xref: /freebsd/sys/netinet/udp_usrreq.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ipfw.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/domain.h>
44 #include <sys/eventhandler.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/protosw.h>
53 #include <sys/signalvar.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/sx.h>
57 #include <sys/sysctl.h>
58 #include <sys/syslog.h>
59 #include <sys/systm.h>
60 #include <sys/vimage.h>
61 
62 #include <vm/uma.h>
63 
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #ifdef INET6
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet/ip_icmp.h>
76 #include <netinet/icmp_var.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet6/ip6_var.h>
81 #endif
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #include <netinet/vinet.h>
85 
86 #ifdef IPSEC
87 #include <netipsec/ipsec.h>
88 #endif
89 
90 #include <machine/in_cksum.h>
91 
92 #include <security/mac/mac_framework.h>
93 
94 /*
95  * UDP protocol implementation.
96  * Per RFC 768, August, 1980.
97  */
98 
99 #ifdef VIMAGE_GLOBALS
100 int	udp_blackhole;
101 #endif
102 
103 /*
104  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
105  * removes the only data integrity mechanism for packets and malformed
106  * packets that would otherwise be discarded due to bad checksums, and may
107  * cause problems (especially for NFS data blocks).
108  */
109 static int	udp_cksum = 1;
110 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udp_cksum,
111     0, "compute udp checksum");
112 
113 int	udp_log_in_vain = 0;
114 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
115     &udp_log_in_vain, 0, "Log all incoming UDP packets");
116 
117 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_udp, OID_AUTO, blackhole,
118     CTLFLAG_RW, udp_blackhole, 0,
119     "Do not send port unreachables for refused connects");
120 
121 u_long	udp_sendspace = 9216;		/* really max datagram size */
122 					/* 40 1K datagrams */
123 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
124     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
125 
126 u_long	udp_recvspace = 40 * (1024 +
127 #ifdef INET6
128 				      sizeof(struct sockaddr_in6)
129 #else
130 				      sizeof(struct sockaddr_in)
131 #endif
132 				      );
133 
134 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
135     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
136 
137 #ifdef VIMAGE_GLOBALS
138 struct inpcbhead	udb;		/* from udp_var.h */
139 struct inpcbinfo	udbinfo;
140 static uma_zone_t	udpcb_zone;
141 struct udpstat		udpstat;	/* from udp_var.h */
142 #endif
143 
144 #ifndef UDBHASHSIZE
145 #define	UDBHASHSIZE	128
146 #endif
147 
148 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_udp, UDPCTL_STATS, stats,
149     CTLFLAG_RW, udpstat, udpstat,
150     "UDP statistics (struct udpstat, netinet/udp_var.h)");
151 
152 static void	udp_detach(struct socket *so);
153 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
154 		    struct mbuf *, struct thread *);
155 
156 static void
157 udp_zone_change(void *tag)
158 {
159 	INIT_VNET_INET(curvnet);
160 
161 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
162 	uma_zone_set_max(V_udpcb_zone, maxsockets);
163 }
164 
165 static int
166 udp_inpcb_init(void *mem, int size, int flags)
167 {
168 	struct inpcb *inp;
169 
170 	inp = mem;
171 	INP_LOCK_INIT(inp, "inp", "udpinp");
172 	return (0);
173 }
174 
175 void
176 udp_init(void)
177 {
178 	INIT_VNET_INET(curvnet);
179 
180 	V_udp_blackhole = 0;
181 
182 	INP_INFO_LOCK_INIT(&V_udbinfo, "udp");
183 	LIST_INIT(&V_udb);
184 #ifdef VIMAGE
185 	V_udbinfo.ipi_vnet = curvnet;
186 #endif
187 	V_udbinfo.ipi_listhead = &V_udb;
188 	V_udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB,
189 	    &V_udbinfo.ipi_hashmask);
190 	V_udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB,
191 	    &V_udbinfo.ipi_porthashmask);
192 	V_udbinfo.ipi_zone = uma_zcreate("udp_inpcb", sizeof(struct inpcb),
193 	    NULL, NULL, udp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
195 
196 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
197 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
198 	uma_zone_set_max(V_udpcb_zone, maxsockets);
199 
200 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
201 	    EVENTHANDLER_PRI_ANY);
202 }
203 
204 int
205 udp_newudpcb(struct inpcb *inp)
206 {
207 	INIT_VNET_INET(curvnet);
208 	struct udpcb *up;
209 
210 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
211 	if (up == NULL)
212 		return (ENOBUFS);
213 	inp->inp_ppcb = up;
214 	return (0);
215 }
216 
217 void
218 udp_discardcb(struct udpcb *up)
219 {
220 	INIT_VNET_INET(curvnet);
221 
222 	uma_zfree(V_udpcb_zone, up);
223 }
224 
225 /*
226  * Subroutine of udp_input(), which appends the provided mbuf chain to the
227  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
228  * contains the source address.  If the socket ends up being an IPv6 socket,
229  * udp_append() will convert to a sockaddr_in6 before passing the address
230  * into the socket code.
231  */
232 static void
233 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
234     struct sockaddr_in *udp_in)
235 {
236 	struct sockaddr *append_sa;
237 	struct socket *so;
238 	struct mbuf *opts = 0;
239 #ifdef INET6
240 	struct sockaddr_in6 udp_in6;
241 #endif
242 
243 	INP_RLOCK_ASSERT(inp);
244 
245 #ifdef IPSEC
246 	/* Check AH/ESP integrity. */
247 	if (ipsec4_in_reject(n, inp)) {
248 		INIT_VNET_IPSEC(curvnet);
249 		m_freem(n);
250 		V_ipsec4stat.in_polvio++;
251 		return;
252 	}
253 #endif /* IPSEC */
254 #ifdef MAC
255 	if (mac_inpcb_check_deliver(inp, n) != 0) {
256 		m_freem(n);
257 		return;
258 	}
259 #endif
260 	if (inp->inp_flags & INP_CONTROLOPTS ||
261 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
262 #ifdef INET6
263 		if (inp->inp_vflag & INP_IPV6)
264 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
265 		else
266 #endif
267 			ip_savecontrol(inp, &opts, ip, n);
268 	}
269 #ifdef INET6
270 	if (inp->inp_vflag & INP_IPV6) {
271 		bzero(&udp_in6, sizeof(udp_in6));
272 		udp_in6.sin6_len = sizeof(udp_in6);
273 		udp_in6.sin6_family = AF_INET6;
274 		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
275 		append_sa = (struct sockaddr *)&udp_in6;
276 	} else
277 #endif
278 		append_sa = (struct sockaddr *)udp_in;
279 	m_adj(n, off);
280 
281 	so = inp->inp_socket;
282 	SOCKBUF_LOCK(&so->so_rcv);
283 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
284 		INIT_VNET_INET(so->so_vnet);
285 		SOCKBUF_UNLOCK(&so->so_rcv);
286 		m_freem(n);
287 		if (opts)
288 			m_freem(opts);
289 		UDPSTAT_INC(udps_fullsock);
290 	} else
291 		sorwakeup_locked(so);
292 }
293 
294 void
295 udp_input(struct mbuf *m, int off)
296 {
297 	INIT_VNET_INET(curvnet);
298 	int iphlen = off;
299 	struct ip *ip;
300 	struct udphdr *uh;
301 	struct ifnet *ifp;
302 	struct inpcb *inp;
303 	struct udpcb *up;
304 	int len;
305 	struct ip save_ip;
306 	struct sockaddr_in udp_in;
307 #ifdef IPFIREWALL_FORWARD
308 	struct m_tag *fwd_tag;
309 #endif
310 
311 	ifp = m->m_pkthdr.rcvif;
312 	UDPSTAT_INC(udps_ipackets);
313 
314 	/*
315 	 * Strip IP options, if any; should skip this, make available to
316 	 * user, and use on returned packets, but we don't yet have a way to
317 	 * check the checksum with options still present.
318 	 */
319 	if (iphlen > sizeof (struct ip)) {
320 		ip_stripoptions(m, (struct mbuf *)0);
321 		iphlen = sizeof(struct ip);
322 	}
323 
324 	/*
325 	 * Get IP and UDP header together in first mbuf.
326 	 */
327 	ip = mtod(m, struct ip *);
328 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
329 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
330 			UDPSTAT_INC(udps_hdrops);
331 			return;
332 		}
333 		ip = mtod(m, struct ip *);
334 	}
335 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
336 
337 	/*
338 	 * Destination port of 0 is illegal, based on RFC768.
339 	 */
340 	if (uh->uh_dport == 0)
341 		goto badunlocked;
342 
343 	/*
344 	 * Construct sockaddr format source address.  Stuff source address
345 	 * and datagram in user buffer.
346 	 */
347 	bzero(&udp_in, sizeof(udp_in));
348 	udp_in.sin_len = sizeof(udp_in);
349 	udp_in.sin_family = AF_INET;
350 	udp_in.sin_port = uh->uh_sport;
351 	udp_in.sin_addr = ip->ip_src;
352 
353 	/*
354 	 * Make mbuf data length reflect UDP length.  If not enough data to
355 	 * reflect UDP length, drop.
356 	 */
357 	len = ntohs((u_short)uh->uh_ulen);
358 	if (ip->ip_len != len) {
359 		if (len > ip->ip_len || len < sizeof(struct udphdr)) {
360 			UDPSTAT_INC(udps_badlen);
361 			goto badunlocked;
362 		}
363 		m_adj(m, len - ip->ip_len);
364 		/* ip->ip_len = len; */
365 	}
366 
367 	/*
368 	 * Save a copy of the IP header in case we want restore it for
369 	 * sending an ICMP error message in response.
370 	 */
371 	if (!V_udp_blackhole)
372 		save_ip = *ip;
373 	else
374 		memset(&save_ip, 0, sizeof(save_ip));
375 
376 	/*
377 	 * Checksum extended UDP header and data.
378 	 */
379 	if (uh->uh_sum) {
380 		u_short uh_sum;
381 
382 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
383 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
384 				uh_sum = m->m_pkthdr.csum_data;
385 			else
386 				uh_sum = in_pseudo(ip->ip_src.s_addr,
387 				    ip->ip_dst.s_addr, htonl((u_short)len +
388 				    m->m_pkthdr.csum_data + IPPROTO_UDP));
389 			uh_sum ^= 0xffff;
390 		} else {
391 			char b[9];
392 
393 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
394 			bzero(((struct ipovly *)ip)->ih_x1, 9);
395 			((struct ipovly *)ip)->ih_len = uh->uh_ulen;
396 			uh_sum = in_cksum(m, len + sizeof (struct ip));
397 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
398 		}
399 		if (uh_sum) {
400 			UDPSTAT_INC(udps_badsum);
401 			m_freem(m);
402 			return;
403 		}
404 	} else
405 		UDPSTAT_INC(udps_nosum);
406 
407 #ifdef IPFIREWALL_FORWARD
408 	/*
409 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
410 	 */
411 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
412 	if (fwd_tag != NULL) {
413 		struct sockaddr_in *next_hop;
414 
415 		/*
416 		 * Do the hack.
417 		 */
418 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
419 		ip->ip_dst = next_hop->sin_addr;
420 		uh->uh_dport = ntohs(next_hop->sin_port);
421 
422 		/*
423 		 * Remove the tag from the packet.  We don't need it anymore.
424 		 */
425 		m_tag_delete(m, fwd_tag);
426 	}
427 #endif
428 
429 	INP_INFO_RLOCK(&V_udbinfo);
430 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
431 	    in_broadcast(ip->ip_dst, ifp)) {
432 		struct inpcb *last;
433 		struct ip_moptions *imo;
434 
435 		last = NULL;
436 		LIST_FOREACH(inp, &V_udb, inp_list) {
437 			if (inp->inp_lport != uh->uh_dport)
438 				continue;
439 #ifdef INET6
440 			if ((inp->inp_vflag & INP_IPV4) == 0)
441 				continue;
442 #endif
443 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
444 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
445 				continue;
446 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
447 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
448 				continue;
449 			if (inp->inp_fport != 0 &&
450 			    inp->inp_fport != uh->uh_sport)
451 				continue;
452 
453 			INP_RLOCK(inp);
454 
455 			/*
456 			 * Handle socket delivery policy for any-source
457 			 * and source-specific multicast. [RFC3678]
458 			 */
459 			imo = inp->inp_moptions;
460 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
461 			    imo != NULL) {
462 				struct sockaddr_in	 group;
463 				int			 blocked;
464 
465 				bzero(&group, sizeof(struct sockaddr_in));
466 				group.sin_len = sizeof(struct sockaddr_in);
467 				group.sin_family = AF_INET;
468 				group.sin_addr = ip->ip_dst;
469 
470 				blocked = imo_multi_filter(imo, ifp,
471 					(struct sockaddr *)&group,
472 					(struct sockaddr *)&udp_in);
473 				if (blocked != MCAST_PASS) {
474 					if (blocked == MCAST_NOTGMEMBER)
475 						IPSTAT_INC(ips_notmember);
476 					if (blocked == MCAST_NOTSMEMBER ||
477 					    blocked == MCAST_MUTED)
478 						UDPSTAT_INC(udps_filtermcast);
479 					INP_RUNLOCK(inp);
480 					continue;
481 				}
482 			}
483 			if (last != NULL) {
484 				struct mbuf *n;
485 
486 				n = m_copy(m, 0, M_COPYALL);
487 				up = intoudpcb(last);
488 				if (up->u_tun_func == NULL) {
489 					if (n != NULL)
490 						udp_append(last,
491 						    ip, n,
492 						    iphlen +
493 						    sizeof(struct udphdr),
494 						    &udp_in);
495 				} else {
496 					/*
497 					 * Engage the tunneling protocol we
498 					 * will have to leave the info_lock
499 					 * up, since we are hunting through
500 					 * multiple UDP's.
501 					 */
502 
503 					(*up->u_tun_func)(n, iphlen, last);
504 				}
505 				INP_RUNLOCK(last);
506 			}
507 			last = inp;
508 			/*
509 			 * Don't look for additional matches if this one does
510 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
511 			 * socket options set.  This heuristic avoids
512 			 * searching through all pcbs in the common case of a
513 			 * non-shared port.  It assumes that an application
514 			 * will never clear these options after setting them.
515 			 */
516 			if ((last->inp_socket->so_options &
517 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
518 				break;
519 		}
520 
521 		if (last == NULL) {
522 			/*
523 			 * No matching pcb found; discard datagram.  (No need
524 			 * to send an ICMP Port Unreachable for a broadcast
525 			 * or multicast datgram.)
526 			 */
527 			UDPSTAT_INC(udps_noportbcast);
528 			goto badheadlocked;
529 		}
530 		up = intoudpcb(last);
531 		if (up->u_tun_func == NULL) {
532 			udp_append(last, ip, m, iphlen + sizeof(struct udphdr),
533 			    &udp_in);
534 		} else {
535 			/*
536 			 * Engage the tunneling protocol.
537 			 */
538 			(*up->u_tun_func)(m, iphlen, last);
539 		}
540 		INP_RUNLOCK(last);
541 		INP_INFO_RUNLOCK(&V_udbinfo);
542 		return;
543 	}
544 
545 	/*
546 	 * Locate pcb for datagram.
547 	 */
548 	inp = in_pcblookup_hash(&V_udbinfo, ip->ip_src, uh->uh_sport,
549 	    ip->ip_dst, uh->uh_dport, 1, ifp);
550 	if (inp == NULL) {
551 		if (udp_log_in_vain) {
552 			char buf[4*sizeof "123"];
553 
554 			strcpy(buf, inet_ntoa(ip->ip_dst));
555 			log(LOG_INFO,
556 			    "Connection attempt to UDP %s:%d from %s:%d\n",
557 			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
558 			    ntohs(uh->uh_sport));
559 		}
560 		UDPSTAT_INC(udps_noport);
561 		if (m->m_flags & (M_BCAST | M_MCAST)) {
562 			UDPSTAT_INC(udps_noportbcast);
563 			goto badheadlocked;
564 		}
565 		if (V_udp_blackhole)
566 			goto badheadlocked;
567 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
568 			goto badheadlocked;
569 		*ip = save_ip;
570 		ip->ip_len += iphlen;
571 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
572 		INP_INFO_RUNLOCK(&V_udbinfo);
573 		return;
574 	}
575 
576 	/*
577 	 * Check the minimum TTL for socket.
578 	 */
579 	INP_RLOCK(inp);
580 	INP_INFO_RUNLOCK(&V_udbinfo);
581 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
582 		INP_RUNLOCK(inp);
583 		goto badunlocked;
584 	}
585 	up = intoudpcb(inp);
586 	if (up->u_tun_func == NULL) {
587 		udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in);
588 	} else {
589 		/*
590 		 * Engage the tunneling protocol.
591 		 */
592 
593 		(*up->u_tun_func)(m, iphlen, inp);
594 	}
595 	INP_RUNLOCK(inp);
596 	return;
597 
598 badheadlocked:
599 	if (inp)
600 		INP_RUNLOCK(inp);
601 	INP_INFO_RUNLOCK(&V_udbinfo);
602 badunlocked:
603 	m_freem(m);
604 }
605 
606 /*
607  * Notify a udp user of an asynchronous error; just wake up so that they can
608  * collect error status.
609  */
610 struct inpcb *
611 udp_notify(struct inpcb *inp, int errno)
612 {
613 
614 	/*
615 	 * While udp_ctlinput() always calls udp_notify() with a read lock
616 	 * when invoking it directly, in_pcbnotifyall() currently uses write
617 	 * locks due to sharing code with TCP.  For now, accept either a read
618 	 * or a write lock, but a read lock is sufficient.
619 	 */
620 	INP_LOCK_ASSERT(inp);
621 
622 	inp->inp_socket->so_error = errno;
623 	sorwakeup(inp->inp_socket);
624 	sowwakeup(inp->inp_socket);
625 	return (inp);
626 }
627 
628 void
629 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
630 {
631 	INIT_VNET_INET(curvnet);
632 	struct ip *ip = vip;
633 	struct udphdr *uh;
634 	struct in_addr faddr;
635 	struct inpcb *inp;
636 
637 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
638 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
639 		return;
640 
641 	/*
642 	 * Redirects don't need to be handled up here.
643 	 */
644 	if (PRC_IS_REDIRECT(cmd))
645 		return;
646 
647 	/*
648 	 * Hostdead is ugly because it goes linearly through all PCBs.
649 	 *
650 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
651 	 * DoS attack on machines with many connections.
652 	 */
653 	if (cmd == PRC_HOSTDEAD)
654 		ip = NULL;
655 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
656 		return;
657 	if (ip != NULL) {
658 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
659 		INP_INFO_RLOCK(&V_udbinfo);
660 		inp = in_pcblookup_hash(&V_udbinfo, faddr, uh->uh_dport,
661 		    ip->ip_src, uh->uh_sport, 0, NULL);
662 		if (inp != NULL) {
663 			INP_RLOCK(inp);
664 			if (inp->inp_socket != NULL) {
665 				udp_notify(inp, inetctlerrmap[cmd]);
666 			}
667 			INP_RUNLOCK(inp);
668 		}
669 		INP_INFO_RUNLOCK(&V_udbinfo);
670 	} else
671 		in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
672 		    udp_notify);
673 }
674 
675 static int
676 udp_pcblist(SYSCTL_HANDLER_ARGS)
677 {
678 	INIT_VNET_INET(curvnet);
679 	int error, i, n;
680 	struct inpcb *inp, **inp_list;
681 	inp_gen_t gencnt;
682 	struct xinpgen xig;
683 
684 	/*
685 	 * The process of preparing the PCB list is too time-consuming and
686 	 * resource-intensive to repeat twice on every request.
687 	 */
688 	if (req->oldptr == 0) {
689 		n = V_udbinfo.ipi_count;
690 		req->oldidx = 2 * (sizeof xig)
691 			+ (n + n/8) * sizeof(struct xinpcb);
692 		return (0);
693 	}
694 
695 	if (req->newptr != 0)
696 		return (EPERM);
697 
698 	/*
699 	 * OK, now we're committed to doing something.
700 	 */
701 	INP_INFO_RLOCK(&V_udbinfo);
702 	gencnt = V_udbinfo.ipi_gencnt;
703 	n = V_udbinfo.ipi_count;
704 	INP_INFO_RUNLOCK(&V_udbinfo);
705 
706 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
707 		+ n * sizeof(struct xinpcb));
708 	if (error != 0)
709 		return (error);
710 
711 	xig.xig_len = sizeof xig;
712 	xig.xig_count = n;
713 	xig.xig_gen = gencnt;
714 	xig.xig_sogen = so_gencnt;
715 	error = SYSCTL_OUT(req, &xig, sizeof xig);
716 	if (error)
717 		return (error);
718 
719 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
720 	if (inp_list == 0)
721 		return (ENOMEM);
722 
723 	INP_INFO_RLOCK(&V_udbinfo);
724 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
725 	     inp = LIST_NEXT(inp, inp_list)) {
726 		INP_RLOCK(inp);
727 		if (inp->inp_gencnt <= gencnt &&
728 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0)
729 			inp_list[i++] = inp;
730 		INP_RUNLOCK(inp);
731 	}
732 	INP_INFO_RUNLOCK(&V_udbinfo);
733 	n = i;
734 
735 	error = 0;
736 	for (i = 0; i < n; i++) {
737 		inp = inp_list[i];
738 		INP_RLOCK(inp);
739 		if (inp->inp_gencnt <= gencnt) {
740 			struct xinpcb xi;
741 			bzero(&xi, sizeof(xi));
742 			xi.xi_len = sizeof xi;
743 			/* XXX should avoid extra copy */
744 			bcopy(inp, &xi.xi_inp, sizeof *inp);
745 			if (inp->inp_socket)
746 				sotoxsocket(inp->inp_socket, &xi.xi_socket);
747 			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
748 			INP_RUNLOCK(inp);
749 			error = SYSCTL_OUT(req, &xi, sizeof xi);
750 		} else
751 			INP_RUNLOCK(inp);
752 	}
753 	if (!error) {
754 		/*
755 		 * Give the user an updated idea of our state.  If the
756 		 * generation differs from what we told her before, she knows
757 		 * that something happened while we were processing this
758 		 * request, and it might be necessary to retry.
759 		 */
760 		INP_INFO_RLOCK(&V_udbinfo);
761 		xig.xig_gen = V_udbinfo.ipi_gencnt;
762 		xig.xig_sogen = so_gencnt;
763 		xig.xig_count = V_udbinfo.ipi_count;
764 		INP_INFO_RUNLOCK(&V_udbinfo);
765 		error = SYSCTL_OUT(req, &xig, sizeof xig);
766 	}
767 	free(inp_list, M_TEMP);
768 	return (error);
769 }
770 
771 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
772     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
773 
774 static int
775 udp_getcred(SYSCTL_HANDLER_ARGS)
776 {
777 	INIT_VNET_INET(curvnet);
778 	struct xucred xuc;
779 	struct sockaddr_in addrs[2];
780 	struct inpcb *inp;
781 	int error;
782 
783 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
784 	if (error)
785 		return (error);
786 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
787 	if (error)
788 		return (error);
789 	INP_INFO_RLOCK(&V_udbinfo);
790 	inp = in_pcblookup_hash(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
791 				addrs[0].sin_addr, addrs[0].sin_port, 1, NULL);
792 	if (inp != NULL) {
793 		INP_RLOCK(inp);
794 		INP_INFO_RUNLOCK(&V_udbinfo);
795 		if (inp->inp_socket == NULL)
796 			error = ENOENT;
797 		if (error == 0)
798 			error = cr_canseeinpcb(req->td->td_ucred, inp);
799 		if (error == 0)
800 			cru2x(inp->inp_cred, &xuc);
801 		INP_RUNLOCK(inp);
802 	} else {
803 		INP_INFO_RUNLOCK(&V_udbinfo);
804 		error = ENOENT;
805 	}
806 	if (error == 0)
807 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
808 	return (error);
809 }
810 
811 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
812     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
813     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
814 
815 static int
816 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
817     struct mbuf *control, struct thread *td)
818 {
819 	INIT_VNET_INET(inp->inp_vnet);
820 	struct udpiphdr *ui;
821 	int len = m->m_pkthdr.len;
822 	struct in_addr faddr, laddr;
823 	struct cmsghdr *cm;
824 	struct sockaddr_in *sin, src;
825 	int error = 0;
826 	int ipflags;
827 	u_short fport, lport;
828 	int unlock_udbinfo;
829 
830 	/*
831 	 * udp_output() may need to temporarily bind or connect the current
832 	 * inpcb.  As such, we don't know up front whether we will need the
833 	 * pcbinfo lock or not.  Do any work to decide what is needed up
834 	 * front before acquiring any locks.
835 	 */
836 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
837 		if (control)
838 			m_freem(control);
839 		m_freem(m);
840 		return (EMSGSIZE);
841 	}
842 
843 	src.sin_family = 0;
844 	if (control != NULL) {
845 		/*
846 		 * XXX: Currently, we assume all the optional information is
847 		 * stored in a single mbuf.
848 		 */
849 		if (control->m_next) {
850 			m_freem(control);
851 			m_freem(m);
852 			return (EINVAL);
853 		}
854 		for (; control->m_len > 0;
855 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
856 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
857 			cm = mtod(control, struct cmsghdr *);
858 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
859 			    || cm->cmsg_len > control->m_len) {
860 				error = EINVAL;
861 				break;
862 			}
863 			if (cm->cmsg_level != IPPROTO_IP)
864 				continue;
865 
866 			switch (cm->cmsg_type) {
867 			case IP_SENDSRCADDR:
868 				if (cm->cmsg_len !=
869 				    CMSG_LEN(sizeof(struct in_addr))) {
870 					error = EINVAL;
871 					break;
872 				}
873 				bzero(&src, sizeof(src));
874 				src.sin_family = AF_INET;
875 				src.sin_len = sizeof(src);
876 				src.sin_port = inp->inp_lport;
877 				src.sin_addr =
878 				    *(struct in_addr *)CMSG_DATA(cm);
879 				break;
880 
881 			default:
882 				error = ENOPROTOOPT;
883 				break;
884 			}
885 			if (error)
886 				break;
887 		}
888 		m_freem(control);
889 	}
890 	if (error) {
891 		m_freem(m);
892 		return (error);
893 	}
894 
895 	/*
896 	 * Depending on whether or not the application has bound or connected
897 	 * the socket, we may have to do varying levels of work.  The optimal
898 	 * case is for a connected UDP socket, as a global lock isn't
899 	 * required at all.
900 	 *
901 	 * In order to decide which we need, we require stability of the
902 	 * inpcb binding, which we ensure by acquiring a read lock on the
903 	 * inpcb.  This doesn't strictly follow the lock order, so we play
904 	 * the trylock and retry game; note that we may end up with more
905 	 * conservative locks than required the second time around, so later
906 	 * assertions have to accept that.  Further analysis of the number of
907 	 * misses under contention is required.
908 	 */
909 	sin = (struct sockaddr_in *)addr;
910 	INP_RLOCK(inp);
911 	if (sin != NULL &&
912 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
913 		INP_RUNLOCK(inp);
914 		INP_INFO_WLOCK(&V_udbinfo);
915 		INP_WLOCK(inp);
916 		unlock_udbinfo = 2;
917 	} else if ((sin != NULL && (
918 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
919 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
920 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
921 	    (inp->inp_lport == 0))) ||
922 	    (src.sin_family == AF_INET)) {
923 		if (!INP_INFO_TRY_RLOCK(&V_udbinfo)) {
924 			INP_RUNLOCK(inp);
925 			INP_INFO_RLOCK(&V_udbinfo);
926 			INP_RLOCK(inp);
927 		}
928 		unlock_udbinfo = 1;
929 	} else
930 		unlock_udbinfo = 0;
931 
932 	/*
933 	 * If the IP_SENDSRCADDR control message was specified, override the
934 	 * source address for this datagram.  Its use is invalidated if the
935 	 * address thus specified is incomplete or clobbers other inpcbs.
936 	 */
937 	laddr = inp->inp_laddr;
938 	lport = inp->inp_lport;
939 	if (src.sin_family == AF_INET) {
940 		INP_INFO_LOCK_ASSERT(&V_udbinfo);
941 		if ((lport == 0) ||
942 		    (laddr.s_addr == INADDR_ANY &&
943 		     src.sin_addr.s_addr == INADDR_ANY)) {
944 			error = EINVAL;
945 			goto release;
946 		}
947 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
948 		    &laddr.s_addr, &lport, td->td_ucred);
949 		if (error)
950 			goto release;
951 	}
952 
953 	/*
954 	 * If a UDP socket has been connected, then a local address/port will
955 	 * have been selected and bound.
956 	 *
957 	 * If a UDP socket has not been connected to, then an explicit
958 	 * destination address must be used, in which case a local
959 	 * address/port may not have been selected and bound.
960 	 */
961 	if (sin != NULL) {
962 		INP_LOCK_ASSERT(inp);
963 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
964 			error = EISCONN;
965 			goto release;
966 		}
967 
968 		/*
969 		 * Jail may rewrite the destination address, so let it do
970 		 * that before we use it.
971 		 */
972 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
973 		if (error)
974 			goto release;
975 
976 		/*
977 		 * If a local address or port hasn't yet been selected, or if
978 		 * the destination address needs to be rewritten due to using
979 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
980 		 * to do the heavy lifting.  Once a port is selected, we
981 		 * commit the binding back to the socket; we also commit the
982 		 * binding of the address if in jail.
983 		 *
984 		 * If we already have a valid binding and we're not
985 		 * requesting a destination address rewrite, use a fast path.
986 		 */
987 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
988 		    inp->inp_lport == 0 ||
989 		    sin->sin_addr.s_addr == INADDR_ANY ||
990 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
991 			INP_INFO_LOCK_ASSERT(&V_udbinfo);
992 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
993 			    &lport, &faddr.s_addr, &fport, NULL,
994 			    td->td_ucred);
995 			if (error)
996 				goto release;
997 
998 			/*
999 			 * XXXRW: Why not commit the port if the address is
1000 			 * !INADDR_ANY?
1001 			 */
1002 			/* Commit the local port if newly assigned. */
1003 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1004 			    inp->inp_lport == 0) {
1005 				INP_INFO_WLOCK_ASSERT(&V_udbinfo);
1006 				INP_WLOCK_ASSERT(inp);
1007 				/*
1008 				 * Remember addr if jailed, to prevent
1009 				 * rebinding.
1010 				 */
1011 				if (prison_flag(td->td_ucred, PR_IP4))
1012 					inp->inp_laddr = laddr;
1013 				inp->inp_lport = lport;
1014 				if (in_pcbinshash(inp) != 0) {
1015 					inp->inp_lport = 0;
1016 					error = EAGAIN;
1017 					goto release;
1018 				}
1019 				inp->inp_flags |= INP_ANONPORT;
1020 			}
1021 		} else {
1022 			faddr = sin->sin_addr;
1023 			fport = sin->sin_port;
1024 		}
1025 	} else {
1026 		INP_LOCK_ASSERT(inp);
1027 		faddr = inp->inp_faddr;
1028 		fport = inp->inp_fport;
1029 		if (faddr.s_addr == INADDR_ANY) {
1030 			error = ENOTCONN;
1031 			goto release;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1037 	 * link-layer headers.  Immediate slide the data pointer back forward
1038 	 * since we won't use that space at this layer.
1039 	 */
1040 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT);
1041 	if (m == NULL) {
1042 		error = ENOBUFS;
1043 		goto release;
1044 	}
1045 	m->m_data += max_linkhdr;
1046 	m->m_len -= max_linkhdr;
1047 	m->m_pkthdr.len -= max_linkhdr;
1048 
1049 	/*
1050 	 * Fill in mbuf with extended UDP header and addresses and length put
1051 	 * into network format.
1052 	 */
1053 	ui = mtod(m, struct udpiphdr *);
1054 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1055 	ui->ui_pr = IPPROTO_UDP;
1056 	ui->ui_src = laddr;
1057 	ui->ui_dst = faddr;
1058 	ui->ui_sport = lport;
1059 	ui->ui_dport = fport;
1060 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1061 
1062 	/*
1063 	 * Set the Don't Fragment bit in the IP header.
1064 	 */
1065 	if (inp->inp_flags & INP_DONTFRAG) {
1066 		struct ip *ip;
1067 
1068 		ip = (struct ip *)&ui->ui_i;
1069 		ip->ip_off |= IP_DF;
1070 	}
1071 
1072 	ipflags = 0;
1073 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1074 		ipflags |= IP_ROUTETOIF;
1075 	if (inp->inp_socket->so_options & SO_BROADCAST)
1076 		ipflags |= IP_ALLOWBROADCAST;
1077 	if (inp->inp_flags & INP_ONESBCAST)
1078 		ipflags |= IP_SENDONES;
1079 
1080 #ifdef MAC
1081 	mac_inpcb_create_mbuf(inp, m);
1082 #endif
1083 
1084 	/*
1085 	 * Set up checksum and output datagram.
1086 	 */
1087 	if (udp_cksum) {
1088 		if (inp->inp_flags & INP_ONESBCAST)
1089 			faddr.s_addr = INADDR_BROADCAST;
1090 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1091 		    htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1092 		m->m_pkthdr.csum_flags = CSUM_UDP;
1093 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1094 	} else
1095 		ui->ui_sum = 0;
1096 	((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1097 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1098 	((struct ip *)ui)->ip_tos = inp->inp_ip_tos;	/* XXX */
1099 	UDPSTAT_INC(udps_opackets);
1100 
1101 	if (unlock_udbinfo == 2)
1102 		INP_INFO_WUNLOCK(&V_udbinfo);
1103 	else if (unlock_udbinfo == 1)
1104 		INP_INFO_RUNLOCK(&V_udbinfo);
1105 	error = ip_output(m, inp->inp_options, NULL, ipflags,
1106 	    inp->inp_moptions, inp);
1107 	if (unlock_udbinfo == 2)
1108 		INP_WUNLOCK(inp);
1109 	else
1110 		INP_RUNLOCK(inp);
1111 	return (error);
1112 
1113 release:
1114 	if (unlock_udbinfo == 2) {
1115 		INP_WUNLOCK(inp);
1116 		INP_INFO_WUNLOCK(&V_udbinfo);
1117 	} else if (unlock_udbinfo == 1) {
1118 		INP_RUNLOCK(inp);
1119 		INP_INFO_RUNLOCK(&V_udbinfo);
1120 	} else
1121 		INP_RUNLOCK(inp);
1122 	m_freem(m);
1123 	return (error);
1124 }
1125 
1126 static void
1127 udp_abort(struct socket *so)
1128 {
1129 	INIT_VNET_INET(so->so_vnet);
1130 	struct inpcb *inp;
1131 
1132 	inp = sotoinpcb(so);
1133 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1134 	INP_INFO_WLOCK(&V_udbinfo);
1135 	INP_WLOCK(inp);
1136 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1137 		in_pcbdisconnect(inp);
1138 		inp->inp_laddr.s_addr = INADDR_ANY;
1139 		soisdisconnected(so);
1140 	}
1141 	INP_WUNLOCK(inp);
1142 	INP_INFO_WUNLOCK(&V_udbinfo);
1143 }
1144 
1145 static int
1146 udp_attach(struct socket *so, int proto, struct thread *td)
1147 {
1148 	INIT_VNET_INET(so->so_vnet);
1149 	struct inpcb *inp;
1150 	int error;
1151 
1152 	inp = sotoinpcb(so);
1153 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1154 	error = soreserve(so, udp_sendspace, udp_recvspace);
1155 	if (error)
1156 		return (error);
1157 	INP_INFO_WLOCK(&V_udbinfo);
1158 	error = in_pcballoc(so, &V_udbinfo);
1159 	if (error) {
1160 		INP_INFO_WUNLOCK(&V_udbinfo);
1161 		return (error);
1162 	}
1163 
1164 	inp = (struct inpcb *)so->so_pcb;
1165 	inp->inp_vflag |= INP_IPV4;
1166 	inp->inp_ip_ttl = V_ip_defttl;
1167 
1168 	error = udp_newudpcb(inp);
1169 	if (error) {
1170 		in_pcbdetach(inp);
1171 		in_pcbfree(inp);
1172 		INP_INFO_WUNLOCK(&V_udbinfo);
1173 		return (error);
1174 	}
1175 
1176 	INP_WUNLOCK(inp);
1177 	INP_INFO_WUNLOCK(&V_udbinfo);
1178 	return (0);
1179 }
1180 
1181 int
1182 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1183 {
1184 	struct inpcb *inp;
1185 	struct udpcb *up;
1186 
1187 	KASSERT(so->so_type == SOCK_DGRAM, ("udp_set_kernel_tunneling: !dgram"));
1188 	KASSERT(so->so_pcb != NULL, ("udp_set_kernel_tunneling: NULL inp"));
1189 	if (so->so_type != SOCK_DGRAM) {
1190 		/* Not UDP socket... sorry! */
1191 		return (ENOTSUP);
1192 	}
1193 	inp = (struct inpcb *)so->so_pcb;
1194 	if (inp == NULL) {
1195 		/* NULL INP? */
1196 		return (EINVAL);
1197 	}
1198 	INP_WLOCK(inp);
1199 	up = intoudpcb(inp);
1200 	if (up->u_tun_func != NULL) {
1201 		INP_WUNLOCK(inp);
1202 		return (EBUSY);
1203 	}
1204 	up->u_tun_func = f;
1205 	INP_WUNLOCK(inp);
1206 	return (0);
1207 }
1208 
1209 static int
1210 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1211 {
1212 	INIT_VNET_INET(so->so_vnet);
1213 	struct inpcb *inp;
1214 	int error;
1215 
1216 	inp = sotoinpcb(so);
1217 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1218 	INP_INFO_WLOCK(&V_udbinfo);
1219 	INP_WLOCK(inp);
1220 	error = in_pcbbind(inp, nam, td->td_ucred);
1221 	INP_WUNLOCK(inp);
1222 	INP_INFO_WUNLOCK(&V_udbinfo);
1223 	return (error);
1224 }
1225 
1226 static void
1227 udp_close(struct socket *so)
1228 {
1229 	INIT_VNET_INET(so->so_vnet);
1230 	struct inpcb *inp;
1231 
1232 	inp = sotoinpcb(so);
1233 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1234 	INP_INFO_WLOCK(&V_udbinfo);
1235 	INP_WLOCK(inp);
1236 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1237 		in_pcbdisconnect(inp);
1238 		inp->inp_laddr.s_addr = INADDR_ANY;
1239 		soisdisconnected(so);
1240 	}
1241 	INP_WUNLOCK(inp);
1242 	INP_INFO_WUNLOCK(&V_udbinfo);
1243 }
1244 
1245 static int
1246 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1247 {
1248 	INIT_VNET_INET(so->so_vnet);
1249 	struct inpcb *inp;
1250 	int error;
1251 	struct sockaddr_in *sin;
1252 
1253 	inp = sotoinpcb(so);
1254 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1255 	INP_INFO_WLOCK(&V_udbinfo);
1256 	INP_WLOCK(inp);
1257 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1258 		INP_WUNLOCK(inp);
1259 		INP_INFO_WUNLOCK(&V_udbinfo);
1260 		return (EISCONN);
1261 	}
1262 	sin = (struct sockaddr_in *)nam;
1263 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1264 	if (error != 0) {
1265 		INP_WUNLOCK(inp);
1266 		INP_INFO_WUNLOCK(&V_udbinfo);
1267 		return (error);
1268 	}
1269 	error = in_pcbconnect(inp, nam, td->td_ucred);
1270 	if (error == 0)
1271 		soisconnected(so);
1272 	INP_WUNLOCK(inp);
1273 	INP_INFO_WUNLOCK(&V_udbinfo);
1274 	return (error);
1275 }
1276 
1277 static void
1278 udp_detach(struct socket *so)
1279 {
1280 	INIT_VNET_INET(so->so_vnet);
1281 	struct inpcb *inp;
1282 	struct udpcb *up;
1283 
1284 	inp = sotoinpcb(so);
1285 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1286 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1287 	    ("udp_detach: not disconnected"));
1288 	INP_INFO_WLOCK(&V_udbinfo);
1289 	INP_WLOCK(inp);
1290 	up = intoudpcb(inp);
1291 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1292 	inp->inp_ppcb = NULL;
1293 	in_pcbdetach(inp);
1294 	in_pcbfree(inp);
1295 	INP_INFO_WUNLOCK(&V_udbinfo);
1296 	udp_discardcb(up);
1297 }
1298 
1299 static int
1300 udp_disconnect(struct socket *so)
1301 {
1302 	INIT_VNET_INET(so->so_vnet);
1303 	struct inpcb *inp;
1304 
1305 	inp = sotoinpcb(so);
1306 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1307 	INP_INFO_WLOCK(&V_udbinfo);
1308 	INP_WLOCK(inp);
1309 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1310 		INP_WUNLOCK(inp);
1311 		INP_INFO_WUNLOCK(&V_udbinfo);
1312 		return (ENOTCONN);
1313 	}
1314 
1315 	in_pcbdisconnect(inp);
1316 	inp->inp_laddr.s_addr = INADDR_ANY;
1317 	SOCK_LOCK(so);
1318 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1319 	SOCK_UNLOCK(so);
1320 	INP_WUNLOCK(inp);
1321 	INP_INFO_WUNLOCK(&V_udbinfo);
1322 	return (0);
1323 }
1324 
1325 static int
1326 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1327     struct mbuf *control, struct thread *td)
1328 {
1329 	struct inpcb *inp;
1330 
1331 	inp = sotoinpcb(so);
1332 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1333 	return (udp_output(inp, m, addr, control, td));
1334 }
1335 
1336 int
1337 udp_shutdown(struct socket *so)
1338 {
1339 	struct inpcb *inp;
1340 
1341 	inp = sotoinpcb(so);
1342 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1343 	INP_WLOCK(inp);
1344 	socantsendmore(so);
1345 	INP_WUNLOCK(inp);
1346 	return (0);
1347 }
1348 
1349 struct pr_usrreqs udp_usrreqs = {
1350 	.pru_abort =		udp_abort,
1351 	.pru_attach =		udp_attach,
1352 	.pru_bind =		udp_bind,
1353 	.pru_connect =		udp_connect,
1354 	.pru_control =		in_control,
1355 	.pru_detach =		udp_detach,
1356 	.pru_disconnect =	udp_disconnect,
1357 	.pru_peeraddr =		in_getpeeraddr,
1358 	.pru_send =		udp_send,
1359 	.pru_soreceive =	soreceive_dgram,
1360 	.pru_sosend =		sosend_dgram,
1361 	.pru_shutdown =		udp_shutdown,
1362 	.pru_sockaddr =		in_getsockaddr,
1363 	.pru_sosetlabel =	in_pcbsosetlabel,
1364 	.pru_close =		udp_close,
1365 };
1366