xref: /freebsd/sys/netinet/tcp_timewait.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #include <netkey/key.h>
99 #endif /*IPSEC*/
100 
101 #ifdef FAST_IPSEC
102 #include <netipsec/ipsec.h>
103 #include <netipsec/xform.h>
104 #ifdef INET6
105 #include <netipsec/ipsec6.h>
106 #endif
107 #include <netipsec/key.h>
108 #define	IPSEC
109 #endif /*FAST_IPSEC*/
110 
111 #include <machine/in_cksum.h>
112 #include <sys/md5.h>
113 
114 int	tcp_mssdflt = TCP_MSS;
115 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
116     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
117 
118 #ifdef INET6
119 int	tcp_v6mssdflt = TCP6_MSS;
120 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
121 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
122 	"Default TCP Maximum Segment Size for IPv6");
123 #endif
124 
125 /*
126  * Minimum MSS we accept and use. This prevents DoS attacks where
127  * we are forced to a ridiculous low MSS like 20 and send hundreds
128  * of packets instead of one. The effect scales with the available
129  * bandwidth and quickly saturates the CPU and network interface
130  * with packet generation and sending. Set to zero to disable MINMSS
131  * checking. This setting prevents us from sending too small packets.
132  */
133 int	tcp_minmss = TCP_MINMSS;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
135     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
136 /*
137  * Number of TCP segments per second we accept from remote host
138  * before we start to calculate average segment size. If average
139  * segment size drops below the minimum TCP MSS we assume a DoS
140  * attack and reset+drop the connection. Care has to be taken not to
141  * set this value too small to not kill interactive type connections
142  * (telnet, SSH) which send many small packets.
143  */
144 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
146     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
147     "be under the MINMSS Size");
148 
149 #if 0
150 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
151 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
152     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
153 #endif
154 
155 int	tcp_do_rfc1323 = 1;
156 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
157     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
158 
159 static int	tcp_tcbhashsize = 0;
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
161      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
162 
163 static int	do_tcpdrain = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
165      "Enable tcp_drain routine for extra help when low on mbufs");
166 
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
168     &tcbinfo.ipi_count, 0, "Number of active PCBs");
169 
170 static int	icmp_may_rst = 1;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
172     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
173 
174 static int	tcp_isn_reseed_interval = 0;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
176     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
177 
178 /*
179  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
180  * 1024 exists only for debugging.  A good production default would be
181  * something like 6100.
182  */
183 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
184     "TCP inflight data limiting");
185 
186 static int	tcp_inflight_enable = 1;
187 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
188     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
189 
190 static int	tcp_inflight_debug = 0;
191 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
192     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
193 
194 static int	tcp_inflight_min = 6144;
195 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
196     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
197 
198 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
199 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
200     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
201 
202 static int	tcp_inflight_stab = 20;
203 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
204     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
205 
206 uma_zone_t sack_hole_zone;
207 
208 static struct inpcb *tcp_notify(struct inpcb *, int);
209 static void	tcp_discardcb(struct tcpcb *);
210 static void	tcp_isn_tick(void *);
211 
212 /*
213  * Target size of TCP PCB hash tables. Must be a power of two.
214  *
215  * Note that this can be overridden by the kernel environment
216  * variable net.inet.tcp.tcbhashsize
217  */
218 #ifndef TCBHASHSIZE
219 #define TCBHASHSIZE	512
220 #endif
221 
222 /*
223  * XXX
224  * Callouts should be moved into struct tcp directly.  They are currently
225  * separate because the tcpcb structure is exported to userland for sysctl
226  * parsing purposes, which do not know about callouts.
227  */
228 struct	tcpcb_mem {
229 	struct	tcpcb tcb;
230 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
231 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
232 };
233 
234 static uma_zone_t tcpcb_zone;
235 static uma_zone_t tcptw_zone;
236 struct callout isn_callout;
237 
238 /*
239  * Tcp initialization
240  */
241 void
242 tcp_init()
243 {
244 	int hashsize = TCBHASHSIZE;
245 
246 	tcp_delacktime = TCPTV_DELACK;
247 	tcp_keepinit = TCPTV_KEEP_INIT;
248 	tcp_keepidle = TCPTV_KEEP_IDLE;
249 	tcp_keepintvl = TCPTV_KEEPINTVL;
250 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
251 	tcp_msl = TCPTV_MSL;
252 	tcp_rexmit_min = TCPTV_MIN;
253 	tcp_rexmit_slop = TCPTV_CPU_VAR;
254 
255 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
256 	LIST_INIT(&tcb);
257 	tcbinfo.listhead = &tcb;
258 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
259 	if (!powerof2(hashsize)) {
260 		printf("WARNING: TCB hash size not a power of 2\n");
261 		hashsize = 512; /* safe default */
262 	}
263 	tcp_tcbhashsize = hashsize;
264 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
265 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
266 					&tcbinfo.porthashmask);
267 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
269 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
270 #ifdef INET6
271 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
272 #else /* INET6 */
273 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
274 #endif /* INET6 */
275 	if (max_protohdr < TCP_MINPROTOHDR)
276 		max_protohdr = TCP_MINPROTOHDR;
277 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
278 		panic("tcp_init");
279 #undef TCP_MINPROTOHDR
280 	/*
281 	 * These have to be type stable for the benefit of the timers.
282 	 */
283 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
284 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 	uma_zone_set_max(tcpcb_zone, maxsockets);
286 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
287 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
288 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
289 	tcp_timer_init();
290 	syncache_init();
291 	tcp_hc_init();
292 	tcp_reass_init();
293 	callout_init(&isn_callout, CALLOUT_MPSAFE);
294 	tcp_isn_tick(NULL);
295 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
296 		SHUTDOWN_PRI_DEFAULT);
297 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
298 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
299 }
300 
301 void
302 tcp_fini(xtp)
303 	void *xtp;
304 {
305 	callout_stop(&isn_callout);
306 
307 }
308 
309 /*
310  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
311  * tcp_template used to store this data in mbufs, but we now recopy it out
312  * of the tcpcb each time to conserve mbufs.
313  */
314 void
315 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
316 	struct inpcb *inp;
317 	void *ip_ptr;
318 	void *tcp_ptr;
319 {
320 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
321 
322 	INP_LOCK_ASSERT(inp);
323 
324 #ifdef INET6
325 	if ((inp->inp_vflag & INP_IPV6) != 0) {
326 		struct ip6_hdr *ip6;
327 
328 		ip6 = (struct ip6_hdr *)ip_ptr;
329 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
330 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
331 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
332 			(IPV6_VERSION & IPV6_VERSION_MASK);
333 		ip6->ip6_nxt = IPPROTO_TCP;
334 		ip6->ip6_plen = sizeof(struct tcphdr);
335 		ip6->ip6_src = inp->in6p_laddr;
336 		ip6->ip6_dst = inp->in6p_faddr;
337 	} else
338 #endif
339 	{
340 		struct ip *ip;
341 
342 		ip = (struct ip *)ip_ptr;
343 		ip->ip_v = IPVERSION;
344 		ip->ip_hl = 5;
345 		ip->ip_tos = inp->inp_ip_tos;
346 		ip->ip_len = 0;
347 		ip->ip_id = 0;
348 		ip->ip_off = 0;
349 		ip->ip_ttl = inp->inp_ip_ttl;
350 		ip->ip_sum = 0;
351 		ip->ip_p = IPPROTO_TCP;
352 		ip->ip_src = inp->inp_laddr;
353 		ip->ip_dst = inp->inp_faddr;
354 	}
355 	th->th_sport = inp->inp_lport;
356 	th->th_dport = inp->inp_fport;
357 	th->th_seq = 0;
358 	th->th_ack = 0;
359 	th->th_x2 = 0;
360 	th->th_off = 5;
361 	th->th_flags = 0;
362 	th->th_win = 0;
363 	th->th_urp = 0;
364 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
365 }
366 
367 /*
368  * Create template to be used to send tcp packets on a connection.
369  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
370  * use for this function is in keepalives, which use tcp_respond.
371  */
372 struct tcptemp *
373 tcpip_maketemplate(inp)
374 	struct inpcb *inp;
375 {
376 	struct mbuf *m;
377 	struct tcptemp *n;
378 
379 	m = m_get(M_DONTWAIT, MT_HEADER);
380 	if (m == NULL)
381 		return (0);
382 	m->m_len = sizeof(struct tcptemp);
383 	n = mtod(m, struct tcptemp *);
384 
385 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
386 	return (n);
387 }
388 
389 /*
390  * Send a single message to the TCP at address specified by
391  * the given TCP/IP header.  If m == NULL, then we make a copy
392  * of the tcpiphdr at ti and send directly to the addressed host.
393  * This is used to force keep alive messages out using the TCP
394  * template for a connection.  If flags are given then we send
395  * a message back to the TCP which originated the * segment ti,
396  * and discard the mbuf containing it and any other attached mbufs.
397  *
398  * In any case the ack and sequence number of the transmitted
399  * segment are as specified by the parameters.
400  *
401  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
402  */
403 void
404 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
405 	struct tcpcb *tp;
406 	void *ipgen;
407 	register struct tcphdr *th;
408 	register struct mbuf *m;
409 	tcp_seq ack, seq;
410 	int flags;
411 {
412 	register int tlen;
413 	int win = 0;
414 	struct ip *ip;
415 	struct tcphdr *nth;
416 #ifdef INET6
417 	struct ip6_hdr *ip6;
418 	int isipv6;
419 #endif /* INET6 */
420 	int ipflags = 0;
421 	struct inpcb *inp;
422 
423 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
424 
425 #ifdef INET6
426 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
427 	ip6 = ipgen;
428 #endif /* INET6 */
429 	ip = ipgen;
430 
431 	if (tp != NULL) {
432 		inp = tp->t_inpcb;
433 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
434 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
435 		INP_LOCK_ASSERT(inp);
436 	} else
437 		inp = NULL;
438 
439 	if (tp != NULL) {
440 		if (!(flags & TH_RST)) {
441 			win = sbspace(&inp->inp_socket->so_rcv);
442 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
443 				win = (long)TCP_MAXWIN << tp->rcv_scale;
444 		}
445 	}
446 	if (m == NULL) {
447 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
448 		if (m == NULL)
449 			return;
450 		tlen = 0;
451 		m->m_data += max_linkhdr;
452 #ifdef INET6
453 		if (isipv6) {
454 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
455 			      sizeof(struct ip6_hdr));
456 			ip6 = mtod(m, struct ip6_hdr *);
457 			nth = (struct tcphdr *)(ip6 + 1);
458 		} else
459 #endif /* INET6 */
460 	      {
461 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
462 		ip = mtod(m, struct ip *);
463 		nth = (struct tcphdr *)(ip + 1);
464 	      }
465 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
466 		flags = TH_ACK;
467 	} else {
468 		m_freem(m->m_next);
469 		m->m_next = NULL;
470 		m->m_data = (caddr_t)ipgen;
471 		/* m_len is set later */
472 		tlen = 0;
473 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
474 #ifdef INET6
475 		if (isipv6) {
476 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
477 			nth = (struct tcphdr *)(ip6 + 1);
478 		} else
479 #endif /* INET6 */
480 	      {
481 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
482 		nth = (struct tcphdr *)(ip + 1);
483 	      }
484 		if (th != nth) {
485 			/*
486 			 * this is usually a case when an extension header
487 			 * exists between the IPv6 header and the
488 			 * TCP header.
489 			 */
490 			nth->th_sport = th->th_sport;
491 			nth->th_dport = th->th_dport;
492 		}
493 		xchg(nth->th_dport, nth->th_sport, n_short);
494 #undef xchg
495 	}
496 #ifdef INET6
497 	if (isipv6) {
498 		ip6->ip6_flow = 0;
499 		ip6->ip6_vfc = IPV6_VERSION;
500 		ip6->ip6_nxt = IPPROTO_TCP;
501 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
502 						tlen));
503 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
504 	} else
505 #endif
506 	{
507 		tlen += sizeof (struct tcpiphdr);
508 		ip->ip_len = tlen;
509 		ip->ip_ttl = ip_defttl;
510 		if (path_mtu_discovery)
511 			ip->ip_off |= IP_DF;
512 	}
513 	m->m_len = tlen;
514 	m->m_pkthdr.len = tlen;
515 	m->m_pkthdr.rcvif = NULL;
516 #ifdef MAC
517 	if (inp != NULL) {
518 		/*
519 		 * Packet is associated with a socket, so allow the
520 		 * label of the response to reflect the socket label.
521 		 */
522 		INP_LOCK_ASSERT(inp);
523 		mac_create_mbuf_from_inpcb(inp, m);
524 	} else {
525 		/*
526 		 * Packet is not associated with a socket, so possibly
527 		 * update the label in place.
528 		 */
529 		mac_reflect_mbuf_tcp(m);
530 	}
531 #endif
532 	nth->th_seq = htonl(seq);
533 	nth->th_ack = htonl(ack);
534 	nth->th_x2 = 0;
535 	nth->th_off = sizeof (struct tcphdr) >> 2;
536 	nth->th_flags = flags;
537 	if (tp != NULL)
538 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
539 	else
540 		nth->th_win = htons((u_short)win);
541 	nth->th_urp = 0;
542 #ifdef INET6
543 	if (isipv6) {
544 		nth->th_sum = 0;
545 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
546 					sizeof(struct ip6_hdr),
547 					tlen - sizeof(struct ip6_hdr));
548 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
549 		    NULL, NULL);
550 	} else
551 #endif /* INET6 */
552 	{
553 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
554 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
555 		m->m_pkthdr.csum_flags = CSUM_TCP;
556 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
557 	}
558 #ifdef TCPDEBUG
559 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
560 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
561 #endif
562 #ifdef INET6
563 	if (isipv6)
564 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
565 	else
566 #endif /* INET6 */
567 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
568 }
569 
570 /*
571  * Create a new TCP control block, making an
572  * empty reassembly queue and hooking it to the argument
573  * protocol control block.  The `inp' parameter must have
574  * come from the zone allocator set up in tcp_init().
575  */
576 struct tcpcb *
577 tcp_newtcpcb(inp)
578 	struct inpcb *inp;
579 {
580 	struct tcpcb_mem *tm;
581 	struct tcpcb *tp;
582 #ifdef INET6
583 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
584 #endif /* INET6 */
585 	int callout_flag;
586 
587 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
588 	if (tm == NULL)
589 		return (NULL);
590 	tp = &tm->tcb;
591 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
592 	tp->t_maxseg = tp->t_maxopd =
593 #ifdef INET6
594 		isipv6 ? tcp_v6mssdflt :
595 #endif /* INET6 */
596 		tcp_mssdflt;
597 
598 	/* Set up our timeouts. */
599 	/*
600 	 * XXXRW: Are these actually MPSAFE?  I think so, but need to
601 	 * review the timed wait code, as it has some list variables,
602 	 * etc, that are global.
603 	 */
604 	callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
605 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
606 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
607 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
608 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
609 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
610 
611 	if (tcp_do_rfc1323)
612 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
613 	tp->sack_enable = tcp_do_sack;
614 	tp->t_inpcb = inp;	/* XXX */
615 	/*
616 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
617 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
618 	 * reasonable initial retransmit time.
619 	 */
620 	tp->t_srtt = TCPTV_SRTTBASE;
621 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
622 	tp->t_rttmin = tcp_rexmit_min;
623 	tp->t_rxtcur = TCPTV_RTOBASE;
624 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
625 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
626 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
627 	tp->t_rcvtime = ticks;
628 	tp->t_bw_rtttime = ticks;
629 	/*
630 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
631 	 * because the socket may be bound to an IPv6 wildcard address,
632 	 * which may match an IPv4-mapped IPv6 address.
633 	 */
634 	inp->inp_ip_ttl = ip_defttl;
635 	inp->inp_ppcb = (caddr_t)tp;
636 	return (tp);		/* XXX */
637 }
638 
639 /*
640  * Drop a TCP connection, reporting
641  * the specified error.  If connection is synchronized,
642  * then send a RST to peer.
643  */
644 struct tcpcb *
645 tcp_drop(tp, errno)
646 	register struct tcpcb *tp;
647 	int errno;
648 {
649 	struct socket *so = tp->t_inpcb->inp_socket;
650 
651 	INP_LOCK_ASSERT(tp->t_inpcb);
652 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
653 		tp->t_state = TCPS_CLOSED;
654 		(void) tcp_output(tp);
655 		tcpstat.tcps_drops++;
656 	} else
657 		tcpstat.tcps_conndrops++;
658 	if (errno == ETIMEDOUT && tp->t_softerror)
659 		errno = tp->t_softerror;
660 	so->so_error = errno;
661 	return (tcp_close(tp));
662 }
663 
664 static void
665 tcp_discardcb(tp)
666 	struct tcpcb *tp;
667 {
668 	struct tseg_qent *q;
669 	struct inpcb *inp = tp->t_inpcb;
670 	struct socket *so = inp->inp_socket;
671 #ifdef INET6
672 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
673 #endif /* INET6 */
674 
675 	INP_LOCK_ASSERT(inp);
676 
677 	/*
678 	 * Make sure that all of our timers are stopped before we
679 	 * delete the PCB.
680 	 */
681 	callout_stop(tp->tt_rexmt);
682 	callout_stop(tp->tt_persist);
683 	callout_stop(tp->tt_keep);
684 	callout_stop(tp->tt_2msl);
685 	callout_stop(tp->tt_delack);
686 
687 	/*
688 	 * If we got enough samples through the srtt filter,
689 	 * save the rtt and rttvar in the routing entry.
690 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
691 	 * 4 samples is enough for the srtt filter to converge
692 	 * to within enough % of the correct value; fewer samples
693 	 * and we could save a bogus rtt. The danger is not high
694 	 * as tcp quickly recovers from everything.
695 	 * XXX: Works very well but needs some more statistics!
696 	 */
697 	if (tp->t_rttupdated >= 4) {
698 		struct hc_metrics_lite metrics;
699 		u_long ssthresh;
700 
701 		bzero(&metrics, sizeof(metrics));
702 		/*
703 		 * Update the ssthresh always when the conditions below
704 		 * are satisfied. This gives us better new start value
705 		 * for the congestion avoidance for new connections.
706 		 * ssthresh is only set if packet loss occured on a session.
707 		 */
708 		ssthresh = tp->snd_ssthresh;
709 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
710 			/*
711 			 * convert the limit from user data bytes to
712 			 * packets then to packet data bytes.
713 			 */
714 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
715 			if (ssthresh < 2)
716 				ssthresh = 2;
717 			ssthresh *= (u_long)(tp->t_maxseg +
718 #ifdef INET6
719 				      (isipv6 ? sizeof (struct ip6_hdr) +
720 					       sizeof (struct tcphdr) :
721 #endif
722 				       sizeof (struct tcpiphdr)
723 #ifdef INET6
724 				       )
725 #endif
726 				      );
727 		} else
728 			ssthresh = 0;
729 		metrics.rmx_ssthresh = ssthresh;
730 
731 		metrics.rmx_rtt = tp->t_srtt;
732 		metrics.rmx_rttvar = tp->t_rttvar;
733 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
734 		metrics.rmx_bandwidth = tp->snd_bandwidth;
735 		metrics.rmx_cwnd = tp->snd_cwnd;
736 		metrics.rmx_sendpipe = 0;
737 		metrics.rmx_recvpipe = 0;
738 
739 		tcp_hc_update(&inp->inp_inc, &metrics);
740 	}
741 
742 	/* free the reassembly queue, if any */
743 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
744 		LIST_REMOVE(q, tqe_q);
745 		m_freem(q->tqe_m);
746 		uma_zfree(tcp_reass_zone, q);
747 		tp->t_segqlen--;
748 		tcp_reass_qsize--;
749 	}
750 	tcp_free_sackholes(tp);
751 	inp->inp_ppcb = NULL;
752 	tp->t_inpcb = NULL;
753 	uma_zfree(tcpcb_zone, tp);
754 	soisdisconnected(so);
755 }
756 
757 /*
758  * Close a TCP control block:
759  *    discard all space held by the tcp
760  *    discard internet protocol block
761  *    wake up any sleepers
762  */
763 struct tcpcb *
764 tcp_close(tp)
765 	struct tcpcb *tp;
766 {
767 	struct inpcb *inp = tp->t_inpcb;
768 #ifdef INET6
769 	struct socket *so = inp->inp_socket;
770 #endif
771 
772 	INP_LOCK_ASSERT(inp);
773 
774 	tcp_discardcb(tp);
775 #ifdef INET6
776 	if (INP_CHECK_SOCKAF(so, AF_INET6))
777 		in6_pcbdetach(inp);
778 	else
779 #endif
780 		in_pcbdetach(inp);
781 	tcpstat.tcps_closed++;
782 	return (NULL);
783 }
784 
785 void
786 tcp_drain()
787 {
788 	if (do_tcpdrain)
789 	{
790 		struct inpcb *inpb;
791 		struct tcpcb *tcpb;
792 		struct tseg_qent *te;
793 
794 	/*
795 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
796 	 * if there is one...
797 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
798 	 *      reassembly queue should be flushed, but in a situation
799 	 *	where we're really low on mbufs, this is potentially
800 	 *	usefull.
801 	 */
802 		INP_INFO_RLOCK(&tcbinfo);
803 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
804 			if (inpb->inp_vflag & INP_TIMEWAIT)
805 				continue;
806 			INP_LOCK(inpb);
807 			if ((tcpb = intotcpcb(inpb)) != NULL) {
808 				while ((te = LIST_FIRST(&tcpb->t_segq))
809 			            != NULL) {
810 					LIST_REMOVE(te, tqe_q);
811 					m_freem(te->tqe_m);
812 					uma_zfree(tcp_reass_zone, te);
813 					tcpb->t_segqlen--;
814 					tcp_reass_qsize--;
815 				}
816 			}
817 			INP_UNLOCK(inpb);
818 		}
819 		INP_INFO_RUNLOCK(&tcbinfo);
820 	}
821 }
822 
823 /*
824  * Notify a tcp user of an asynchronous error;
825  * store error as soft error, but wake up user
826  * (for now, won't do anything until can select for soft error).
827  *
828  * Do not wake up user since there currently is no mechanism for
829  * reporting soft errors (yet - a kqueue filter may be added).
830  */
831 static struct inpcb *
832 tcp_notify(inp, error)
833 	struct inpcb *inp;
834 	int error;
835 {
836 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
837 
838 	INP_LOCK_ASSERT(inp);
839 
840 	/*
841 	 * Ignore some errors if we are hooked up.
842 	 * If connection hasn't completed, has retransmitted several times,
843 	 * and receives a second error, give up now.  This is better
844 	 * than waiting a long time to establish a connection that
845 	 * can never complete.
846 	 */
847 	if (tp->t_state == TCPS_ESTABLISHED &&
848 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
849 	     error == EHOSTDOWN)) {
850 		return inp;
851 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
852 	    tp->t_softerror) {
853 		tcp_drop(tp, error);
854 		return (struct inpcb *)0;
855 	} else {
856 		tp->t_softerror = error;
857 		return inp;
858 	}
859 #if 0
860 	wakeup( &so->so_timeo);
861 	sorwakeup(so);
862 	sowwakeup(so);
863 #endif
864 }
865 
866 static int
867 tcp_pcblist(SYSCTL_HANDLER_ARGS)
868 {
869 	int error, i, n, s;
870 	struct inpcb *inp, **inp_list;
871 	inp_gen_t gencnt;
872 	struct xinpgen xig;
873 
874 	/*
875 	 * The process of preparing the TCB list is too time-consuming and
876 	 * resource-intensive to repeat twice on every request.
877 	 */
878 	if (req->oldptr == NULL) {
879 		n = tcbinfo.ipi_count;
880 		req->oldidx = 2 * (sizeof xig)
881 			+ (n + n/8) * sizeof(struct xtcpcb);
882 		return 0;
883 	}
884 
885 	if (req->newptr != NULL)
886 		return EPERM;
887 
888 	/*
889 	 * OK, now we're committed to doing something.
890 	 */
891 	s = splnet();
892 	INP_INFO_RLOCK(&tcbinfo);
893 	gencnt = tcbinfo.ipi_gencnt;
894 	n = tcbinfo.ipi_count;
895 	INP_INFO_RUNLOCK(&tcbinfo);
896 	splx(s);
897 
898 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
899 		+ n * sizeof(struct xtcpcb));
900 	if (error != 0)
901 		return (error);
902 
903 	xig.xig_len = sizeof xig;
904 	xig.xig_count = n;
905 	xig.xig_gen = gencnt;
906 	xig.xig_sogen = so_gencnt;
907 	error = SYSCTL_OUT(req, &xig, sizeof xig);
908 	if (error)
909 		return error;
910 
911 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
912 	if (inp_list == NULL)
913 		return ENOMEM;
914 
915 	s = splnet();
916 	INP_INFO_RLOCK(&tcbinfo);
917 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
918 	     inp = LIST_NEXT(inp, inp_list)) {
919 		INP_LOCK(inp);
920 		if (inp->inp_gencnt <= gencnt) {
921 			/*
922 			 * XXX: This use of cr_cansee(), introduced with
923 			 * TCP state changes, is not quite right, but for
924 			 * now, better than nothing.
925 			 */
926 			if (inp->inp_vflag & INP_TIMEWAIT)
927 				error = cr_cansee(req->td->td_ucred,
928 				    intotw(inp)->tw_cred);
929 			else
930 				error = cr_canseesocket(req->td->td_ucred,
931 				    inp->inp_socket);
932 			if (error == 0)
933 				inp_list[i++] = inp;
934 		}
935 		INP_UNLOCK(inp);
936 	}
937 	INP_INFO_RUNLOCK(&tcbinfo);
938 	splx(s);
939 	n = i;
940 
941 	error = 0;
942 	for (i = 0; i < n; i++) {
943 		inp = inp_list[i];
944 		if (inp->inp_gencnt <= gencnt) {
945 			struct xtcpcb xt;
946 			caddr_t inp_ppcb;
947 			xt.xt_len = sizeof xt;
948 			/* XXX should avoid extra copy */
949 			bcopy(inp, &xt.xt_inp, sizeof *inp);
950 			inp_ppcb = inp->inp_ppcb;
951 			if (inp_ppcb == NULL)
952 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
953 			else if (inp->inp_vflag & INP_TIMEWAIT) {
954 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
955 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
956 			} else
957 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
958 			if (inp->inp_socket != NULL)
959 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
960 			else {
961 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
962 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
963 			}
964 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
965 			error = SYSCTL_OUT(req, &xt, sizeof xt);
966 		}
967 	}
968 	if (!error) {
969 		/*
970 		 * Give the user an updated idea of our state.
971 		 * If the generation differs from what we told
972 		 * her before, she knows that something happened
973 		 * while we were processing this request, and it
974 		 * might be necessary to retry.
975 		 */
976 		s = splnet();
977 		INP_INFO_RLOCK(&tcbinfo);
978 		xig.xig_gen = tcbinfo.ipi_gencnt;
979 		xig.xig_sogen = so_gencnt;
980 		xig.xig_count = tcbinfo.ipi_count;
981 		INP_INFO_RUNLOCK(&tcbinfo);
982 		splx(s);
983 		error = SYSCTL_OUT(req, &xig, sizeof xig);
984 	}
985 	free(inp_list, M_TEMP);
986 	return error;
987 }
988 
989 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
990 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
991 
992 static int
993 tcp_getcred(SYSCTL_HANDLER_ARGS)
994 {
995 	struct xucred xuc;
996 	struct sockaddr_in addrs[2];
997 	struct inpcb *inp;
998 	int error, s;
999 
1000 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1001 	if (error)
1002 		return (error);
1003 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1004 	if (error)
1005 		return (error);
1006 	s = splnet();
1007 	INP_INFO_RLOCK(&tcbinfo);
1008 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1009 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1010 	if (inp == NULL) {
1011 		error = ENOENT;
1012 		goto outunlocked;
1013 	}
1014 	INP_LOCK(inp);
1015 	if (inp->inp_socket == NULL) {
1016 		error = ENOENT;
1017 		goto out;
1018 	}
1019 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1020 	if (error)
1021 		goto out;
1022 	cru2x(inp->inp_socket->so_cred, &xuc);
1023 out:
1024 	INP_UNLOCK(inp);
1025 outunlocked:
1026 	INP_INFO_RUNLOCK(&tcbinfo);
1027 	splx(s);
1028 	if (error == 0)
1029 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1030 	return (error);
1031 }
1032 
1033 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1034     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1035     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1036 
1037 #ifdef INET6
1038 static int
1039 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1040 {
1041 	struct xucred xuc;
1042 	struct sockaddr_in6 addrs[2];
1043 	struct inpcb *inp;
1044 	int error, s, mapped = 0;
1045 
1046 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1047 	if (error)
1048 		return (error);
1049 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1050 	if (error)
1051 		return (error);
1052 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1053 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1054 			mapped = 1;
1055 		else
1056 			return (EINVAL);
1057 	}
1058 	s = splnet();
1059 	INP_INFO_RLOCK(&tcbinfo);
1060 	if (mapped == 1)
1061 		inp = in_pcblookup_hash(&tcbinfo,
1062 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1063 			addrs[1].sin6_port,
1064 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1065 			addrs[0].sin6_port,
1066 			0, NULL);
1067 	else
1068 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1069 				 addrs[1].sin6_port,
1070 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1071 				 0, NULL);
1072 	if (inp == NULL) {
1073 		error = ENOENT;
1074 		goto outunlocked;
1075 	}
1076 	INP_LOCK(inp);
1077 	if (inp->inp_socket == NULL) {
1078 		error = ENOENT;
1079 		goto out;
1080 	}
1081 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1082 	if (error)
1083 		goto out;
1084 	cru2x(inp->inp_socket->so_cred, &xuc);
1085 out:
1086 	INP_UNLOCK(inp);
1087 outunlocked:
1088 	INP_INFO_RUNLOCK(&tcbinfo);
1089 	splx(s);
1090 	if (error == 0)
1091 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1092 	return (error);
1093 }
1094 
1095 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1096     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1097     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1098 #endif
1099 
1100 
1101 void
1102 tcp_ctlinput(cmd, sa, vip)
1103 	int cmd;
1104 	struct sockaddr *sa;
1105 	void *vip;
1106 {
1107 	struct ip *ip = vip;
1108 	struct tcphdr *th;
1109 	struct in_addr faddr;
1110 	struct inpcb *inp;
1111 	struct tcpcb *tp;
1112 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1113 	tcp_seq icmp_seq;
1114 	int s;
1115 
1116 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1117 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1118 		return;
1119 
1120 	if (cmd == PRC_QUENCH)
1121 		notify = tcp_quench;
1122 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1123 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1124 		notify = tcp_drop_syn_sent;
1125 	else if (cmd == PRC_MSGSIZE)
1126 		notify = tcp_mtudisc;
1127 	/*
1128 	 * Redirects don't need to be handled up here.
1129 	 */
1130 	else if (PRC_IS_REDIRECT(cmd))
1131 		return;
1132 	/*
1133 	 * Hostdead is ugly because it goes linearly through all PCBs.
1134 	 * XXX: We never get this from ICMP, otherwise it makes an
1135 	 * excellent DoS attack on machines with many connections.
1136 	 */
1137 	else if (cmd == PRC_HOSTDEAD)
1138 		ip = NULL;
1139 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1140 		return;
1141 	if (ip != NULL) {
1142 		s = splnet();
1143 		th = (struct tcphdr *)((caddr_t)ip
1144 				       + (ip->ip_hl << 2));
1145 		INP_INFO_WLOCK(&tcbinfo);
1146 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1147 		    ip->ip_src, th->th_sport, 0, NULL);
1148 		if (inp != NULL)  {
1149 			INP_LOCK(inp);
1150 			if (inp->inp_socket != NULL) {
1151 				icmp_seq = htonl(th->th_seq);
1152 				tp = intotcpcb(inp);
1153 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1154 					SEQ_LT(icmp_seq, tp->snd_max))
1155 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1156 			}
1157 			if (inp != NULL)
1158 				INP_UNLOCK(inp);
1159 		} else {
1160 			struct in_conninfo inc;
1161 
1162 			inc.inc_fport = th->th_dport;
1163 			inc.inc_lport = th->th_sport;
1164 			inc.inc_faddr = faddr;
1165 			inc.inc_laddr = ip->ip_src;
1166 #ifdef INET6
1167 			inc.inc_isipv6 = 0;
1168 #endif
1169 			syncache_unreach(&inc, th);
1170 		}
1171 		INP_INFO_WUNLOCK(&tcbinfo);
1172 		splx(s);
1173 	} else
1174 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1175 }
1176 
1177 #ifdef INET6
1178 void
1179 tcp6_ctlinput(cmd, sa, d)
1180 	int cmd;
1181 	struct sockaddr *sa;
1182 	void *d;
1183 {
1184 	struct tcphdr th;
1185 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1186 	struct ip6_hdr *ip6;
1187 	struct mbuf *m;
1188 	struct ip6ctlparam *ip6cp = NULL;
1189 	const struct sockaddr_in6 *sa6_src = NULL;
1190 	int off;
1191 	struct tcp_portonly {
1192 		u_int16_t th_sport;
1193 		u_int16_t th_dport;
1194 	} *thp;
1195 
1196 	if (sa->sa_family != AF_INET6 ||
1197 	    sa->sa_len != sizeof(struct sockaddr_in6))
1198 		return;
1199 
1200 	if (cmd == PRC_QUENCH)
1201 		notify = tcp_quench;
1202 	else if (cmd == PRC_MSGSIZE)
1203 		notify = tcp_mtudisc;
1204 	else if (!PRC_IS_REDIRECT(cmd) &&
1205 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1206 		return;
1207 
1208 	/* if the parameter is from icmp6, decode it. */
1209 	if (d != NULL) {
1210 		ip6cp = (struct ip6ctlparam *)d;
1211 		m = ip6cp->ip6c_m;
1212 		ip6 = ip6cp->ip6c_ip6;
1213 		off = ip6cp->ip6c_off;
1214 		sa6_src = ip6cp->ip6c_src;
1215 	} else {
1216 		m = NULL;
1217 		ip6 = NULL;
1218 		off = 0;	/* fool gcc */
1219 		sa6_src = &sa6_any;
1220 	}
1221 
1222 	if (ip6 != NULL) {
1223 		struct in_conninfo inc;
1224 		/*
1225 		 * XXX: We assume that when IPV6 is non NULL,
1226 		 * M and OFF are valid.
1227 		 */
1228 
1229 		/* check if we can safely examine src and dst ports */
1230 		if (m->m_pkthdr.len < off + sizeof(*thp))
1231 			return;
1232 
1233 		bzero(&th, sizeof(th));
1234 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1235 
1236 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1237 		    (struct sockaddr *)ip6cp->ip6c_src,
1238 		    th.th_sport, cmd, NULL, notify);
1239 
1240 		inc.inc_fport = th.th_dport;
1241 		inc.inc_lport = th.th_sport;
1242 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1243 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1244 		inc.inc_isipv6 = 1;
1245 		INP_INFO_WLOCK(&tcbinfo);
1246 		syncache_unreach(&inc, &th);
1247 		INP_INFO_WUNLOCK(&tcbinfo);
1248 	} else
1249 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1250 			      0, cmd, NULL, notify);
1251 }
1252 #endif /* INET6 */
1253 
1254 
1255 /*
1256  * Following is where TCP initial sequence number generation occurs.
1257  *
1258  * There are two places where we must use initial sequence numbers:
1259  * 1.  In SYN-ACK packets.
1260  * 2.  In SYN packets.
1261  *
1262  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1263  * tcp_syncache.c for details.
1264  *
1265  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1266  * depends on this property.  In addition, these ISNs should be
1267  * unguessable so as to prevent connection hijacking.  To satisfy
1268  * the requirements of this situation, the algorithm outlined in
1269  * RFC 1948 is used, with only small modifications.
1270  *
1271  * Implementation details:
1272  *
1273  * Time is based off the system timer, and is corrected so that it
1274  * increases by one megabyte per second.  This allows for proper
1275  * recycling on high speed LANs while still leaving over an hour
1276  * before rollover.
1277  *
1278  * As reading the *exact* system time is too expensive to be done
1279  * whenever setting up a TCP connection, we increment the time
1280  * offset in two ways.  First, a small random positive increment
1281  * is added to isn_offset for each connection that is set up.
1282  * Second, the function tcp_isn_tick fires once per clock tick
1283  * and increments isn_offset as necessary so that sequence numbers
1284  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1285  * random positive increments serve only to ensure that the same
1286  * exact sequence number is never sent out twice (as could otherwise
1287  * happen when a port is recycled in less than the system tick
1288  * interval.)
1289  *
1290  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1291  * between seeding of isn_secret.  This is normally set to zero,
1292  * as reseeding should not be necessary.
1293  *
1294  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1295  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1296  * general, this means holding an exclusive (write) lock.
1297  */
1298 
1299 #define ISN_BYTES_PER_SECOND 1048576
1300 #define ISN_STATIC_INCREMENT 4096
1301 #define ISN_RANDOM_INCREMENT (4096 - 1)
1302 
1303 static u_char isn_secret[32];
1304 static int isn_last_reseed;
1305 static u_int32_t isn_offset, isn_offset_old;
1306 static MD5_CTX isn_ctx;
1307 
1308 tcp_seq
1309 tcp_new_isn(tp)
1310 	struct tcpcb *tp;
1311 {
1312 	u_int32_t md5_buffer[4];
1313 	tcp_seq new_isn;
1314 
1315 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1316 	INP_LOCK_ASSERT(tp->t_inpcb);
1317 
1318 	/* Seed if this is the first use, reseed if requested. */
1319 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1320 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1321 		< (u_int)ticks))) {
1322 		read_random(&isn_secret, sizeof(isn_secret));
1323 		isn_last_reseed = ticks;
1324 	}
1325 
1326 	/* Compute the md5 hash and return the ISN. */
1327 	MD5Init(&isn_ctx);
1328 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1329 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1330 #ifdef INET6
1331 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1332 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1333 			  sizeof(struct in6_addr));
1334 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1335 			  sizeof(struct in6_addr));
1336 	} else
1337 #endif
1338 	{
1339 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1340 			  sizeof(struct in_addr));
1341 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1342 			  sizeof(struct in_addr));
1343 	}
1344 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1345 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1346 	new_isn = (tcp_seq) md5_buffer[0];
1347 	isn_offset += ISN_STATIC_INCREMENT +
1348 		(arc4random() & ISN_RANDOM_INCREMENT);
1349 	new_isn += isn_offset;
1350 	return new_isn;
1351 }
1352 
1353 /*
1354  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1355  * to keep time flowing at a relatively constant rate.  If the random
1356  * increments have already pushed us past the projected offset, do nothing.
1357  */
1358 static void
1359 tcp_isn_tick(xtp)
1360 	void *xtp;
1361 {
1362 	u_int32_t projected_offset;
1363 
1364 	INP_INFO_WLOCK(&tcbinfo);
1365 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1366 
1367 	if (projected_offset > isn_offset)
1368 		isn_offset = projected_offset;
1369 
1370 	isn_offset_old = isn_offset;
1371 	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1372 	INP_INFO_WUNLOCK(&tcbinfo);
1373 }
1374 
1375 /*
1376  * When a source quench is received, close congestion window
1377  * to one segment.  We will gradually open it again as we proceed.
1378  */
1379 struct inpcb *
1380 tcp_quench(inp, errno)
1381 	struct inpcb *inp;
1382 	int errno;
1383 {
1384 	struct tcpcb *tp = intotcpcb(inp);
1385 
1386 	INP_LOCK_ASSERT(inp);
1387 	if (tp != NULL)
1388 		tp->snd_cwnd = tp->t_maxseg;
1389 	return (inp);
1390 }
1391 
1392 /*
1393  * When a specific ICMP unreachable message is received and the
1394  * connection state is SYN-SENT, drop the connection.  This behavior
1395  * is controlled by the icmp_may_rst sysctl.
1396  */
1397 struct inpcb *
1398 tcp_drop_syn_sent(inp, errno)
1399 	struct inpcb *inp;
1400 	int errno;
1401 {
1402 	struct tcpcb *tp = intotcpcb(inp);
1403 
1404 	INP_LOCK_ASSERT(inp);
1405 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1406 		tcp_drop(tp, errno);
1407 		return (struct inpcb *)0;
1408 	}
1409 	return inp;
1410 }
1411 
1412 /*
1413  * When `need fragmentation' ICMP is received, update our idea of the MSS
1414  * based on the new value in the route.  Also nudge TCP to send something,
1415  * since we know the packet we just sent was dropped.
1416  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1417  */
1418 struct inpcb *
1419 tcp_mtudisc(inp, errno)
1420 	struct inpcb *inp;
1421 	int errno;
1422 {
1423 	struct tcpcb *tp = intotcpcb(inp);
1424 	struct socket *so = inp->inp_socket;
1425 	u_int maxmtu;
1426 	u_int romtu;
1427 	int mss;
1428 #ifdef INET6
1429 	int isipv6;
1430 #endif /* INET6 */
1431 
1432 	INP_LOCK_ASSERT(inp);
1433 	if (tp != NULL) {
1434 #ifdef INET6
1435 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1436 #endif
1437 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1438 		romtu =
1439 #ifdef INET6
1440 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1441 #endif /* INET6 */
1442 		    tcp_maxmtu(&inp->inp_inc);
1443 		if (!maxmtu)
1444 			maxmtu = romtu;
1445 		else
1446 			maxmtu = min(maxmtu, romtu);
1447 		if (!maxmtu) {
1448 			tp->t_maxopd = tp->t_maxseg =
1449 #ifdef INET6
1450 				isipv6 ? tcp_v6mssdflt :
1451 #endif /* INET6 */
1452 				tcp_mssdflt;
1453 			return inp;
1454 		}
1455 		mss = maxmtu -
1456 #ifdef INET6
1457 			(isipv6 ?
1458 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1459 #endif /* INET6 */
1460 			 sizeof(struct tcpiphdr)
1461 #ifdef INET6
1462 			 )
1463 #endif /* INET6 */
1464 			;
1465 
1466 		/*
1467 		 * XXX - The above conditional probably violates the TCP
1468 		 * spec.  The problem is that, since we don't know the
1469 		 * other end's MSS, we are supposed to use a conservative
1470 		 * default.  But, if we do that, then MTU discovery will
1471 		 * never actually take place, because the conservative
1472 		 * default is much less than the MTUs typically seen
1473 		 * on the Internet today.  For the moment, we'll sweep
1474 		 * this under the carpet.
1475 		 *
1476 		 * The conservative default might not actually be a problem
1477 		 * if the only case this occurs is when sending an initial
1478 		 * SYN with options and data to a host we've never talked
1479 		 * to before.  Then, they will reply with an MSS value which
1480 		 * will get recorded and the new parameters should get
1481 		 * recomputed.  For Further Study.
1482 		 */
1483 		if (tp->t_maxopd <= mss)
1484 			return inp;
1485 		tp->t_maxopd = mss;
1486 
1487 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1488 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1489 			mss -= TCPOLEN_TSTAMP_APPA;
1490 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1491 		if (mss > MCLBYTES)
1492 			mss &= ~(MCLBYTES-1);
1493 #else
1494 		if (mss > MCLBYTES)
1495 			mss = mss / MCLBYTES * MCLBYTES;
1496 #endif
1497 		if (so->so_snd.sb_hiwat < mss)
1498 			mss = so->so_snd.sb_hiwat;
1499 
1500 		tp->t_maxseg = mss;
1501 
1502 		tcpstat.tcps_mturesent++;
1503 		tp->t_rtttime = 0;
1504 		tp->snd_nxt = tp->snd_una;
1505 		tcp_output(tp);
1506 	}
1507 	return inp;
1508 }
1509 
1510 /*
1511  * Look-up the routing entry to the peer of this inpcb.  If no route
1512  * is found and it cannot be allocated, then return NULL.  This routine
1513  * is called by TCP routines that access the rmx structure and by tcp_mss
1514  * to get the interface MTU.
1515  */
1516 u_long
1517 tcp_maxmtu(inc)
1518 	struct in_conninfo *inc;
1519 {
1520 	struct route sro;
1521 	struct sockaddr_in *dst;
1522 	struct ifnet *ifp;
1523 	u_long maxmtu = 0;
1524 
1525 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1526 
1527 	bzero(&sro, sizeof(sro));
1528 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1529 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1530 		dst->sin_family = AF_INET;
1531 		dst->sin_len = sizeof(*dst);
1532 		dst->sin_addr = inc->inc_faddr;
1533 		rtalloc_ign(&sro, RTF_CLONING);
1534 	}
1535 	if (sro.ro_rt != NULL) {
1536 		ifp = sro.ro_rt->rt_ifp;
1537 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1538 			maxmtu = ifp->if_mtu;
1539 		else
1540 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1541 		RTFREE(sro.ro_rt);
1542 	}
1543 	return (maxmtu);
1544 }
1545 
1546 #ifdef INET6
1547 u_long
1548 tcp_maxmtu6(inc)
1549 	struct in_conninfo *inc;
1550 {
1551 	struct route_in6 sro6;
1552 	struct ifnet *ifp;
1553 	u_long maxmtu = 0;
1554 
1555 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1556 
1557 	bzero(&sro6, sizeof(sro6));
1558 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1559 		sro6.ro_dst.sin6_family = AF_INET6;
1560 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1561 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1562 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1563 	}
1564 	if (sro6.ro_rt != NULL) {
1565 		ifp = sro6.ro_rt->rt_ifp;
1566 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1567 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1568 		else
1569 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1570 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1571 		RTFREE(sro6.ro_rt);
1572 	}
1573 
1574 	return (maxmtu);
1575 }
1576 #endif /* INET6 */
1577 
1578 #ifdef IPSEC
1579 /* compute ESP/AH header size for TCP, including outer IP header. */
1580 size_t
1581 ipsec_hdrsiz_tcp(tp)
1582 	struct tcpcb *tp;
1583 {
1584 	struct inpcb *inp;
1585 	struct mbuf *m;
1586 	size_t hdrsiz;
1587 	struct ip *ip;
1588 #ifdef INET6
1589 	struct ip6_hdr *ip6;
1590 #endif
1591 	struct tcphdr *th;
1592 
1593 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1594 		return 0;
1595 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1596 	if (!m)
1597 		return 0;
1598 
1599 #ifdef INET6
1600 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1601 		ip6 = mtod(m, struct ip6_hdr *);
1602 		th = (struct tcphdr *)(ip6 + 1);
1603 		m->m_pkthdr.len = m->m_len =
1604 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1605 		tcpip_fillheaders(inp, ip6, th);
1606 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1607 	} else
1608 #endif /* INET6 */
1609 	{
1610 		ip = mtod(m, struct ip *);
1611 		th = (struct tcphdr *)(ip + 1);
1612 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1613 		tcpip_fillheaders(inp, ip, th);
1614 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1615 	}
1616 
1617 	m_free(m);
1618 	return hdrsiz;
1619 }
1620 #endif /*IPSEC*/
1621 
1622 /*
1623  * Move a TCP connection into TIME_WAIT state.
1624  *    tcbinfo is locked.
1625  *    inp is locked, and is unlocked before returning.
1626  */
1627 void
1628 tcp_twstart(tp)
1629 	struct tcpcb *tp;
1630 {
1631 	struct tcptw *tw;
1632 	struct inpcb *inp;
1633 	int tw_time, acknow;
1634 	struct socket *so;
1635 
1636 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1637 	INP_LOCK_ASSERT(tp->t_inpcb);
1638 
1639 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1640 	if (tw == NULL) {
1641 		tw = tcp_timer_2msl_tw(1);
1642 		if (tw == NULL) {
1643 			tcp_close(tp);
1644 			return;
1645 		}
1646 	}
1647 	inp = tp->t_inpcb;
1648 	tw->tw_inpcb = inp;
1649 
1650 	/*
1651 	 * Recover last window size sent.
1652 	 */
1653 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1654 
1655 	/*
1656 	 * Set t_recent if timestamps are used on the connection.
1657 	 */
1658 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1659 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1660 		tw->t_recent = tp->ts_recent;
1661 	else
1662 		tw->t_recent = 0;
1663 
1664 	tw->snd_nxt = tp->snd_nxt;
1665 	tw->rcv_nxt = tp->rcv_nxt;
1666 	tw->iss     = tp->iss;
1667 	tw->irs     = tp->irs;
1668 	tw->t_starttime = tp->t_starttime;
1669 	tw->tw_time = 0;
1670 
1671 /* XXX
1672  * If this code will
1673  * be used for fin-wait-2 state also, then we may need
1674  * a ts_recent from the last segment.
1675  */
1676 	tw_time = 2 * tcp_msl;
1677 	acknow = tp->t_flags & TF_ACKNOW;
1678 	tcp_discardcb(tp);
1679 	so = inp->inp_socket;
1680 	ACCEPT_LOCK();
1681 	SOCK_LOCK(so);
1682 	so->so_pcb = NULL;
1683 	tw->tw_cred = crhold(so->so_cred);
1684 	tw->tw_so_options = so->so_options;
1685 	sotryfree(so);
1686 	inp->inp_socket = NULL;
1687 	if (acknow)
1688 		tcp_twrespond(tw, TH_ACK);
1689 	inp->inp_ppcb = (caddr_t)tw;
1690 	inp->inp_vflag |= INP_TIMEWAIT;
1691 	tcp_timer_2msl_reset(tw, tw_time);
1692 	INP_UNLOCK(inp);
1693 }
1694 
1695 /*
1696  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1697  * the actual rate is slightly higher due to the addition of
1698  * random positive increments.
1699  *
1700  * Most other new OSes use semi-randomized ISN values, so we
1701  * do not need to worry about them.
1702  */
1703 #define MS_ISN_BYTES_PER_SECOND		250000
1704 
1705 /*
1706  * Determine if the ISN we will generate has advanced beyond the last
1707  * sequence number used by the previous connection.  If so, indicate
1708  * that it is safe to recycle this tw socket by returning 1.
1709  *
1710  * XXXRW: This function should assert the inpcb lock as it does multiple
1711  * non-atomic reads from the tcptw, but is currently * called without it from
1712  * in_pcb.c:in_pcblookup_local().
1713  */
1714 int
1715 tcp_twrecycleable(struct tcptw *tw)
1716 {
1717 	tcp_seq new_iss = tw->iss;
1718 	tcp_seq new_irs = tw->irs;
1719 
1720 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1721 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1722 
1723 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1724 		return 1;
1725 	else
1726 		return 0;
1727 }
1728 
1729 struct tcptw *
1730 tcp_twclose(struct tcptw *tw, int reuse)
1731 {
1732 	struct inpcb *inp;
1733 
1734 	inp = tw->tw_inpcb;
1735 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1736 	INP_LOCK_ASSERT(inp);
1737 
1738 	tw->tw_inpcb = NULL;
1739 	tcp_timer_2msl_stop(tw);
1740 	inp->inp_ppcb = NULL;
1741 #ifdef INET6
1742 	if (inp->inp_vflag & INP_IPV6PROTO)
1743 		in6_pcbdetach(inp);
1744 	else
1745 #endif
1746 		in_pcbdetach(inp);
1747 	tcpstat.tcps_closed++;
1748 	crfree(tw->tw_cred);
1749 	tw->tw_cred = NULL;
1750 	if (reuse)
1751 		return (tw);
1752 	uma_zfree(tcptw_zone, tw);
1753 	return (NULL);
1754 }
1755 
1756 int
1757 tcp_twrespond(struct tcptw *tw, int flags)
1758 {
1759 	struct inpcb *inp = tw->tw_inpcb;
1760 	struct tcphdr *th;
1761 	struct mbuf *m;
1762 	struct ip *ip = NULL;
1763 	u_int8_t *optp;
1764 	u_int hdrlen, optlen;
1765 	int error;
1766 #ifdef INET6
1767 	struct ip6_hdr *ip6 = NULL;
1768 	int isipv6 = inp->inp_inc.inc_isipv6;
1769 #endif
1770 
1771 	INP_LOCK_ASSERT(inp);
1772 
1773 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1774 	if (m == NULL)
1775 		return (ENOBUFS);
1776 	m->m_data += max_linkhdr;
1777 
1778 #ifdef MAC
1779 	mac_create_mbuf_from_inpcb(inp, m);
1780 #endif
1781 
1782 #ifdef INET6
1783 	if (isipv6) {
1784 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1785 		ip6 = mtod(m, struct ip6_hdr *);
1786 		th = (struct tcphdr *)(ip6 + 1);
1787 		tcpip_fillheaders(inp, ip6, th);
1788 	} else
1789 #endif
1790 	{
1791 		hdrlen = sizeof(struct tcpiphdr);
1792 		ip = mtod(m, struct ip *);
1793 		th = (struct tcphdr *)(ip + 1);
1794 		tcpip_fillheaders(inp, ip, th);
1795 	}
1796 	optp = (u_int8_t *)(th + 1);
1797 
1798 	/*
1799 	 * Send a timestamp and echo-reply if both our side and our peer
1800 	 * have sent timestamps in our SYN's and this is not a RST.
1801 	 */
1802 	if (tw->t_recent && flags == TH_ACK) {
1803 		u_int32_t *lp = (u_int32_t *)optp;
1804 
1805 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1806 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1807 		*lp++ = htonl(ticks);
1808 		*lp   = htonl(tw->t_recent);
1809 		optp += TCPOLEN_TSTAMP_APPA;
1810 	}
1811 
1812 	optlen = optp - (u_int8_t *)(th + 1);
1813 
1814 	m->m_len = hdrlen + optlen;
1815 	m->m_pkthdr.len = m->m_len;
1816 
1817 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1818 
1819 	th->th_seq = htonl(tw->snd_nxt);
1820 	th->th_ack = htonl(tw->rcv_nxt);
1821 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1822 	th->th_flags = flags;
1823 	th->th_win = htons(tw->last_win);
1824 
1825 #ifdef INET6
1826 	if (isipv6) {
1827 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1828 		    sizeof(struct tcphdr) + optlen);
1829 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1830 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1831 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1832 	} else
1833 #endif
1834 	{
1835 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1836 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1837 		m->m_pkthdr.csum_flags = CSUM_TCP;
1838 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1839 		ip->ip_len = m->m_pkthdr.len;
1840 		if (path_mtu_discovery)
1841 			ip->ip_off |= IP_DF;
1842 		error = ip_output(m, inp->inp_options, NULL,
1843 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1844 		    NULL, inp);
1845 	}
1846 	if (flags & TH_ACK)
1847 		tcpstat.tcps_sndacks++;
1848 	else
1849 		tcpstat.tcps_sndctrl++;
1850 	tcpstat.tcps_sndtotal++;
1851 	return (error);
1852 }
1853 
1854 /*
1855  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1856  *
1857  * This code attempts to calculate the bandwidth-delay product as a
1858  * means of determining the optimal window size to maximize bandwidth,
1859  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1860  * routers.  This code also does a fairly good job keeping RTTs in check
1861  * across slow links like modems.  We implement an algorithm which is very
1862  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1863  * transmitter side of a TCP connection and so only effects the transmit
1864  * side of the connection.
1865  *
1866  * BACKGROUND:  TCP makes no provision for the management of buffer space
1867  * at the end points or at the intermediate routers and switches.  A TCP
1868  * stream, whether using NewReno or not, will eventually buffer as
1869  * many packets as it is able and the only reason this typically works is
1870  * due to the fairly small default buffers made available for a connection
1871  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1872  * scaling it is now fairly easy for even a single TCP connection to blow-out
1873  * all available buffer space not only on the local interface, but on
1874  * intermediate routers and switches as well.  NewReno makes a misguided
1875  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1876  * then backing off, then steadily increasing the window again until another
1877  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1878  * is only made worse as network loads increase and the idea of intentionally
1879  * blowing out network buffers is, frankly, a terrible way to manage network
1880  * resources.
1881  *
1882  * It is far better to limit the transmit window prior to the failure
1883  * condition being achieved.  There are two general ways to do this:  First
1884  * you can 'scan' through different transmit window sizes and locate the
1885  * point where the RTT stops increasing, indicating that you have filled the
1886  * pipe, then scan backwards until you note that RTT stops decreasing, then
1887  * repeat ad-infinitum.  This method works in principle but has severe
1888  * implementation issues due to RTT variances, timer granularity, and
1889  * instability in the algorithm which can lead to many false positives and
1890  * create oscillations as well as interact badly with other TCP streams
1891  * implementing the same algorithm.
1892  *
1893  * The second method is to limit the window to the bandwidth delay product
1894  * of the link.  This is the method we implement.  RTT variances and our
1895  * own manipulation of the congestion window, bwnd, can potentially
1896  * destabilize the algorithm.  For this reason we have to stabilize the
1897  * elements used to calculate the window.  We do this by using the minimum
1898  * observed RTT, the long term average of the observed bandwidth, and
1899  * by adding two segments worth of slop.  It isn't perfect but it is able
1900  * to react to changing conditions and gives us a very stable basis on
1901  * which to extend the algorithm.
1902  */
1903 void
1904 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1905 {
1906 	u_long bw;
1907 	u_long bwnd;
1908 	int save_ticks;
1909 
1910 	INP_LOCK_ASSERT(tp->t_inpcb);
1911 
1912 	/*
1913 	 * If inflight_enable is disabled in the middle of a tcp connection,
1914 	 * make sure snd_bwnd is effectively disabled.
1915 	 */
1916 	if (tcp_inflight_enable == 0) {
1917 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1918 		tp->snd_bandwidth = 0;
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Figure out the bandwidth.  Due to the tick granularity this
1924 	 * is a very rough number and it MUST be averaged over a fairly
1925 	 * long period of time.  XXX we need to take into account a link
1926 	 * that is not using all available bandwidth, but for now our
1927 	 * slop will ramp us up if this case occurs and the bandwidth later
1928 	 * increases.
1929 	 *
1930 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1931 	 * effectively reset t_bw_rtttime for this case.
1932 	 */
1933 	save_ticks = ticks;
1934 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1935 		return;
1936 
1937 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1938 	    (save_ticks - tp->t_bw_rtttime);
1939 	tp->t_bw_rtttime = save_ticks;
1940 	tp->t_bw_rtseq = ack_seq;
1941 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1942 		return;
1943 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1944 
1945 	tp->snd_bandwidth = bw;
1946 
1947 	/*
1948 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1949 	 * segments.  The additional slop puts us squarely in the sweet
1950 	 * spot and also handles the bandwidth run-up case and stabilization.
1951 	 * Without the slop we could be locking ourselves into a lower
1952 	 * bandwidth.
1953 	 *
1954 	 * Situations Handled:
1955 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1956 	 *	    high speed LANs, allowing larger TCP buffers to be
1957 	 *	    specified, and also does a good job preventing
1958 	 *	    over-queueing of packets over choke points like modems
1959 	 *	    (at least for the transmit side).
1960 	 *
1961 	 *	(2) Is able to handle changing network loads (bandwidth
1962 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1963 	 *	    increases).
1964 	 *
1965 	 *	(3) Theoretically should stabilize in the face of multiple
1966 	 *	    connections implementing the same algorithm (this may need
1967 	 *	    a little work).
1968 	 *
1969 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1970 	 *	    be adjusted with a sysctl but typically only needs to be
1971 	 *	    on very slow connections.  A value no smaller then 5
1972 	 *	    should be used, but only reduce this default if you have
1973 	 *	    no other choice.
1974 	 */
1975 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1976 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1977 #undef USERTT
1978 
1979 	if (tcp_inflight_debug > 0) {
1980 		static int ltime;
1981 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1982 			ltime = ticks;
1983 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1984 			    tp,
1985 			    bw,
1986 			    tp->t_rttbest,
1987 			    tp->t_srtt,
1988 			    bwnd
1989 			);
1990 		}
1991 	}
1992 	if ((long)bwnd < tcp_inflight_min)
1993 		bwnd = tcp_inflight_min;
1994 	if (bwnd > tcp_inflight_max)
1995 		bwnd = tcp_inflight_max;
1996 	if ((long)bwnd < tp->t_maxseg * 2)
1997 		bwnd = tp->t_maxseg * 2;
1998 	tp->snd_bwnd = bwnd;
1999 }
2000 
2001 #ifdef TCP_SIGNATURE
2002 /*
2003  * Callback function invoked by m_apply() to digest TCP segment data
2004  * contained within an mbuf chain.
2005  */
2006 static int
2007 tcp_signature_apply(void *fstate, void *data, u_int len)
2008 {
2009 
2010 	MD5Update(fstate, (u_char *)data, len);
2011 	return (0);
2012 }
2013 
2014 /*
2015  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2016  *
2017  * Parameters:
2018  * m		pointer to head of mbuf chain
2019  * off0		offset to TCP header within the mbuf chain
2020  * len		length of TCP segment data, excluding options
2021  * optlen	length of TCP segment options
2022  * buf		pointer to storage for computed MD5 digest
2023  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2024  *
2025  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2026  * When called from tcp_input(), we can be sure that th_sum has been
2027  * zeroed out and verified already.
2028  *
2029  * This function is for IPv4 use only. Calling this function with an
2030  * IPv6 packet in the mbuf chain will yield undefined results.
2031  *
2032  * Return 0 if successful, otherwise return -1.
2033  *
2034  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2035  * search with the destination IP address, and a 'magic SPI' to be
2036  * determined by the application. This is hardcoded elsewhere to 1179
2037  * right now. Another branch of this code exists which uses the SPD to
2038  * specify per-application flows but it is unstable.
2039  */
2040 int
2041 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2042     u_char *buf, u_int direction)
2043 {
2044 	union sockaddr_union dst;
2045 	struct ippseudo ippseudo;
2046 	MD5_CTX ctx;
2047 	int doff;
2048 	struct ip *ip;
2049 	struct ipovly *ipovly;
2050 	struct secasvar *sav;
2051 	struct tcphdr *th;
2052 	u_short savecsum;
2053 
2054 	KASSERT(m != NULL, ("NULL mbuf chain"));
2055 	KASSERT(buf != NULL, ("NULL signature pointer"));
2056 
2057 	/* Extract the destination from the IP header in the mbuf. */
2058 	ip = mtod(m, struct ip *);
2059 	bzero(&dst, sizeof(union sockaddr_union));
2060 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2061 	dst.sa.sa_family = AF_INET;
2062 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2063 	    ip->ip_src : ip->ip_dst;
2064 
2065 	/* Look up an SADB entry which matches the address of the peer. */
2066 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2067 	if (sav == NULL) {
2068 		printf("%s: SADB lookup failed for %s\n", __func__,
2069 		    inet_ntoa(dst.sin.sin_addr));
2070 		return (EINVAL);
2071 	}
2072 
2073 	MD5Init(&ctx);
2074 	ipovly = (struct ipovly *)ip;
2075 	th = (struct tcphdr *)((u_char *)ip + off0);
2076 	doff = off0 + sizeof(struct tcphdr) + optlen;
2077 
2078 	/*
2079 	 * Step 1: Update MD5 hash with IP pseudo-header.
2080 	 *
2081 	 * XXX The ippseudo header MUST be digested in network byte order,
2082 	 * or else we'll fail the regression test. Assume all fields we've
2083 	 * been doing arithmetic on have been in host byte order.
2084 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2085 	 * tcp_output(), the underlying ip_len member has not yet been set.
2086 	 */
2087 	ippseudo.ippseudo_src = ipovly->ih_src;
2088 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2089 	ippseudo.ippseudo_pad = 0;
2090 	ippseudo.ippseudo_p = IPPROTO_TCP;
2091 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2092 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2093 
2094 	/*
2095 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2096 	 * The TCP checksum must be set to zero.
2097 	 */
2098 	savecsum = th->th_sum;
2099 	th->th_sum = 0;
2100 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2101 	th->th_sum = savecsum;
2102 
2103 	/*
2104 	 * Step 3: Update MD5 hash with TCP segment data.
2105 	 *         Use m_apply() to avoid an early m_pullup().
2106 	 */
2107 	if (len > 0)
2108 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2109 
2110 	/*
2111 	 * Step 4: Update MD5 hash with shared secret.
2112 	 */
2113 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2114 	MD5Final(buf, &ctx);
2115 
2116 	key_sa_recordxfer(sav, m);
2117 	KEY_FREESAV(&sav);
2118 	return (0);
2119 }
2120 #endif /* TCP_SIGNATURE */
2121