xref: /freebsd/sys/netinet/udp_usrreq.c (revision 193d9e768ba63fcfb187cfd17f461f7d41345048)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2008 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * Copyright (c) 2014 Kevin Lo
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Robert N. M. Watson under
10  * contract to Juniper Networks, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ipsec.h"
45 #include "opt_rss.h"
46 
47 #include <sys/param.h>
48 #include <sys/domain.h>
49 #include <sys/eventhandler.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/protosw.h>
58 #include <sys/sdt.h>
59 #include <sys/signalvar.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sx.h>
63 #include <sys/sysctl.h>
64 #include <sys/syslog.h>
65 #include <sys/systm.h>
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/route.h>
72 #include <net/rss_config.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_kdtrace.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_systm.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #endif
83 #include <netinet/ip_icmp.h>
84 #include <netinet/icmp_var.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_options.h>
87 #ifdef INET6
88 #include <netinet6/ip6_var.h>
89 #endif
90 #include <netinet/udp.h>
91 #include <netinet/udp_var.h>
92 #include <netinet/udplite.h>
93 #include <netinet/in_rss.h>
94 
95 #include <netipsec/ipsec_support.h>
96 
97 #include <machine/in_cksum.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 /*
102  * UDP and UDP-Lite protocols implementation.
103  * Per RFC 768, August, 1980.
104  * Per RFC 3828, July, 2004.
105  */
106 
107 /*
108  * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
109  * removes the only data integrity mechanism for packets and malformed
110  * packets that would otherwise be discarded due to bad checksums, and may
111  * cause problems (especially for NFS data blocks).
112  */
113 VNET_DEFINE(int, udp_cksum) = 1;
114 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(udp_cksum), 0, "compute udp checksum");
116 
117 int	udp_log_in_vain = 0;
118 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
119     &udp_log_in_vain, 0, "Log all incoming UDP packets");
120 
121 VNET_DEFINE(int, udp_blackhole) = 0;
122 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(udp_blackhole), 0,
124     "Do not send port unreachables for refused connects");
125 
126 static VNET_DEFINE(int, udp_require_l2_bcast) = 0;
127 #define	V_udp_require_l2_bcast		VNET(udp_require_l2_bcast)
128 SYSCTL_INT(_net_inet_udp, OID_AUTO, require_l2_bcast, CTLFLAG_VNET | CTLFLAG_RW,
129     &VNET_NAME(udp_require_l2_bcast), 0,
130     "Only treat packets sent to an L2 broadcast address as broadcast packets");
131 
132 u_long	udp_sendspace = 9216;		/* really max datagram size */
133 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
134     &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
135 
136 u_long	udp_recvspace = 40 * (1024 +
137 #ifdef INET6
138 				      sizeof(struct sockaddr_in6)
139 #else
140 				      sizeof(struct sockaddr_in)
141 #endif
142 				      );	/* 40 1K datagrams */
143 
144 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
145     &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
146 
147 VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
148 VNET_DEFINE(struct inpcbinfo, udbinfo);
149 VNET_DEFINE(struct inpcbhead, ulitecb);
150 VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
151 static VNET_DEFINE(uma_zone_t, udpcb_zone);
152 #define	V_udpcb_zone			VNET(udpcb_zone)
153 
154 #ifndef UDBHASHSIZE
155 #define	UDBHASHSIZE	128
156 #endif
157 
158 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
159 VNET_PCPUSTAT_SYSINIT(udpstat);
160 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
161     udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
162 
163 #ifdef VIMAGE
164 VNET_PCPUSTAT_SYSUNINIT(udpstat);
165 #endif /* VIMAGE */
166 #ifdef INET
167 static void	udp_detach(struct socket *so);
168 static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
169 		    struct mbuf *, struct thread *);
170 #endif
171 
172 static void
173 udp_zone_change(void *tag)
174 {
175 
176 	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
177 	uma_zone_set_max(V_udpcb_zone, maxsockets);
178 }
179 
180 static int
181 udp_inpcb_init(void *mem, int size, int flags)
182 {
183 	struct inpcb *inp;
184 
185 	inp = mem;
186 	INP_LOCK_INIT(inp, "inp", "udpinp");
187 	return (0);
188 }
189 
190 static int
191 udplite_inpcb_init(void *mem, int size, int flags)
192 {
193 	struct inpcb *inp;
194 
195 	inp = mem;
196 	INP_LOCK_INIT(inp, "inp", "udpliteinp");
197 	return (0);
198 }
199 
200 void
201 udp_init(void)
202 {
203 
204 	/*
205 	 * For now default to 2-tuple UDP hashing - until the fragment
206 	 * reassembly code can also update the flowid.
207 	 *
208 	 * Once we can calculate the flowid that way and re-establish
209 	 * a 4-tuple, flip this to 4-tuple.
210 	 */
211 	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
212 	    "udp_inpcb", udp_inpcb_init, NULL, 0,
213 	    IPI_HASHFIELDS_2TUPLE);
214 	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
215 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
216 	uma_zone_set_max(V_udpcb_zone, maxsockets);
217 	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
218 	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
219 	    EVENTHANDLER_PRI_ANY);
220 }
221 
222 void
223 udplite_init(void)
224 {
225 
226 	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
227 	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
228 	    0, IPI_HASHFIELDS_2TUPLE);
229 }
230 
231 /*
232  * Kernel module interface for updating udpstat.  The argument is an index
233  * into udpstat treated as an array of u_long.  While this encodes the
234  * general layout of udpstat into the caller, it doesn't encode its location,
235  * so that future changes to add, for example, per-CPU stats support won't
236  * cause binary compatibility problems for kernel modules.
237  */
238 void
239 kmod_udpstat_inc(int statnum)
240 {
241 
242 	counter_u64_add(VNET(udpstat)[statnum], 1);
243 }
244 
245 int
246 udp_newudpcb(struct inpcb *inp)
247 {
248 	struct udpcb *up;
249 
250 	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
251 	if (up == NULL)
252 		return (ENOBUFS);
253 	inp->inp_ppcb = up;
254 	return (0);
255 }
256 
257 void
258 udp_discardcb(struct udpcb *up)
259 {
260 
261 	uma_zfree(V_udpcb_zone, up);
262 }
263 
264 #ifdef VIMAGE
265 static void
266 udp_destroy(void *unused __unused)
267 {
268 
269 	in_pcbinfo_destroy(&V_udbinfo);
270 	uma_zdestroy(V_udpcb_zone);
271 }
272 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL);
273 
274 static void
275 udplite_destroy(void *unused __unused)
276 {
277 
278 	in_pcbinfo_destroy(&V_ulitecbinfo);
279 }
280 VNET_SYSUNINIT(udplite, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udplite_destroy,
281     NULL);
282 #endif
283 
284 #ifdef INET
285 /*
286  * Subroutine of udp_input(), which appends the provided mbuf chain to the
287  * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
288  * contains the source address.  If the socket ends up being an IPv6 socket,
289  * udp_append() will convert to a sockaddr_in6 before passing the address
290  * into the socket code.
291  *
292  * In the normal case udp_append() will return 0, indicating that you
293  * must unlock the inp. However if a tunneling protocol is in place we increment
294  * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we
295  * then decrement the reference count. If the inp_rele returns 1, indicating the
296  * inp is gone, we return that to the caller to tell them *not* to unlock
297  * the inp. In the case of multi-cast this will cause the distribution
298  * to stop (though most tunneling protocols known currently do *not* use
299  * multicast).
300  */
301 static int
302 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
303     struct sockaddr_in *udp_in)
304 {
305 	struct sockaddr *append_sa;
306 	struct socket *so;
307 	struct mbuf *opts = NULL;
308 #ifdef INET6
309 	struct sockaddr_in6 udp_in6;
310 #endif
311 	struct udpcb *up;
312 
313 	INP_LOCK_ASSERT(inp);
314 
315 	/*
316 	 * Engage the tunneling protocol.
317 	 */
318 	up = intoudpcb(inp);
319 	if (up->u_tun_func != NULL) {
320 		in_pcbref(inp);
321 		INP_RUNLOCK(inp);
322 		(*up->u_tun_func)(n, off, inp, (struct sockaddr *)udp_in,
323 		    up->u_tun_ctx);
324 		INP_RLOCK(inp);
325 		return (in_pcbrele_rlocked(inp));
326 	}
327 
328 	off += sizeof(struct udphdr);
329 
330 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
331 	/* Check AH/ESP integrity. */
332 	if (IPSEC_ENABLED(ipv4) &&
333 	    IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) {
334 		m_freem(n);
335 		return (0);
336 	}
337 	if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */
338 		if (IPSEC_ENABLED(ipv4) &&
339 		    UDPENCAP_INPUT(n, off, AF_INET) != 0)
340 			return (0);	/* Consumed. */
341 	}
342 #endif /* IPSEC */
343 #ifdef MAC
344 	if (mac_inpcb_check_deliver(inp, n) != 0) {
345 		m_freem(n);
346 		return (0);
347 	}
348 #endif /* MAC */
349 	if (inp->inp_flags & INP_CONTROLOPTS ||
350 	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
351 #ifdef INET6
352 		if (inp->inp_vflag & INP_IPV6)
353 			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
354 		else
355 #endif /* INET6 */
356 			ip_savecontrol(inp, &opts, ip, n);
357 	}
358 #ifdef INET6
359 	if (inp->inp_vflag & INP_IPV6) {
360 		bzero(&udp_in6, sizeof(udp_in6));
361 		udp_in6.sin6_len = sizeof(udp_in6);
362 		udp_in6.sin6_family = AF_INET6;
363 		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
364 		append_sa = (struct sockaddr *)&udp_in6;
365 	} else
366 #endif /* INET6 */
367 		append_sa = (struct sockaddr *)udp_in;
368 	m_adj(n, off);
369 
370 	so = inp->inp_socket;
371 	SOCKBUF_LOCK(&so->so_rcv);
372 	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
373 		SOCKBUF_UNLOCK(&so->so_rcv);
374 		m_freem(n);
375 		if (opts)
376 			m_freem(opts);
377 		UDPSTAT_INC(udps_fullsock);
378 	} else
379 		sorwakeup_locked(so);
380 	return (0);
381 }
382 
383 int
384 udp_input(struct mbuf **mp, int *offp, int proto)
385 {
386 	struct ip *ip;
387 	struct udphdr *uh;
388 	struct ifnet *ifp;
389 	struct inpcb *inp;
390 	uint16_t len, ip_len;
391 	struct inpcbinfo *pcbinfo;
392 	struct ip save_ip;
393 	struct sockaddr_in udp_in;
394 	struct mbuf *m;
395 	struct m_tag *fwd_tag;
396 	int cscov_partial, iphlen;
397 
398 	m = *mp;
399 	iphlen = *offp;
400 	ifp = m->m_pkthdr.rcvif;
401 	*mp = NULL;
402 	UDPSTAT_INC(udps_ipackets);
403 
404 	/*
405 	 * Strip IP options, if any; should skip this, make available to
406 	 * user, and use on returned packets, but we don't yet have a way to
407 	 * check the checksum with options still present.
408 	 */
409 	if (iphlen > sizeof (struct ip)) {
410 		ip_stripoptions(m);
411 		iphlen = sizeof(struct ip);
412 	}
413 
414 	/*
415 	 * Get IP and UDP header together in first mbuf.
416 	 */
417 	ip = mtod(m, struct ip *);
418 	if (m->m_len < iphlen + sizeof(struct udphdr)) {
419 		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
420 			UDPSTAT_INC(udps_hdrops);
421 			return (IPPROTO_DONE);
422 		}
423 		ip = mtod(m, struct ip *);
424 	}
425 	uh = (struct udphdr *)((caddr_t)ip + iphlen);
426 	cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0;
427 
428 	/*
429 	 * Destination port of 0 is illegal, based on RFC768.
430 	 */
431 	if (uh->uh_dport == 0)
432 		goto badunlocked;
433 
434 	/*
435 	 * Construct sockaddr format source address.  Stuff source address
436 	 * and datagram in user buffer.
437 	 */
438 	bzero(&udp_in, sizeof(udp_in));
439 	udp_in.sin_len = sizeof(udp_in);
440 	udp_in.sin_family = AF_INET;
441 	udp_in.sin_port = uh->uh_sport;
442 	udp_in.sin_addr = ip->ip_src;
443 
444 	/*
445 	 * Make mbuf data length reflect UDP length.  If not enough data to
446 	 * reflect UDP length, drop.
447 	 */
448 	len = ntohs((u_short)uh->uh_ulen);
449 	ip_len = ntohs(ip->ip_len) - iphlen;
450 	if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
451 		/* Zero means checksum over the complete packet. */
452 		if (len == 0)
453 			len = ip_len;
454 		cscov_partial = 0;
455 	}
456 	if (ip_len != len) {
457 		if (len > ip_len || len < sizeof(struct udphdr)) {
458 			UDPSTAT_INC(udps_badlen);
459 			goto badunlocked;
460 		}
461 		if (proto == IPPROTO_UDP)
462 			m_adj(m, len - ip_len);
463 	}
464 
465 	/*
466 	 * Save a copy of the IP header in case we want restore it for
467 	 * sending an ICMP error message in response.
468 	 */
469 	if (!V_udp_blackhole)
470 		save_ip = *ip;
471 	else
472 		memset(&save_ip, 0, sizeof(save_ip));
473 
474 	/*
475 	 * Checksum extended UDP header and data.
476 	 */
477 	if (uh->uh_sum) {
478 		u_short uh_sum;
479 
480 		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
481 		    !cscov_partial) {
482 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
483 				uh_sum = m->m_pkthdr.csum_data;
484 			else
485 				uh_sum = in_pseudo(ip->ip_src.s_addr,
486 				    ip->ip_dst.s_addr, htonl((u_short)len +
487 				    m->m_pkthdr.csum_data + proto));
488 			uh_sum ^= 0xffff;
489 		} else {
490 			char b[9];
491 
492 			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
493 			bzero(((struct ipovly *)ip)->ih_x1, 9);
494 			((struct ipovly *)ip)->ih_len = (proto == IPPROTO_UDP) ?
495 			    uh->uh_ulen : htons(ip_len);
496 			uh_sum = in_cksum(m, len + sizeof (struct ip));
497 			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
498 		}
499 		if (uh_sum) {
500 			UDPSTAT_INC(udps_badsum);
501 			m_freem(m);
502 			return (IPPROTO_DONE);
503 		}
504 	} else {
505 		if (proto == IPPROTO_UDP) {
506 			UDPSTAT_INC(udps_nosum);
507 		} else {
508 			/* UDPLite requires a checksum */
509 			/* XXX: What is the right UDPLite MIB counter here? */
510 			m_freem(m);
511 			return (IPPROTO_DONE);
512 		}
513 	}
514 
515 	pcbinfo = udp_get_inpcbinfo(proto);
516 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
517 	    ((!V_udp_require_l2_bcast || m->m_flags & M_BCAST) &&
518 	    in_broadcast(ip->ip_dst, ifp))) {
519 		struct inpcb *last;
520 		struct inpcbhead *pcblist;
521 		struct ip_moptions *imo;
522 
523 		INP_INFO_RLOCK(pcbinfo);
524 		pcblist = udp_get_pcblist(proto);
525 		last = NULL;
526 		LIST_FOREACH(inp, pcblist, inp_list) {
527 			if (inp->inp_lport != uh->uh_dport)
528 				continue;
529 #ifdef INET6
530 			if ((inp->inp_vflag & INP_IPV4) == 0)
531 				continue;
532 #endif
533 			if (inp->inp_laddr.s_addr != INADDR_ANY &&
534 			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
535 				continue;
536 			if (inp->inp_faddr.s_addr != INADDR_ANY &&
537 			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
538 				continue;
539 			if (inp->inp_fport != 0 &&
540 			    inp->inp_fport != uh->uh_sport)
541 				continue;
542 
543 			INP_RLOCK(inp);
544 
545 			/*
546 			 * XXXRW: Because we weren't holding either the inpcb
547 			 * or the hash lock when we checked for a match
548 			 * before, we should probably recheck now that the
549 			 * inpcb lock is held.
550 			 */
551 
552 			/*
553 			 * Handle socket delivery policy for any-source
554 			 * and source-specific multicast. [RFC3678]
555 			 */
556 			imo = inp->inp_moptions;
557 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
558 				struct sockaddr_in	 group;
559 				int			 blocked;
560 				if (imo == NULL) {
561 					INP_RUNLOCK(inp);
562 					continue;
563 				}
564 				bzero(&group, sizeof(struct sockaddr_in));
565 				group.sin_len = sizeof(struct sockaddr_in);
566 				group.sin_family = AF_INET;
567 				group.sin_addr = ip->ip_dst;
568 
569 				blocked = imo_multi_filter(imo, ifp,
570 					(struct sockaddr *)&group,
571 					(struct sockaddr *)&udp_in);
572 				if (blocked != MCAST_PASS) {
573 					if (blocked == MCAST_NOTGMEMBER)
574 						IPSTAT_INC(ips_notmember);
575 					if (blocked == MCAST_NOTSMEMBER ||
576 					    blocked == MCAST_MUTED)
577 						UDPSTAT_INC(udps_filtermcast);
578 					INP_RUNLOCK(inp);
579 					continue;
580 				}
581 			}
582 			if (last != NULL) {
583 				struct mbuf *n;
584 
585 				if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) !=
586 				    NULL) {
587 					UDP_PROBE(receive, NULL, last, ip,
588 					    last, uh);
589 					if (udp_append(last, ip, n, iphlen,
590 						&udp_in)) {
591 						goto inp_lost;
592 					}
593 				}
594 				INP_RUNLOCK(last);
595 			}
596 			last = inp;
597 			/*
598 			 * Don't look for additional matches if this one does
599 			 * not have either the SO_REUSEPORT or SO_REUSEADDR
600 			 * socket options set.  This heuristic avoids
601 			 * searching through all pcbs in the common case of a
602 			 * non-shared port.  It assumes that an application
603 			 * will never clear these options after setting them.
604 			 */
605 			if ((last->inp_socket->so_options &
606 			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
607 				break;
608 		}
609 
610 		if (last == NULL) {
611 			/*
612 			 * No matching pcb found; discard datagram.  (No need
613 			 * to send an ICMP Port Unreachable for a broadcast
614 			 * or multicast datgram.)
615 			 */
616 			UDPSTAT_INC(udps_noportbcast);
617 			if (inp)
618 				INP_RUNLOCK(inp);
619 			INP_INFO_RUNLOCK(pcbinfo);
620 			goto badunlocked;
621 		}
622 		UDP_PROBE(receive, NULL, last, ip, last, uh);
623 		if (udp_append(last, ip, m, iphlen, &udp_in) == 0)
624 			INP_RUNLOCK(last);
625 	inp_lost:
626 		INP_INFO_RUNLOCK(pcbinfo);
627 		return (IPPROTO_DONE);
628 	}
629 
630 	/*
631 	 * Locate pcb for datagram.
632 	 */
633 
634 	/*
635 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
636 	 */
637 	if ((m->m_flags & M_IP_NEXTHOP) &&
638 	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
639 		struct sockaddr_in *next_hop;
640 
641 		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
642 
643 		/*
644 		 * Transparently forwarded. Pretend to be the destination.
645 		 * Already got one like this?
646 		 */
647 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
648 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
649 		if (!inp) {
650 			/*
651 			 * It's new.  Try to find the ambushing socket.
652 			 * Because we've rewritten the destination address,
653 			 * any hardware-generated hash is ignored.
654 			 */
655 			inp = in_pcblookup(pcbinfo, ip->ip_src,
656 			    uh->uh_sport, next_hop->sin_addr,
657 			    next_hop->sin_port ? htons(next_hop->sin_port) :
658 			    uh->uh_dport, INPLOOKUP_WILDCARD |
659 			    INPLOOKUP_RLOCKPCB, ifp);
660 		}
661 		/* Remove the tag from the packet. We don't need it anymore. */
662 		m_tag_delete(m, fwd_tag);
663 		m->m_flags &= ~M_IP_NEXTHOP;
664 	} else
665 		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
666 		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
667 		    INPLOOKUP_RLOCKPCB, ifp, m);
668 	if (inp == NULL) {
669 		if (udp_log_in_vain) {
670 			char src[INET_ADDRSTRLEN];
671 			char dst[INET_ADDRSTRLEN];
672 
673 			log(LOG_INFO,
674 			    "Connection attempt to UDP %s:%d from %s:%d\n",
675 			    inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport),
676 			    inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport));
677 		}
678 		UDPSTAT_INC(udps_noport);
679 		if (m->m_flags & (M_BCAST | M_MCAST)) {
680 			UDPSTAT_INC(udps_noportbcast);
681 			goto badunlocked;
682 		}
683 		if (V_udp_blackhole)
684 			goto badunlocked;
685 		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
686 			goto badunlocked;
687 		*ip = save_ip;
688 		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
689 		return (IPPROTO_DONE);
690 	}
691 
692 	/*
693 	 * Check the minimum TTL for socket.
694 	 */
695 	INP_RLOCK_ASSERT(inp);
696 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
697 		INP_RUNLOCK(inp);
698 		m_freem(m);
699 		return (IPPROTO_DONE);
700 	}
701 	if (cscov_partial) {
702 		struct udpcb *up;
703 
704 		up = intoudpcb(inp);
705 		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
706 			INP_RUNLOCK(inp);
707 			m_freem(m);
708 			return (IPPROTO_DONE);
709 		}
710 	}
711 
712 	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
713 	if (udp_append(inp, ip, m, iphlen, &udp_in) == 0)
714 		INP_RUNLOCK(inp);
715 	return (IPPROTO_DONE);
716 
717 badunlocked:
718 	m_freem(m);
719 	return (IPPROTO_DONE);
720 }
721 #endif /* INET */
722 
723 /*
724  * Notify a udp user of an asynchronous error; just wake up so that they can
725  * collect error status.
726  */
727 struct inpcb *
728 udp_notify(struct inpcb *inp, int errno)
729 {
730 
731 	/*
732 	 * While udp_ctlinput() always calls udp_notify() with a read lock
733 	 * when invoking it directly, in_pcbnotifyall() currently uses write
734 	 * locks due to sharing code with TCP.  For now, accept either a read
735 	 * or a write lock, but a read lock is sufficient.
736 	 */
737 	INP_LOCK_ASSERT(inp);
738 	if ((errno == EHOSTUNREACH || errno == ENETUNREACH ||
739 	     errno == EHOSTDOWN) && inp->inp_route.ro_rt) {
740 		RTFREE(inp->inp_route.ro_rt);
741 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
742 	}
743 
744 	inp->inp_socket->so_error = errno;
745 	sorwakeup(inp->inp_socket);
746 	sowwakeup(inp->inp_socket);
747 	return (inp);
748 }
749 
750 #ifdef INET
751 static void
752 udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
753     struct inpcbinfo *pcbinfo)
754 {
755 	struct ip *ip = vip;
756 	struct udphdr *uh;
757 	struct in_addr faddr;
758 	struct inpcb *inp;
759 
760 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
761 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
762 		return;
763 
764 	if (PRC_IS_REDIRECT(cmd)) {
765 		/* signal EHOSTDOWN, as it flushes the cached route */
766 		in_pcbnotifyall(&V_udbinfo, faddr, EHOSTDOWN, udp_notify);
767 		return;
768 	}
769 
770 	/*
771 	 * Hostdead is ugly because it goes linearly through all PCBs.
772 	 *
773 	 * XXX: We never get this from ICMP, otherwise it makes an excellent
774 	 * DoS attack on machines with many connections.
775 	 */
776 	if (cmd == PRC_HOSTDEAD)
777 		ip = NULL;
778 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
779 		return;
780 	if (ip != NULL) {
781 		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
782 		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
783 		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
784 		if (inp != NULL) {
785 			INP_RLOCK_ASSERT(inp);
786 			if (inp->inp_socket != NULL) {
787 				udp_notify(inp, inetctlerrmap[cmd]);
788 			}
789 			INP_RUNLOCK(inp);
790 		} else {
791 			inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
792 					   ip->ip_src, uh->uh_sport,
793 					   INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
794 			if (inp != NULL) {
795 				struct udpcb *up;
796 
797 				up = intoudpcb(inp);
798 				if (up->u_icmp_func != NULL) {
799 					INP_RUNLOCK(inp);
800 					(*up->u_icmp_func)(cmd, sa, vip, up->u_tun_ctx);
801 				} else {
802 					INP_RUNLOCK(inp);
803 				}
804 			}
805 		}
806 	} else
807 		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
808 		    udp_notify);
809 }
810 void
811 udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
812 {
813 
814 	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
815 }
816 
817 void
818 udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
819 {
820 
821 	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
822 }
823 #endif /* INET */
824 
825 static int
826 udp_pcblist(SYSCTL_HANDLER_ARGS)
827 {
828 	int error, i, n;
829 	struct inpcb *inp, **inp_list;
830 	inp_gen_t gencnt;
831 	struct xinpgen xig;
832 
833 	/*
834 	 * The process of preparing the PCB list is too time-consuming and
835 	 * resource-intensive to repeat twice on every request.
836 	 */
837 	if (req->oldptr == 0) {
838 		n = V_udbinfo.ipi_count;
839 		n += imax(n / 8, 10);
840 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
841 		return (0);
842 	}
843 
844 	if (req->newptr != 0)
845 		return (EPERM);
846 
847 	/*
848 	 * OK, now we're committed to doing something.
849 	 */
850 	INP_INFO_RLOCK(&V_udbinfo);
851 	gencnt = V_udbinfo.ipi_gencnt;
852 	n = V_udbinfo.ipi_count;
853 	INP_INFO_RUNLOCK(&V_udbinfo);
854 
855 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
856 		+ n * sizeof(struct xinpcb));
857 	if (error != 0)
858 		return (error);
859 
860 	xig.xig_len = sizeof xig;
861 	xig.xig_count = n;
862 	xig.xig_gen = gencnt;
863 	xig.xig_sogen = so_gencnt;
864 	error = SYSCTL_OUT(req, &xig, sizeof xig);
865 	if (error)
866 		return (error);
867 
868 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
869 	if (inp_list == NULL)
870 		return (ENOMEM);
871 
872 	INP_INFO_RLOCK(&V_udbinfo);
873 	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
874 	     inp = LIST_NEXT(inp, inp_list)) {
875 		INP_WLOCK(inp);
876 		if (inp->inp_gencnt <= gencnt &&
877 		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
878 			in_pcbref(inp);
879 			inp_list[i++] = inp;
880 		}
881 		INP_WUNLOCK(inp);
882 	}
883 	INP_INFO_RUNLOCK(&V_udbinfo);
884 	n = i;
885 
886 	error = 0;
887 	for (i = 0; i < n; i++) {
888 		inp = inp_list[i];
889 		INP_RLOCK(inp);
890 		if (inp->inp_gencnt <= gencnt) {
891 			struct xinpcb xi;
892 
893 			bzero(&xi, sizeof(xi));
894 			xi.xi_len = sizeof xi;
895 			/* XXX should avoid extra copy */
896 			bcopy(inp, &xi.xi_inp, sizeof *inp);
897 			if (inp->inp_socket)
898 				sotoxsocket(inp->inp_socket, &xi.xi_socket);
899 			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
900 			INP_RUNLOCK(inp);
901 			error = SYSCTL_OUT(req, &xi, sizeof xi);
902 		} else
903 			INP_RUNLOCK(inp);
904 	}
905 	INP_INFO_WLOCK(&V_udbinfo);
906 	for (i = 0; i < n; i++) {
907 		inp = inp_list[i];
908 		INP_RLOCK(inp);
909 		if (!in_pcbrele_rlocked(inp))
910 			INP_RUNLOCK(inp);
911 	}
912 	INP_INFO_WUNLOCK(&V_udbinfo);
913 
914 	if (!error) {
915 		/*
916 		 * Give the user an updated idea of our state.  If the
917 		 * generation differs from what we told her before, she knows
918 		 * that something happened while we were processing this
919 		 * request, and it might be necessary to retry.
920 		 */
921 		INP_INFO_RLOCK(&V_udbinfo);
922 		xig.xig_gen = V_udbinfo.ipi_gencnt;
923 		xig.xig_sogen = so_gencnt;
924 		xig.xig_count = V_udbinfo.ipi_count;
925 		INP_INFO_RUNLOCK(&V_udbinfo);
926 		error = SYSCTL_OUT(req, &xig, sizeof xig);
927 	}
928 	free(inp_list, M_TEMP);
929 	return (error);
930 }
931 
932 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
933     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
934     udp_pcblist, "S,xinpcb", "List of active UDP sockets");
935 
936 #ifdef INET
937 static int
938 udp_getcred(SYSCTL_HANDLER_ARGS)
939 {
940 	struct xucred xuc;
941 	struct sockaddr_in addrs[2];
942 	struct inpcb *inp;
943 	int error;
944 
945 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
946 	if (error)
947 		return (error);
948 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
949 	if (error)
950 		return (error);
951 	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
952 	    addrs[0].sin_addr, addrs[0].sin_port,
953 	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
954 	if (inp != NULL) {
955 		INP_RLOCK_ASSERT(inp);
956 		if (inp->inp_socket == NULL)
957 			error = ENOENT;
958 		if (error == 0)
959 			error = cr_canseeinpcb(req->td->td_ucred, inp);
960 		if (error == 0)
961 			cru2x(inp->inp_cred, &xuc);
962 		INP_RUNLOCK(inp);
963 	} else
964 		error = ENOENT;
965 	if (error == 0)
966 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
967 	return (error);
968 }
969 
970 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
971     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
972     udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
973 #endif /* INET */
974 
975 int
976 udp_ctloutput(struct socket *so, struct sockopt *sopt)
977 {
978 	struct inpcb *inp;
979 	struct udpcb *up;
980 	int isudplite, error, optval;
981 
982 	error = 0;
983 	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
984 	inp = sotoinpcb(so);
985 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
986 	INP_WLOCK(inp);
987 	if (sopt->sopt_level != so->so_proto->pr_protocol) {
988 #ifdef INET6
989 		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
990 			INP_WUNLOCK(inp);
991 			error = ip6_ctloutput(so, sopt);
992 		}
993 #endif
994 #if defined(INET) && defined(INET6)
995 		else
996 #endif
997 #ifdef INET
998 		{
999 			INP_WUNLOCK(inp);
1000 			error = ip_ctloutput(so, sopt);
1001 		}
1002 #endif
1003 		return (error);
1004 	}
1005 
1006 	switch (sopt->sopt_dir) {
1007 	case SOPT_SET:
1008 		switch (sopt->sopt_name) {
1009 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1010 #ifdef INET
1011 		case UDP_ENCAP:
1012 			if (!IPSEC_ENABLED(ipv4)) {
1013 				INP_WUNLOCK(inp);
1014 				return (ENOPROTOOPT);
1015 			}
1016 			error = UDPENCAP_PCBCTL(inp, sopt);
1017 			break;
1018 #endif /* INET */
1019 #endif /* IPSEC */
1020 		case UDPLITE_SEND_CSCOV:
1021 		case UDPLITE_RECV_CSCOV:
1022 			if (!isudplite) {
1023 				INP_WUNLOCK(inp);
1024 				error = ENOPROTOOPT;
1025 				break;
1026 			}
1027 			INP_WUNLOCK(inp);
1028 			error = sooptcopyin(sopt, &optval, sizeof(optval),
1029 			    sizeof(optval));
1030 			if (error != 0)
1031 				break;
1032 			inp = sotoinpcb(so);
1033 			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1034 			INP_WLOCK(inp);
1035 			up = intoudpcb(inp);
1036 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1037 			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1038 				INP_WUNLOCK(inp);
1039 				error = EINVAL;
1040 				break;
1041 			}
1042 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1043 				up->u_txcslen = optval;
1044 			else
1045 				up->u_rxcslen = optval;
1046 			INP_WUNLOCK(inp);
1047 			break;
1048 		default:
1049 			INP_WUNLOCK(inp);
1050 			error = ENOPROTOOPT;
1051 			break;
1052 		}
1053 		break;
1054 	case SOPT_GET:
1055 		switch (sopt->sopt_name) {
1056 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1057 #ifdef INET
1058 		case UDP_ENCAP:
1059 			if (!IPSEC_ENABLED(ipv4)) {
1060 				INP_WUNLOCK(inp);
1061 				return (ENOPROTOOPT);
1062 			}
1063 			error = UDPENCAP_PCBCTL(inp, sopt);
1064 			break;
1065 #endif /* INET */
1066 #endif /* IPSEC */
1067 		case UDPLITE_SEND_CSCOV:
1068 		case UDPLITE_RECV_CSCOV:
1069 			if (!isudplite) {
1070 				INP_WUNLOCK(inp);
1071 				error = ENOPROTOOPT;
1072 				break;
1073 			}
1074 			up = intoudpcb(inp);
1075 			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1076 			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1077 				optval = up->u_txcslen;
1078 			else
1079 				optval = up->u_rxcslen;
1080 			INP_WUNLOCK(inp);
1081 			error = sooptcopyout(sopt, &optval, sizeof(optval));
1082 			break;
1083 		default:
1084 			INP_WUNLOCK(inp);
1085 			error = ENOPROTOOPT;
1086 			break;
1087 		}
1088 		break;
1089 	}
1090 	return (error);
1091 }
1092 
1093 #ifdef INET
1094 #define	UH_WLOCKED	2
1095 #define	UH_RLOCKED	1
1096 #define	UH_UNLOCKED	0
1097 static int
1098 udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1099     struct mbuf *control, struct thread *td)
1100 {
1101 	struct udpiphdr *ui;
1102 	int len = m->m_pkthdr.len;
1103 	struct in_addr faddr, laddr;
1104 	struct cmsghdr *cm;
1105 	struct inpcbinfo *pcbinfo;
1106 	struct sockaddr_in *sin, src;
1107 	int cscov_partial = 0;
1108 	int error = 0;
1109 	int ipflags;
1110 	u_short fport, lport;
1111 	int unlock_udbinfo, unlock_inp;
1112 	u_char tos;
1113 	uint8_t pr;
1114 	uint16_t cscov = 0;
1115 	uint32_t flowid = 0;
1116 	uint8_t flowtype = M_HASHTYPE_NONE;
1117 
1118 	/*
1119 	 * udp_output() may need to temporarily bind or connect the current
1120 	 * inpcb.  As such, we don't know up front whether we will need the
1121 	 * pcbinfo lock or not.  Do any work to decide what is needed up
1122 	 * front before acquiring any locks.
1123 	 */
1124 	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1125 		if (control)
1126 			m_freem(control);
1127 		m_freem(m);
1128 		return (EMSGSIZE);
1129 	}
1130 
1131 	src.sin_family = 0;
1132 	sin = (struct sockaddr_in *)addr;
1133 	if (sin == NULL ||
1134 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1135 		INP_WLOCK(inp);
1136 		unlock_inp = UH_WLOCKED;
1137 	} else {
1138 		INP_RLOCK(inp);
1139 		unlock_inp = UH_RLOCKED;
1140 	}
1141 	tos = inp->inp_ip_tos;
1142 	if (control != NULL) {
1143 		/*
1144 		 * XXX: Currently, we assume all the optional information is
1145 		 * stored in a single mbuf.
1146 		 */
1147 		if (control->m_next) {
1148 			if (unlock_inp == UH_WLOCKED)
1149 				INP_WUNLOCK(inp);
1150 			else
1151 				INP_RUNLOCK(inp);
1152 			m_freem(control);
1153 			m_freem(m);
1154 			return (EINVAL);
1155 		}
1156 		for (; control->m_len > 0;
1157 		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1158 		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1159 			cm = mtod(control, struct cmsghdr *);
1160 			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1161 			    || cm->cmsg_len > control->m_len) {
1162 				error = EINVAL;
1163 				break;
1164 			}
1165 			if (cm->cmsg_level != IPPROTO_IP)
1166 				continue;
1167 
1168 			switch (cm->cmsg_type) {
1169 			case IP_SENDSRCADDR:
1170 				if (cm->cmsg_len !=
1171 				    CMSG_LEN(sizeof(struct in_addr))) {
1172 					error = EINVAL;
1173 					break;
1174 				}
1175 				bzero(&src, sizeof(src));
1176 				src.sin_family = AF_INET;
1177 				src.sin_len = sizeof(src);
1178 				src.sin_port = inp->inp_lport;
1179 				src.sin_addr =
1180 				    *(struct in_addr *)CMSG_DATA(cm);
1181 				break;
1182 
1183 			case IP_TOS:
1184 				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1185 					error = EINVAL;
1186 					break;
1187 				}
1188 				tos = *(u_char *)CMSG_DATA(cm);
1189 				break;
1190 
1191 			case IP_FLOWID:
1192 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1193 					error = EINVAL;
1194 					break;
1195 				}
1196 				flowid = *(uint32_t *) CMSG_DATA(cm);
1197 				break;
1198 
1199 			case IP_FLOWTYPE:
1200 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1201 					error = EINVAL;
1202 					break;
1203 				}
1204 				flowtype = *(uint32_t *) CMSG_DATA(cm);
1205 				break;
1206 
1207 #ifdef	RSS
1208 			case IP_RSSBUCKETID:
1209 				if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) {
1210 					error = EINVAL;
1211 					break;
1212 				}
1213 				/* This is just a placeholder for now */
1214 				break;
1215 #endif	/* RSS */
1216 			default:
1217 				error = ENOPROTOOPT;
1218 				break;
1219 			}
1220 			if (error)
1221 				break;
1222 		}
1223 		m_freem(control);
1224 	}
1225 	if (error) {
1226 		if (unlock_inp == UH_WLOCKED)
1227 			INP_WUNLOCK(inp);
1228 		else
1229 			INP_RUNLOCK(inp);
1230 		m_freem(m);
1231 		return (error);
1232 	}
1233 
1234 	/*
1235 	 * Depending on whether or not the application has bound or connected
1236 	 * the socket, we may have to do varying levels of work.  The optimal
1237 	 * case is for a connected UDP socket, as a global lock isn't
1238 	 * required at all.
1239 	 *
1240 	 * In order to decide which we need, we require stability of the
1241 	 * inpcb binding, which we ensure by acquiring a read lock on the
1242 	 * inpcb.  This doesn't strictly follow the lock order, so we play
1243 	 * the trylock and retry game; note that we may end up with more
1244 	 * conservative locks than required the second time around, so later
1245 	 * assertions have to accept that.  Further analysis of the number of
1246 	 * misses under contention is required.
1247 	 *
1248 	 * XXXRW: Check that hash locking update here is correct.
1249 	 */
1250 	pr = inp->inp_socket->so_proto->pr_protocol;
1251 	pcbinfo = udp_get_inpcbinfo(pr);
1252 	sin = (struct sockaddr_in *)addr;
1253 	if (sin != NULL &&
1254 	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1255 		INP_HASH_WLOCK(pcbinfo);
1256 		unlock_udbinfo = UH_WLOCKED;
1257 	} else if ((sin != NULL && (
1258 	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1259 	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1260 	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1261 	    (inp->inp_lport == 0))) ||
1262 	    (src.sin_family == AF_INET)) {
1263 		INP_HASH_RLOCK(pcbinfo);
1264 		unlock_udbinfo = UH_RLOCKED;
1265 	} else
1266 		unlock_udbinfo = UH_UNLOCKED;
1267 
1268 	/*
1269 	 * If the IP_SENDSRCADDR control message was specified, override the
1270 	 * source address for this datagram.  Its use is invalidated if the
1271 	 * address thus specified is incomplete or clobbers other inpcbs.
1272 	 */
1273 	laddr = inp->inp_laddr;
1274 	lport = inp->inp_lport;
1275 	if (src.sin_family == AF_INET) {
1276 		INP_HASH_LOCK_ASSERT(pcbinfo);
1277 		if ((lport == 0) ||
1278 		    (laddr.s_addr == INADDR_ANY &&
1279 		     src.sin_addr.s_addr == INADDR_ANY)) {
1280 			error = EINVAL;
1281 			goto release;
1282 		}
1283 		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1284 		    &laddr.s_addr, &lport, td->td_ucred);
1285 		if (error)
1286 			goto release;
1287 	}
1288 
1289 	/*
1290 	 * If a UDP socket has been connected, then a local address/port will
1291 	 * have been selected and bound.
1292 	 *
1293 	 * If a UDP socket has not been connected to, then an explicit
1294 	 * destination address must be used, in which case a local
1295 	 * address/port may not have been selected and bound.
1296 	 */
1297 	if (sin != NULL) {
1298 		INP_LOCK_ASSERT(inp);
1299 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1300 			error = EISCONN;
1301 			goto release;
1302 		}
1303 
1304 		/*
1305 		 * Jail may rewrite the destination address, so let it do
1306 		 * that before we use it.
1307 		 */
1308 		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1309 		if (error)
1310 			goto release;
1311 
1312 		/*
1313 		 * If a local address or port hasn't yet been selected, or if
1314 		 * the destination address needs to be rewritten due to using
1315 		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1316 		 * to do the heavy lifting.  Once a port is selected, we
1317 		 * commit the binding back to the socket; we also commit the
1318 		 * binding of the address if in jail.
1319 		 *
1320 		 * If we already have a valid binding and we're not
1321 		 * requesting a destination address rewrite, use a fast path.
1322 		 */
1323 		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1324 		    inp->inp_lport == 0 ||
1325 		    sin->sin_addr.s_addr == INADDR_ANY ||
1326 		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1327 			INP_HASH_LOCK_ASSERT(pcbinfo);
1328 			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1329 			    &lport, &faddr.s_addr, &fport, NULL,
1330 			    td->td_ucred);
1331 			if (error)
1332 				goto release;
1333 
1334 			/*
1335 			 * XXXRW: Why not commit the port if the address is
1336 			 * !INADDR_ANY?
1337 			 */
1338 			/* Commit the local port if newly assigned. */
1339 			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1340 			    inp->inp_lport == 0) {
1341 				INP_WLOCK_ASSERT(inp);
1342 				INP_HASH_WLOCK_ASSERT(pcbinfo);
1343 				/*
1344 				 * Remember addr if jailed, to prevent
1345 				 * rebinding.
1346 				 */
1347 				if (prison_flag(td->td_ucred, PR_IP4))
1348 					inp->inp_laddr = laddr;
1349 				inp->inp_lport = lport;
1350 				if (in_pcbinshash(inp) != 0) {
1351 					inp->inp_lport = 0;
1352 					error = EAGAIN;
1353 					goto release;
1354 				}
1355 				inp->inp_flags |= INP_ANONPORT;
1356 			}
1357 		} else {
1358 			faddr = sin->sin_addr;
1359 			fport = sin->sin_port;
1360 		}
1361 	} else {
1362 		INP_LOCK_ASSERT(inp);
1363 		faddr = inp->inp_faddr;
1364 		fport = inp->inp_fport;
1365 		if (faddr.s_addr == INADDR_ANY) {
1366 			error = ENOTCONN;
1367 			goto release;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Calculate data length and get a mbuf for UDP, IP, and possible
1373 	 * link-layer headers.  Immediate slide the data pointer back forward
1374 	 * since we won't use that space at this layer.
1375 	 */
1376 	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1377 	if (m == NULL) {
1378 		error = ENOBUFS;
1379 		goto release;
1380 	}
1381 	m->m_data += max_linkhdr;
1382 	m->m_len -= max_linkhdr;
1383 	m->m_pkthdr.len -= max_linkhdr;
1384 
1385 	/*
1386 	 * Fill in mbuf with extended UDP header and addresses and length put
1387 	 * into network format.
1388 	 */
1389 	ui = mtod(m, struct udpiphdr *);
1390 	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1391 	ui->ui_pr = pr;
1392 	ui->ui_src = laddr;
1393 	ui->ui_dst = faddr;
1394 	ui->ui_sport = lport;
1395 	ui->ui_dport = fport;
1396 	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1397 	if (pr == IPPROTO_UDPLITE) {
1398 		struct udpcb *up;
1399 		uint16_t plen;
1400 
1401 		up = intoudpcb(inp);
1402 		cscov = up->u_txcslen;
1403 		plen = (u_short)len + sizeof(struct udphdr);
1404 		if (cscov >= plen)
1405 			cscov = 0;
1406 		ui->ui_len = htons(plen);
1407 		ui->ui_ulen = htons(cscov);
1408 		/*
1409 		 * For UDP-Lite, checksum coverage length of zero means
1410 		 * the entire UDPLite packet is covered by the checksum.
1411 		 */
1412 		cscov_partial = (cscov == 0) ? 0 : 1;
1413 	} else
1414 		ui->ui_v = IPVERSION << 4;
1415 
1416 	/*
1417 	 * Set the Don't Fragment bit in the IP header.
1418 	 */
1419 	if (inp->inp_flags & INP_DONTFRAG) {
1420 		struct ip *ip;
1421 
1422 		ip = (struct ip *)&ui->ui_i;
1423 		ip->ip_off |= htons(IP_DF);
1424 	}
1425 
1426 	ipflags = 0;
1427 	if (inp->inp_socket->so_options & SO_DONTROUTE)
1428 		ipflags |= IP_ROUTETOIF;
1429 	if (inp->inp_socket->so_options & SO_BROADCAST)
1430 		ipflags |= IP_ALLOWBROADCAST;
1431 	if (inp->inp_flags & INP_ONESBCAST)
1432 		ipflags |= IP_SENDONES;
1433 
1434 #ifdef MAC
1435 	mac_inpcb_create_mbuf(inp, m);
1436 #endif
1437 
1438 	/*
1439 	 * Set up checksum and output datagram.
1440 	 */
1441 	ui->ui_sum = 0;
1442 	if (pr == IPPROTO_UDPLITE) {
1443 		if (inp->inp_flags & INP_ONESBCAST)
1444 			faddr.s_addr = INADDR_BROADCAST;
1445 		if (cscov_partial) {
1446 			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1447 				ui->ui_sum = 0xffff;
1448 		} else {
1449 			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1450 				ui->ui_sum = 0xffff;
1451 		}
1452 	} else if (V_udp_cksum) {
1453 		if (inp->inp_flags & INP_ONESBCAST)
1454 			faddr.s_addr = INADDR_BROADCAST;
1455 		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1456 		    htons((u_short)len + sizeof(struct udphdr) + pr));
1457 		m->m_pkthdr.csum_flags = CSUM_UDP;
1458 		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1459 	}
1460 	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1461 	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1462 	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1463 	UDPSTAT_INC(udps_opackets);
1464 
1465 	/*
1466 	 * Setup flowid / RSS information for outbound socket.
1467 	 *
1468 	 * Once the UDP code decides to set a flowid some other way,
1469 	 * this allows the flowid to be overridden by userland.
1470 	 */
1471 	if (flowtype != M_HASHTYPE_NONE) {
1472 		m->m_pkthdr.flowid = flowid;
1473 		M_HASHTYPE_SET(m, flowtype);
1474 #ifdef	RSS
1475 	} else {
1476 		uint32_t hash_val, hash_type;
1477 		/*
1478 		 * Calculate an appropriate RSS hash for UDP and
1479 		 * UDP Lite.
1480 		 *
1481 		 * The called function will take care of figuring out
1482 		 * whether a 2-tuple or 4-tuple hash is required based
1483 		 * on the currently configured scheme.
1484 		 *
1485 		 * Later later on connected socket values should be
1486 		 * cached in the inpcb and reused, rather than constantly
1487 		 * re-calculating it.
1488 		 *
1489 		 * UDP Lite is a different protocol number and will
1490 		 * likely end up being hashed as a 2-tuple until
1491 		 * RSS / NICs grow UDP Lite protocol awareness.
1492 		 */
1493 		if (rss_proto_software_hash_v4(faddr, laddr, fport, lport,
1494 		    pr, &hash_val, &hash_type) == 0) {
1495 			m->m_pkthdr.flowid = hash_val;
1496 			M_HASHTYPE_SET(m, hash_type);
1497 		}
1498 #endif
1499 	}
1500 
1501 #ifdef	RSS
1502 	/*
1503 	 * Don't override with the inp cached flowid value.
1504 	 *
1505 	 * Depending upon the kind of send being done, the inp
1506 	 * flowid/flowtype values may actually not be appropriate
1507 	 * for this particular socket send.
1508 	 *
1509 	 * We should either leave the flowid at zero (which is what is
1510 	 * currently done) or set it to some software generated
1511 	 * hash value based on the packet contents.
1512 	 */
1513 	ipflags |= IP_NODEFAULTFLOWID;
1514 #endif	/* RSS */
1515 
1516 	if (unlock_udbinfo == UH_WLOCKED)
1517 		INP_HASH_WUNLOCK(pcbinfo);
1518 	else if (unlock_udbinfo == UH_RLOCKED)
1519 		INP_HASH_RUNLOCK(pcbinfo);
1520 	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1521 	error = ip_output(m, inp->inp_options,
1522 	    (unlock_inp == UH_WLOCKED ? &inp->inp_route : NULL), ipflags,
1523 	    inp->inp_moptions, inp);
1524 	if (unlock_inp == UH_WLOCKED)
1525 		INP_WUNLOCK(inp);
1526 	else
1527 		INP_RUNLOCK(inp);
1528 	return (error);
1529 
1530 release:
1531 	if (unlock_udbinfo == UH_WLOCKED) {
1532 		KASSERT(unlock_inp == UH_WLOCKED,
1533 		    ("%s: excl udbinfo lock, shared inp lock", __func__));
1534 		INP_HASH_WUNLOCK(pcbinfo);
1535 		INP_WUNLOCK(inp);
1536 	} else if (unlock_udbinfo == UH_RLOCKED) {
1537 		KASSERT(unlock_inp == UH_RLOCKED,
1538 		    ("%s: shared udbinfo lock, excl inp lock", __func__));
1539 		INP_HASH_RUNLOCK(pcbinfo);
1540 		INP_RUNLOCK(inp);
1541 	} else if (unlock_inp == UH_WLOCKED)
1542 		INP_WUNLOCK(inp);
1543 	else
1544 		INP_RUNLOCK(inp);
1545 	m_freem(m);
1546 	return (error);
1547 }
1548 
1549 static void
1550 udp_abort(struct socket *so)
1551 {
1552 	struct inpcb *inp;
1553 	struct inpcbinfo *pcbinfo;
1554 
1555 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1556 	inp = sotoinpcb(so);
1557 	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1558 	INP_WLOCK(inp);
1559 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1560 		INP_HASH_WLOCK(pcbinfo);
1561 		in_pcbdisconnect(inp);
1562 		inp->inp_laddr.s_addr = INADDR_ANY;
1563 		INP_HASH_WUNLOCK(pcbinfo);
1564 		soisdisconnected(so);
1565 	}
1566 	INP_WUNLOCK(inp);
1567 }
1568 
1569 static int
1570 udp_attach(struct socket *so, int proto, struct thread *td)
1571 {
1572 	struct inpcb *inp;
1573 	struct inpcbinfo *pcbinfo;
1574 	int error;
1575 
1576 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1577 	inp = sotoinpcb(so);
1578 	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1579 	error = soreserve(so, udp_sendspace, udp_recvspace);
1580 	if (error)
1581 		return (error);
1582 	INP_INFO_WLOCK(pcbinfo);
1583 	error = in_pcballoc(so, pcbinfo);
1584 	if (error) {
1585 		INP_INFO_WUNLOCK(pcbinfo);
1586 		return (error);
1587 	}
1588 
1589 	inp = sotoinpcb(so);
1590 	inp->inp_vflag |= INP_IPV4;
1591 	inp->inp_ip_ttl = V_ip_defttl;
1592 
1593 	error = udp_newudpcb(inp);
1594 	if (error) {
1595 		in_pcbdetach(inp);
1596 		in_pcbfree(inp);
1597 		INP_INFO_WUNLOCK(pcbinfo);
1598 		return (error);
1599 	}
1600 
1601 	INP_WUNLOCK(inp);
1602 	INP_INFO_WUNLOCK(pcbinfo);
1603 	return (0);
1604 }
1605 #endif /* INET */
1606 
1607 int
1608 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx)
1609 {
1610 	struct inpcb *inp;
1611 	struct udpcb *up;
1612 
1613 	KASSERT(so->so_type == SOCK_DGRAM,
1614 	    ("udp_set_kernel_tunneling: !dgram"));
1615 	inp = sotoinpcb(so);
1616 	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1617 	INP_WLOCK(inp);
1618 	up = intoudpcb(inp);
1619 	if ((up->u_tun_func != NULL) ||
1620 	    (up->u_icmp_func != NULL)) {
1621 		INP_WUNLOCK(inp);
1622 		return (EBUSY);
1623 	}
1624 	up->u_tun_func = f;
1625 	up->u_icmp_func = i;
1626 	up->u_tun_ctx = ctx;
1627 	INP_WUNLOCK(inp);
1628 	return (0);
1629 }
1630 
1631 #ifdef INET
1632 static int
1633 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1634 {
1635 	struct inpcb *inp;
1636 	struct inpcbinfo *pcbinfo;
1637 	int error;
1638 
1639 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1640 	inp = sotoinpcb(so);
1641 	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1642 	INP_WLOCK(inp);
1643 	INP_HASH_WLOCK(pcbinfo);
1644 	error = in_pcbbind(inp, nam, td->td_ucred);
1645 	INP_HASH_WUNLOCK(pcbinfo);
1646 	INP_WUNLOCK(inp);
1647 	return (error);
1648 }
1649 
1650 static void
1651 udp_close(struct socket *so)
1652 {
1653 	struct inpcb *inp;
1654 	struct inpcbinfo *pcbinfo;
1655 
1656 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1657 	inp = sotoinpcb(so);
1658 	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1659 	INP_WLOCK(inp);
1660 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1661 		INP_HASH_WLOCK(pcbinfo);
1662 		in_pcbdisconnect(inp);
1663 		inp->inp_laddr.s_addr = INADDR_ANY;
1664 		INP_HASH_WUNLOCK(pcbinfo);
1665 		soisdisconnected(so);
1666 	}
1667 	INP_WUNLOCK(inp);
1668 }
1669 
1670 static int
1671 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1672 {
1673 	struct inpcb *inp;
1674 	struct inpcbinfo *pcbinfo;
1675 	struct sockaddr_in *sin;
1676 	int error;
1677 
1678 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1679 	inp = sotoinpcb(so);
1680 	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1681 	INP_WLOCK(inp);
1682 	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1683 		INP_WUNLOCK(inp);
1684 		return (EISCONN);
1685 	}
1686 	sin = (struct sockaddr_in *)nam;
1687 	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1688 	if (error != 0) {
1689 		INP_WUNLOCK(inp);
1690 		return (error);
1691 	}
1692 	INP_HASH_WLOCK(pcbinfo);
1693 	error = in_pcbconnect(inp, nam, td->td_ucred);
1694 	INP_HASH_WUNLOCK(pcbinfo);
1695 	if (error == 0)
1696 		soisconnected(so);
1697 	INP_WUNLOCK(inp);
1698 	return (error);
1699 }
1700 
1701 static void
1702 udp_detach(struct socket *so)
1703 {
1704 	struct inpcb *inp;
1705 	struct inpcbinfo *pcbinfo;
1706 	struct udpcb *up;
1707 
1708 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1709 	inp = sotoinpcb(so);
1710 	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1711 	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1712 	    ("udp_detach: not disconnected"));
1713 	INP_INFO_WLOCK(pcbinfo);
1714 	INP_WLOCK(inp);
1715 	up = intoudpcb(inp);
1716 	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1717 	inp->inp_ppcb = NULL;
1718 	in_pcbdetach(inp);
1719 	in_pcbfree(inp);
1720 	INP_INFO_WUNLOCK(pcbinfo);
1721 	udp_discardcb(up);
1722 }
1723 
1724 static int
1725 udp_disconnect(struct socket *so)
1726 {
1727 	struct inpcb *inp;
1728 	struct inpcbinfo *pcbinfo;
1729 
1730 	pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol);
1731 	inp = sotoinpcb(so);
1732 	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1733 	INP_WLOCK(inp);
1734 	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1735 		INP_WUNLOCK(inp);
1736 		return (ENOTCONN);
1737 	}
1738 	INP_HASH_WLOCK(pcbinfo);
1739 	in_pcbdisconnect(inp);
1740 	inp->inp_laddr.s_addr = INADDR_ANY;
1741 	INP_HASH_WUNLOCK(pcbinfo);
1742 	SOCK_LOCK(so);
1743 	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1744 	SOCK_UNLOCK(so);
1745 	INP_WUNLOCK(inp);
1746 	return (0);
1747 }
1748 
1749 static int
1750 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1751     struct mbuf *control, struct thread *td)
1752 {
1753 	struct inpcb *inp;
1754 
1755 	inp = sotoinpcb(so);
1756 	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1757 	return (udp_output(inp, m, addr, control, td));
1758 }
1759 #endif /* INET */
1760 
1761 int
1762 udp_shutdown(struct socket *so)
1763 {
1764 	struct inpcb *inp;
1765 
1766 	inp = sotoinpcb(so);
1767 	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1768 	INP_WLOCK(inp);
1769 	socantsendmore(so);
1770 	INP_WUNLOCK(inp);
1771 	return (0);
1772 }
1773 
1774 #ifdef INET
1775 struct pr_usrreqs udp_usrreqs = {
1776 	.pru_abort =		udp_abort,
1777 	.pru_attach =		udp_attach,
1778 	.pru_bind =		udp_bind,
1779 	.pru_connect =		udp_connect,
1780 	.pru_control =		in_control,
1781 	.pru_detach =		udp_detach,
1782 	.pru_disconnect =	udp_disconnect,
1783 	.pru_peeraddr =		in_getpeeraddr,
1784 	.pru_send =		udp_send,
1785 	.pru_soreceive =	soreceive_dgram,
1786 	.pru_sosend =		sosend_dgram,
1787 	.pru_shutdown =		udp_shutdown,
1788 	.pru_sockaddr =		in_getsockaddr,
1789 	.pru_sosetlabel =	in_pcbsosetlabel,
1790 	.pru_close =		udp_close,
1791 };
1792 #endif /* INET */
1793