *pcbinfo; 1076 struct sockaddr_in *sin, src; 1077 int cscov_partial = 0; 1078 int error = 0; 1079 int ipflags; 1080 u_short fport, lport; 1081 int unlock_udbinfo; 1082 u_char tos; 1083 uint8_t pr; 1084 uint16_t cscov = 0; 1085 1086 /* 1087 * udp_output() may need to temporarily bind or connect the current 1088 * inpcb. As such, we don't know up front whether we will need the 1089 * pcbinfo lock or not. Do any work to decide what is needed up 1090 * front before acquiring any locks. 1091 */ 1092 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1093 if (control) 1094 m_freem(control); 1095 m_freem(m); 1096 return (EMSGSIZE); 1097 } 1098 1099 src.sin_family = 0; 1100 INP_RLOCK(inp); 1101 tos = inp->inp_ip_tos; 1102 if (control != NULL) { 1103 /* 1104 * XXX: Currently, we assume all the optional information is 1105 * stored in a single mbuf. 1106 */ 1107 if (control->m_next) { 1108 INP_RUNLOCK(inp); 1109 m_freem(control); 1110 m_freem(m); 1111 return (EINVAL); 1112 } 1113 for (; control->m_len > 0; 1114 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1115 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1116 cm = mtod(control, struct cmsghdr *); 1117 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1118 || cm->cmsg_len > control->m_len) { 1119 error = EINVAL; 1120 break; 1121 } 1122 if (cm->cmsg_level != IPPROTO_IP) 1123 continue; 1124 1125 switch (cm->cmsg_type) { 1126 case IP_SENDSRCADDR: 1127 if (cm->cmsg_len != 1128 CMSG_LEN(sizeof(struct in_addr))) { 1129 error = EINVAL; 1130 break; 1131 } 1132 bzero(&src, sizeof(src)); 1133 src.sin_family = AF_INET; 1134 src.sin_len = sizeof(src); 1135 src.sin_port = inp->inp_lport; 1136 src.sin_addr = 1137 *(struct in_addr *)CMSG_DATA(cm); 1138 break; 1139 1140 case IP_TOS: 1141 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1142 error = EINVAL; 1143 break; 1144 } 1145 tos = *(u_char *)CMSG_DATA(cm); 1146 break; 1147 1148 default: 1149 error = ENOPROTOOPT; 1150 break; 1151 } 1152 if (error) 1153 break; 1154 } 1155 m_freem(control); 1156 } 1157 if (error) { 1158 INP_RUNLOCK(inp); 1159 m_freem(m); 1160 return (error); 1161 } 1162 1163 /* 1164 * Depending on whether or not the application has bound or connected 1165 * the socket, we may have to do varying levels of work. The optimal 1166 * case is for a connected UDP socket, as a global lock isn't 1167 * required at all. 1168 * 1169 * In order to decide which we need, we require stability of the 1170 * inpcb binding, which we ensure by acquiring a read lock on the 1171 * inpcb. This doesn't strictly follow the lock order, so we play 1172 * the trylock and retry game; note that we may end up with more 1173 * conservative locks than required the second time around, so later 1174 * assertions have to accept that. Further analysis of the number of 1175 * misses under contention is required. 1176 * 1177 * XXXRW: Check that hash locking update here is correct. 1178 */ 1179 pr = inp->inp_socket->so_proto->pr_protocol; 1180 pcbinfo = get_inpcbinfo(pr); 1181 sin = (struct sockaddr_in *)addr; 1182 if (sin != NULL && 1183 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1184 INP_RUNLOCK(inp); 1185 INP_WLOCK(inp); 1186 INP_HASH_WLOCK(pcbinfo); 1187 unlock_udbinfo = UH_WLOCKED; 1188 } else if ((sin != NULL && ( 1189 (sin->sin_addr.s_addr == INADDR_ANY) || 1190 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1191 (inp->inp_laddr.s_addr == INADDR_ANY) || 1192 (inp->inp_lport == 0))) || 1193 (src.sin_family == AF_INET)) { 1194 INP_HASH_RLOCK(pcbinfo); 1195 unlock_udbinfo = UH_RLOCKED; 1196 } else 1197 unlock_udbinfo = UH_UNLOCKED; 1198 1199 /* 1200 * If the IP_SENDSRCADDR control message was specified, override the 1201 * source address for this datagram. Its use is invalidated if the 1202 * address thus specified is incomplete or clobbers other inpcbs. 1203 */ 1204 laddr = inp->inp_laddr; 1205 lport = inp->inp_lport; 1206 if (src.sin_family == AF_INET) { 1207 INP_HASH_LOCK_ASSERT(pcbinfo); 1208 if ((lport == 0) || 1209 (laddr.s_addr == INADDR_ANY && 1210 src.sin_addr.s_addr == INADDR_ANY)) { 1211 error = EINVAL; 1212 goto release; 1213 } 1214 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1215 &laddr.s_addr, &lport, td->td_ucred); 1216 if (error) 1217 goto release; 1218 } 1219 1220 /* 1221 * If a UDP socket has been connected, then a local address/port will 1222 * have been selected and bound. 1223 * 1224 * If a UDP socket has not been connected to, then an explicit 1225 * destination address must be used, in which case a local 1226 * address/port may not have been selected and bound. 1227 */ 1228 if (sin != NULL) { 1229 INP_LOCK_ASSERT(inp); 1230 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1231 error = EISCONN; 1232 goto release; 1233 } 1234 1235 /* 1236 * Jail may rewrite the destination address, so let it do 1237 * that before we use it. 1238 */ 1239 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1240 if (error) 1241 goto release; 1242 1243 /* 1244 * If a local address or port hasn't yet been selected, or if 1245 * the destination address needs to be rewritten due to using 1246 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1247 * to do the heavy lifting. Once a port is selected, we 1248 * commit the binding back to the socket; we also commit the 1249 * binding of the address if in jail. 1250 * 1251 * If we already have a valid binding and we're not 1252 * requesting a destination address rewrite, use a fast path. 1253 */ 1254 if (inp->inp_laddr.s_addr == INADDR_ANY || 1255 inp->inp_lport == 0 || 1256 sin->sin_addr.s_addr == INADDR_ANY || 1257 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1258 INP_HASH_LOCK_ASSERT(pcbinfo); 1259 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1260 &lport, &faddr.s_addr, &fport, NULL, 1261 td->td_ucred); 1262 if (error) 1263 goto release; 1264 1265 /* 1266 * XXXRW: Why not commit the port if the address is 1267 * !INADDR_ANY? 1268 */ 1269 /* Commit the local port if newly assigned. */ 1270 if (inp->inp_laddr.s_addr == INADDR_ANY && 1271 inp->inp_lport == 0) { 1272 INP_WLOCK_ASSERT(inp); 1273 INP_HASH_WLOCK_ASSERT(pcbinfo); 1274 /* 1275 * Remember addr if jailed, to prevent 1276 * rebinding. 1277 */ 1278 if (prison_flag(td->td_ucred, PR_IP4)) 1279 inp->inp_laddr = laddr; 1280 inp->inp_lport = lport; 1281 if (in_pcbinshash(inp) != 0) { 1282 inp->inp_lport = 0; 1283 error = EAGAIN; 1284 goto release; 1285 } 1286 inp->inp_flags |= INP_ANONPORT; 1287 } 1288 } else { 1289 faddr = sin->sin_addr; 1290 fport = sin->sin_port; 1291 } 1292 } else { 1293 INP_LOCK_ASSERT(inp); 1294 faddr = inp->inp_faddr; 1295 fport = inp->inp_fport; 1296 if (faddr.s_addr == INADDR_ANY) { 1297 error = ENOTCONN; 1298 goto release; 1299 } 1300 } 1301 1302 /* 1303 * Calculate data length and get a mbuf for UDP, IP, and possible 1304 * link-layer headers. Immediate slide the data pointer back forward 1305 * since we won't use that space at this layer. 1306 */ 1307 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1308 if (m == NULL) { 1309 error = ENOBUFS; 1310 goto release; 1311 } 1312 m->m_data += max_linkhdr; 1313 m->m_len -= max_linkhdr; 1314 m->m_pkthdr.len -= max_linkhdr; 1315 1316 /* 1317 * Fill in mbuf with extended UDP header and addresses and length put 1318 * into network format. 1319 */ 1320 ui = mtod(m, struct udpiphdr *); 1321 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1322 ui->ui_pr = pr; 1323 ui->ui_src = laddr; 1324 ui->ui_dst = faddr; 1325 ui->ui_sport = lport; 1326 ui->ui_dport = fport; 1327 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1328 if (pr == IPPROTO_UDPLITE) { 1329 struct udpcb *up; 1330 uint16_t plen; 1331 1332 up = intoudpcb(inp); 1333 cscov = up->u_txcslen; 1334 plen = (u_short)len + sizeof(struct udphdr); 1335 if (cscov >= plen) 1336 cscov = 0; 1337 ui->ui_len = htons(plen); 1338 ui->ui_ulen = htons(cscov); 1339 /* 1340 * For UDP-Lite, checksum coverage length of zero means 1341 * the entire UDPLite packet is covered by the checksum. 1342 */ 1343 cscov_partial = (cscov == 0) ? 0 : 1; 1344 } else 1345 ui->ui_v = IPVERSION << 4; 1346 1347 /* 1348 * Set the Don't Fragment bit in the IP header. 1349 */ 1350 if (inp->inp_flags & INP_DONTFRAG) { 1351 struct ip *ip; 1352 1353 ip = (struct ip *)&ui->ui_i; 1354 ip->ip_off |= htons(IP_DF); 1355 } 1356 1357 ipflags = 0; 1358 if (inp->inp_socket->so_options & SO_DONTROUTE) 1359 ipflags |= IP_ROUTETOIF; 1360 if (inp->inp_socket->so_options & SO_BROADCAST) 1361 ipflags |= IP_ALLOWBROADCAST; 1362 if (inp->inp_flags & INP_ONESBCAST) 1363 ipflags |= IP_SENDONES; 1364 1365 #ifdef MAC 1366 mac_inpcb_create_mbuf(inp, m); 1367 #endif 1368 1369 /* 1370 * Set up checksum and output datagram. 1371 */ 1372 ui->ui_sum = 0; 1373 if (pr == IPPROTO_UDPLITE) { 1374 if (inp->inp_flags & INP_ONESBCAST) 1375 faddr.s_addr = INADDR_BROADCAST; 1376 if (cscov_partial) { 1377 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1378 ui->ui_sum = 0xffff; 1379 } else { 1380 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1381 ui->ui_sum = 0xffff; 1382 } 1383 } else if (V_udp_cksum) { 1384 if (inp->inp_flags & INP_ONESBCAST) 1385 faddr.s_addr = INADDR_BROADCAST; 1386 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1387 htons((u_short)len + sizeof(struct udphdr) + pr)); 1388 m->m_pkthdr.csum_flags = CSUM_UDP; 1389 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1390 } 1391 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1392 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1393 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1394 UDPSTAT_INC(udps_opackets); 1395 1396 if (unlock_udbinfo == UH_WLOCKED) 1397 INP_HASH_WUNLOCK(pcbinfo); 1398 else if (unlock_udbinfo == UH_RLOCKED) 1399 INP_HASH_RUNLOCK(pcbinfo); 1400 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1401 error = ip_output(m, inp->inp_options, NULL, ipflags, 1402 inp->inp_moptions, inp); 1403 if (unlock_udbinfo == UH_WLOCKED) 1404 INP_WUNLOCK(inp); 1405 else 1406 INP_RUNLOCK(inp); 1407 return (error); 1408 1409 release: 1410 if (unlock_udbinfo == UH_WLOCKED) { 1411 INP_HASH_WUNLOCK(pcbinfo); 1412 INP_WUNLOCK(inp); 1413 } else if (unlock_udbinfo == UH_RLOCKED) { 1414 INP_HASH_RUNLOCK(pcbinfo); 1415 INP_RUNLOCK(inp); 1416 } else 1417 INP_RUNLOCK(inp); 1418 m_freem(m); 1419 return (error); 1420 } 1421 1422 1423 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1424 /* 1425 * Potentially decap ESP in UDP frame. Check for an ESP header 1426 * and optional marker; if present, strip the UDP header and 1427 * push the result through IPSec. 1428 * 1429 * Returns mbuf to be processed (potentially re-allocated) or 1430 * NULL if consumed and/or processed. 1431 */ 1432 static struct mbuf * 1433 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1434 { 1435 size_t minlen, payload, skip, iphlen; 1436 caddr_t data; 1437 struct udpcb *up; 1438 struct m_tag *tag; 1439 struct udphdr *udphdr; 1440 struct ip *ip; 1441 1442 INP_RLOCK_ASSERT(inp); 1443 1444 /* 1445 * Pull up data so the longest case is contiguous: 1446 * IP/UDP hdr + non ESP marker + ESP hdr. 1447 */ 1448 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1449 if (minlen > m->m_pkthdr.len) 1450 minlen = m->m_pkthdr.len; 1451 if ((m = m_pullup(m, minlen)) == NULL) { 1452 IPSECSTAT_INC(ips_in_inval); 1453 return (NULL); /* Bypass caller processing. */ 1454 } 1455 data = mtod(m, caddr_t); /* Points to ip header. */ 1456 payload = m->m_len - off; /* Size of payload. */ 1457 1458 if (payload == 1 && data[off] == '\xff') 1459 return (m); /* NB: keepalive packet, no decap. */ 1460 1461 up = intoudpcb(inp); 1462 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1463 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1464 ("u_flags 0x%x", up->u_flags)); 1465 1466 /* 1467 * Check that the payload is large enough to hold an 1468 * ESP header and compute the amount of data to remove. 1469 * 1470 * NB: the caller has already done a pullup for us. 1471 * XXX can we assume alignment and eliminate bcopys? 1472 */ 1473 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1474 /* 1475 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1476 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1477 * possible AH mode non-IKE marker+non-ESP marker 1478 * from draft-ietf-ipsec-udp-encaps-00.txt. 1479 */ 1480 uint64_t marker; 1481 1482 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1483 return (m); /* NB: no decap. */ 1484 bcopy(data + off, &marker, sizeof(uint64_t)); 1485 if (marker != 0) /* Non-IKE marker. */ 1486 return (m); /* NB: no decap. */ 1487 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1488 } else { 1489 uint32_t spi; 1490 1491 if (payload <= sizeof(struct esp)) { 1492 IPSECSTAT_INC(ips_in_inval); 1493 m_freem(m); 1494 return (NULL); /* Discard. */ 1495 } 1496 bcopy(data + off, &spi, sizeof(uint32_t)); 1497 if (spi == 0) /* Non-ESP marker. */ 1498 return (m); /* NB: no decap. */ 1499 skip = sizeof(struct udphdr); 1500 } 1501 1502 /* 1503 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1504 * the UDP ports. This is required if we want to select 1505 * the right SPD for multiple hosts behind same NAT. 1506 * 1507 * NB: ports are maintained in network byte order everywhere 1508 * in the NAT-T code. 1509 */ 1510 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1511 2 * sizeof(uint16_t), M_NOWAIT); 1512 if (tag == NULL) { 1513 IPSECSTAT_INC(ips_in_nomem); 1514 m_freem(m); 1515 return (NULL); /* Discard. */ 1516 } 1517 iphlen = off - sizeof(struct udphdr); 1518 udphdr = (struct udphdr *)(data + iphlen); 1519 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1520 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1521 m_tag_prepend(m, tag); 1522 1523 /* 1524 * Remove the UDP header (and possibly the non ESP marker) 1525 * IP header length is iphlen 1526 * Before: 1527 * <--- off ---> 1528 * +----+------+-----+ 1529 * | IP | UDP | ESP | 1530 * +----+------+-----+ 1531 * <-skip-> 1532 * After: 1533 * +----+-----+ 1534 * | IP | ESP | 1535 * +----+-----+ 1536 * <-skip-> 1537 */ 1538 ovbcopy(data, data + skip, iphlen); 1539 m_adj(m, skip); 1540 1541 ip = mtod(m, struct ip *); 1542 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1543 ip->ip_p = IPPROTO_ESP; 1544 1545 /* 1546 * We cannot yet update the cksums so clear any 1547 * h/w cksum flags as they are no longer valid. 1548 */ 1549 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1550 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1551 1552 (void) ipsec4_common_input(m, iphlen, ip->ip_p); 1553 return (NULL); /* NB: consumed, bypass processing. */ 1554 } 1555 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1556 1557 static void 1558 udp_abort(struct socket *so) 1559 { 1560 struct inpcb *inp; 1561 struct inpcbinfo *pcbinfo; 1562 1563 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1564 inp = sotoinpcb(so); 1565 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1566 INP_WLOCK(inp); 1567 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1568 INP_HASH_WLOCK(pcbinfo); 1569 in_pcbdisconnect(inp); 1570 inp->inp_laddr.s_addr = INADDR_ANY; 1571 INP_HASH_WUNLOCK(pcbinfo); 1572 soisdisconnected(so); 1573 } 1574 INP_WUNLOCK(inp); 1575 } 1576 1577 static int 1578 udp_attach(struct socket *so, int proto, struct thread *td) 1579 { 1580 struct inpcb *inp; 1581 struct inpcbinfo *pcbinfo; 1582 int error; 1583 1584 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1585 inp = sotoinpcb(so); 1586 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1587 error = soreserve(so, udp_sendspace, udp_recvspace); 1588 if (error) 1589 return (error); 1590 INP_INFO_WLOCK(pcbinfo); 1591 error = in_pcballoc(so, pcbinfo); 1592 if (error) { 1593 INP_INFO_WUNLOCK(pcbinfo); 1594 return (error); 1595 } 1596 1597 inp = sotoinpcb(so); 1598 inp->inp_vflag |= INP_IPV4; 1599 inp->inp_ip_ttl = V_ip_defttl; 1600 1601 error = udp_newudpcb(inp); 1602 if (error) { 1603 in_pcbdetach(inp); 1604 in_pcbfree(inp); 1605 INP_INFO_WUNLOCK(pcbinfo); 1606 return (error); 1607 } 1608 1609 INP_WUNLOCK(inp); 1610 INP_INFO_WUNLOCK(pcbinfo); 1611 return (0); 1612 } 1613 #endif /* INET */ 1614 1615 int 1616 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f) 1617 { 1618 struct inpcb *inp; 1619 struct udpcb *up; 1620 1621 KASSERT(so->so_type == SOCK_DGRAM, 1622 ("udp_set_kernel_tunneling: !dgram")); 1623 inp = sotoinpcb(so); 1624 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1625 INP_WLOCK(inp); 1626 up = intoudpcb(inp); 1627 if (up->u_tun_func != NULL) { 1628 INP_WUNLOCK(inp); 1629 return (EBUSY); 1630 } 1631 up->u_tun_func = f; 1632 INP_WUNLOCK(inp); 1633 return (0); 1634 } 1635 1636 #ifdef INET 1637 static int 1638 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1639 { 1640 struct inpcb *inp; 1641 struct inpcbinfo *pcbinfo; 1642 int error; 1643 1644 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1645 inp = sotoinpcb(so); 1646 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1647 INP_WLOCK(inp); 1648 INP_HASH_WLOCK(pcbinfo); 1649 error = in_pcbbind(inp, nam, td->td_ucred); 1650 INP_HASH_WUNLOCK(pcbinfo); 1651 INP_WUNLOCK(inp); 1652 return (error); 1653 } 1654 1655 static void 1656 udp_close(struct socket *so) 1657 { 1658 struct inpcb *inp; 1659 struct inpcbinfo *pcbinfo; 1660 1661 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1662 inp = sotoinpcb(so); 1663 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1664 INP_WLOCK(inp); 1665 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1666 INP_HASH_WLOCK(pcbinfo); 1667 in_pcbdisconnect(inp); 1668 inp->inp_laddr.s_addr = INADDR_ANY; 1669 INP_HASH_WUNLOCK(pcbinfo); 1670 soisdisconnected(so); 1671 } 1672 INP_WUNLOCK(inp); 1673 } 1674 1675 static int 1676 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1677 { 1678 struct inpcb *inp; 1679 struct inpcbinfo *pcbinfo; 1680 struct sockaddr_in *sin; 1681 int error; 1682 1683 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1684 inp = sotoinpcb(so); 1685 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1686 INP_WLOCK(inp); 1687 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1688 INP_WUNLOCK(inp); 1689 return (EISCONN); 1690 } 1691 sin = (struct sockaddr_in *)nam; 1692 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1693 if (error != 0) { 1694 INP_WUNLOCK(inp); 1695 return (error); 1696 } 1697 INP_HASH_WLOCK(pcbinfo); 1698 error = in_pcbconnect(inp, nam, td->td_ucred); 1699 INP_HASH_WUNLOCK(pcbinfo); 1700 if (error == 0) 1701 soisconnected(so); 1702 INP_WUNLOCK(inp); 1703 return (error); 1704 } 1705 1706 static void 1707 udp_detach(struct socket *so) 1708 { 1709 struct inpcb *inp; 1710 struct inpcbinfo *pcbinfo; 1711 struct udpcb *up; 1712 1713 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1714 inp = sotoinpcb(so); 1715 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1716 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1717 ("udp_detach: not disconnected")); 1718 INP_INFO_WLOCK(pcbinfo); 1719 INP_WLOCK(inp); 1720 up = intoudpcb(inp); 1721 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1722 inp->inp_ppcb = NULL; 1723 in_pcbdetach(inp); 1724 in_pcbfree(inp); 1725 INP_INFO_WUNLOCK(pcbinfo); 1726 udp_discardcb(up); 1727 } 1728 1729 static int 1730 udp_disconnect(struct socket *so) 1731 { 1732 struct inpcb *inp; 1733 struct inpcbinfo *pcbinfo; 1734 1735 pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); 1736 inp = sotoinpcb(so); 1737 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1738 INP_WLOCK(inp); 1739 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1740 INP_WUNLOCK(inp); 1741 return (ENOTCONN); 1742 } 1743 INP_HASH_WLOCK(pcbinfo); 1744 in_pcbdisconnect(inp); 1745 inp->inp_laddr.s_addr = INADDR_ANY; 1746 INP_HASH_WUNLOCK(pcbinfo); 1747 SOCK_LOCK(so); 1748 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1749 SOCK_UNLOCK(so); 1750 INP_WUNLOCK(inp); 1751 return (0); 1752 } 1753 1754 static int 1755 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1756 struct mbuf *control, struct thread *td) 1757 { 1758 struct inpcb *inp; 1759 1760 inp = sotoinpcb(so); 1761 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1762 return (udp_output(inp, m, addr, control, td)); 1763 } 1764 #endif /* INET */ 1765 1766 int 1767 udp_shutdown(struct socket *so) 1768 { 1769 struct inpcb *inp; 1770 1771 inp = sotoinpcb(so); 1772 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1773 INP_WLOCK(inp); 1774 socantsendmore(so); 1775 INP_WUNLOCK(inp); 1776 return (0); 1777 } 1778 1779 #ifdef INET 1780 struct pr_usrreqs udp_usrreqs = { 1781 .pru_abort = udp_abort, 1782 .pru_attach = udp_attach, 1783 .pru_bind = udp_bind, 1784 .pru_connect = udp_connect, 1785 .pru_control = in_control, 1786 .pru_detach = udp_detach, 1787 .pru_disconnect = udp_disconnect, 1788 .pru_peeraddr = in_getpeeraddr, 1789 .pru_send = udp_send, 1790 .pru_soreceive = soreceive_dgram, 1791 .pru_sosend = sosend_dgram, 1792 .pru_shutdown = udp_shutdown, 1793 .pru_sockaddr = in_getsockaddr, 1794 .pru_sosetlabel = in_pcbsosetlabel, 1795 .pru_close = udp_close, 1796 }; 1797 #endif /* INET */ 1798