xref: /freebsd/sys/netinet/tcp_timewait.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #define	IPSEC
107 #endif /*FAST_IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 int 	tcp_mssdflt = TCP_MSS;
113 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
114     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
115 
116 #ifdef INET6
117 int	tcp_v6mssdflt = TCP6_MSS;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
119 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
120 	"Default TCP Maximum Segment Size for IPv6");
121 #endif
122 
123 #if 0
124 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
126     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
127 #endif
128 
129 int	tcp_do_rfc1323 = 1;
130 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
131     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
132 
133 int	tcp_do_rfc1644 = 0;
134 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
135     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
136 
137 static int	tcp_tcbhashsize = 0;
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
139      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
140 
141 static int	do_tcpdrain = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
143      "Enable tcp_drain routine for extra help when low on mbufs");
144 
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
146     &tcbinfo.ipi_count, 0, "Number of active PCBs");
147 
148 static int	icmp_may_rst = 1;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
150     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
151 
152 static int	tcp_isn_reseed_interval = 0;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
154     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
155 
156 /*
157  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
158  * 1024 exists only for debugging.  A good production default would be
159  * something like 6100.
160  */
161 static int	tcp_inflight_enable = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
163     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
164 
165 static int	tcp_inflight_debug = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
167     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
168 
169 static int	tcp_inflight_min = 6144;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
171     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
172 
173 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
175     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
176 static int	tcp_inflight_stab = 20;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
178     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
179 
180 static void	tcp_cleartaocache(void);
181 static struct inpcb *tcp_notify(struct inpcb *, int);
182 static void	tcp_discardcb(struct tcpcb *);
183 
184 /*
185  * Target size of TCP PCB hash tables. Must be a power of two.
186  *
187  * Note that this can be overridden by the kernel environment
188  * variable net.inet.tcp.tcbhashsize
189  */
190 #ifndef TCBHASHSIZE
191 #define TCBHASHSIZE	512
192 #endif
193 
194 /*
195  * XXX
196  * Callouts should be moved into struct tcp directly.  They are currently
197  * separate becuase the tcpcb structure is exported to userland for sysctl
198  * parsing purposes, which do not know about callouts.
199  */
200 struct	tcpcb_mem {
201 	struct	tcpcb tcb;
202 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
203 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
204 };
205 
206 static uma_zone_t tcpcb_zone;
207 static uma_zone_t tcptw_zone;
208 
209 /*
210  * Tcp initialization
211  */
212 void
213 tcp_init()
214 {
215 	int hashsize = TCBHASHSIZE;
216 
217 	tcp_ccgen = 1;
218 	tcp_cleartaocache();
219 
220 	tcp_delacktime = TCPTV_DELACK;
221 	tcp_keepinit = TCPTV_KEEP_INIT;
222 	tcp_keepidle = TCPTV_KEEP_IDLE;
223 	tcp_keepintvl = TCPTV_KEEPINTVL;
224 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
225 	tcp_msl = TCPTV_MSL;
226 	tcp_rexmit_min = TCPTV_MIN;
227 	tcp_rexmit_slop = TCPTV_CPU_VAR;
228 
229 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
230 	LIST_INIT(&tcb);
231 	tcbinfo.listhead = &tcb;
232 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
233 	if (!powerof2(hashsize)) {
234 		printf("WARNING: TCB hash size not a power of 2\n");
235 		hashsize = 512; /* safe default */
236 	}
237 	tcp_tcbhashsize = hashsize;
238 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
239 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
240 					&tcbinfo.porthashmask);
241 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
242 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
243 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
244 #ifdef INET6
245 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
246 #else /* INET6 */
247 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
248 #endif /* INET6 */
249 	if (max_protohdr < TCP_MINPROTOHDR)
250 		max_protohdr = TCP_MINPROTOHDR;
251 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
252 		panic("tcp_init");
253 #undef TCP_MINPROTOHDR
254 	/*
255 	 * These have to be type stable for the benefit of the timers.
256 	 */
257 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
258 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259 	uma_zone_set_max(tcpcb_zone, maxsockets);
260 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
261 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262 	uma_zone_set_max(tcptw_zone, maxsockets);
263 	tcp_timer_init();
264 	syncache_init();
265 }
266 
267 /*
268  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
269  * tcp_template used to store this data in mbufs, but we now recopy it out
270  * of the tcpcb each time to conserve mbufs.
271  */
272 void
273 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
274 	struct inpcb *inp;
275 	void *ip_ptr;
276 	void *tcp_ptr;
277 {
278 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
279 
280 #ifdef INET6
281 	if ((inp->inp_vflag & INP_IPV6) != 0) {
282 		struct ip6_hdr *ip6;
283 
284 		ip6 = (struct ip6_hdr *)ip_ptr;
285 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
286 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
287 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
288 			(IPV6_VERSION & IPV6_VERSION_MASK);
289 		ip6->ip6_nxt = IPPROTO_TCP;
290 		ip6->ip6_plen = sizeof(struct tcphdr);
291 		ip6->ip6_src = inp->in6p_laddr;
292 		ip6->ip6_dst = inp->in6p_faddr;
293 	} else
294 #endif
295 	{
296 		struct ip *ip;
297 
298 		ip = (struct ip *)ip_ptr;
299 		ip->ip_v = IPVERSION;
300 		ip->ip_hl = 5;
301 		ip->ip_tos = inp->inp_ip_tos;
302 		ip->ip_len = 0;
303 		ip->ip_id = 0;
304 		ip->ip_off = 0;
305 		ip->ip_ttl = inp->inp_ip_ttl;
306 		ip->ip_sum = 0;
307 		ip->ip_p = IPPROTO_TCP;
308 		ip->ip_src = inp->inp_laddr;
309 		ip->ip_dst = inp->inp_faddr;
310 	}
311 	th->th_sport = inp->inp_lport;
312 	th->th_dport = inp->inp_fport;
313 	th->th_seq = 0;
314 	th->th_ack = 0;
315 	th->th_x2 = 0;
316 	th->th_off = 5;
317 	th->th_flags = 0;
318 	th->th_win = 0;
319 	th->th_urp = 0;
320 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
321 }
322 
323 /*
324  * Create template to be used to send tcp packets on a connection.
325  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
326  * use for this function is in keepalives, which use tcp_respond.
327  */
328 struct tcptemp *
329 tcpip_maketemplate(inp)
330 	struct inpcb *inp;
331 {
332 	struct mbuf *m;
333 	struct tcptemp *n;
334 
335 	m = m_get(M_DONTWAIT, MT_HEADER);
336 	if (m == NULL)
337 		return (0);
338 	m->m_len = sizeof(struct tcptemp);
339 	n = mtod(m, struct tcptemp *);
340 
341 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
342 	return (n);
343 }
344 
345 /*
346  * Send a single message to the TCP at address specified by
347  * the given TCP/IP header.  If m == 0, then we make a copy
348  * of the tcpiphdr at ti and send directly to the addressed host.
349  * This is used to force keep alive messages out using the TCP
350  * template for a connection.  If flags are given then we send
351  * a message back to the TCP which originated the * segment ti,
352  * and discard the mbuf containing it and any other attached mbufs.
353  *
354  * In any case the ack and sequence number of the transmitted
355  * segment are as specified by the parameters.
356  *
357  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
358  */
359 void
360 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
361 	struct tcpcb *tp;
362 	void *ipgen;
363 	register struct tcphdr *th;
364 	register struct mbuf *m;
365 	tcp_seq ack, seq;
366 	int flags;
367 {
368 	register int tlen;
369 	int win = 0;
370 	struct route *ro = 0;
371 	struct route sro;
372 	struct ip *ip;
373 	struct tcphdr *nth;
374 #ifdef INET6
375 	struct route_in6 *ro6 = 0;
376 	struct route_in6 sro6;
377 	struct ip6_hdr *ip6;
378 	int isipv6;
379 #endif /* INET6 */
380 	int ipflags = 0;
381 
382 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
383 
384 #ifdef INET6
385 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
386 	ip6 = ipgen;
387 #endif /* INET6 */
388 	ip = ipgen;
389 
390 	if (tp) {
391 		if (!(flags & TH_RST)) {
392 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
393 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
394 				win = (long)TCP_MAXWIN << tp->rcv_scale;
395 		}
396 #ifdef INET6
397 		if (isipv6)
398 			ro6 = &tp->t_inpcb->in6p_route;
399 		else
400 #endif /* INET6 */
401 		ro = &tp->t_inpcb->inp_route;
402 	} else {
403 #ifdef INET6
404 		if (isipv6) {
405 			ro6 = &sro6;
406 			bzero(ro6, sizeof *ro6);
407 		} else
408 #endif /* INET6 */
409 	      {
410 		ro = &sro;
411 		bzero(ro, sizeof *ro);
412 	      }
413 	}
414 	if (m == 0) {
415 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
416 		if (m == NULL)
417 			return;
418 		tlen = 0;
419 		m->m_data += max_linkhdr;
420 #ifdef INET6
421 		if (isipv6) {
422 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
423 			      sizeof(struct ip6_hdr));
424 			ip6 = mtod(m, struct ip6_hdr *);
425 			nth = (struct tcphdr *)(ip6 + 1);
426 		} else
427 #endif /* INET6 */
428 	      {
429 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
430 		ip = mtod(m, struct ip *);
431 		nth = (struct tcphdr *)(ip + 1);
432 	      }
433 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
434 		flags = TH_ACK;
435 	} else {
436 		m_freem(m->m_next);
437 		m->m_next = 0;
438 		m->m_data = (caddr_t)ipgen;
439 		/* m_len is set later */
440 		tlen = 0;
441 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
442 #ifdef INET6
443 		if (isipv6) {
444 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
445 			nth = (struct tcphdr *)(ip6 + 1);
446 		} else
447 #endif /* INET6 */
448 	      {
449 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
450 		nth = (struct tcphdr *)(ip + 1);
451 	      }
452 		if (th != nth) {
453 			/*
454 			 * this is usually a case when an extension header
455 			 * exists between the IPv6 header and the
456 			 * TCP header.
457 			 */
458 			nth->th_sport = th->th_sport;
459 			nth->th_dport = th->th_dport;
460 		}
461 		xchg(nth->th_dport, nth->th_sport, n_short);
462 #undef xchg
463 	}
464 #ifdef INET6
465 	if (isipv6) {
466 		ip6->ip6_flow = 0;
467 		ip6->ip6_vfc = IPV6_VERSION;
468 		ip6->ip6_nxt = IPPROTO_TCP;
469 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
470 						tlen));
471 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
472 	} else
473 #endif
474       {
475 	tlen += sizeof (struct tcpiphdr);
476 	ip->ip_len = tlen;
477 	ip->ip_ttl = ip_defttl;
478       }
479 	m->m_len = tlen;
480 	m->m_pkthdr.len = tlen;
481 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
482 #ifdef MAC
483 	if (tp != NULL && tp->t_inpcb != NULL) {
484 		/*
485 		 * Packet is associated with a socket, so allow the
486 		 * label of the response to reflect the socket label.
487 		 */
488 		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
489 	} else {
490 		/*
491 		 * Packet is not associated with a socket, so possibly
492 		 * update the label in place.
493 		 */
494 		mac_reflect_mbuf_tcp(m);
495 	}
496 #endif
497 	nth->th_seq = htonl(seq);
498 	nth->th_ack = htonl(ack);
499 	nth->th_x2 = 0;
500 	nth->th_off = sizeof (struct tcphdr) >> 2;
501 	nth->th_flags = flags;
502 	if (tp)
503 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
504 	else
505 		nth->th_win = htons((u_short)win);
506 	nth->th_urp = 0;
507 #ifdef INET6
508 	if (isipv6) {
509 		nth->th_sum = 0;
510 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
511 					sizeof(struct ip6_hdr),
512 					tlen - sizeof(struct ip6_hdr));
513 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
514 					       ro6 && ro6->ro_rt ?
515 					       ro6->ro_rt->rt_ifp :
516 					       NULL);
517 	} else
518 #endif /* INET6 */
519       {
520         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
521 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
522         m->m_pkthdr.csum_flags = CSUM_TCP;
523         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
524       }
525 #ifdef TCPDEBUG
526 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
527 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
528 #endif
529 #ifdef INET6
530 	if (isipv6) {
531 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
532 			tp ? tp->t_inpcb : NULL);
533 		if (ro6 == &sro6 && ro6->ro_rt) {
534 			RTFREE(ro6->ro_rt);
535 			ro6->ro_rt = NULL;
536 		}
537 	} else
538 #endif /* INET6 */
539       {
540 	(void) ip_output(m, NULL, ro, ipflags, NULL, tp ? tp->t_inpcb : NULL);
541 	if (ro == &sro && ro->ro_rt) {
542 		RTFREE(ro->ro_rt);
543 		ro->ro_rt = NULL;
544 	}
545       }
546 }
547 
548 /*
549  * Create a new TCP control block, making an
550  * empty reassembly queue and hooking it to the argument
551  * protocol control block.  The `inp' parameter must have
552  * come from the zone allocator set up in tcp_init().
553  */
554 struct tcpcb *
555 tcp_newtcpcb(inp)
556 	struct inpcb *inp;
557 {
558 	struct tcpcb_mem *tm;
559 	struct tcpcb *tp;
560 #ifdef INET6
561 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
562 #endif /* INET6 */
563 
564 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
565 	if (tm == NULL)
566 		return (NULL);
567 	tp = &tm->tcb;
568 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
569 	tp->t_maxseg = tp->t_maxopd =
570 #ifdef INET6
571 		isipv6 ? tcp_v6mssdflt :
572 #endif /* INET6 */
573 		tcp_mssdflt;
574 
575 	/* Set up our timeouts. */
576 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
577 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
578 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
579 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
580 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
581 
582 	if (tcp_do_rfc1323)
583 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
584 	if (tcp_do_rfc1644)
585 		tp->t_flags |= TF_REQ_CC;
586 	tp->t_inpcb = inp;	/* XXX */
587 	/*
588 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
589 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
590 	 * reasonable initial retransmit time.
591 	 */
592 	tp->t_srtt = TCPTV_SRTTBASE;
593 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
594 	tp->t_rttmin = tcp_rexmit_min;
595 	tp->t_rxtcur = TCPTV_RTOBASE;
596 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
599 	tp->t_rcvtime = ticks;
600 	tp->t_bw_rtttime = ticks;
601         /*
602 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
603 	 * because the socket may be bound to an IPv6 wildcard address,
604 	 * which may match an IPv4-mapped IPv6 address.
605 	 */
606 	inp->inp_ip_ttl = ip_defttl;
607 	inp->inp_ppcb = (caddr_t)tp;
608 	return (tp);		/* XXX */
609 }
610 
611 /*
612  * Drop a TCP connection, reporting
613  * the specified error.  If connection is synchronized,
614  * then send a RST to peer.
615  */
616 struct tcpcb *
617 tcp_drop(tp, errno)
618 	register struct tcpcb *tp;
619 	int errno;
620 {
621 	struct socket *so = tp->t_inpcb->inp_socket;
622 
623 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
624 		tp->t_state = TCPS_CLOSED;
625 		(void) tcp_output(tp);
626 		tcpstat.tcps_drops++;
627 	} else
628 		tcpstat.tcps_conndrops++;
629 	if (errno == ETIMEDOUT && tp->t_softerror)
630 		errno = tp->t_softerror;
631 	so->so_error = errno;
632 	return (tcp_close(tp));
633 }
634 
635 static void
636 tcp_discardcb(tp)
637 	struct tcpcb *tp;
638 {
639 	struct tseg_qent *q;
640 	struct inpcb *inp = tp->t_inpcb;
641 	struct socket *so = inp->inp_socket;
642 #ifdef INET6
643 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
644 #endif /* INET6 */
645 	struct rtentry *rt;
646 	int dosavessthresh;
647 
648 	/*
649 	 * Make sure that all of our timers are stopped before we
650 	 * delete the PCB.
651 	 */
652 	callout_stop(tp->tt_rexmt);
653 	callout_stop(tp->tt_persist);
654 	callout_stop(tp->tt_keep);
655 	callout_stop(tp->tt_2msl);
656 	callout_stop(tp->tt_delack);
657 
658 	/*
659 	 * If we got enough samples through the srtt filter,
660 	 * save the rtt and rttvar in the routing entry.
661 	 * 'Enough' is arbitrarily defined as the 16 samples.
662 	 * 16 samples is enough for the srtt filter to converge
663 	 * to within 5% of the correct value; fewer samples and
664 	 * we could save a very bogus rtt.
665 	 *
666 	 * Don't update the default route's characteristics and don't
667 	 * update anything that the user "locked".
668 	 */
669 	if (tp->t_rttupdated >= 16) {
670 		register u_long i = 0;
671 #ifdef INET6
672 		if (isipv6) {
673 			struct sockaddr_in6 *sin6;
674 
675 			if ((rt = inp->in6p_route.ro_rt) == NULL)
676 				goto no_valid_rt;
677 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
678 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
679 				goto no_valid_rt;
680 		}
681 		else
682 #endif /* INET6 */
683 		if ((rt = inp->inp_route.ro_rt) == NULL ||
684 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
685 		    == INADDR_ANY)
686 			goto no_valid_rt;
687 
688 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
689 			i = tp->t_srtt *
690 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
691 			if (rt->rt_rmx.rmx_rtt && i)
692 				/*
693 				 * filter this update to half the old & half
694 				 * the new values, converting scale.
695 				 * See route.h and tcp_var.h for a
696 				 * description of the scaling constants.
697 				 */
698 				rt->rt_rmx.rmx_rtt =
699 				    (rt->rt_rmx.rmx_rtt + i) / 2;
700 			else
701 				rt->rt_rmx.rmx_rtt = i;
702 			tcpstat.tcps_cachedrtt++;
703 		}
704 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
705 			i = tp->t_rttvar *
706 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
707 			if (rt->rt_rmx.rmx_rttvar && i)
708 				rt->rt_rmx.rmx_rttvar =
709 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
710 			else
711 				rt->rt_rmx.rmx_rttvar = i;
712 			tcpstat.tcps_cachedrttvar++;
713 		}
714 		/*
715 		 * The old comment here said:
716 		 * update the pipelimit (ssthresh) if it has been updated
717 		 * already or if a pipesize was specified & the threshhold
718 		 * got below half the pipesize.  I.e., wait for bad news
719 		 * before we start updating, then update on both good
720 		 * and bad news.
721 		 *
722 		 * But we want to save the ssthresh even if no pipesize is
723 		 * specified explicitly in the route, because such
724 		 * connections still have an implicit pipesize specified
725 		 * by the global tcp_sendspace.  In the absence of a reliable
726 		 * way to calculate the pipesize, it will have to do.
727 		 */
728 		i = tp->snd_ssthresh;
729 		if (rt->rt_rmx.rmx_sendpipe != 0)
730 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
731 		else
732 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
733 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
734 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
735 		    || dosavessthresh) {
736 			/*
737 			 * convert the limit from user data bytes to
738 			 * packets then to packet data bytes.
739 			 */
740 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
741 			if (i < 2)
742 				i = 2;
743 			i *= (u_long)(tp->t_maxseg +
744 #ifdef INET6
745 				      (isipv6 ? sizeof (struct ip6_hdr) +
746 					       sizeof (struct tcphdr) :
747 #endif
748 				       sizeof (struct tcpiphdr)
749 #ifdef INET6
750 				       )
751 #endif
752 				      );
753 			if (rt->rt_rmx.rmx_ssthresh)
754 				rt->rt_rmx.rmx_ssthresh =
755 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
756 			else
757 				rt->rt_rmx.rmx_ssthresh = i;
758 			tcpstat.tcps_cachedssthresh++;
759 		}
760 	}
761     no_valid_rt:
762 	/* free the reassembly queue, if any */
763 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
764 		LIST_REMOVE(q, tqe_q);
765 		m_freem(q->tqe_m);
766 		FREE(q, M_TSEGQ);
767 	}
768 	inp->inp_ppcb = NULL;
769 	tp->t_inpcb = NULL;
770 	uma_zfree(tcpcb_zone, tp);
771 	soisdisconnected(so);
772 }
773 
774 /*
775  * Close a TCP control block:
776  *    discard all space held by the tcp
777  *    discard internet protocol block
778  *    wake up any sleepers
779  */
780 struct tcpcb *
781 tcp_close(tp)
782 	struct tcpcb *tp;
783 {
784 	struct inpcb *inp = tp->t_inpcb;
785 #ifdef INET6
786 	struct socket *so = inp->inp_socket;
787 #endif
788 
789 	tcp_discardcb(tp);
790 #ifdef INET6
791 	if (INP_CHECK_SOCKAF(so, AF_INET6))
792 		in6_pcbdetach(inp);
793 	else
794 #endif
795 		in_pcbdetach(inp);
796 	tcpstat.tcps_closed++;
797 	return ((struct tcpcb *)0);
798 }
799 
800 void
801 tcp_drain()
802 {
803 	if (do_tcpdrain)
804 	{
805 		struct inpcb *inpb;
806 		struct tcpcb *tcpb;
807 		struct tseg_qent *te;
808 
809 	/*
810 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
811 	 * if there is one...
812 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
813 	 *      reassembly queue should be flushed, but in a situation
814 	 * 	where we're really low on mbufs, this is potentially
815 	 *  	usefull.
816 	 */
817 		INP_INFO_RLOCK(&tcbinfo);
818 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
819 			if (inpb->inp_vflag & INP_TIMEWAIT)
820 				continue;
821 			INP_LOCK(inpb);
822 			if ((tcpb = intotcpcb(inpb))) {
823 				while ((te = LIST_FIRST(&tcpb->t_segq))
824 			            != NULL) {
825 					LIST_REMOVE(te, tqe_q);
826 					m_freem(te->tqe_m);
827 					FREE(te, M_TSEGQ);
828 				}
829 			}
830 			INP_UNLOCK(inpb);
831 		}
832 		INP_INFO_RUNLOCK(&tcbinfo);
833 	}
834 }
835 
836 /*
837  * Notify a tcp user of an asynchronous error;
838  * store error as soft error, but wake up user
839  * (for now, won't do anything until can select for soft error).
840  *
841  * Do not wake up user since there currently is no mechanism for
842  * reporting soft errors (yet - a kqueue filter may be added).
843  */
844 static struct inpcb *
845 tcp_notify(inp, error)
846 	struct inpcb *inp;
847 	int error;
848 {
849 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
850 
851 	/*
852 	 * Ignore some errors if we are hooked up.
853 	 * If connection hasn't completed, has retransmitted several times,
854 	 * and receives a second error, give up now.  This is better
855 	 * than waiting a long time to establish a connection that
856 	 * can never complete.
857 	 */
858 	if (tp->t_state == TCPS_ESTABLISHED &&
859 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
860 	     error == EHOSTDOWN)) {
861 		return inp;
862 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
863 	    tp->t_softerror) {
864 		tcp_drop(tp, error);
865 		return (struct inpcb *)0;
866 	} else {
867 		tp->t_softerror = error;
868 		return inp;
869 	}
870 #if 0
871 	wakeup( &so->so_timeo);
872 	sorwakeup(so);
873 	sowwakeup(so);
874 #endif
875 }
876 
877 static int
878 tcp_pcblist(SYSCTL_HANDLER_ARGS)
879 {
880 	int error, i, n, s;
881 	struct inpcb *inp, **inp_list;
882 	inp_gen_t gencnt;
883 	struct xinpgen xig;
884 
885 	/*
886 	 * The process of preparing the TCB list is too time-consuming and
887 	 * resource-intensive to repeat twice on every request.
888 	 */
889 	if (req->oldptr == 0) {
890 		n = tcbinfo.ipi_count;
891 		req->oldidx = 2 * (sizeof xig)
892 			+ (n + n/8) * sizeof(struct xtcpcb);
893 		return 0;
894 	}
895 
896 	if (req->newptr != 0)
897 		return EPERM;
898 
899 	/*
900 	 * OK, now we're committed to doing something.
901 	 */
902 	s = splnet();
903 	INP_INFO_RLOCK(&tcbinfo);
904 	gencnt = tcbinfo.ipi_gencnt;
905 	n = tcbinfo.ipi_count;
906 	INP_INFO_RUNLOCK(&tcbinfo);
907 	splx(s);
908 
909 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
910 		+ n * sizeof(struct xtcpcb));
911 
912 	xig.xig_len = sizeof xig;
913 	xig.xig_count = n;
914 	xig.xig_gen = gencnt;
915 	xig.xig_sogen = so_gencnt;
916 	error = SYSCTL_OUT(req, &xig, sizeof xig);
917 	if (error)
918 		return error;
919 
920 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
921 	if (inp_list == 0)
922 		return ENOMEM;
923 
924 	s = splnet();
925 	INP_INFO_RLOCK(&tcbinfo);
926 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
927 	     inp = LIST_NEXT(inp, inp_list)) {
928 		INP_LOCK(inp);
929 		if (inp->inp_gencnt <= gencnt) {
930 			/*
931 			 * XXX: This use of cr_cansee(), introduced with
932 			 * TCP state changes, is not quite right, but for
933 			 * now, better than nothing.
934 			 */
935 			if (inp->inp_vflag & INP_TIMEWAIT)
936 				error = cr_cansee(req->td->td_ucred,
937 				    intotw(inp)->tw_cred);
938 			else
939 				error = cr_canseesocket(req->td->td_ucred,
940 				    inp->inp_socket);
941 			if (error == 0)
942 				inp_list[i++] = inp;
943 		}
944 		INP_UNLOCK(inp);
945 	}
946 	INP_INFO_RUNLOCK(&tcbinfo);
947 	splx(s);
948 	n = i;
949 
950 	error = 0;
951 	for (i = 0; i < n; i++) {
952 		inp = inp_list[i];
953 		if (inp->inp_gencnt <= gencnt) {
954 			struct xtcpcb xt;
955 			caddr_t inp_ppcb;
956 			xt.xt_len = sizeof xt;
957 			/* XXX should avoid extra copy */
958 			bcopy(inp, &xt.xt_inp, sizeof *inp);
959 			inp_ppcb = inp->inp_ppcb;
960 			if (inp_ppcb == NULL)
961 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
962 			else if (inp->inp_vflag & INP_TIMEWAIT) {
963 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
964 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
965 			} else
966 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
967 			if (inp->inp_socket)
968 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
969 			else {
970 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
971 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
972 			}
973 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
974 			error = SYSCTL_OUT(req, &xt, sizeof xt);
975 		}
976 	}
977 	if (!error) {
978 		/*
979 		 * Give the user an updated idea of our state.
980 		 * If the generation differs from what we told
981 		 * her before, she knows that something happened
982 		 * while we were processing this request, and it
983 		 * might be necessary to retry.
984 		 */
985 		s = splnet();
986 		INP_INFO_RLOCK(&tcbinfo);
987 		xig.xig_gen = tcbinfo.ipi_gencnt;
988 		xig.xig_sogen = so_gencnt;
989 		xig.xig_count = tcbinfo.ipi_count;
990 		INP_INFO_RUNLOCK(&tcbinfo);
991 		splx(s);
992 		error = SYSCTL_OUT(req, &xig, sizeof xig);
993 	}
994 	free(inp_list, M_TEMP);
995 	return error;
996 }
997 
998 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
999 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1000 
1001 static int
1002 tcp_getcred(SYSCTL_HANDLER_ARGS)
1003 {
1004 	struct xucred xuc;
1005 	struct sockaddr_in addrs[2];
1006 	struct inpcb *inp;
1007 	int error, s;
1008 
1009 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1010 	if (error)
1011 		return (error);
1012 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1013 	if (error)
1014 		return (error);
1015 	s = splnet();
1016 	INP_INFO_RLOCK(&tcbinfo);
1017 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1018 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1019 	if (inp == NULL) {
1020 		error = ENOENT;
1021 		goto outunlocked;
1022 	}
1023 	INP_LOCK(inp);
1024 	if (inp->inp_socket == NULL) {
1025 		error = ENOENT;
1026 		goto out;
1027 	}
1028 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1029 	if (error)
1030 		goto out;
1031 	cru2x(inp->inp_socket->so_cred, &xuc);
1032 out:
1033 	INP_UNLOCK(inp);
1034 outunlocked:
1035 	INP_INFO_RUNLOCK(&tcbinfo);
1036 	splx(s);
1037 	if (error == 0)
1038 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1039 	return (error);
1040 }
1041 
1042 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1043     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1044     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1045 
1046 #ifdef INET6
1047 static int
1048 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1049 {
1050 	struct xucred xuc;
1051 	struct sockaddr_in6 addrs[2];
1052 	struct inpcb *inp;
1053 	int error, s, mapped = 0;
1054 
1055 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1056 	if (error)
1057 		return (error);
1058 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1059 	if (error)
1060 		return (error);
1061 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1062 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1063 			mapped = 1;
1064 		else
1065 			return (EINVAL);
1066 	}
1067 	s = splnet();
1068 	INP_INFO_RLOCK(&tcbinfo);
1069 	if (mapped == 1)
1070 		inp = in_pcblookup_hash(&tcbinfo,
1071 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1072 			addrs[1].sin6_port,
1073 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1074 			addrs[0].sin6_port,
1075 			0, NULL);
1076 	else
1077 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1078 				 addrs[1].sin6_port,
1079 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1080 				 0, NULL);
1081 	if (inp == NULL) {
1082 		error = ENOENT;
1083 		goto outunlocked;
1084 	}
1085 	INP_LOCK(inp);
1086 	if (inp->inp_socket == NULL) {
1087 		error = ENOENT;
1088 		goto out;
1089 	}
1090 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1091 	if (error)
1092 		goto out;
1093 	cru2x(inp->inp_socket->so_cred, &xuc);
1094 out:
1095 	INP_UNLOCK(inp);
1096 outunlocked:
1097 	INP_INFO_RUNLOCK(&tcbinfo);
1098 	splx(s);
1099 	if (error == 0)
1100 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1101 	return (error);
1102 }
1103 
1104 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1105     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1106     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1107 #endif
1108 
1109 
1110 void
1111 tcp_ctlinput(cmd, sa, vip)
1112 	int cmd;
1113 	struct sockaddr *sa;
1114 	void *vip;
1115 {
1116 	struct ip *ip = vip;
1117 	struct tcphdr *th;
1118 	struct in_addr faddr;
1119 	struct inpcb *inp;
1120 	struct tcpcb *tp;
1121 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1122 	tcp_seq icmp_seq;
1123 	int s;
1124 
1125 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1126 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1127 		return;
1128 
1129 	if (cmd == PRC_QUENCH)
1130 		notify = tcp_quench;
1131 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1132 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1133 		notify = tcp_drop_syn_sent;
1134 	else if (cmd == PRC_MSGSIZE)
1135 		notify = tcp_mtudisc;
1136 	else if (PRC_IS_REDIRECT(cmd)) {
1137 		ip = 0;
1138 		notify = in_rtchange;
1139 	} else if (cmd == PRC_HOSTDEAD)
1140 		ip = 0;
1141 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1142 		return;
1143 	if (ip) {
1144 		s = splnet();
1145 		th = (struct tcphdr *)((caddr_t)ip
1146 				       + (ip->ip_hl << 2));
1147 		INP_INFO_WLOCK(&tcbinfo);
1148 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1149 		    ip->ip_src, th->th_sport, 0, NULL);
1150 		if (inp != NULL)  {
1151 			INP_LOCK(inp);
1152 			if (inp->inp_socket != NULL) {
1153 				icmp_seq = htonl(th->th_seq);
1154 				tp = intotcpcb(inp);
1155 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1156 			    		SEQ_LT(icmp_seq, tp->snd_max))
1157 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1158 			}
1159 			if (inp)
1160 				INP_UNLOCK(inp);
1161 		} else {
1162 			struct in_conninfo inc;
1163 
1164 			inc.inc_fport = th->th_dport;
1165 			inc.inc_lport = th->th_sport;
1166 			inc.inc_faddr = faddr;
1167 			inc.inc_laddr = ip->ip_src;
1168 #ifdef INET6
1169 			inc.inc_isipv6 = 0;
1170 #endif
1171 			syncache_unreach(&inc, th);
1172 		}
1173 		INP_INFO_WUNLOCK(&tcbinfo);
1174 		splx(s);
1175 	} else
1176 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1177 }
1178 
1179 #ifdef INET6
1180 void
1181 tcp6_ctlinput(cmd, sa, d)
1182 	int cmd;
1183 	struct sockaddr *sa;
1184 	void *d;
1185 {
1186 	struct tcphdr th;
1187 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1188 	struct ip6_hdr *ip6;
1189 	struct mbuf *m;
1190 	struct ip6ctlparam *ip6cp = NULL;
1191 	const struct sockaddr_in6 *sa6_src = NULL;
1192 	int off;
1193 	struct tcp_portonly {
1194 		u_int16_t th_sport;
1195 		u_int16_t th_dport;
1196 	} *thp;
1197 
1198 	if (sa->sa_family != AF_INET6 ||
1199 	    sa->sa_len != sizeof(struct sockaddr_in6))
1200 		return;
1201 
1202 	if (cmd == PRC_QUENCH)
1203 		notify = tcp_quench;
1204 	else if (cmd == PRC_MSGSIZE)
1205 		notify = tcp_mtudisc;
1206 	else if (!PRC_IS_REDIRECT(cmd) &&
1207 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1208 		return;
1209 
1210 	/* if the parameter is from icmp6, decode it. */
1211 	if (d != NULL) {
1212 		ip6cp = (struct ip6ctlparam *)d;
1213 		m = ip6cp->ip6c_m;
1214 		ip6 = ip6cp->ip6c_ip6;
1215 		off = ip6cp->ip6c_off;
1216 		sa6_src = ip6cp->ip6c_src;
1217 	} else {
1218 		m = NULL;
1219 		ip6 = NULL;
1220 		off = 0;	/* fool gcc */
1221 		sa6_src = &sa6_any;
1222 	}
1223 
1224 	if (ip6) {
1225 		struct in_conninfo inc;
1226 		/*
1227 		 * XXX: We assume that when IPV6 is non NULL,
1228 		 * M and OFF are valid.
1229 		 */
1230 
1231 		/* check if we can safely examine src and dst ports */
1232 		if (m->m_pkthdr.len < off + sizeof(*thp))
1233 			return;
1234 
1235 		bzero(&th, sizeof(th));
1236 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1237 
1238 		in6_pcbnotify(&tcb, sa, th.th_dport,
1239 		    (struct sockaddr *)ip6cp->ip6c_src,
1240 		    th.th_sport, cmd, notify);
1241 
1242 		inc.inc_fport = th.th_dport;
1243 		inc.inc_lport = th.th_sport;
1244 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1245 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1246 		inc.inc_isipv6 = 1;
1247 		syncache_unreach(&inc, &th);
1248 	} else
1249 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1250 			      0, cmd, notify);
1251 }
1252 #endif /* INET6 */
1253 
1254 
1255 /*
1256  * Following is where TCP initial sequence number generation occurs.
1257  *
1258  * There are two places where we must use initial sequence numbers:
1259  * 1.  In SYN-ACK packets.
1260  * 2.  In SYN packets.
1261  *
1262  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1263  * tcp_syncache.c for details.
1264  *
1265  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1266  * depends on this property.  In addition, these ISNs should be
1267  * unguessable so as to prevent connection hijacking.  To satisfy
1268  * the requirements of this situation, the algorithm outlined in
1269  * RFC 1948 is used to generate sequence numbers.
1270  *
1271  * Implementation details:
1272  *
1273  * Time is based off the system timer, and is corrected so that it
1274  * increases by one megabyte per second.  This allows for proper
1275  * recycling on high speed LANs while still leaving over an hour
1276  * before rollover.
1277  *
1278  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1279  * between seeding of isn_secret.  This is normally set to zero,
1280  * as reseeding should not be necessary.
1281  *
1282  */
1283 
1284 #define ISN_BYTES_PER_SECOND 1048576
1285 
1286 u_char isn_secret[32];
1287 int isn_last_reseed;
1288 MD5_CTX isn_ctx;
1289 
1290 tcp_seq
1291 tcp_new_isn(tp)
1292 	struct tcpcb *tp;
1293 {
1294 	u_int32_t md5_buffer[4];
1295 	tcp_seq new_isn;
1296 
1297 	/* Seed if this is the first use, reseed if requested. */
1298 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1299 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1300 		< (u_int)ticks))) {
1301 		read_random(&isn_secret, sizeof(isn_secret));
1302 		isn_last_reseed = ticks;
1303 	}
1304 
1305 	/* Compute the md5 hash and return the ISN. */
1306 	MD5Init(&isn_ctx);
1307 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1308 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1309 #ifdef INET6
1310 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1311 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1312 			  sizeof(struct in6_addr));
1313 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1314 			  sizeof(struct in6_addr));
1315 	} else
1316 #endif
1317 	{
1318 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1319 			  sizeof(struct in_addr));
1320 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1321 			  sizeof(struct in_addr));
1322 	}
1323 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1324 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1325 	new_isn = (tcp_seq) md5_buffer[0];
1326 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1327 	return new_isn;
1328 }
1329 
1330 /*
1331  * When a source quench is received, close congestion window
1332  * to one segment.  We will gradually open it again as we proceed.
1333  */
1334 struct inpcb *
1335 tcp_quench(inp, errno)
1336 	struct inpcb *inp;
1337 	int errno;
1338 {
1339 	struct tcpcb *tp = intotcpcb(inp);
1340 
1341 	if (tp)
1342 		tp->snd_cwnd = tp->t_maxseg;
1343 	return (inp);
1344 }
1345 
1346 /*
1347  * When a specific ICMP unreachable message is received and the
1348  * connection state is SYN-SENT, drop the connection.  This behavior
1349  * is controlled by the icmp_may_rst sysctl.
1350  */
1351 struct inpcb *
1352 tcp_drop_syn_sent(inp, errno)
1353 	struct inpcb *inp;
1354 	int errno;
1355 {
1356 	struct tcpcb *tp = intotcpcb(inp);
1357 
1358 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1359 		tcp_drop(tp, errno);
1360 		return (struct inpcb *)0;
1361 	}
1362 	return inp;
1363 }
1364 
1365 /*
1366  * When `need fragmentation' ICMP is received, update our idea of the MSS
1367  * based on the new value in the route.  Also nudge TCP to send something,
1368  * since we know the packet we just sent was dropped.
1369  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1370  */
1371 struct inpcb *
1372 tcp_mtudisc(inp, errno)
1373 	struct inpcb *inp;
1374 	int errno;
1375 {
1376 	struct tcpcb *tp = intotcpcb(inp);
1377 	struct rtentry *rt;
1378 	struct rmxp_tao *taop;
1379 	struct socket *so = inp->inp_socket;
1380 	int offered;
1381 	int mss;
1382 #ifdef INET6
1383 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1384 #endif /* INET6 */
1385 
1386 	if (tp) {
1387 #ifdef INET6
1388 		if (isipv6)
1389 			rt = tcp_rtlookup6(&inp->inp_inc);
1390 		else
1391 #endif /* INET6 */
1392 		rt = tcp_rtlookup(&inp->inp_inc);
1393 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1394 			tp->t_maxopd = tp->t_maxseg =
1395 #ifdef INET6
1396 				isipv6 ? tcp_v6mssdflt :
1397 #endif /* INET6 */
1398 				tcp_mssdflt;
1399 			return inp;
1400 		}
1401 		taop = rmx_taop(rt->rt_rmx);
1402 		offered = taop->tao_mssopt;
1403 		mss = rt->rt_rmx.rmx_mtu -
1404 #ifdef INET6
1405 			(isipv6 ?
1406 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1407 #endif /* INET6 */
1408 			 sizeof(struct tcpiphdr)
1409 #ifdef INET6
1410 			 )
1411 #endif /* INET6 */
1412 			;
1413 
1414 		if (offered)
1415 			mss = min(mss, offered);
1416 		/*
1417 		 * XXX - The above conditional probably violates the TCP
1418 		 * spec.  The problem is that, since we don't know the
1419 		 * other end's MSS, we are supposed to use a conservative
1420 		 * default.  But, if we do that, then MTU discovery will
1421 		 * never actually take place, because the conservative
1422 		 * default is much less than the MTUs typically seen
1423 		 * on the Internet today.  For the moment, we'll sweep
1424 		 * this under the carpet.
1425 		 *
1426 		 * The conservative default might not actually be a problem
1427 		 * if the only case this occurs is when sending an initial
1428 		 * SYN with options and data to a host we've never talked
1429 		 * to before.  Then, they will reply with an MSS value which
1430 		 * will get recorded and the new parameters should get
1431 		 * recomputed.  For Further Study.
1432 		 */
1433 		if (tp->t_maxopd <= mss)
1434 			return inp;
1435 		tp->t_maxopd = mss;
1436 
1437 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1438 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1439 			mss -= TCPOLEN_TSTAMP_APPA;
1440 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1441 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1442 			mss -= TCPOLEN_CC_APPA;
1443 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1444 		if (mss > MCLBYTES)
1445 			mss &= ~(MCLBYTES-1);
1446 #else
1447 		if (mss > MCLBYTES)
1448 			mss = mss / MCLBYTES * MCLBYTES;
1449 #endif
1450 		if (so->so_snd.sb_hiwat < mss)
1451 			mss = so->so_snd.sb_hiwat;
1452 
1453 		tp->t_maxseg = mss;
1454 
1455 		tcpstat.tcps_mturesent++;
1456 		tp->t_rtttime = 0;
1457 		tp->snd_nxt = tp->snd_una;
1458 		tcp_output(tp);
1459 	}
1460 	return inp;
1461 }
1462 
1463 /*
1464  * Look-up the routing entry to the peer of this inpcb.  If no route
1465  * is found and it cannot be allocated, then return NULL.  This routine
1466  * is called by TCP routines that access the rmx structure and by tcp_mss
1467  * to get the interface MTU.
1468  */
1469 struct rtentry *
1470 tcp_rtlookup(inc)
1471 	struct in_conninfo *inc;
1472 {
1473 	struct route *ro;
1474 	struct rtentry *rt;
1475 
1476 	ro = &inc->inc_route;
1477 	rt = ro->ro_rt;
1478 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1479 		/* No route yet, so try to acquire one */
1480 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1481 			ro->ro_dst.sa_family = AF_INET;
1482 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1483 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1484 			    inc->inc_faddr;
1485 			rtalloc(ro);
1486 			rt = ro->ro_rt;
1487 		}
1488 	}
1489 	return rt;
1490 }
1491 
1492 #ifdef INET6
1493 struct rtentry *
1494 tcp_rtlookup6(inc)
1495 	struct in_conninfo *inc;
1496 {
1497 	struct route_in6 *ro6;
1498 	struct rtentry *rt;
1499 
1500 	ro6 = &inc->inc6_route;
1501 	rt = ro6->ro_rt;
1502 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1503 		/* No route yet, so try to acquire one */
1504 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1505 			ro6->ro_dst.sin6_family = AF_INET6;
1506 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1507 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1508 			rtalloc((struct route *)ro6);
1509 			rt = ro6->ro_rt;
1510 		}
1511 	}
1512 	return rt;
1513 }
1514 #endif /* INET6 */
1515 
1516 #ifdef IPSEC
1517 /* compute ESP/AH header size for TCP, including outer IP header. */
1518 size_t
1519 ipsec_hdrsiz_tcp(tp)
1520 	struct tcpcb *tp;
1521 {
1522 	struct inpcb *inp;
1523 	struct mbuf *m;
1524 	size_t hdrsiz;
1525 	struct ip *ip;
1526 #ifdef INET6
1527 	struct ip6_hdr *ip6;
1528 #endif
1529 	struct tcphdr *th;
1530 
1531 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1532 		return 0;
1533 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1534 	if (!m)
1535 		return 0;
1536 
1537 #ifdef INET6
1538 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1539 		ip6 = mtod(m, struct ip6_hdr *);
1540 		th = (struct tcphdr *)(ip6 + 1);
1541 		m->m_pkthdr.len = m->m_len =
1542 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1543 		tcpip_fillheaders(inp, ip6, th);
1544 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1545 	} else
1546 #endif /* INET6 */
1547       {
1548 	ip = mtod(m, struct ip *);
1549 	th = (struct tcphdr *)(ip + 1);
1550 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1551 	tcpip_fillheaders(inp, ip, th);
1552 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1553       }
1554 
1555 	m_free(m);
1556 	return hdrsiz;
1557 }
1558 #endif /*IPSEC*/
1559 
1560 /*
1561  * Return a pointer to the cached information about the remote host.
1562  * The cached information is stored in the protocol specific part of
1563  * the route metrics.
1564  */
1565 struct rmxp_tao *
1566 tcp_gettaocache(inc)
1567 	struct in_conninfo *inc;
1568 {
1569 	struct rtentry *rt;
1570 
1571 #ifdef INET6
1572 	if (inc->inc_isipv6)
1573 		rt = tcp_rtlookup6(inc);
1574 	else
1575 #endif /* INET6 */
1576 	rt = tcp_rtlookup(inc);
1577 
1578 	/* Make sure this is a host route and is up. */
1579 	if (rt == NULL ||
1580 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1581 		return NULL;
1582 
1583 	return rmx_taop(rt->rt_rmx);
1584 }
1585 
1586 /*
1587  * Clear all the TAO cache entries, called from tcp_init.
1588  *
1589  * XXX
1590  * This routine is just an empty one, because we assume that the routing
1591  * routing tables are initialized at the same time when TCP, so there is
1592  * nothing in the cache left over.
1593  */
1594 static void
1595 tcp_cleartaocache()
1596 {
1597 }
1598 
1599 /*
1600  * Move a TCP connection into TIME_WAIT state.
1601  *    tcbinfo is unlocked.
1602  *    inp is locked, and is unlocked before returning.
1603  */
1604 void
1605 tcp_twstart(tp)
1606 	struct tcpcb *tp;
1607 {
1608 	struct tcptw *tw;
1609 	struct inpcb *inp;
1610 	int tw_time, acknow;
1611 	struct socket *so;
1612 
1613 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1614 	if (tw == NULL) {
1615 		tw = tcp_timer_2msl_tw(1);
1616 		if (tw == NULL) {
1617 			tcp_close(tp);
1618 			return;
1619 		}
1620 	}
1621 	inp = tp->t_inpcb;
1622 	tw->tw_inpcb = inp;
1623 
1624 	/*
1625 	 * Recover last window size sent.
1626 	 */
1627 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1628 
1629 	/*
1630 	 * Set t_recent if timestamps are used on the connection.
1631 	 */
1632         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1633             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1634 		tw->t_recent = tp->ts_recent;
1635 	else
1636 		tw->t_recent = 0;
1637 
1638 	tw->snd_nxt = tp->snd_nxt;
1639 	tw->rcv_nxt = tp->rcv_nxt;
1640 	tw->cc_recv = tp->cc_recv;
1641 	tw->cc_send = tp->cc_send;
1642 	tw->t_starttime = tp->t_starttime;
1643 	tw->tw_time = 0;
1644 
1645 /* XXX
1646  * If this code will
1647  * be used for fin-wait-2 state also, then we may need
1648  * a ts_recent from the last segment.
1649  */
1650 	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1651 	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1652 		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1653 		/* For T/TCP client, force ACK now. */
1654 		acknow = 1;
1655 	} else {
1656 		tw_time = 2 * tcp_msl;
1657 		acknow = tp->t_flags & TF_ACKNOW;
1658 	}
1659 	tcp_discardcb(tp);
1660 	so = inp->inp_socket;
1661 	so->so_pcb = NULL;
1662 	tw->tw_cred = crhold(so->so_cred);
1663 	tw->tw_so_options = so->so_options;
1664 	if (acknow)
1665 		tcp_twrespond(tw, so, NULL, TH_ACK);
1666 	sotryfree(so);
1667 	inp->inp_socket = NULL;
1668 	inp->inp_ppcb = (caddr_t)tw;
1669 	inp->inp_vflag |= INP_TIMEWAIT;
1670 	tcp_timer_2msl_reset(tw, tw_time);
1671 	INP_UNLOCK(inp);
1672 }
1673 
1674 struct tcptw *
1675 tcp_twclose(struct tcptw *tw, int reuse)
1676 {
1677 	struct inpcb *inp;
1678 
1679 	inp = tw->tw_inpcb;
1680 	tw->tw_inpcb = NULL;
1681 	tcp_timer_2msl_stop(tw);
1682 	inp->inp_ppcb = NULL;
1683 #ifdef INET6
1684 	if (inp->inp_vflag & INP_IPV6PROTO)
1685 		in6_pcbdetach(inp);
1686 	else
1687 #endif
1688 		in_pcbdetach(inp);
1689 	tcpstat.tcps_closed++;
1690 	if (reuse)
1691 		return (tw);
1692 	uma_zfree(tcptw_zone, tw);
1693 	return (NULL);
1694 }
1695 
1696 /*
1697  * One of so and msrc must be non-NULL for use by the MAC Framework to
1698  * construct a label for ay resulting packet.
1699  */
1700 int
1701 tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
1702     int flags)
1703 {
1704 	struct inpcb *inp = tw->tw_inpcb;
1705 	struct tcphdr *th;
1706 	struct mbuf *m;
1707 	struct ip *ip = NULL;
1708 	u_int8_t *optp;
1709 	u_int hdrlen, optlen;
1710 	int error;
1711 #ifdef INET6
1712 	struct ip6_hdr *ip6 = NULL;
1713 	int isipv6 = inp->inp_inc.inc_isipv6;
1714 #endif
1715 
1716 	KASSERT(so != NULL || msrc != NULL,
1717 	    ("tcp_twrespond: so and msrc NULL"));
1718 
1719 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1720 	if (m == NULL)
1721 		return (ENOBUFS);
1722 	m->m_data += max_linkhdr;
1723 
1724 #ifdef MAC
1725 	if (so != NULL)
1726 		mac_create_mbuf_from_socket(so, m);
1727 	else
1728 		mac_create_mbuf_netlayer(msrc, m);
1729 #endif
1730 
1731 #ifdef INET6
1732 	if (isipv6) {
1733 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1734 		ip6 = mtod(m, struct ip6_hdr *);
1735 		th = (struct tcphdr *)(ip6 + 1);
1736 		tcpip_fillheaders(inp, ip6, th);
1737 	} else
1738 #endif
1739 	{
1740 		hdrlen = sizeof(struct tcpiphdr);
1741 		ip = mtod(m, struct ip *);
1742 		th = (struct tcphdr *)(ip + 1);
1743 		tcpip_fillheaders(inp, ip, th);
1744 	}
1745 	optp = (u_int8_t *)(th + 1);
1746 
1747  	/*
1748 	 * Send a timestamp and echo-reply if both our side and our peer
1749 	 * have sent timestamps in our SYN's and this is not a RST.
1750  	 */
1751 	if (tw->t_recent && flags == TH_ACK) {
1752 		u_int32_t *lp = (u_int32_t *)optp;
1753 
1754  		/* Form timestamp option as shown in appendix A of RFC 1323. */
1755  		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1756  		*lp++ = htonl(ticks);
1757  		*lp   = htonl(tw->t_recent);
1758  		optp += TCPOLEN_TSTAMP_APPA;
1759  	}
1760 
1761  	/*
1762 	 * Send `CC-family' options if needed, and it's not a RST.
1763  	 */
1764 	if (tw->cc_recv != 0 && flags == TH_ACK) {
1765 		u_int32_t *lp = (u_int32_t *)optp;
1766 
1767 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1768 		*lp   = htonl(tw->cc_send);
1769 		optp += TCPOLEN_CC_APPA;
1770  	}
1771 	optlen = optp - (u_int8_t *)(th + 1);
1772 
1773 	m->m_len = hdrlen + optlen;
1774 	m->m_pkthdr.len = m->m_len;
1775 
1776 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1777 
1778 	th->th_seq = htonl(tw->snd_nxt);
1779 	th->th_ack = htonl(tw->rcv_nxt);
1780 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1781 	th->th_flags = flags;
1782 	th->th_win = htons(tw->last_win);
1783 
1784 #ifdef INET6
1785 	if (isipv6) {
1786 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1787 		    sizeof(struct tcphdr) + optlen);
1788 		ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ?
1789 		    inp->in6p_route.ro_rt->rt_ifp : NULL);
1790 		error = ip6_output(m, inp->in6p_outputopts, &inp->in6p_route,
1791 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1792 	} else
1793 #endif
1794 	{
1795 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1796                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1797 		m->m_pkthdr.csum_flags = CSUM_TCP;
1798 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1799 		ip->ip_len = m->m_pkthdr.len;
1800 		error = ip_output(m, inp->inp_options, &inp->inp_route,
1801 		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1802 	}
1803 	if (flags & TH_ACK)
1804 		tcpstat.tcps_sndacks++;
1805 	else
1806 		tcpstat.tcps_sndctrl++;
1807 	tcpstat.tcps_sndtotal++;
1808 	return (error);
1809 }
1810 
1811 /*
1812  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1813  *
1814  * This code attempts to calculate the bandwidth-delay product as a
1815  * means of determining the optimal window size to maximize bandwidth,
1816  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1817  * routers.  This code also does a fairly good job keeping RTTs in check
1818  * across slow links like modems.  We implement an algorithm which is very
1819  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1820  * transmitter side of a TCP connection and so only effects the transmit
1821  * side of the connection.
1822  *
1823  * BACKGROUND:  TCP makes no provision for the management of buffer space
1824  * at the end points or at the intermediate routers and switches.  A TCP
1825  * stream, whether using NewReno or not, will eventually buffer as
1826  * many packets as it is able and the only reason this typically works is
1827  * due to the fairly small default buffers made available for a connection
1828  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1829  * scaling it is now fairly easy for even a single TCP connection to blow-out
1830  * all available buffer space not only on the local interface, but on
1831  * intermediate routers and switches as well.  NewReno makes a misguided
1832  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1833  * then backing off, then steadily increasing the window again until another
1834  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1835  * is only made worse as network loads increase and the idea of intentionally
1836  * blowing out network buffers is, frankly, a terrible way to manage network
1837  * resources.
1838  *
1839  * It is far better to limit the transmit window prior to the failure
1840  * condition being achieved.  There are two general ways to do this:  First
1841  * you can 'scan' through different transmit window sizes and locate the
1842  * point where the RTT stops increasing, indicating that you have filled the
1843  * pipe, then scan backwards until you note that RTT stops decreasing, then
1844  * repeat ad-infinitum.  This method works in principle but has severe
1845  * implementation issues due to RTT variances, timer granularity, and
1846  * instability in the algorithm which can lead to many false positives and
1847  * create oscillations as well as interact badly with other TCP streams
1848  * implementing the same algorithm.
1849  *
1850  * The second method is to limit the window to the bandwidth delay product
1851  * of the link.  This is the method we implement.  RTT variances and our
1852  * own manipulation of the congestion window, bwnd, can potentially
1853  * destabilize the algorithm.  For this reason we have to stabilize the
1854  * elements used to calculate the window.  We do this by using the minimum
1855  * observed RTT, the long term average of the observed bandwidth, and
1856  * by adding two segments worth of slop.  It isn't perfect but it is able
1857  * to react to changing conditions and gives us a very stable basis on
1858  * which to extend the algorithm.
1859  */
1860 void
1861 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1862 {
1863 	u_long bw;
1864 	u_long bwnd;
1865 	int save_ticks;
1866 
1867 	/*
1868 	 * If inflight_enable is disabled in the middle of a tcp connection,
1869 	 * make sure snd_bwnd is effectively disabled.
1870 	 */
1871 	if (tcp_inflight_enable == 0) {
1872 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1873 		tp->snd_bandwidth = 0;
1874 		return;
1875 	}
1876 
1877 	/*
1878 	 * Figure out the bandwidth.  Due to the tick granularity this
1879 	 * is a very rough number and it MUST be averaged over a fairly
1880 	 * long period of time.  XXX we need to take into account a link
1881 	 * that is not using all available bandwidth, but for now our
1882 	 * slop will ramp us up if this case occurs and the bandwidth later
1883 	 * increases.
1884 	 *
1885 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1886 	 * effectively reset t_bw_rtttime for this case.
1887 	 */
1888 	save_ticks = ticks;
1889 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1890 		return;
1891 
1892 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1893 	    (save_ticks - tp->t_bw_rtttime);
1894 	tp->t_bw_rtttime = save_ticks;
1895 	tp->t_bw_rtseq = ack_seq;
1896 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1897 		return;
1898 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1899 
1900 	tp->snd_bandwidth = bw;
1901 
1902 	/*
1903 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1904 	 * segments.  The additional slop puts us squarely in the sweet
1905 	 * spot and also handles the bandwidth run-up case and stabilization.
1906 	 * Without the slop we could be locking ourselves into a lower
1907 	 * bandwidth.
1908 	 *
1909 	 * Situations Handled:
1910 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1911 	 *	    high speed LANs, allowing larger TCP buffers to be
1912 	 *	    specified, and also does a good job preventing
1913 	 *	    over-queueing of packets over choke points like modems
1914 	 *	    (at least for the transmit side).
1915 	 *
1916 	 *	(2) Is able to handle changing network loads (bandwidth
1917 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1918 	 *	    increases).
1919 	 *
1920 	 *	(3) Theoretically should stabilize in the face of multiple
1921 	 *	    connections implementing the same algorithm (this may need
1922 	 *	    a little work).
1923 	 *
1924 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1925 	 *	    be adjusted with a sysctl but typically only needs to be
1926 	 *	    on very slow connections.  A value no smaller then 5
1927 	 *	    should be used, but only reduce this default if you have
1928 	 *	    no other choice.
1929 	 */
1930 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1931 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1932 #undef USERTT
1933 
1934 	if (tcp_inflight_debug > 0) {
1935 		static int ltime;
1936 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1937 			ltime = ticks;
1938 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1939 			    tp,
1940 			    bw,
1941 			    tp->t_rttbest,
1942 			    tp->t_srtt,
1943 			    bwnd
1944 			);
1945 		}
1946 	}
1947 	if ((long)bwnd < tcp_inflight_min)
1948 		bwnd = tcp_inflight_min;
1949 	if (bwnd > tcp_inflight_max)
1950 		bwnd = tcp_inflight_max;
1951 	if ((long)bwnd < tp->t_maxseg * 2)
1952 		bwnd = tp->t_maxseg * 2;
1953 	tp->snd_bwnd = bwnd;
1954 }
1955 
1956