1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2008 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * Copyright (c) 2014 Kevin Lo 7 * All rights reserved. 8 * 9 * Portions of this software were developed by Robert N. M. Watson under 10 * contract to Juniper Networks, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ipfw.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ipsec.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/domain.h> 50 #include <sys/eventhandler.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/systm.h> 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/route.h> 73 #include <net/rss_config.h> 74 75 #include <netinet/in.h> 76 #include <netinet/in_kdtrace.h> 77 #include <netinet/in_pcb.h> 78 #include <netinet/in_systm.h> 79 #include <netinet/in_var.h> 80 #include <netinet/ip.h> 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #endif 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/ip_options.h> 88 #ifdef INET6 89 #include <netinet6/ip6_var.h> 90 #endif 91 #include <netinet/udp.h> 92 #include <netinet/udp_var.h> 93 #include <netinet/udplite.h> 94 #include <netinet/in_rss.h> 95 96 #ifdef IPSEC 97 #include <netipsec/ipsec.h> 98 #include <netipsec/esp.h> 99 #endif 100 101 #include <machine/in_cksum.h> 102 103 #include <security/mac/mac_framework.h> 104 105 /* 106 * UDP and UDP-Lite protocols implementation. 107 * Per RFC 768, August, 1980. 108 * Per RFC 3828, July, 2004. 109 */ 110 111 /* 112 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 113 * removes the only data integrity mechanism for packets and malformed 114 * packets that would otherwise be discarded due to bad checksums, and may 115 * cause problems (especially for NFS data blocks). 116 */ 117 VNET_DEFINE(int, udp_cksum) = 1; 118 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 119 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 120 121 int udp_log_in_vain = 0; 122 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW, 123 &udp_log_in_vain, 0, "Log all incoming UDP packets"); 124 125 VNET_DEFINE(int, udp_blackhole) = 0; 126 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 127 &VNET_NAME(udp_blackhole), 0, 128 "Do not send port unreachables for refused connects"); 129 130 u_long udp_sendspace = 9216; /* really max datagram size */ 131 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 132 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 133 134 u_long udp_recvspace = 40 * (1024 + 135 #ifdef INET6 136 sizeof(struct sockaddr_in6) 137 #else 138 sizeof(struct sockaddr_in) 139 #endif 140 ); /* 40 1K datagrams */ 141 142 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 143 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 144 145 VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */ 146 VNET_DEFINE(struct inpcbinfo, udbinfo); 147 VNET_DEFINE(struct inpcbhead, ulitecb); 148 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 149 static VNET_DEFINE(uma_zone_t, udpcb_zone); 150 #define V_udpcb_zone VNET(udpcb_zone) 151 152 #ifndef UDBHASHSIZE 153 #define UDBHASHSIZE 128 154 #endif 155 156 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 157 VNET_PCPUSTAT_SYSINIT(udpstat); 158 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 159 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 160 161 #ifdef VIMAGE 162 VNET_PCPUSTAT_SYSUNINIT(udpstat); 163 #endif /* VIMAGE */ 164 #ifdef INET 165 static void udp_detach(struct socket *so); 166 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, 167 struct mbuf *, struct thread *); 168 #endif 169 170 #ifdef IPSEC 171 #ifdef IPSEC_NAT_T 172 #define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP) 173 #ifdef INET 174 static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int); 175 #endif 176 #endif /* IPSEC_NAT_T */ 177 #endif /* IPSEC */ 178 179 static void 180 udp_zone_change(void *tag) 181 { 182 183 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets); 184 uma_zone_set_max(V_udpcb_zone, maxsockets); 185 } 186 187 static int 188 udp_inpcb_init(void *mem, int size, int flags) 189 { 190 struct inpcb *inp; 191 192 inp = mem; 193 INP_LOCK_INIT(inp, "inp", "udpinp"); 194 return (0); 195 } 196 197 static int 198 udplite_inpcb_init(void *mem, int size, int flags) 199 { 200 struct inpcb *inp; 201 202 inp = mem; 203 INP_LOCK_INIT(inp, "inp", "udpliteinp"); 204 return (0); 205 } 206 207 void 208 udp_init(void) 209 { 210 211 /* 212 * For now default to 2-tuple UDP hashing - until the fragment 213 * reassembly code can also update the flowid. 214 * 215 * Once we can calculate the flowid that way and re-establish 216 * a 4-tuple, flip this to 4-tuple. 217 */ 218 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE, 219 "udp_inpcb", udp_inpcb_init, NULL, 0, 220 IPI_HASHFIELDS_2TUPLE); 221 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb), 222 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 223 uma_zone_set_max(V_udpcb_zone, maxsockets); 224 uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached"); 225 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL, 226 EVENTHANDLER_PRI_ANY); 227 } 228 229 void 230 udplite_init(void) 231 { 232 233 in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE, 234 UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL, 235 0, IPI_HASHFIELDS_2TUPLE); 236 } 237 238 /* 239 * Kernel module interface for updating udpstat. The argument is an index 240 * into udpstat treated as an array of u_long. While this encodes the 241 * general layout of udpstat into the caller, it doesn't encode its location, 242 * so that future changes to add, for example, per-CPU stats support won't 243 * cause binary compatibility problems for kernel modules. 244 */ 245 void 246 kmod_udpstat_inc(int statnum) 247 { 248 249 counter_u64_add(VNET(udpstat)[statnum], 1); 250 } 251 252 int 253 udp_newudpcb(struct inpcb *inp) 254 { 255 struct udpcb *up; 256 257 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO); 258 if (up == NULL) 259 return (ENOBUFS); 260 inp->inp_ppcb = up; 261 return (0); 262 } 263 264 void 265 udp_discardcb(struct udpcb *up) 266 { 267 268 uma_zfree(V_udpcb_zone, up); 269 } 270 271 #ifdef VIMAGE 272 void 273 udp_destroy(void) 274 { 275 276 in_pcbinfo_destroy(&V_udbinfo); 277 uma_zdestroy(V_udpcb_zone); 278 } 279 280 void 281 udplite_destroy(void) 282 { 283 284 in_pcbinfo_destroy(&V_ulitecbinfo); 285 } 286 #endif 287 288 #ifdef INET 289 /* 290 * Subroutine of udp_input(), which appends the provided mbuf chain to the 291 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 292 * contains the source address. If the socket ends up being an IPv6 socket, 293 * udp_append() will convert to a sockaddr_in6 before passing the address 294 * into the socket code. 295 * 296 * In the normal case udp_append() will return 0, indicating that you 297 * must unlock the inp. However if a tunneling protocol is in place we increment 298 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 299 * then decrement the reference count. If the inp_rele returns 1, indicating the 300 * inp is gone, we return that to the caller to tell them *not* to unlock 301 * the inp. In the case of multi-cast this will cause the distribution 302 * to stop (though most tunneling protocols known currently do *not* use 303 * multicast). 304 */ 305 static int 306 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 307 struct sockaddr_in *udp_in) 308 { 309 struct sockaddr *append_sa; 310 struct socket *so; 311 struct mbuf *opts = 0; 312 #ifdef INET6 313 struct sockaddr_in6 udp_in6; 314 #endif 315 struct udpcb *up; 316 317 INP_LOCK_ASSERT(inp); 318 319 /* 320 * Engage the tunneling protocol. 321 */ 322 up = intoudpcb(inp); 323 if (up->u_tun_func != NULL) { 324 in_pcbref(inp); 325 INP_RUNLOCK(inp); 326 (*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in, 327 up->u_tun_ctx); 328 INP_RLOCK(inp); 329 return (in_pcbrele_rlocked(inp)); 330 } 331 332 off += sizeof(struct udphdr); 333 334 #ifdef IPSEC 335 /* Check AH/ESP integrity. */ 336 if (ipsec4_in_reject(n, inp)) { 337 m_freem(n); 338 return (0); 339 } 340 #ifdef IPSEC_NAT_T 341 up = intoudpcb(inp); 342 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 343 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */ 344 n = udp4_espdecap(inp, n, off); 345 if (n == NULL) /* Consumed. */ 346 return (0); 347 } 348 #endif /* IPSEC_NAT_T */ 349 #endif /* IPSEC */ 350 #ifdef MAC 351 if (mac_inpcb_check_deliver(inp, n) != 0) { 352 m_freem(n); 353 return (0); 354 } 355 #endif /* MAC */ 356 if (inp->inp_flags & INP_CONTROLOPTS || 357 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 358 #ifdef INET6 359 if (inp->inp_vflag & INP_IPV6) 360 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 361 else 362 #endif /* INET6 */ 363 ip_savecontrol(inp, &opts, ip, n); 364 } 365 #ifdef INET6 366 if (inp->inp_vflag & INP_IPV6) { 367 bzero(&udp_in6, sizeof(udp_in6)); 368 udp_in6.sin6_len = sizeof(udp_in6); 369 udp_in6.sin6_family = AF_INET6; 370 in6_sin_2_v4mapsin6(udp_in, &udp_in6); 371 append_sa = (struct sockaddr *)&udp_in6; 372 } else 373 #endif /* INET6 */ 374 append_sa = (struct sockaddr *)udp_in; 375 m_adj(n, off); 376 377 so = inp->inp_socket; 378 SOCKBUF_LOCK(&so->so_rcv); 379 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 380 SOCKBUF_UNLOCK(&so->so_rcv); 381 m_freem(n); 382 if (opts) 383 m_freem(opts); 384 UDPSTAT_INC(udps_fullsock); 385 } else 386 sorwakeup_locked(so); 387 return (0); 388 } 389 390 int 391 udp_input(struct mbuf **mp, int *offp, int proto) 392 { 393 struct ip *ip; 394 struct udphdr *uh; 395 struct ifnet *ifp; 396 struct inpcb *inp; 397 uint16_t len, ip_len; 398 struct inpcbinfo *pcbinfo; 399 struct ip save_ip; 400 struct sockaddr_in udp_in; 401 struct mbuf *m; 402 struct m_tag *fwd_tag; 403 int cscov_partial, iphlen; 404 405 m = *mp; 406 iphlen = *offp; 407 ifp = m->m_pkthdr.rcvif; 408 *mp = NULL; 409 UDPSTAT_INC(udps_ipackets); 410 411 /* 412 * Strip IP options, if any; should skip this, make available to 413 * user, and use on returned packets, but we don't yet have a way to 414 * check the checksum with options still present. 415 */ 416 if (iphlen > sizeof (struct ip)) { 417 ip_stripoptions(m); 418 iphlen = sizeof(struct ip); 419 } 420 421 /* 422 * Get IP and UDP header together in first mbuf. 423 */ 424 ip = mtod(m, struct ip *); 425 if (m->m_len < iphlen + sizeof(struct udphdr)) { 426 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 427 UDPSTAT_INC(udps_hdrops); 428 return (IPPROTO_DONE); 429 } 430 ip = mtod(m, struct ip *); 431 } 432 uh = (struct udphdr *)((caddr_t)ip + iphlen); 433 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 434 435 /* 436 * Destination port of 0 is illegal, based on RFC768. 437 */ 438 if (uh->uh_dport == 0) 439 goto badunlocked; 440 441 /* 442 * Construct sockaddr format source address. Stuff source address 443 * and datagram in user buffer. 444 */ 445 bzero(&udp_in, sizeof(udp_in)); 446 udp_in.sin_len = sizeof(udp_in); 447 udp_in.sin_family = AF_INET; 448 udp_in.sin_port = uh->uh_sport; 449 udp_in.sin_addr = ip->ip_src; 450 451 /* 452 * Make mbuf data length reflect UDP length. If not enough data to 453 * reflect UDP length, drop. 454 */ 455 len = ntohs((u_short)uh->uh_ulen); 456 ip_len = ntohs(ip->ip_len) - iphlen; 457 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 458 /* Zero means checksum over the complete packet. */ 459 if (len == 0) 460 len = ip_len; 461 cscov_partial = 0; 462 } 463 if (ip_len != len) { 464 if (len > ip_len || len < sizeof(struct udphdr)) { 465 UDPSTAT_INC(udps_badlen); 466 goto badunlocked; 467 } 468 if (proto == IPPROTO_UDP) 469 m_adj(m, len - ip_len); 470 } 471 472 /* 473 * Save a copy of the IP header in case we want restore it for 474 * sending an ICMP error message in response. 475 */ 476 if (!V_udp_blackhole) 477 save_ip = *ip; 478 else 479 memset(&save_ip, 0, sizeof(save_ip)); 480 481 /* 482 * Checksum extended UDP header and data. 483 */ 484 if (uh->uh_sum) { 485 u_short uh_sum; 486 487 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 488 !cscov_partial) { 489 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 490 uh_sum = m->m_pkthdr.csum_data; 491 else 492 uh_sum = in_pseudo(ip->ip_src.s_addr, 493 ip->ip_dst.s_addr, htonl((u_short)len + 494 m->m_pkthdr.csum_data + proto)); 495 uh_sum ^= 0xffff; 496 } else { 497 char b[9]; 498 499 bcopy(((struct ipovly *)ip)->ih_x1, b, 9); 500 bzero(((struct ipovly *)ip)->ih_x1, 9); 501 ((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ? 502 uh->uh_ulen : htons(ip_len); 503 uh_sum = in_cksum(m, len + sizeof (struct ip)); 504 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9); 505 } 506 if (uh_sum) { 507 UDPSTAT_INC(udps_badsum); 508 m_freem(m); 509 return (IPPROTO_DONE); 510 } 511 } else { 512 if (proto == IPPROTO_UDP) { 513 UDPSTAT_INC(udps_nosum); 514 } else { 515 /* UDPLite requires a checksum */ 516 /* XXX: What is the right UDPLite MIB counter here? */ 517 m_freem(m); 518 return (IPPROTO_DONE); 519 } 520 } 521 522 pcbinfo = udp_get_inpcbinfo(proto); 523 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 524 in_broadcast(ip->ip_dst, ifp)) { 525 struct inpcb *last; 526 struct inpcbhead *pcblist; 527 struct ip_moptions *imo; 528 529 INP_INFO_RLOCK(pcbinfo); 530 pcblist = udp_get_pcblist(proto); 531 last = NULL; 532 LIST_FOREACH(inp, pcblist, inp_list) { 533 if (inp->inp_lport != uh->uh_dport) 534 continue; 535 #ifdef INET6 536 if ((inp->inp_vflag & INP_IPV4) == 0) 537 continue; 538 #endif 539 if (inp->inp_laddr.s_addr != INADDR_ANY && 540 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 541 continue; 542 if (inp->inp_faddr.s_addr != INADDR_ANY && 543 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 544 continue; 545 if (inp->inp_fport != 0 && 546 inp->inp_fport != uh->uh_sport) 547 continue; 548 549 INP_RLOCK(inp); 550 551 /* 552 * XXXRW: Because we weren't holding either the inpcb 553 * or the hash lock when we checked for a match 554 * before, we should probably recheck now that the 555 * inpcb lock is held. 556 */ 557 558 /* 559 * Handle socket delivery policy for any-source 560 * and source-specific multicast. [RFC3678] 561 */ 562 imo = inp->inp_moptions; 563 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 564 struct sockaddr_in group; 565 int blocked; 566 if (imo == NULL) { 567 INP_RUNLOCK(inp); 568 continue; 569 } 570 bzero(&group, sizeof(struct sockaddr_in)); 571 group.sin_len = sizeof(struct sockaddr_in); 572 group.sin_family = AF_INET; 573 group.sin_addr = ip->ip_dst; 574 575 blocked = imo_multi_filter(imo, ifp, 576 (struct sockaddr *)&group, 577 (struct sockaddr *)&udp_in); 578 if (blocked != MCAST_PASS) { 579 if (blocked == MCAST_NOTGMEMBER) 580 IPSTAT_INC(ips_notmember); 581 if (blocked == MCAST_NOTSMEMBER || 582 blocked == MCAST_MUTED) 583 UDPSTAT_INC(udps_filtermcast); 584 INP_RUNLOCK(inp); 585 continue; 586 } 587 } 588 if (last != NULL) { 589 struct mbuf *n; 590 591 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) { 592 UDP_PROBE(receive, NULL, last, ip, 593 last, uh); 594 if (udp_append(last, ip, n, iphlen, 595 &udp_in)) { 596 goto inp_lost; 597 } 598 } 599 INP_RUNLOCK(last); 600 } 601 last = inp; 602 /* 603 * Don't look for additional matches if this one does 604 * not have either the SO_REUSEPORT or SO_REUSEADDR 605 * socket options set. This heuristic avoids 606 * searching through all pcbs in the common case of a 607 * non-shared port. It assumes that an application 608 * will never clear these options after setting them. 609 */ 610 if ((last->inp_socket->so_options & 611 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 612 break; 613 } 614 615 if (last == NULL) { 616 /* 617 * No matching pcb found; discard datagram. (No need 618 * to send an ICMP Port Unreachable for a broadcast 619 * or multicast datgram.) 620 */ 621 UDPSTAT_INC(udps_noportbcast); 622 if (inp) 623 INP_RUNLOCK(inp); 624 INP_INFO_RUNLOCK(pcbinfo); 625 goto badunlocked; 626 } 627 UDP_PROBE(receive, NULL, last, ip, last, uh); 628 if (udp_append(last, ip, m, iphlen, &udp_in) == 0) 629 INP_RUNLOCK(last); 630 inp_lost: 631 INP_INFO_RUNLOCK(pcbinfo); 632 return (IPPROTO_DONE); 633 } 634 635 /* 636 * Locate pcb for datagram. 637 */ 638 639 /* 640 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 641 */ 642 if ((m->m_flags & M_IP_NEXTHOP) && 643 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 644 struct sockaddr_in *next_hop; 645 646 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 647 648 /* 649 * Transparently forwarded. Pretend to be the destination. 650 * Already got one like this? 651 */ 652 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 653 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 654 if (!inp) { 655 /* 656 * It's new. Try to find the ambushing socket. 657 * Because we've rewritten the destination address, 658 * any hardware-generated hash is ignored. 659 */ 660 inp = in_pcblookup(pcbinfo, ip->ip_src, 661 uh->uh_sport, next_hop->sin_addr, 662 next_hop->sin_port ? htons(next_hop->sin_port) : 663 uh->uh_dport, INPLOOKUP_WILDCARD | 664 INPLOOKUP_RLOCKPCB, ifp); 665 } 666 /* Remove the tag from the packet. We don't need it anymore. */ 667 m_tag_delete(m, fwd_tag); 668 m->m_flags &= ~M_IP_NEXTHOP; 669 } else 670 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 671 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 672 INPLOOKUP_RLOCKPCB, ifp, m); 673 if (inp == NULL) { 674 if (udp_log_in_vain) { 675 char buf[4*sizeof "123"]; 676 677 strcpy(buf, inet_ntoa(ip->ip_dst)); 678 log(LOG_INFO, 679 "Connection attempt to UDP %s:%d from %s:%d\n", 680 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src), 681 ntohs(uh->uh_sport)); 682 } 683 UDPSTAT_INC(udps_noport); 684 if (m->m_flags & (M_BCAST | M_MCAST)) { 685 UDPSTAT_INC(udps_noportbcast); 686 goto badunlocked; 687 } 688 if (V_udp_blackhole) 689 goto badunlocked; 690 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 691 goto badunlocked; 692 *ip = save_ip; 693 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 694 return (IPPROTO_DONE); 695 } 696 697 /* 698 * Check the minimum TTL for socket. 699 */ 700 INP_RLOCK_ASSERT(inp); 701 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 702 INP_RUNLOCK(inp); 703 m_freem(m); 704 return (IPPROTO_DONE); 705 } 706 if (cscov_partial) { 707 struct udpcb *up; 708 709 up = intoudpcb(inp); 710 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 711 INP_RUNLOCK(inp); 712 m_freem(m); 713 return (IPPROTO_DONE); 714 } 715 } 716 717 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 718 if (udp_append(inp, ip, m, iphlen, &udp_in) == 0) 719 INP_RUNLOCK(inp); 720 return (IPPROTO_DONE); 721 722 badunlocked: 723 m_freem(m); 724 return (IPPROTO_DONE); 725 } 726 #endif /* INET */ 727 728 /* 729 * Notify a udp user of an asynchronous error; just wake up so that they can 730 * collect error status. 731 */ 732 struct inpcb * 733 udp_notify(struct inpcb *inp, int errno) 734 { 735 736 /* 737 * While udp_ctlinput() always calls udp_notify() with a read lock 738 * when invoking it directly, in_pcbnotifyall() currently uses write 739 * locks due to sharing code with TCP. For now, accept either a read 740 * or a write lock, but a read lock is sufficient. 741 */ 742 INP_LOCK_ASSERT(inp); 743 744 inp->inp_socket->so_error = errno; 745 sorwakeup(inp->inp_socket); 746 sowwakeup(inp->inp_socket); 747 return (inp); 748 } 749 750 #ifdef INET 751 static void 752 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip, 753 struct inpcbinfo *pcbinfo) 754 { 755 struct ip *ip = vip; 756 struct udphdr *uh; 757 struct in_addr faddr; 758 struct inpcb *inp; 759 760 faddr = ((struct sockaddr_in *)sa)->sin_addr; 761 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 762 return; 763 764 /* 765 * Redirects don't need to be handled up here. 766 */ 767 if (PRC_IS_REDIRECT(cmd)) 768 return; 769 770 /* 771 * Hostdead is ugly because it goes linearly through all PCBs. 772 * 773 * XXX: We never get this from ICMP, otherwise it makes an excellent 774 * DoS attack on machines with many connections. 775 */ 776 if (cmd == PRC_HOSTDEAD) 777 ip = NULL; 778 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 779 return; 780 if (ip != NULL) { 781 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 782 inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport, 783 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL); 784 if (inp != NULL) { 785 INP_RLOCK_ASSERT(inp); 786 if (inp->inp_socket != NULL) { 787 udp_notify(inp, inetctlerrmap[cmd]); 788 } 789 INP_RUNLOCK(inp); 790 } 791 } else 792 in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd], 793 udp_notify); 794 } 795 void 796 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 797 { 798 799 return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo)); 800 } 801 802 void 803 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip) 804 { 805 806 return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo)); 807 } 808 #endif /* INET */ 809 810 static int 811 udp_pcblist(SYSCTL_HANDLER_ARGS) 812 { 813 int error, i, n; 814 struct inpcb *inp, **inp_list; 815 inp_gen_t gencnt; 816 struct xinpgen xig; 817 818 /* 819 * The process of preparing the PCB list is too time-consuming and 820 * resource-intensive to repeat twice on every request. 821 */ 822 if (req->oldptr == 0) { 823 n = V_udbinfo.ipi_count; 824 n += imax(n / 8, 10); 825 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 826 return (0); 827 } 828 829 if (req->newptr != 0) 830 return (EPERM); 831 832 /* 833 * OK, now we're committed to doing something. 834 */ 835 INP_INFO_RLOCK(&V_udbinfo); 836 gencnt = V_udbinfo.ipi_gencnt; 837 n = V_udbinfo.ipi_count; 838 INP_INFO_RUNLOCK(&V_udbinfo); 839 840 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 841 + n * sizeof(struct xinpcb)); 842 if (error != 0) 843 return (error); 844 845 xig.xig_len = sizeof xig; 846 xig.xig_count = n; 847 xig.xig_gen = gencnt; 848 xig.xig_sogen = so_gencnt; 849 error = SYSCTL_OUT(req, &xig, sizeof xig); 850 if (error) 851 return (error); 852 853 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 854 if (inp_list == 0) 855 return (ENOMEM); 856 857 INP_INFO_RLOCK(&V_udbinfo); 858 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n; 859 inp = LIST_NEXT(inp, inp_list)) { 860 INP_WLOCK(inp); 861 if (inp->inp_gencnt <= gencnt && 862 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 863 in_pcbref(inp); 864 inp_list[i++] = inp; 865 } 866 INP_WUNLOCK(inp); 867 } 868 INP_INFO_RUNLOCK(&V_udbinfo); 869 n = i; 870 871 error = 0; 872 for (i = 0; i < n; i++) { 873 inp = inp_list[i]; 874 INP_RLOCK(inp); 875 if (inp->inp_gencnt <= gencnt) { 876 struct xinpcb xi; 877 878 bzero(&xi, sizeof(xi)); 879 xi.xi_len = sizeof xi; 880 /* XXX should avoid extra copy */ 881 bcopy(inp, &xi.xi_inp, sizeof *inp); 882 if (inp->inp_socket) 883 sotoxsocket(inp->inp_socket, &xi.xi_socket); 884 xi.xi_inp.inp_gencnt = inp->inp_gencnt; 885 INP_RUNLOCK(inp); 886 error = SYSCTL_OUT(req, &xi, sizeof xi); 887 } else 888 INP_RUNLOCK(inp); 889 } 890 INP_INFO_WLOCK(&V_udbinfo); 891 for (i = 0; i < n; i++) { 892 inp = inp_list[i]; 893 INP_RLOCK(inp); 894 if (!in_pcbrele_rlocked(inp)) 895 INP_RUNLOCK(inp); 896 } 897 INP_INFO_WUNLOCK(&V_udbinfo); 898 899 if (!error) { 900 /* 901 * Give the user an updated idea of our state. If the 902 * generation differs from what we told her before, she knows 903 * that something happened while we were processing this 904 * request, and it might be necessary to retry. 905 */ 906 INP_INFO_RLOCK(&V_udbinfo); 907 xig.xig_gen = V_udbinfo.ipi_gencnt; 908 xig.xig_sogen = so_gencnt; 909 xig.xig_count = V_udbinfo.ipi_count; 910 INP_INFO_RUNLOCK(&V_udbinfo); 911 error = SYSCTL_OUT(req, &xig, sizeof xig); 912 } 913 free(inp_list, M_TEMP); 914 return (error); 915 } 916 917 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 918 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 919 udp_pcblist, "S,xinpcb", "List of active UDP sockets"); 920 921 #ifdef INET 922 static int 923 udp_getcred(SYSCTL_HANDLER_ARGS) 924 { 925 struct xucred xuc; 926 struct sockaddr_in addrs[2]; 927 struct inpcb *inp; 928 int error; 929 930 error = priv_check(req->td, PRIV_NETINET_GETCRED); 931 if (error) 932 return (error); 933 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 934 if (error) 935 return (error); 936 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 937 addrs[0].sin_addr, addrs[0].sin_port, 938 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 939 if (inp != NULL) { 940 INP_RLOCK_ASSERT(inp); 941 if (inp->inp_socket == NULL) 942 error = ENOENT; 943 if (error == 0) 944 error = cr_canseeinpcb(req->td->td_ucred, inp); 945 if (error == 0) 946 cru2x(inp->inp_cred, &xuc); 947 INP_RUNLOCK(inp); 948 } else 949 error = ENOENT; 950 if (error == 0) 951 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 952 return (error); 953 } 954 955 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 956 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 957 udp_getcred, "S,xucred", "Get the xucred of a UDP connection"); 958 #endif /* INET */ 959 960 int 961 udp_ctloutput(struct socket *so, struct sockopt *sopt) 962 { 963 struct inpcb *inp; 964 struct udpcb *up; 965 int isudplite, error, optval; 966 967 error = 0; 968 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 969 inp = sotoinpcb(so); 970 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 971 INP_WLOCK(inp); 972 if (sopt->sopt_level != so->so_proto->pr_protocol) { 973 #ifdef INET6 974 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 975 INP_WUNLOCK(inp); 976 error = ip6_ctloutput(so, sopt); 977 } 978 #endif 979 #if defined(INET) && defined(INET6) 980 else 981 #endif 982 #ifdef INET 983 { 984 INP_WUNLOCK(inp); 985 error = ip_ctloutput(so, sopt); 986 } 987 #endif 988 return (error); 989 } 990 991 switch (sopt->sopt_dir) { 992 case SOPT_SET: 993 switch (sopt->sopt_name) { 994 case UDP_ENCAP: 995 INP_WUNLOCK(inp); 996 error = sooptcopyin(sopt, &optval, sizeof optval, 997 sizeof optval); 998 if (error) 999 break; 1000 inp = sotoinpcb(so); 1001 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1002 INP_WLOCK(inp); 1003 #ifdef IPSEC_NAT_T 1004 up = intoudpcb(inp); 1005 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1006 #endif 1007 switch (optval) { 1008 case 0: 1009 /* Clear all UDP encap. */ 1010 #ifdef IPSEC_NAT_T 1011 up->u_flags &= ~UF_ESPINUDP_ALL; 1012 #endif 1013 break; 1014 #ifdef IPSEC_NAT_T 1015 case UDP_ENCAP_ESPINUDP: 1016 case UDP_ENCAP_ESPINUDP_NON_IKE: 1017 up->u_flags &= ~UF_ESPINUDP_ALL; 1018 if (optval == UDP_ENCAP_ESPINUDP) 1019 up->u_flags |= UF_ESPINUDP; 1020 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE) 1021 up->u_flags |= UF_ESPINUDP_NON_IKE; 1022 break; 1023 #endif 1024 default: 1025 error = EINVAL; 1026 break; 1027 } 1028 INP_WUNLOCK(inp); 1029 break; 1030 case UDPLITE_SEND_CSCOV: 1031 case UDPLITE_RECV_CSCOV: 1032 if (!isudplite) { 1033 INP_WUNLOCK(inp); 1034 error = ENOPROTOOPT; 1035 break; 1036 } 1037 INP_WUNLOCK(inp); 1038 error = sooptcopyin(sopt, &optval, sizeof(optval), 1039 sizeof(optval)); 1040 if (error != 0) 1041 break; 1042 inp = sotoinpcb(so); 1043 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 1044 INP_WLOCK(inp); 1045 up = intoudpcb(inp); 1046 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1047 if ((optval != 0 && optval < 8) || (optval > 65535)) { 1048 INP_WUNLOCK(inp); 1049 error = EINVAL; 1050 break; 1051 } 1052 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1053 up->u_txcslen = optval; 1054 else 1055 up->u_rxcslen = optval; 1056 INP_WUNLOCK(inp); 1057 break; 1058 default: 1059 INP_WUNLOCK(inp); 1060 error = ENOPROTOOPT; 1061 break; 1062 } 1063 break; 1064 case SOPT_GET: 1065 switch (sopt->sopt_name) { 1066 #ifdef IPSEC_NAT_T 1067 case UDP_ENCAP: 1068 up = intoudpcb(inp); 1069 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1070 optval = up->u_flags & UF_ESPINUDP_ALL; 1071 INP_WUNLOCK(inp); 1072 error = sooptcopyout(sopt, &optval, sizeof optval); 1073 break; 1074 #endif 1075 case UDPLITE_SEND_CSCOV: 1076 case UDPLITE_RECV_CSCOV: 1077 if (!isudplite) { 1078 INP_WUNLOCK(inp); 1079 error = ENOPROTOOPT; 1080 break; 1081 } 1082 up = intoudpcb(inp); 1083 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1084 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 1085 optval = up->u_txcslen; 1086 else 1087 optval = up->u_rxcslen; 1088 INP_WUNLOCK(inp); 1089 error = sooptcopyout(sopt, &optval, sizeof(optval)); 1090 break; 1091 default: 1092 INP_WUNLOCK(inp); 1093 error = ENOPROTOOPT; 1094 break; 1095 } 1096 break; 1097 } 1098 return (error); 1099 } 1100 1101 #ifdef INET 1102 #define UH_WLOCKED 2 1103 #define UH_RLOCKED 1 1104 #define UH_UNLOCKED 0 1105 static int 1106 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, 1107 struct mbuf *control, struct thread *td) 1108 { 1109 struct udpiphdr *ui; 1110 int len = m->m_pkthdr.len; 1111 struct in_addr faddr, laddr; 1112 struct cmsghdr *cm; 1113 struct inpcbinfo *pcbinfo; 1114 struct sockaddr_in *sin, src; 1115 int cscov_partial = 0; 1116 int error = 0; 1117 int ipflags; 1118 u_short fport, lport; 1119 int unlock_udbinfo; 1120 u_char tos; 1121 uint8_t pr; 1122 uint16_t cscov = 0; 1123 uint32_t flowid = 0; 1124 uint8_t flowtype = M_HASHTYPE_NONE; 1125 1126 /* 1127 * udp_output() may need to temporarily bind or connect the current 1128 * inpcb. As such, we don't know up front whether we will need the 1129 * pcbinfo lock or not. Do any work to decide what is needed up 1130 * front before acquiring any locks. 1131 */ 1132 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1133 if (control) 1134 m_freem(control); 1135 m_freem(m); 1136 return (EMSGSIZE); 1137 } 1138 1139 src.sin_family = 0; 1140 INP_RLOCK(inp); 1141 tos = inp->inp_ip_tos; 1142 if (control != NULL) { 1143 /* 1144 * XXX: Currently, we assume all the optional information is 1145 * stored in a single mbuf. 1146 */ 1147 if (control->m_next) { 1148 INP_RUNLOCK(inp); 1149 m_freem(control); 1150 m_freem(m); 1151 return (EINVAL); 1152 } 1153 for (; control->m_len > 0; 1154 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1155 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1156 cm = mtod(control, struct cmsghdr *); 1157 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1158 || cm->cmsg_len > control->m_len) { 1159 error = EINVAL; 1160 break; 1161 } 1162 if (cm->cmsg_level != IPPROTO_IP) 1163 continue; 1164 1165 switch (cm->cmsg_type) { 1166 case IP_SENDSRCADDR: 1167 if (cm->cmsg_len != 1168 CMSG_LEN(sizeof(struct in_addr))) { 1169 error = EINVAL; 1170 break; 1171 } 1172 bzero(&src, sizeof(src)); 1173 src.sin_family = AF_INET; 1174 src.sin_len = sizeof(src); 1175 src.sin_port = inp->inp_lport; 1176 src.sin_addr = 1177 *(struct in_addr *)CMSG_DATA(cm); 1178 break; 1179 1180 case IP_TOS: 1181 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1182 error = EINVAL; 1183 break; 1184 } 1185 tos = *(u_char *)CMSG_DATA(cm); 1186 break; 1187 1188 case IP_FLOWID: 1189 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1190 error = EINVAL; 1191 break; 1192 } 1193 flowid = *(uint32_t *) CMSG_DATA(cm); 1194 break; 1195 1196 case IP_FLOWTYPE: 1197 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1198 error = EINVAL; 1199 break; 1200 } 1201 flowtype = *(uint32_t *) CMSG_DATA(cm); 1202 break; 1203 1204 #ifdef RSS 1205 case IP_RSSBUCKETID: 1206 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1207 error = EINVAL; 1208 break; 1209 } 1210 /* This is just a placeholder for now */ 1211 break; 1212 #endif /* RSS */ 1213 default: 1214 error = ENOPROTOOPT; 1215 break; 1216 } 1217 if (error) 1218 break; 1219 } 1220 m_freem(control); 1221 } 1222 if (error) { 1223 INP_RUNLOCK(inp); 1224 m_freem(m); 1225 return (error); 1226 } 1227 1228 /* 1229 * Depending on whether or not the application has bound or connected 1230 * the socket, we may have to do varying levels of work. The optimal 1231 * case is for a connected UDP socket, as a global lock isn't 1232 * required at all. 1233 * 1234 * In order to decide which we need, we require stability of the 1235 * inpcb binding, which we ensure by acquiring a read lock on the 1236 * inpcb. This doesn't strictly follow the lock order, so we play 1237 * the trylock and retry game; note that we may end up with more 1238 * conservative locks than required the second time around, so later 1239 * assertions have to accept that. Further analysis of the number of 1240 * misses under contention is required. 1241 * 1242 * XXXRW: Check that hash locking update here is correct. 1243 */ 1244 pr = inp->inp_socket->so_proto->pr_protocol; 1245 pcbinfo = udp_get_inpcbinfo(pr); 1246 sin = (struct sockaddr_in *)addr; 1247 if (sin != NULL && 1248 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) { 1249 INP_RUNLOCK(inp); 1250 INP_WLOCK(inp); 1251 INP_HASH_WLOCK(pcbinfo); 1252 unlock_udbinfo = UH_WLOCKED; 1253 } else if ((sin != NULL && ( 1254 (sin->sin_addr.s_addr == INADDR_ANY) || 1255 (sin->sin_addr.s_addr == INADDR_BROADCAST) || 1256 (inp->inp_laddr.s_addr == INADDR_ANY) || 1257 (inp->inp_lport == 0))) || 1258 (src.sin_family == AF_INET)) { 1259 INP_HASH_RLOCK(pcbinfo); 1260 unlock_udbinfo = UH_RLOCKED; 1261 } else 1262 unlock_udbinfo = UH_UNLOCKED; 1263 1264 /* 1265 * If the IP_SENDSRCADDR control message was specified, override the 1266 * source address for this datagram. Its use is invalidated if the 1267 * address thus specified is incomplete or clobbers other inpcbs. 1268 */ 1269 laddr = inp->inp_laddr; 1270 lport = inp->inp_lport; 1271 if (src.sin_family == AF_INET) { 1272 INP_HASH_LOCK_ASSERT(pcbinfo); 1273 if ((lport == 0) || 1274 (laddr.s_addr == INADDR_ANY && 1275 src.sin_addr.s_addr == INADDR_ANY)) { 1276 error = EINVAL; 1277 goto release; 1278 } 1279 error = in_pcbbind_setup(inp, (struct sockaddr *)&src, 1280 &laddr.s_addr, &lport, td->td_ucred); 1281 if (error) 1282 goto release; 1283 } 1284 1285 /* 1286 * If a UDP socket has been connected, then a local address/port will 1287 * have been selected and bound. 1288 * 1289 * If a UDP socket has not been connected to, then an explicit 1290 * destination address must be used, in which case a local 1291 * address/port may not have been selected and bound. 1292 */ 1293 if (sin != NULL) { 1294 INP_LOCK_ASSERT(inp); 1295 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1296 error = EISCONN; 1297 goto release; 1298 } 1299 1300 /* 1301 * Jail may rewrite the destination address, so let it do 1302 * that before we use it. 1303 */ 1304 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1305 if (error) 1306 goto release; 1307 1308 /* 1309 * If a local address or port hasn't yet been selected, or if 1310 * the destination address needs to be rewritten due to using 1311 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1312 * to do the heavy lifting. Once a port is selected, we 1313 * commit the binding back to the socket; we also commit the 1314 * binding of the address if in jail. 1315 * 1316 * If we already have a valid binding and we're not 1317 * requesting a destination address rewrite, use a fast path. 1318 */ 1319 if (inp->inp_laddr.s_addr == INADDR_ANY || 1320 inp->inp_lport == 0 || 1321 sin->sin_addr.s_addr == INADDR_ANY || 1322 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1323 INP_HASH_LOCK_ASSERT(pcbinfo); 1324 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr, 1325 &lport, &faddr.s_addr, &fport, NULL, 1326 td->td_ucred); 1327 if (error) 1328 goto release; 1329 1330 /* 1331 * XXXRW: Why not commit the port if the address is 1332 * !INADDR_ANY? 1333 */ 1334 /* Commit the local port if newly assigned. */ 1335 if (inp->inp_laddr.s_addr == INADDR_ANY && 1336 inp->inp_lport == 0) { 1337 INP_WLOCK_ASSERT(inp); 1338 INP_HASH_WLOCK_ASSERT(pcbinfo); 1339 /* 1340 * Remember addr if jailed, to prevent 1341 * rebinding. 1342 */ 1343 if (prison_flag(td->td_ucred, PR_IP4)) 1344 inp->inp_laddr = laddr; 1345 inp->inp_lport = lport; 1346 if (in_pcbinshash(inp) != 0) { 1347 inp->inp_lport = 0; 1348 error = EAGAIN; 1349 goto release; 1350 } 1351 inp->inp_flags |= INP_ANONPORT; 1352 } 1353 } else { 1354 faddr = sin->sin_addr; 1355 fport = sin->sin_port; 1356 } 1357 } else { 1358 INP_LOCK_ASSERT(inp); 1359 faddr = inp->inp_faddr; 1360 fport = inp->inp_fport; 1361 if (faddr.s_addr == INADDR_ANY) { 1362 error = ENOTCONN; 1363 goto release; 1364 } 1365 } 1366 1367 /* 1368 * Calculate data length and get a mbuf for UDP, IP, and possible 1369 * link-layer headers. Immediate slide the data pointer back forward 1370 * since we won't use that space at this layer. 1371 */ 1372 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1373 if (m == NULL) { 1374 error = ENOBUFS; 1375 goto release; 1376 } 1377 m->m_data += max_linkhdr; 1378 m->m_len -= max_linkhdr; 1379 m->m_pkthdr.len -= max_linkhdr; 1380 1381 /* 1382 * Fill in mbuf with extended UDP header and addresses and length put 1383 * into network format. 1384 */ 1385 ui = mtod(m, struct udpiphdr *); 1386 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1387 ui->ui_pr = pr; 1388 ui->ui_src = laddr; 1389 ui->ui_dst = faddr; 1390 ui->ui_sport = lport; 1391 ui->ui_dport = fport; 1392 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1393 if (pr == IPPROTO_UDPLITE) { 1394 struct udpcb *up; 1395 uint16_t plen; 1396 1397 up = intoudpcb(inp); 1398 cscov = up->u_txcslen; 1399 plen = (u_short)len + sizeof(struct udphdr); 1400 if (cscov >= plen) 1401 cscov = 0; 1402 ui->ui_len = htons(plen); 1403 ui->ui_ulen = htons(cscov); 1404 /* 1405 * For UDP-Lite, checksum coverage length of zero means 1406 * the entire UDPLite packet is covered by the checksum. 1407 */ 1408 cscov_partial = (cscov == 0) ? 0 : 1; 1409 } else 1410 ui->ui_v = IPVERSION << 4; 1411 1412 /* 1413 * Set the Don't Fragment bit in the IP header. 1414 */ 1415 if (inp->inp_flags & INP_DONTFRAG) { 1416 struct ip *ip; 1417 1418 ip = (struct ip *)&ui->ui_i; 1419 ip->ip_off |= htons(IP_DF); 1420 } 1421 1422 ipflags = 0; 1423 if (inp->inp_socket->so_options & SO_DONTROUTE) 1424 ipflags |= IP_ROUTETOIF; 1425 if (inp->inp_socket->so_options & SO_BROADCAST) 1426 ipflags |= IP_ALLOWBROADCAST; 1427 if (inp->inp_flags & INP_ONESBCAST) 1428 ipflags |= IP_SENDONES; 1429 1430 #ifdef MAC 1431 mac_inpcb_create_mbuf(inp, m); 1432 #endif 1433 1434 /* 1435 * Set up checksum and output datagram. 1436 */ 1437 ui->ui_sum = 0; 1438 if (pr == IPPROTO_UDPLITE) { 1439 if (inp->inp_flags & INP_ONESBCAST) 1440 faddr.s_addr = INADDR_BROADCAST; 1441 if (cscov_partial) { 1442 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1443 ui->ui_sum = 0xffff; 1444 } else { 1445 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1446 ui->ui_sum = 0xffff; 1447 } 1448 } else if (V_udp_cksum) { 1449 if (inp->inp_flags & INP_ONESBCAST) 1450 faddr.s_addr = INADDR_BROADCAST; 1451 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1452 htons((u_short)len + sizeof(struct udphdr) + pr)); 1453 m->m_pkthdr.csum_flags = CSUM_UDP; 1454 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1455 } 1456 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1457 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1458 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1459 UDPSTAT_INC(udps_opackets); 1460 1461 /* 1462 * Setup flowid / RSS information for outbound socket. 1463 * 1464 * Once the UDP code decides to set a flowid some other way, 1465 * this allows the flowid to be overridden by userland. 1466 */ 1467 if (flowtype != M_HASHTYPE_NONE) { 1468 m->m_pkthdr.flowid = flowid; 1469 M_HASHTYPE_SET(m, flowtype); 1470 #ifdef RSS 1471 } else { 1472 uint32_t hash_val, hash_type; 1473 /* 1474 * Calculate an appropriate RSS hash for UDP and 1475 * UDP Lite. 1476 * 1477 * The called function will take care of figuring out 1478 * whether a 2-tuple or 4-tuple hash is required based 1479 * on the currently configured scheme. 1480 * 1481 * Later later on connected socket values should be 1482 * cached in the inpcb and reused, rather than constantly 1483 * re-calculating it. 1484 * 1485 * UDP Lite is a different protocol number and will 1486 * likely end up being hashed as a 2-tuple until 1487 * RSS / NICs grow UDP Lite protocol awareness. 1488 */ 1489 if (rss_proto_software_hash_v4(faddr, laddr, fport, lport, 1490 pr, &hash_val, &hash_type) == 0) { 1491 m->m_pkthdr.flowid = hash_val; 1492 M_HASHTYPE_SET(m, hash_type); 1493 } 1494 #endif 1495 } 1496 1497 #ifdef RSS 1498 /* 1499 * Don't override with the inp cached flowid value. 1500 * 1501 * Depending upon the kind of send being done, the inp 1502 * flowid/flowtype values may actually not be appropriate 1503 * for this particular socket send. 1504 * 1505 * We should either leave the flowid at zero (which is what is 1506 * currently done) or set it to some software generated 1507 * hash value based on the packet contents. 1508 */ 1509 ipflags |= IP_NODEFAULTFLOWID; 1510 #endif /* RSS */ 1511 1512 if (unlock_udbinfo == UH_WLOCKED) 1513 INP_HASH_WUNLOCK(pcbinfo); 1514 else if (unlock_udbinfo == UH_RLOCKED) 1515 INP_HASH_RUNLOCK(pcbinfo); 1516 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1517 error = ip_output(m, inp->inp_options, NULL, ipflags, 1518 inp->inp_moptions, inp); 1519 if (unlock_udbinfo == UH_WLOCKED) 1520 INP_WUNLOCK(inp); 1521 else 1522 INP_RUNLOCK(inp); 1523 return (error); 1524 1525 release: 1526 if (unlock_udbinfo == UH_WLOCKED) { 1527 INP_HASH_WUNLOCK(pcbinfo); 1528 INP_WUNLOCK(inp); 1529 } else if (unlock_udbinfo == UH_RLOCKED) { 1530 INP_HASH_RUNLOCK(pcbinfo); 1531 INP_RUNLOCK(inp); 1532 } else 1533 INP_RUNLOCK(inp); 1534 m_freem(m); 1535 return (error); 1536 } 1537 1538 1539 #if defined(IPSEC) && defined(IPSEC_NAT_T) 1540 /* 1541 * Potentially decap ESP in UDP frame. Check for an ESP header 1542 * and optional marker; if present, strip the UDP header and 1543 * push the result through IPSec. 1544 * 1545 * Returns mbuf to be processed (potentially re-allocated) or 1546 * NULL if consumed and/or processed. 1547 */ 1548 static struct mbuf * 1549 udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off) 1550 { 1551 size_t minlen, payload, skip, iphlen; 1552 caddr_t data; 1553 struct udpcb *up; 1554 struct m_tag *tag; 1555 struct udphdr *udphdr; 1556 struct ip *ip; 1557 1558 INP_RLOCK_ASSERT(inp); 1559 1560 /* 1561 * Pull up data so the longest case is contiguous: 1562 * IP/UDP hdr + non ESP marker + ESP hdr. 1563 */ 1564 minlen = off + sizeof(uint64_t) + sizeof(struct esp); 1565 if (minlen > m->m_pkthdr.len) 1566 minlen = m->m_pkthdr.len; 1567 if ((m = m_pullup(m, minlen)) == NULL) { 1568 IPSECSTAT_INC(ips_in_inval); 1569 return (NULL); /* Bypass caller processing. */ 1570 } 1571 data = mtod(m, caddr_t); /* Points to ip header. */ 1572 payload = m->m_len - off; /* Size of payload. */ 1573 1574 if (payload == 1 && data[off] == '\xff') 1575 return (m); /* NB: keepalive packet, no decap. */ 1576 1577 up = intoudpcb(inp); 1578 KASSERT(up != NULL, ("%s: udpcb NULL", __func__)); 1579 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0, 1580 ("u_flags 0x%x", up->u_flags)); 1581 1582 /* 1583 * Check that the payload is large enough to hold an 1584 * ESP header and compute the amount of data to remove. 1585 * 1586 * NB: the caller has already done a pullup for us. 1587 * XXX can we assume alignment and eliminate bcopys? 1588 */ 1589 if (up->u_flags & UF_ESPINUDP_NON_IKE) { 1590 /* 1591 * draft-ietf-ipsec-nat-t-ike-0[01].txt and 1592 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring 1593 * possible AH mode non-IKE marker+non-ESP marker 1594 * from draft-ietf-ipsec-udp-encaps-00.txt. 1595 */ 1596 uint64_t marker; 1597 1598 if (payload <= sizeof(uint64_t) + sizeof(struct esp)) 1599 return (m); /* NB: no decap. */ 1600 bcopy(data + off, &marker, sizeof(uint64_t)); 1601 if (marker != 0) /* Non-IKE marker. */ 1602 return (m); /* NB: no decap. */ 1603 skip = sizeof(uint64_t) + sizeof(struct udphdr); 1604 } else { 1605 uint32_t spi; 1606 1607 if (payload <= sizeof(struct esp)) { 1608 IPSECSTAT_INC(ips_in_inval); 1609 m_freem(m); 1610 return (NULL); /* Discard. */ 1611 } 1612 bcopy(data + off, &spi, sizeof(uint32_t)); 1613 if (spi == 0) /* Non-ESP marker. */ 1614 return (m); /* NB: no decap. */ 1615 skip = sizeof(struct udphdr); 1616 } 1617 1618 /* 1619 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember 1620 * the UDP ports. This is required if we want to select 1621 * the right SPD for multiple hosts behind same NAT. 1622 * 1623 * NB: ports are maintained in network byte order everywhere 1624 * in the NAT-T code. 1625 */ 1626 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, 1627 2 * sizeof(uint16_t), M_NOWAIT); 1628 if (tag == NULL) { 1629 IPSECSTAT_INC(ips_in_nomem); 1630 m_freem(m); 1631 return (NULL); /* Discard. */ 1632 } 1633 iphlen = off - sizeof(struct udphdr); 1634 udphdr = (struct udphdr *)(data + iphlen); 1635 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport; 1636 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport; 1637 m_tag_prepend(m, tag); 1638 1639 /* 1640 * Remove the UDP header (and possibly the non ESP marker) 1641 * IP header length is iphlen 1642 * Before: 1643 * <--- off ---> 1644 * +----+------+-----+ 1645 * | IP | UDP | ESP | 1646 * +----+------+-----+ 1647 * <-skip-> 1648 * After: 1649 * +----+-----+ 1650 * | IP | ESP | 1651 * +----+-----+ 1652 * <-skip-> 1653 */ 1654 ovbcopy(data, data + skip, iphlen); 1655 m_adj(m, skip); 1656 1657 ip = mtod(m, struct ip *); 1658 ip->ip_len = htons(ntohs(ip->ip_len) - skip); 1659 ip->ip_p = IPPROTO_ESP; 1660 1661 /* 1662 * We cannot yet update the cksums so clear any 1663 * h/w cksum flags as they are no longer valid. 1664 */ 1665 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) 1666 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR); 1667 1668 (void) ipsec_common_input(m, iphlen, offsetof(struct ip, ip_p), 1669 AF_INET, ip->ip_p); 1670 return (NULL); /* NB: consumed, bypass processing. */ 1671 } 1672 #endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */ 1673 1674 static void 1675 udp_abort(struct socket *so) 1676 { 1677 struct inpcb *inp; 1678 struct inpcbinfo *pcbinfo; 1679 1680 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1681 inp = sotoinpcb(so); 1682 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1683 INP_WLOCK(inp); 1684 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1685 INP_HASH_WLOCK(pcbinfo); 1686 in_pcbdisconnect(inp); 1687 inp->inp_laddr.s_addr = INADDR_ANY; 1688 INP_HASH_WUNLOCK(pcbinfo); 1689 soisdisconnected(so); 1690 } 1691 INP_WUNLOCK(inp); 1692 } 1693 1694 static int 1695 udp_attach(struct socket *so, int proto, struct thread *td) 1696 { 1697 struct inpcb *inp; 1698 struct inpcbinfo *pcbinfo; 1699 int error; 1700 1701 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1702 inp = sotoinpcb(so); 1703 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1704 error = soreserve(so, udp_sendspace, udp_recvspace); 1705 if (error) 1706 return (error); 1707 INP_INFO_WLOCK(pcbinfo); 1708 error = in_pcballoc(so, pcbinfo); 1709 if (error) { 1710 INP_INFO_WUNLOCK(pcbinfo); 1711 return (error); 1712 } 1713 1714 inp = sotoinpcb(so); 1715 inp->inp_vflag |= INP_IPV4; 1716 inp->inp_ip_ttl = V_ip_defttl; 1717 1718 error = udp_newudpcb(inp); 1719 if (error) { 1720 in_pcbdetach(inp); 1721 in_pcbfree(inp); 1722 INP_INFO_WUNLOCK(pcbinfo); 1723 return (error); 1724 } 1725 1726 INP_WUNLOCK(inp); 1727 INP_INFO_WUNLOCK(pcbinfo); 1728 return (0); 1729 } 1730 #endif /* INET */ 1731 1732 int 1733 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, void *ctx) 1734 { 1735 struct inpcb *inp; 1736 struct udpcb *up; 1737 1738 KASSERT(so->so_type == SOCK_DGRAM, 1739 ("udp_set_kernel_tunneling: !dgram")); 1740 inp = sotoinpcb(so); 1741 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1742 INP_WLOCK(inp); 1743 up = intoudpcb(inp); 1744 if (up->u_tun_func != NULL) { 1745 INP_WUNLOCK(inp); 1746 return (EBUSY); 1747 } 1748 up->u_tun_func = f; 1749 up->u_tun_ctx = ctx; 1750 INP_WUNLOCK(inp); 1751 return (0); 1752 } 1753 1754 #ifdef INET 1755 static int 1756 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1757 { 1758 struct inpcb *inp; 1759 struct inpcbinfo *pcbinfo; 1760 int error; 1761 1762 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1763 inp = sotoinpcb(so); 1764 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1765 INP_WLOCK(inp); 1766 INP_HASH_WLOCK(pcbinfo); 1767 error = in_pcbbind(inp, nam, td->td_ucred); 1768 INP_HASH_WUNLOCK(pcbinfo); 1769 INP_WUNLOCK(inp); 1770 return (error); 1771 } 1772 1773 static void 1774 udp_close(struct socket *so) 1775 { 1776 struct inpcb *inp; 1777 struct inpcbinfo *pcbinfo; 1778 1779 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1780 inp = sotoinpcb(so); 1781 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1782 INP_WLOCK(inp); 1783 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1784 INP_HASH_WLOCK(pcbinfo); 1785 in_pcbdisconnect(inp); 1786 inp->inp_laddr.s_addr = INADDR_ANY; 1787 INP_HASH_WUNLOCK(pcbinfo); 1788 soisdisconnected(so); 1789 } 1790 INP_WUNLOCK(inp); 1791 } 1792 1793 static int 1794 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1795 { 1796 struct inpcb *inp; 1797 struct inpcbinfo *pcbinfo; 1798 struct sockaddr_in *sin; 1799 int error; 1800 1801 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1802 inp = sotoinpcb(so); 1803 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1804 INP_WLOCK(inp); 1805 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1806 INP_WUNLOCK(inp); 1807 return (EISCONN); 1808 } 1809 sin = (struct sockaddr_in *)nam; 1810 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1811 if (error != 0) { 1812 INP_WUNLOCK(inp); 1813 return (error); 1814 } 1815 INP_HASH_WLOCK(pcbinfo); 1816 error = in_pcbconnect(inp, nam, td->td_ucred); 1817 INP_HASH_WUNLOCK(pcbinfo); 1818 if (error == 0) 1819 soisconnected(so); 1820 INP_WUNLOCK(inp); 1821 return (error); 1822 } 1823 1824 static void 1825 udp_detach(struct socket *so) 1826 { 1827 struct inpcb *inp; 1828 struct inpcbinfo *pcbinfo; 1829 struct udpcb *up; 1830 1831 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1832 inp = sotoinpcb(so); 1833 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1834 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1835 ("udp_detach: not disconnected")); 1836 INP_INFO_WLOCK(pcbinfo); 1837 INP_WLOCK(inp); 1838 up = intoudpcb(inp); 1839 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 1840 inp->inp_ppcb = NULL; 1841 in_pcbdetach(inp); 1842 in_pcbfree(inp); 1843 INP_INFO_WUNLOCK(pcbinfo); 1844 udp_discardcb(up); 1845 } 1846 1847 static int 1848 udp_disconnect(struct socket *so) 1849 { 1850 struct inpcb *inp; 1851 struct inpcbinfo *pcbinfo; 1852 1853 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1854 inp = sotoinpcb(so); 1855 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1856 INP_WLOCK(inp); 1857 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1858 INP_WUNLOCK(inp); 1859 return (ENOTCONN); 1860 } 1861 INP_HASH_WLOCK(pcbinfo); 1862 in_pcbdisconnect(inp); 1863 inp->inp_laddr.s_addr = INADDR_ANY; 1864 INP_HASH_WUNLOCK(pcbinfo); 1865 SOCK_LOCK(so); 1866 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1867 SOCK_UNLOCK(so); 1868 INP_WUNLOCK(inp); 1869 return (0); 1870 } 1871 1872 static int 1873 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1874 struct mbuf *control, struct thread *td) 1875 { 1876 struct inpcb *inp; 1877 1878 inp = sotoinpcb(so); 1879 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1880 return (udp_output(inp, m, addr, control, td)); 1881 } 1882 #endif /* INET */ 1883 1884 int 1885 udp_shutdown(struct socket *so) 1886 { 1887 struct inpcb *inp; 1888 1889 inp = sotoinpcb(so); 1890 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1891 INP_WLOCK(inp); 1892 socantsendmore(so); 1893 INP_WUNLOCK(inp); 1894 return (0); 1895 } 1896 1897 #ifdef INET 1898 struct pr_usrreqs udp_usrreqs = { 1899 .pru_abort = udp_abort, 1900 .pru_attach = udp_attach, 1901 .pru_bind = udp_bind, 1902 .pru_connect = udp_connect, 1903 .pru_control = in_control, 1904 .pru_detach = udp_detach, 1905 .pru_disconnect = udp_disconnect, 1906 .pru_peeraddr = in_getpeeraddr, 1907 .pru_send = udp_send, 1908 .pru_soreceive = soreceive_dgram, 1909 .pru_sosend = sosend_dgram, 1910 .pru_shutdown = udp_shutdown, 1911 .pru_sockaddr = in_getsockaddr, 1912 .pru_sosetlabel = in_pcbsosetlabel, 1913 .pru_close = udp_close, 1914 }; 1915 #endif /* INET */ 1916