xref: /freebsd/sys/netinet/tcp_syncache.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	syncache_pause(struct in_conninfo *);
148 static void	syncache_unpause(void *);
149 static void	 syncookie_reseed(void *);
150 #ifdef INVARIANTS
151 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
152 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
153 		    struct socket *lso);
154 #endif
155 
156 /*
157  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
158  * 3 retransmits corresponds to a timeout with default values of
159  * tcp_rexmit_initial * (             1 +
160  *                       tcp_backoff[1] +
161  *                       tcp_backoff[2] +
162  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
163  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
164  * the odds are that the user has given up attempting to connect by then.
165  */
166 #define SYNCACHE_MAXREXMTS		3
167 
168 /* Arbitrary values */
169 #define TCP_SYNCACHE_HASHSIZE		512
170 #define TCP_SYNCACHE_BUCKETLIMIT	30
171 
172 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
173 #define	V_tcp_syncache			VNET(tcp_syncache)
174 
175 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
176     "TCP SYN cache");
177 
178 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
179     &VNET_NAME(tcp_syncache.bucket_limit), 0,
180     "Per-bucket hash limit for syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.cache_limit), 0,
184     "Overall entry limit for syncache");
185 
186 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
187     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
188 
189 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
190     &VNET_NAME(tcp_syncache.hashsize), 0,
191     "Size of TCP syncache hashtable");
192 
193 static int
194 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
195 {
196 	int error;
197 	u_int new;
198 
199 	new = V_tcp_syncache.rexmt_limit;
200 	error = sysctl_handle_int(oidp, &new, 0, req);
201 	if ((error == 0) && (req->newptr != NULL)) {
202 		if (new > TCP_MAXRXTSHIFT)
203 			error = EINVAL;
204 		else
205 			V_tcp_syncache.rexmt_limit = new;
206 	}
207 	return (error);
208 }
209 
210 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
211     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
212     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
213     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
214     "Limit on SYN/ACK retransmissions");
215 
216 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
218     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
219     "Send reset on socket allocation failure");
220 
221 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
222 
223 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
224 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
225 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
226 
227 /*
228  * Requires the syncache entry to be already removed from the bucket list.
229  */
230 static void
231 syncache_free(struct syncache *sc)
232 {
233 
234 	if (sc->sc_ipopts)
235 		(void) m_free(sc->sc_ipopts);
236 	if (sc->sc_cred)
237 		crfree(sc->sc_cred);
238 #ifdef MAC
239 	mac_syncache_destroy(&sc->sc_label);
240 #endif
241 
242 	uma_zfree(V_tcp_syncache.zone, sc);
243 }
244 
245 void
246 syncache_init(void)
247 {
248 	int i;
249 
250 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
251 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
252 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
253 	V_tcp_syncache.hash_secret = arc4random();
254 
255 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
256 	    &V_tcp_syncache.hashsize);
257 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
258 	    &V_tcp_syncache.bucket_limit);
259 	if (!powerof2(V_tcp_syncache.hashsize) ||
260 	    V_tcp_syncache.hashsize == 0) {
261 		printf("WARNING: syncache hash size is not a power of 2.\n");
262 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
263 	}
264 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
265 
266 	/* Set limits. */
267 	V_tcp_syncache.cache_limit =
268 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
269 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
270 	    &V_tcp_syncache.cache_limit);
271 
272 	/* Allocate the hash table. */
273 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
274 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
275 
276 #ifdef VIMAGE
277 	V_tcp_syncache.vnet = curvnet;
278 #endif
279 
280 	/* Initialize the hash buckets. */
281 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
282 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
283 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
284 			 NULL, MTX_DEF);
285 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
286 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
287 		V_tcp_syncache.hashbase[i].sch_length = 0;
288 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
289 		V_tcp_syncache.hashbase[i].sch_last_overflow =
290 		    -(SYNCOOKIE_LIFETIME + 1);
291 	}
292 
293 	/* Create the syncache entry zone. */
294 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
295 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
296 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
297 	    V_tcp_syncache.cache_limit);
298 
299 	/* Start the SYN cookie reseeder callout. */
300 	callout_init(&V_tcp_syncache.secret.reseed, 1);
301 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
302 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
303 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
304 	    syncookie_reseed, &V_tcp_syncache);
305 
306 	/* Initialize the pause machinery. */
307 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
308 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
309 	    0);
310 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
311 	V_tcp_syncache.pause_backoff = 0;
312 	V_tcp_syncache.paused = false;
313 }
314 
315 #ifdef VIMAGE
316 void
317 syncache_destroy(void)
318 {
319 	struct syncache_head *sch;
320 	struct syncache *sc, *nsc;
321 	int i;
322 
323 	/*
324 	 * Stop the re-seed timer before freeing resources.  No need to
325 	 * possibly schedule it another time.
326 	 */
327 	callout_drain(&V_tcp_syncache.secret.reseed);
328 
329 	/* Stop the SYN cache pause callout. */
330 	mtx_lock(&V_tcp_syncache.pause_mtx);
331 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
332 		mtx_unlock(&V_tcp_syncache.pause_mtx);
333 		callout_drain(&V_tcp_syncache.pause_co);
334 	} else
335 		mtx_unlock(&V_tcp_syncache.pause_mtx);
336 
337 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
338 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
339 
340 		sch = &V_tcp_syncache.hashbase[i];
341 		callout_drain(&sch->sch_timer);
342 
343 		SCH_LOCK(sch);
344 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
345 			syncache_drop(sc, sch);
346 		SCH_UNLOCK(sch);
347 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
348 		    ("%s: sch->sch_bucket not empty", __func__));
349 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
350 		    __func__, sch->sch_length));
351 		mtx_destroy(&sch->sch_mtx);
352 	}
353 
354 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
355 	    ("%s: cache_count not 0", __func__));
356 
357 	/* Free the allocated global resources. */
358 	uma_zdestroy(V_tcp_syncache.zone);
359 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
360 	mtx_destroy(&V_tcp_syncache.pause_mtx);
361 }
362 #endif
363 
364 /*
365  * Inserts a syncache entry into the specified bucket row.
366  * Locks and unlocks the syncache_head autonomously.
367  */
368 static void
369 syncache_insert(struct syncache *sc, struct syncache_head *sch)
370 {
371 	struct syncache *sc2;
372 
373 	SCH_LOCK(sch);
374 
375 	/*
376 	 * Make sure that we don't overflow the per-bucket limit.
377 	 * If the bucket is full, toss the oldest element.
378 	 */
379 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
380 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
381 			("sch->sch_length incorrect"));
382 		syncache_pause(&sc->sc_inc);
383 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
384 		sch->sch_last_overflow = time_uptime;
385 		syncache_drop(sc2, sch);
386 	}
387 
388 	/* Put it into the bucket. */
389 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
390 	sch->sch_length++;
391 
392 #ifdef TCP_OFFLOAD
393 	if (ADDED_BY_TOE(sc)) {
394 		struct toedev *tod = sc->sc_tod;
395 
396 		tod->tod_syncache_added(tod, sc->sc_todctx);
397 	}
398 #endif
399 
400 	/* Reinitialize the bucket row's timer. */
401 	if (sch->sch_length == 1)
402 		sch->sch_nextc = ticks + INT_MAX;
403 	syncache_timeout(sc, sch, 1);
404 
405 	SCH_UNLOCK(sch);
406 
407 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
408 	TCPSTAT_INC(tcps_sc_added);
409 }
410 
411 /*
412  * Remove and free entry from syncache bucket row.
413  * Expects locked syncache head.
414  */
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
417 {
418 
419 	SCH_LOCK_ASSERT(sch);
420 
421 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
422 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
423 	sch->sch_length--;
424 
425 #ifdef TCP_OFFLOAD
426 	if (ADDED_BY_TOE(sc)) {
427 		struct toedev *tod = sc->sc_tod;
428 
429 		tod->tod_syncache_removed(tod, sc->sc_todctx);
430 	}
431 #endif
432 
433 	syncache_free(sc);
434 }
435 
436 /*
437  * Engage/reengage time on bucket row.
438  */
439 static void
440 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
441 {
442 	int rexmt;
443 
444 	if (sc->sc_rxmits == 0)
445 		rexmt = tcp_rexmit_initial;
446 	else
447 		TCPT_RANGESET(rexmt,
448 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
449 		    tcp_rexmit_min, TCPTV_REXMTMAX);
450 	sc->sc_rxttime = ticks + rexmt;
451 	sc->sc_rxmits++;
452 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
453 		sch->sch_nextc = sc->sc_rxttime;
454 		if (docallout)
455 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
456 			    syncache_timer, (void *)sch);
457 	}
458 }
459 
460 /*
461  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
462  * If we have retransmitted an entry the maximum number of times, expire it.
463  * One separate timer for each bucket row.
464  */
465 static void
466 syncache_timer(void *xsch)
467 {
468 	struct syncache_head *sch = (struct syncache_head *)xsch;
469 	struct syncache *sc, *nsc;
470 	int tick = ticks;
471 	char *s;
472 	bool paused;
473 
474 	CURVNET_SET(sch->sch_sc->vnet);
475 
476 	/* NB: syncache_head has already been locked by the callout. */
477 	SCH_LOCK_ASSERT(sch);
478 
479 	/*
480 	 * In the following cycle we may remove some entries and/or
481 	 * advance some timeouts, so re-initialize the bucket timer.
482 	 */
483 	sch->sch_nextc = tick + INT_MAX;
484 
485 	/*
486 	 * If we have paused processing, unconditionally remove
487 	 * all syncache entries.
488 	 */
489 	mtx_lock(&V_tcp_syncache.pause_mtx);
490 	paused = V_tcp_syncache.paused;
491 	mtx_unlock(&V_tcp_syncache.pause_mtx);
492 
493 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
494 		if (paused) {
495 			syncache_drop(sc, sch);
496 			continue;
497 		}
498 		/*
499 		 * We do not check if the listen socket still exists
500 		 * and accept the case where the listen socket may be
501 		 * gone by the time we resend the SYN/ACK.  We do
502 		 * not expect this to happens often. If it does,
503 		 * then the RST will be sent by the time the remote
504 		 * host does the SYN/ACK->ACK.
505 		 */
506 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
507 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
508 				sch->sch_nextc = sc->sc_rxttime;
509 			continue;
510 		}
511 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
512 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
513 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
514 				    "giving up and removing syncache entry\n",
515 				    s, __func__);
516 				free(s, M_TCPLOG);
517 			}
518 			syncache_drop(sc, sch);
519 			TCPSTAT_INC(tcps_sc_stale);
520 			continue;
521 		}
522 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
523 			log(LOG_DEBUG, "%s; %s: Response timeout, "
524 			    "retransmitting (%u) SYN|ACK\n",
525 			    s, __func__, sc->sc_rxmits);
526 			free(s, M_TCPLOG);
527 		}
528 
529 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
530 		TCPSTAT_INC(tcps_sc_retransmitted);
531 		syncache_timeout(sc, sch, 0);
532 	}
533 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
534 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
535 			syncache_timer, (void *)(sch));
536 	CURVNET_RESTORE();
537 }
538 
539 /*
540  * Returns true if the system is only using cookies at the moment.
541  * This could be due to a sysadmin decision to only use cookies, or it
542  * could be due to the system detecting an attack.
543  */
544 static inline bool
545 syncache_cookiesonly(void)
546 {
547 
548 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
549 	    V_tcp_syncookiesonly));
550 }
551 
552 /*
553  * Find the hash bucket for the given connection.
554  */
555 static struct syncache_head *
556 syncache_hashbucket(struct in_conninfo *inc)
557 {
558 	uint32_t hash;
559 
560 	/*
561 	 * The hash is built on foreign port + local port + foreign address.
562 	 * We rely on the fact that struct in_conninfo starts with 16 bits
563 	 * of foreign port, then 16 bits of local port then followed by 128
564 	 * bits of foreign address.  In case of IPv4 address, the first 3
565 	 * 32-bit words of the address always are zeroes.
566 	 */
567 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
568 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
569 
570 	return (&V_tcp_syncache.hashbase[hash]);
571 }
572 
573 /*
574  * Find an entry in the syncache.
575  * Returns always with locked syncache_head plus a matching entry or NULL.
576  */
577 static struct syncache *
578 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
579 {
580 	struct syncache *sc;
581 	struct syncache_head *sch;
582 
583 	*schp = sch = syncache_hashbucket(inc);
584 	SCH_LOCK(sch);
585 
586 	/* Circle through bucket row to find matching entry. */
587 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
588 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
589 		    sizeof(struct in_endpoints)) == 0)
590 			break;
591 
592 	return (sc);	/* Always returns with locked sch. */
593 }
594 
595 /*
596  * This function is called when we get a RST for a
597  * non-existent connection, so that we can see if the
598  * connection is in the syn cache.  If it is, zap it.
599  * If required send a challenge ACK.
600  */
601 void
602 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
603 {
604 	struct syncache *sc;
605 	struct syncache_head *sch;
606 	char *s = NULL;
607 
608 	if (syncache_cookiesonly())
609 		return;
610 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
611 	SCH_LOCK_ASSERT(sch);
612 
613 	/*
614 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
615 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
616 	 */
617 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
618 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
619 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
620 			    "FIN flag set, segment ignored\n", s, __func__);
621 		TCPSTAT_INC(tcps_badrst);
622 		goto done;
623 	}
624 
625 	/*
626 	 * No corresponding connection was found in syncache.
627 	 * If syncookies are enabled and possibly exclusively
628 	 * used, or we are under memory pressure, a valid RST
629 	 * may not find a syncache entry.  In that case we're
630 	 * done and no SYN|ACK retransmissions will happen.
631 	 * Otherwise the RST was misdirected or spoofed.
632 	 */
633 	if (sc == NULL) {
634 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
635 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
636 			    "syncache entry (possibly syncookie only), "
637 			    "segment ignored\n", s, __func__);
638 		TCPSTAT_INC(tcps_badrst);
639 		goto done;
640 	}
641 
642 	/*
643 	 * If the RST bit is set, check the sequence number to see
644 	 * if this is a valid reset segment.
645 	 *
646 	 * RFC 793 page 37:
647 	 *   In all states except SYN-SENT, all reset (RST) segments
648 	 *   are validated by checking their SEQ-fields.  A reset is
649 	 *   valid if its sequence number is in the window.
650 	 *
651 	 * RFC 793 page 69:
652 	 *   There are four cases for the acceptability test for an incoming
653 	 *   segment:
654 	 *
655 	 * Segment Receive  Test
656 	 * Length  Window
657 	 * ------- -------  -------------------------------------------
658 	 *    0       0     SEG.SEQ = RCV.NXT
659 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
660 	 *   >0       0     not acceptable
661 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
662 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
663 	 *
664 	 * Note that when receiving a SYN segment in the LISTEN state,
665 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
666 	 * described in RFC 793, page 66.
667 	 */
668 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
669 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
670 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
671 		if (V_tcp_insecure_rst ||
672 		    th->th_seq == sc->sc_irs + 1) {
673 			syncache_drop(sc, sch);
674 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
675 				log(LOG_DEBUG,
676 				    "%s; %s: Our SYN|ACK was rejected, "
677 				    "connection attempt aborted by remote "
678 				    "endpoint\n",
679 				    s, __func__);
680 			TCPSTAT_INC(tcps_sc_reset);
681 		} else {
682 			TCPSTAT_INC(tcps_badrst);
683 			/* Send challenge ACK. */
684 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
685 				log(LOG_DEBUG, "%s; %s: RST with invalid "
686 				    " SEQ %u != NXT %u (+WND %u), "
687 				    "sending challenge ACK\n",
688 				    s, __func__,
689 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
690 			syncache_respond(sc, m, TH_ACK);
691 		}
692 	} else {
693 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
694 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
695 			    "NXT %u (+WND %u), segment ignored\n",
696 			    s, __func__,
697 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
698 		TCPSTAT_INC(tcps_badrst);
699 	}
700 
701 done:
702 	if (s != NULL)
703 		free(s, M_TCPLOG);
704 	SCH_UNLOCK(sch);
705 }
706 
707 void
708 syncache_badack(struct in_conninfo *inc)
709 {
710 	struct syncache *sc;
711 	struct syncache_head *sch;
712 
713 	if (syncache_cookiesonly())
714 		return;
715 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
716 	SCH_LOCK_ASSERT(sch);
717 	if (sc != NULL) {
718 		syncache_drop(sc, sch);
719 		TCPSTAT_INC(tcps_sc_badack);
720 	}
721 	SCH_UNLOCK(sch);
722 }
723 
724 void
725 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
726 {
727 	struct syncache *sc;
728 	struct syncache_head *sch;
729 
730 	if (syncache_cookiesonly())
731 		return;
732 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
733 	SCH_LOCK_ASSERT(sch);
734 	if (sc == NULL)
735 		goto done;
736 
737 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
738 	if (ntohl(th_seq) != sc->sc_iss)
739 		goto done;
740 
741 	/*
742 	 * If we've rertransmitted 3 times and this is our second error,
743 	 * we remove the entry.  Otherwise, we allow it to continue on.
744 	 * This prevents us from incorrectly nuking an entry during a
745 	 * spurious network outage.
746 	 *
747 	 * See tcp_notify().
748 	 */
749 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
750 		sc->sc_flags |= SCF_UNREACH;
751 		goto done;
752 	}
753 	syncache_drop(sc, sch);
754 	TCPSTAT_INC(tcps_sc_unreach);
755 done:
756 	SCH_UNLOCK(sch);
757 }
758 
759 /*
760  * Build a new TCP socket structure from a syncache entry.
761  *
762  * On success return the newly created socket with its underlying inp locked.
763  */
764 static struct socket *
765 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
766 {
767 	struct tcp_function_block *blk;
768 	struct inpcb *inp = NULL;
769 	struct socket *so;
770 	struct tcpcb *tp;
771 	int error;
772 	char *s;
773 
774 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
775 
776 	/*
777 	 * Ok, create the full blown connection, and set things up
778 	 * as they would have been set up if we had created the
779 	 * connection when the SYN arrived.  If we can't create
780 	 * the connection, abort it.
781 	 */
782 	so = sonewconn(lso, 0);
783 	if (so == NULL) {
784 		/*
785 		 * Drop the connection; we will either send a RST or
786 		 * have the peer retransmit its SYN again after its
787 		 * RTO and try again.
788 		 */
789 		TCPSTAT_INC(tcps_listendrop);
790 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
791 			log(LOG_DEBUG, "%s; %s: Socket create failed "
792 			    "due to limits or memory shortage\n",
793 			    s, __func__);
794 			free(s, M_TCPLOG);
795 		}
796 		goto abort2;
797 	}
798 #ifdef MAC
799 	mac_socketpeer_set_from_mbuf(m, so);
800 #endif
801 
802 	inp = sotoinpcb(so);
803 	inp->inp_inc.inc_fibnum = so->so_fibnum;
804 	INP_WLOCK(inp);
805 	/*
806 	 * Exclusive pcbinfo lock is not required in syncache socket case even
807 	 * if two inpcb locks can be acquired simultaneously:
808 	 *  - the inpcb in LISTEN state,
809 	 *  - the newly created inp.
810 	 *
811 	 * In this case, an inp cannot be at same time in LISTEN state and
812 	 * just created by an accept() call.
813 	 */
814 	INP_HASH_WLOCK(&V_tcbinfo);
815 
816 	/* Insert new socket into PCB hash list. */
817 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
818 #ifdef INET6
819 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
820 		inp->inp_vflag &= ~INP_IPV4;
821 		inp->inp_vflag |= INP_IPV6;
822 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
823 	} else {
824 		inp->inp_vflag &= ~INP_IPV6;
825 		inp->inp_vflag |= INP_IPV4;
826 #endif
827 		inp->inp_laddr = sc->sc_inc.inc_laddr;
828 #ifdef INET6
829 	}
830 #endif
831 
832 	/*
833 	 * If there's an mbuf and it has a flowid, then let's initialise the
834 	 * inp with that particular flowid.
835 	 */
836 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
837 		inp->inp_flowid = m->m_pkthdr.flowid;
838 		inp->inp_flowtype = M_HASHTYPE_GET(m);
839 #ifdef NUMA
840 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
841 #endif
842 	}
843 
844 	/*
845 	 * Install in the reservation hash table for now, but don't yet
846 	 * install a connection group since the full 4-tuple isn't yet
847 	 * configured.
848 	 */
849 	inp->inp_lport = sc->sc_inc.inc_lport;
850 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
851 		/*
852 		 * Undo the assignments above if we failed to
853 		 * put the PCB on the hash lists.
854 		 */
855 #ifdef INET6
856 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
857 			inp->in6p_laddr = in6addr_any;
858 		else
859 #endif
860 			inp->inp_laddr.s_addr = INADDR_ANY;
861 		inp->inp_lport = 0;
862 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
863 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
864 			    "with error %i\n",
865 			    s, __func__, error);
866 			free(s, M_TCPLOG);
867 		}
868 		INP_HASH_WUNLOCK(&V_tcbinfo);
869 		goto abort;
870 	}
871 #ifdef INET6
872 	if (inp->inp_vflag & INP_IPV6PROTO) {
873 		struct inpcb *oinp = sotoinpcb(lso);
874 
875 		/*
876 		 * Inherit socket options from the listening socket.
877 		 * Note that in6p_inputopts are not (and should not be)
878 		 * copied, since it stores previously received options and is
879 		 * used to detect if each new option is different than the
880 		 * previous one and hence should be passed to a user.
881 		 * If we copied in6p_inputopts, a user would not be able to
882 		 * receive options just after calling the accept system call.
883 		 */
884 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
885 		if (oinp->in6p_outputopts)
886 			inp->in6p_outputopts =
887 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
888 	}
889 
890 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
891 		struct in6_addr laddr6;
892 		struct sockaddr_in6 sin6;
893 
894 		sin6.sin6_family = AF_INET6;
895 		sin6.sin6_len = sizeof(sin6);
896 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
897 		sin6.sin6_port = sc->sc_inc.inc_fport;
898 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
899 		laddr6 = inp->in6p_laddr;
900 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
901 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
902 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
903 		    thread0.td_ucred, m)) != 0) {
904 			inp->in6p_laddr = laddr6;
905 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
906 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
907 				    "with error %i\n",
908 				    s, __func__, error);
909 				free(s, M_TCPLOG);
910 			}
911 			INP_HASH_WUNLOCK(&V_tcbinfo);
912 			goto abort;
913 		}
914 		/* Override flowlabel from in6_pcbconnect. */
915 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
916 		inp->inp_flow |= sc->sc_flowlabel;
917 	}
918 #endif /* INET6 */
919 #if defined(INET) && defined(INET6)
920 	else
921 #endif
922 #ifdef INET
923 	{
924 		struct in_addr laddr;
925 		struct sockaddr_in sin;
926 
927 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
928 
929 		if (inp->inp_options == NULL) {
930 			inp->inp_options = sc->sc_ipopts;
931 			sc->sc_ipopts = NULL;
932 		}
933 
934 		sin.sin_family = AF_INET;
935 		sin.sin_len = sizeof(sin);
936 		sin.sin_addr = sc->sc_inc.inc_faddr;
937 		sin.sin_port = sc->sc_inc.inc_fport;
938 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
939 		laddr = inp->inp_laddr;
940 		if (inp->inp_laddr.s_addr == INADDR_ANY)
941 			inp->inp_laddr = sc->sc_inc.inc_laddr;
942 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
943 		    thread0.td_ucred, m)) != 0) {
944 			inp->inp_laddr = laddr;
945 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
946 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
947 				    "with error %i\n",
948 				    s, __func__, error);
949 				free(s, M_TCPLOG);
950 			}
951 			INP_HASH_WUNLOCK(&V_tcbinfo);
952 			goto abort;
953 		}
954 	}
955 #endif /* INET */
956 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
957 	/* Copy old policy into new socket's. */
958 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
959 		printf("syncache_socket: could not copy policy\n");
960 #endif
961 	INP_HASH_WUNLOCK(&V_tcbinfo);
962 	tp = intotcpcb(inp);
963 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
964 	tp->iss = sc->sc_iss;
965 	tp->irs = sc->sc_irs;
966 	tcp_rcvseqinit(tp);
967 	tcp_sendseqinit(tp);
968 	blk = sototcpcb(lso)->t_fb;
969 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
970 		/*
971 		 * Our parents t_fb was not the default,
972 		 * we need to release our ref on tp->t_fb and
973 		 * pickup one on the new entry.
974 		 */
975 		struct tcp_function_block *rblk;
976 
977 		rblk = find_and_ref_tcp_fb(blk);
978 		KASSERT(rblk != NULL,
979 		    ("cannot find blk %p out of syncache?", blk));
980 		if (tp->t_fb->tfb_tcp_fb_fini)
981 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
982 		refcount_release(&tp->t_fb->tfb_refcnt);
983 		tp->t_fb = rblk;
984 		/*
985 		 * XXXrrs this is quite dangerous, it is possible
986 		 * for the new function to fail to init. We also
987 		 * are not asking if the handoff_is_ok though at
988 		 * the very start thats probalbly ok.
989 		 */
990 		if (tp->t_fb->tfb_tcp_fb_init) {
991 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
992 		}
993 	}
994 	tp->snd_wl1 = sc->sc_irs;
995 	tp->snd_max = tp->iss + 1;
996 	tp->snd_nxt = tp->iss + 1;
997 	tp->rcv_up = sc->sc_irs + 1;
998 	tp->rcv_wnd = sc->sc_wnd;
999 	tp->rcv_adv += tp->rcv_wnd;
1000 	tp->last_ack_sent = tp->rcv_nxt;
1001 
1002 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
1003 	if (sc->sc_flags & SCF_NOOPT)
1004 		tp->t_flags |= TF_NOOPT;
1005 	else {
1006 		if (sc->sc_flags & SCF_WINSCALE) {
1007 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
1008 			tp->snd_scale = sc->sc_requested_s_scale;
1009 			tp->request_r_scale = sc->sc_requested_r_scale;
1010 		}
1011 		if (sc->sc_flags & SCF_TIMESTAMP) {
1012 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
1013 			tp->ts_recent = sc->sc_tsreflect;
1014 			tp->ts_recent_age = tcp_ts_getticks();
1015 			tp->ts_offset = sc->sc_tsoff;
1016 		}
1017 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1018 		if (sc->sc_flags & SCF_SIGNATURE)
1019 			tp->t_flags |= TF_SIGNATURE;
1020 #endif
1021 		if (sc->sc_flags & SCF_SACK)
1022 			tp->t_flags |= TF_SACK_PERMIT;
1023 	}
1024 
1025 	if (sc->sc_flags & SCF_ECN)
1026 		tp->t_flags |= TF_ECN_PERMIT;
1027 
1028 	/*
1029 	 * Set up MSS and get cached values from tcp_hostcache.
1030 	 * This might overwrite some of the defaults we just set.
1031 	 */
1032 	tcp_mss(tp, sc->sc_peer_mss);
1033 
1034 	/*
1035 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
1036 	 * limited to one segment in cc_conn_init().
1037 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1038 	 */
1039 	if (sc->sc_rxmits > 1)
1040 		tp->snd_cwnd = 1;
1041 
1042 #ifdef TCP_OFFLOAD
1043 	/*
1044 	 * Allow a TOE driver to install its hooks.  Note that we hold the
1045 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1046 	 * new connection before the TOE driver has done its thing.
1047 	 */
1048 	if (ADDED_BY_TOE(sc)) {
1049 		struct toedev *tod = sc->sc_tod;
1050 
1051 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1052 	}
1053 #endif
1054 	/*
1055 	 * Copy and activate timers.
1056 	 */
1057 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1058 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1059 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1060 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1061 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1062 
1063 	TCPSTAT_INC(tcps_accepts);
1064 	return (so);
1065 
1066 abort:
1067 	INP_WUNLOCK(inp);
1068 abort2:
1069 	if (so != NULL)
1070 		soabort(so);
1071 	return (NULL);
1072 }
1073 
1074 /*
1075  * This function gets called when we receive an ACK for a
1076  * socket in the LISTEN state.  We look up the connection
1077  * in the syncache, and if its there, we pull it out of
1078  * the cache and turn it into a full-blown connection in
1079  * the SYN-RECEIVED state.
1080  *
1081  * On syncache_socket() success the newly created socket
1082  * has its underlying inp locked.
1083  */
1084 int
1085 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1086     struct socket **lsop, struct mbuf *m)
1087 {
1088 	struct syncache *sc;
1089 	struct syncache_head *sch;
1090 	struct syncache scs;
1091 	char *s;
1092 	bool locked;
1093 
1094 	/*
1095 	 * Global TCP locks are held because we manipulate the PCB lists
1096 	 * and create a new socket.
1097 	 */
1098 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1099 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1100 	    ("%s: can handle only ACK", __func__));
1101 
1102 	if (syncache_cookiesonly()) {
1103 		sc = NULL;
1104 		sch = syncache_hashbucket(inc);
1105 		locked = false;
1106 	} else {
1107 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1108 		locked = true;
1109 		SCH_LOCK_ASSERT(sch);
1110 	}
1111 
1112 #ifdef INVARIANTS
1113 	/*
1114 	 * Test code for syncookies comparing the syncache stored
1115 	 * values with the reconstructed values from the cookie.
1116 	 */
1117 	if (sc != NULL)
1118 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1119 #endif
1120 
1121 	if (sc == NULL) {
1122 		/*
1123 		 * There is no syncache entry, so see if this ACK is
1124 		 * a returning syncookie.  To do this, first:
1125 		 *  A. Check if syncookies are used in case of syncache
1126 		 *     overflows
1127 		 *  B. See if this socket has had a syncache entry dropped in
1128 		 *     the recent past. We don't want to accept a bogus
1129 		 *     syncookie if we've never received a SYN or accept it
1130 		 *     twice.
1131 		 *  C. check that the syncookie is valid.  If it is, then
1132 		 *     cobble up a fake syncache entry, and return.
1133 		 */
1134 		if (locked && !V_tcp_syncookies) {
1135 			SCH_UNLOCK(sch);
1136 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1137 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1138 				    "segment rejected (syncookies disabled)\n",
1139 				    s, __func__);
1140 			goto failed;
1141 		}
1142 		if (locked && !V_tcp_syncookiesonly &&
1143 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1144 			SCH_UNLOCK(sch);
1145 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1146 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1147 				    "segment rejected (no syncache entry)\n",
1148 				    s, __func__);
1149 			goto failed;
1150 		}
1151 		bzero(&scs, sizeof(scs));
1152 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1153 		if (locked)
1154 			SCH_UNLOCK(sch);
1155 		if (sc == NULL) {
1156 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1157 				log(LOG_DEBUG, "%s; %s: Segment failed "
1158 				    "SYNCOOKIE authentication, segment rejected "
1159 				    "(probably spoofed)\n", s, __func__);
1160 			goto failed;
1161 		}
1162 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1163 		/* If received ACK has MD5 signature, check it. */
1164 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1165 		    (!TCPMD5_ENABLED() ||
1166 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1167 			/* Drop the ACK. */
1168 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1169 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1170 				    "MD5 signature doesn't match.\n",
1171 				    s, __func__);
1172 				free(s, M_TCPLOG);
1173 			}
1174 			TCPSTAT_INC(tcps_sig_err_sigopt);
1175 			return (-1); /* Do not send RST */
1176 		}
1177 #endif /* TCP_SIGNATURE */
1178 	} else {
1179 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1180 		/*
1181 		 * If listening socket requested TCP digests, check that
1182 		 * received ACK has signature and it is correct.
1183 		 * If not, drop the ACK and leave sc entry in th cache,
1184 		 * because SYN was received with correct signature.
1185 		 */
1186 		if (sc->sc_flags & SCF_SIGNATURE) {
1187 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1188 				/* No signature */
1189 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1190 				SCH_UNLOCK(sch);
1191 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1192 					log(LOG_DEBUG, "%s; %s: Segment "
1193 					    "rejected, MD5 signature wasn't "
1194 					    "provided.\n", s, __func__);
1195 					free(s, M_TCPLOG);
1196 				}
1197 				return (-1); /* Do not send RST */
1198 			}
1199 			if (!TCPMD5_ENABLED() ||
1200 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1201 				/* Doesn't match or no SA */
1202 				SCH_UNLOCK(sch);
1203 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1204 					log(LOG_DEBUG, "%s; %s: Segment "
1205 					    "rejected, MD5 signature doesn't "
1206 					    "match.\n", s, __func__);
1207 					free(s, M_TCPLOG);
1208 				}
1209 				return (-1); /* Do not send RST */
1210 			}
1211 		}
1212 #endif /* TCP_SIGNATURE */
1213 
1214 		/*
1215 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1216 		 * it's less than ts_recent, drop it.
1217 		 * XXXMT: RFC 7323 also requires to send an ACK.
1218 		 *        In tcp_input.c this is only done for TCP segments
1219 		 *        with user data, so be consistent here and just drop
1220 		 *        the segment.
1221 		 */
1222 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1223 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1224 			SCH_UNLOCK(sch);
1225 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1226 				log(LOG_DEBUG,
1227 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1228 				    "segment dropped\n", s, __func__,
1229 				    to->to_tsval, sc->sc_tsreflect);
1230 				free(s, M_TCPLOG);
1231 			}
1232 			return (-1);  /* Do not send RST */
1233 		}
1234 
1235 		/*
1236 		 * Pull out the entry to unlock the bucket row.
1237 		 *
1238 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1239 		 * tcp_state_change().  The tcpcb is not existent at this
1240 		 * moment.  A new one will be allocated via syncache_socket->
1241 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1242 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1243 		 */
1244 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1245 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1246 		sch->sch_length--;
1247 #ifdef TCP_OFFLOAD
1248 		if (ADDED_BY_TOE(sc)) {
1249 			struct toedev *tod = sc->sc_tod;
1250 
1251 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1252 		}
1253 #endif
1254 		SCH_UNLOCK(sch);
1255 	}
1256 
1257 	/*
1258 	 * Segment validation:
1259 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1260 	 */
1261 	if (th->th_ack != sc->sc_iss + 1) {
1262 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1263 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1264 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1265 		goto failed;
1266 	}
1267 
1268 	/*
1269 	 * The SEQ must fall in the window starting at the received
1270 	 * initial receive sequence number + 1 (the SYN).
1271 	 */
1272 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1273 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1274 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1275 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1276 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1277 		goto failed;
1278 	}
1279 
1280 	/*
1281 	 * If timestamps were not negotiated during SYN/ACK they
1282 	 * must not appear on any segment during this session.
1283 	 */
1284 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1285 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1286 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1287 			    "segment rejected\n", s, __func__);
1288 		goto failed;
1289 	}
1290 
1291 	/*
1292 	 * If timestamps were negotiated during SYN/ACK they should
1293 	 * appear on every segment during this session.
1294 	 * XXXAO: This is only informal as there have been unverified
1295 	 * reports of non-compliants stacks.
1296 	 */
1297 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1298 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1299 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1300 			    "no action\n", s, __func__);
1301 			free(s, M_TCPLOG);
1302 			s = NULL;
1303 		}
1304 	}
1305 
1306 	*lsop = syncache_socket(sc, *lsop, m);
1307 
1308 	if (*lsop == NULL)
1309 		TCPSTAT_INC(tcps_sc_aborted);
1310 	else
1311 		TCPSTAT_INC(tcps_sc_completed);
1312 
1313 /* how do we find the inp for the new socket? */
1314 	if (sc != &scs)
1315 		syncache_free(sc);
1316 	return (1);
1317 failed:
1318 	if (sc != NULL && sc != &scs)
1319 		syncache_free(sc);
1320 	if (s != NULL)
1321 		free(s, M_TCPLOG);
1322 	*lsop = NULL;
1323 	return (0);
1324 }
1325 
1326 static void
1327 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1328     uint64_t response_cookie)
1329 {
1330 	struct inpcb *inp;
1331 	struct tcpcb *tp;
1332 	unsigned int *pending_counter;
1333 
1334 	/*
1335 	 * Global TCP locks are held because we manipulate the PCB lists
1336 	 * and create a new socket.
1337 	 */
1338 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1339 
1340 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1341 	*lsop = syncache_socket(sc, *lsop, m);
1342 	if (*lsop == NULL) {
1343 		TCPSTAT_INC(tcps_sc_aborted);
1344 		atomic_subtract_int(pending_counter, 1);
1345 	} else {
1346 		soisconnected(*lsop);
1347 		inp = sotoinpcb(*lsop);
1348 		tp = intotcpcb(inp);
1349 		tp->t_flags |= TF_FASTOPEN;
1350 		tp->t_tfo_cookie.server = response_cookie;
1351 		tp->snd_max = tp->iss;
1352 		tp->snd_nxt = tp->iss;
1353 		tp->t_tfo_pending = pending_counter;
1354 		TCPSTAT_INC(tcps_sc_completed);
1355 	}
1356 }
1357 
1358 /*
1359  * Given a LISTEN socket and an inbound SYN request, add
1360  * this to the syn cache, and send back a segment:
1361  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1362  * to the source.
1363  *
1364  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1365  * Doing so would require that we hold onto the data and deliver it
1366  * to the application.  However, if we are the target of a SYN-flood
1367  * DoS attack, an attacker could send data which would eventually
1368  * consume all available buffer space if it were ACKed.  By not ACKing
1369  * the data, we avoid this DoS scenario.
1370  *
1371  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1372  * cookie is processed and a new socket is created.  In this case, any data
1373  * accompanying the SYN will be queued to the socket by tcp_input() and will
1374  * be ACKed either when the application sends response data or the delayed
1375  * ACK timer expires, whichever comes first.
1376  */
1377 int
1378 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1379     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1380     void *todctx)
1381 {
1382 	struct tcpcb *tp;
1383 	struct socket *so;
1384 	struct syncache *sc = NULL;
1385 	struct syncache_head *sch;
1386 	struct mbuf *ipopts = NULL;
1387 	u_int ltflags;
1388 	int win, ip_ttl, ip_tos;
1389 	char *s;
1390 	int rv = 0;
1391 #ifdef INET6
1392 	int autoflowlabel = 0;
1393 #endif
1394 #ifdef MAC
1395 	struct label *maclabel;
1396 #endif
1397 	struct syncache scs;
1398 	struct ucred *cred;
1399 	uint64_t tfo_response_cookie;
1400 	unsigned int *tfo_pending = NULL;
1401 	int tfo_cookie_valid = 0;
1402 	int tfo_response_cookie_valid = 0;
1403 	bool locked;
1404 
1405 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1406 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1407 	    ("%s: unexpected tcp flags", __func__));
1408 
1409 	/*
1410 	 * Combine all so/tp operations very early to drop the INP lock as
1411 	 * soon as possible.
1412 	 */
1413 	so = *lsop;
1414 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1415 	tp = sototcpcb(so);
1416 	cred = crhold(so->so_cred);
1417 
1418 #ifdef INET6
1419 	if ((inc->inc_flags & INC_ISIPV6) &&
1420 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1421 		autoflowlabel = 1;
1422 #endif
1423 	ip_ttl = inp->inp_ip_ttl;
1424 	ip_tos = inp->inp_ip_tos;
1425 	win = so->sol_sbrcv_hiwat;
1426 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1427 
1428 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1429 	    (tp->t_tfo_pending != NULL) &&
1430 	    (to->to_flags & TOF_FASTOPEN)) {
1431 		/*
1432 		 * Limit the number of pending TFO connections to
1433 		 * approximately half of the queue limit.  This prevents TFO
1434 		 * SYN floods from starving the service by filling the
1435 		 * listen queue with bogus TFO connections.
1436 		 */
1437 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1438 		    (so->sol_qlimit / 2)) {
1439 			int result;
1440 
1441 			result = tcp_fastopen_check_cookie(inc,
1442 			    to->to_tfo_cookie, to->to_tfo_len,
1443 			    &tfo_response_cookie);
1444 			tfo_cookie_valid = (result > 0);
1445 			tfo_response_cookie_valid = (result >= 0);
1446 		}
1447 
1448 		/*
1449 		 * Remember the TFO pending counter as it will have to be
1450 		 * decremented below if we don't make it to syncache_tfo_expand().
1451 		 */
1452 		tfo_pending = tp->t_tfo_pending;
1453 	}
1454 
1455 	/* By the time we drop the lock these should no longer be used. */
1456 	so = NULL;
1457 	tp = NULL;
1458 
1459 #ifdef MAC
1460 	if (mac_syncache_init(&maclabel) != 0) {
1461 		INP_WUNLOCK(inp);
1462 		goto done;
1463 	} else
1464 		mac_syncache_create(maclabel, inp);
1465 #endif
1466 	if (!tfo_cookie_valid)
1467 		INP_WUNLOCK(inp);
1468 
1469 	/*
1470 	 * Remember the IP options, if any.
1471 	 */
1472 #ifdef INET6
1473 	if (!(inc->inc_flags & INC_ISIPV6))
1474 #endif
1475 #ifdef INET
1476 		ipopts = (m) ? ip_srcroute(m) : NULL;
1477 #else
1478 		ipopts = NULL;
1479 #endif
1480 
1481 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1482 	/*
1483 	 * If listening socket requested TCP digests, check that received
1484 	 * SYN has signature and it is correct. If signature doesn't match
1485 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1486 	 */
1487 	if (ltflags & TF_SIGNATURE) {
1488 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1489 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1490 			goto done;
1491 		}
1492 		if (!TCPMD5_ENABLED() ||
1493 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1494 			goto done;
1495 	}
1496 #endif	/* TCP_SIGNATURE */
1497 	/*
1498 	 * See if we already have an entry for this connection.
1499 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1500 	 *
1501 	 * XXX: should the syncache be re-initialized with the contents
1502 	 * of the new SYN here (which may have different options?)
1503 	 *
1504 	 * XXX: We do not check the sequence number to see if this is a
1505 	 * real retransmit or a new connection attempt.  The question is
1506 	 * how to handle such a case; either ignore it as spoofed, or
1507 	 * drop the current entry and create a new one?
1508 	 */
1509 	if (syncache_cookiesonly()) {
1510 		sc = NULL;
1511 		sch = syncache_hashbucket(inc);
1512 		locked = false;
1513 	} else {
1514 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1515 		locked = true;
1516 		SCH_LOCK_ASSERT(sch);
1517 	}
1518 	if (sc != NULL) {
1519 		if (tfo_cookie_valid)
1520 			INP_WUNLOCK(inp);
1521 		TCPSTAT_INC(tcps_sc_dupsyn);
1522 		if (ipopts) {
1523 			/*
1524 			 * If we were remembering a previous source route,
1525 			 * forget it and use the new one we've been given.
1526 			 */
1527 			if (sc->sc_ipopts)
1528 				(void) m_free(sc->sc_ipopts);
1529 			sc->sc_ipopts = ipopts;
1530 		}
1531 		/*
1532 		 * Update timestamp if present.
1533 		 */
1534 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1535 			sc->sc_tsreflect = to->to_tsval;
1536 		else
1537 			sc->sc_flags &= ~SCF_TIMESTAMP;
1538 #ifdef MAC
1539 		/*
1540 		 * Since we have already unconditionally allocated label
1541 		 * storage, free it up.  The syncache entry will already
1542 		 * have an initialized label we can use.
1543 		 */
1544 		mac_syncache_destroy(&maclabel);
1545 #endif
1546 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1547 		/* Retransmit SYN|ACK and reset retransmit count. */
1548 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1549 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1550 			    "resetting timer and retransmitting SYN|ACK\n",
1551 			    s, __func__);
1552 			free(s, M_TCPLOG);
1553 		}
1554 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1555 			sc->sc_rxmits = 0;
1556 			syncache_timeout(sc, sch, 1);
1557 			TCPSTAT_INC(tcps_sndacks);
1558 			TCPSTAT_INC(tcps_sndtotal);
1559 		}
1560 		SCH_UNLOCK(sch);
1561 		goto donenoprobe;
1562 	}
1563 
1564 	if (tfo_cookie_valid) {
1565 		bzero(&scs, sizeof(scs));
1566 		sc = &scs;
1567 		goto skip_alloc;
1568 	}
1569 
1570 	/*
1571 	 * Skip allocating a syncache entry if we are just going to discard
1572 	 * it later.
1573 	 */
1574 	if (!locked) {
1575 		bzero(&scs, sizeof(scs));
1576 		sc = &scs;
1577 	} else
1578 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1579 	if (sc == NULL) {
1580 		/*
1581 		 * The zone allocator couldn't provide more entries.
1582 		 * Treat this as if the cache was full; drop the oldest
1583 		 * entry and insert the new one.
1584 		 */
1585 		TCPSTAT_INC(tcps_sc_zonefail);
1586 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1587 			sch->sch_last_overflow = time_uptime;
1588 			syncache_drop(sc, sch);
1589 			syncache_pause(inc);
1590 		}
1591 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1592 		if (sc == NULL) {
1593 			if (V_tcp_syncookies) {
1594 				bzero(&scs, sizeof(scs));
1595 				sc = &scs;
1596 			} else {
1597 				KASSERT(locked,
1598 				    ("%s: bucket unexpectedly unlocked",
1599 				    __func__));
1600 				SCH_UNLOCK(sch);
1601 				if (ipopts)
1602 					(void) m_free(ipopts);
1603 				goto done;
1604 			}
1605 		}
1606 	}
1607 
1608 skip_alloc:
1609 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1610 		sc->sc_tfo_cookie = &tfo_response_cookie;
1611 
1612 	/*
1613 	 * Fill in the syncache values.
1614 	 */
1615 #ifdef MAC
1616 	sc->sc_label = maclabel;
1617 #endif
1618 	sc->sc_cred = cred;
1619 	cred = NULL;
1620 	sc->sc_ipopts = ipopts;
1621 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1622 #ifdef INET6
1623 	if (!(inc->inc_flags & INC_ISIPV6))
1624 #endif
1625 	{
1626 		sc->sc_ip_tos = ip_tos;
1627 		sc->sc_ip_ttl = ip_ttl;
1628 	}
1629 #ifdef TCP_OFFLOAD
1630 	sc->sc_tod = tod;
1631 	sc->sc_todctx = todctx;
1632 #endif
1633 	sc->sc_irs = th->th_seq;
1634 	sc->sc_flags = 0;
1635 	sc->sc_flowlabel = 0;
1636 
1637 	/*
1638 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1639 	 * win was derived from socket earlier in the function.
1640 	 */
1641 	win = imax(win, 0);
1642 	win = imin(win, TCP_MAXWIN);
1643 	sc->sc_wnd = win;
1644 
1645 	if (V_tcp_do_rfc1323) {
1646 		/*
1647 		 * A timestamp received in a SYN makes
1648 		 * it ok to send timestamp requests and replies.
1649 		 */
1650 		if (to->to_flags & TOF_TS) {
1651 			sc->sc_tsreflect = to->to_tsval;
1652 			sc->sc_flags |= SCF_TIMESTAMP;
1653 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1654 		}
1655 		if (to->to_flags & TOF_SCALE) {
1656 			int wscale = 0;
1657 
1658 			/*
1659 			 * Pick the smallest possible scaling factor that
1660 			 * will still allow us to scale up to sb_max, aka
1661 			 * kern.ipc.maxsockbuf.
1662 			 *
1663 			 * We do this because there are broken firewalls that
1664 			 * will corrupt the window scale option, leading to
1665 			 * the other endpoint believing that our advertised
1666 			 * window is unscaled.  At scale factors larger than
1667 			 * 5 the unscaled window will drop below 1500 bytes,
1668 			 * leading to serious problems when traversing these
1669 			 * broken firewalls.
1670 			 *
1671 			 * With the default maxsockbuf of 256K, a scale factor
1672 			 * of 3 will be chosen by this algorithm.  Those who
1673 			 * choose a larger maxsockbuf should watch out
1674 			 * for the compatibility problems mentioned above.
1675 			 *
1676 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1677 			 * or <SYN,ACK>) segment itself is never scaled.
1678 			 */
1679 			while (wscale < TCP_MAX_WINSHIFT &&
1680 			    (TCP_MAXWIN << wscale) < sb_max)
1681 				wscale++;
1682 			sc->sc_requested_r_scale = wscale;
1683 			sc->sc_requested_s_scale = to->to_wscale;
1684 			sc->sc_flags |= SCF_WINSCALE;
1685 		}
1686 	}
1687 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1688 	/*
1689 	 * If listening socket requested TCP digests, flag this in the
1690 	 * syncache so that syncache_respond() will do the right thing
1691 	 * with the SYN+ACK.
1692 	 */
1693 	if (ltflags & TF_SIGNATURE)
1694 		sc->sc_flags |= SCF_SIGNATURE;
1695 #endif	/* TCP_SIGNATURE */
1696 	if (to->to_flags & TOF_SACKPERM)
1697 		sc->sc_flags |= SCF_SACK;
1698 	if (to->to_flags & TOF_MSS)
1699 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1700 	if (ltflags & TF_NOOPT)
1701 		sc->sc_flags |= SCF_NOOPT;
1702 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1703 		sc->sc_flags |= SCF_ECN;
1704 
1705 	if (V_tcp_syncookies)
1706 		sc->sc_iss = syncookie_generate(sch, sc);
1707 	else
1708 		sc->sc_iss = arc4random();
1709 #ifdef INET6
1710 	if (autoflowlabel) {
1711 		if (V_tcp_syncookies)
1712 			sc->sc_flowlabel = sc->sc_iss;
1713 		else
1714 			sc->sc_flowlabel = ip6_randomflowlabel();
1715 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1716 	}
1717 #endif
1718 	if (locked)
1719 		SCH_UNLOCK(sch);
1720 
1721 	if (tfo_cookie_valid) {
1722 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1723 		/* INP_WUNLOCK(inp) will be performed by the caller */
1724 		rv = 1;
1725 		goto tfo_expanded;
1726 	}
1727 
1728 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1729 	/*
1730 	 * Do a standard 3-way handshake.
1731 	 */
1732 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1733 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1734 			syncache_free(sc);
1735 		else if (sc != &scs)
1736 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1737 		TCPSTAT_INC(tcps_sndacks);
1738 		TCPSTAT_INC(tcps_sndtotal);
1739 	} else {
1740 		if (sc != &scs)
1741 			syncache_free(sc);
1742 		TCPSTAT_INC(tcps_sc_dropped);
1743 	}
1744 	goto donenoprobe;
1745 
1746 done:
1747 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1748 donenoprobe:
1749 	if (m) {
1750 		*lsop = NULL;
1751 		m_freem(m);
1752 	}
1753 	/*
1754 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1755 	 * result in a new socket was processed and the associated pending
1756 	 * counter has not yet been decremented.  All such TFO processing paths
1757 	 * transit this point.
1758 	 */
1759 	if (tfo_pending != NULL)
1760 		tcp_fastopen_decrement_counter(tfo_pending);
1761 
1762 tfo_expanded:
1763 	if (cred != NULL)
1764 		crfree(cred);
1765 #ifdef MAC
1766 	if (sc == &scs)
1767 		mac_syncache_destroy(&maclabel);
1768 #endif
1769 	return (rv);
1770 }
1771 
1772 /*
1773  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1774  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1775  */
1776 static int
1777 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1778 {
1779 	struct ip *ip = NULL;
1780 	struct mbuf *m;
1781 	struct tcphdr *th = NULL;
1782 	int optlen, error = 0;	/* Make compiler happy */
1783 	u_int16_t hlen, tlen, mssopt;
1784 	struct tcpopt to;
1785 #ifdef INET6
1786 	struct ip6_hdr *ip6 = NULL;
1787 #endif
1788 	hlen =
1789 #ifdef INET6
1790 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1791 #endif
1792 		sizeof(struct ip);
1793 	tlen = hlen + sizeof(struct tcphdr);
1794 
1795 	/* Determine MSS we advertize to other end of connection. */
1796 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1797 
1798 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1799 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1800 	    ("syncache: mbuf too small"));
1801 
1802 	/* Create the IP+TCP header from scratch. */
1803 	m = m_gethdr(M_NOWAIT, MT_DATA);
1804 	if (m == NULL)
1805 		return (ENOBUFS);
1806 #ifdef MAC
1807 	mac_syncache_create_mbuf(sc->sc_label, m);
1808 #endif
1809 	m->m_data += max_linkhdr;
1810 	m->m_len = tlen;
1811 	m->m_pkthdr.len = tlen;
1812 	m->m_pkthdr.rcvif = NULL;
1813 
1814 #ifdef INET6
1815 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1816 		ip6 = mtod(m, struct ip6_hdr *);
1817 		ip6->ip6_vfc = IPV6_VERSION;
1818 		ip6->ip6_nxt = IPPROTO_TCP;
1819 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1820 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1821 		ip6->ip6_plen = htons(tlen - hlen);
1822 		/* ip6_hlim is set after checksum */
1823 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1824 		ip6->ip6_flow |= sc->sc_flowlabel;
1825 
1826 		th = (struct tcphdr *)(ip6 + 1);
1827 	}
1828 #endif
1829 #if defined(INET6) && defined(INET)
1830 	else
1831 #endif
1832 #ifdef INET
1833 	{
1834 		ip = mtod(m, struct ip *);
1835 		ip->ip_v = IPVERSION;
1836 		ip->ip_hl = sizeof(struct ip) >> 2;
1837 		ip->ip_len = htons(tlen);
1838 		ip->ip_id = 0;
1839 		ip->ip_off = 0;
1840 		ip->ip_sum = 0;
1841 		ip->ip_p = IPPROTO_TCP;
1842 		ip->ip_src = sc->sc_inc.inc_laddr;
1843 		ip->ip_dst = sc->sc_inc.inc_faddr;
1844 		ip->ip_ttl = sc->sc_ip_ttl;
1845 		ip->ip_tos = sc->sc_ip_tos;
1846 
1847 		/*
1848 		 * See if we should do MTU discovery.  Route lookups are
1849 		 * expensive, so we will only unset the DF bit if:
1850 		 *
1851 		 *	1) path_mtu_discovery is disabled
1852 		 *	2) the SCF_UNREACH flag has been set
1853 		 */
1854 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1855 		       ip->ip_off |= htons(IP_DF);
1856 
1857 		th = (struct tcphdr *)(ip + 1);
1858 	}
1859 #endif /* INET */
1860 	th->th_sport = sc->sc_inc.inc_lport;
1861 	th->th_dport = sc->sc_inc.inc_fport;
1862 
1863 	if (flags & TH_SYN)
1864 		th->th_seq = htonl(sc->sc_iss);
1865 	else
1866 		th->th_seq = htonl(sc->sc_iss + 1);
1867 	th->th_ack = htonl(sc->sc_irs + 1);
1868 	th->th_off = sizeof(struct tcphdr) >> 2;
1869 	th->th_x2 = 0;
1870 	th->th_flags = flags;
1871 	th->th_win = htons(sc->sc_wnd);
1872 	th->th_urp = 0;
1873 
1874 	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1875 		th->th_flags |= TH_ECE;
1876 		TCPSTAT_INC(tcps_ecn_shs);
1877 	}
1878 
1879 	/* Tack on the TCP options. */
1880 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1881 		to.to_flags = 0;
1882 
1883 		if (flags & TH_SYN) {
1884 			to.to_mss = mssopt;
1885 			to.to_flags = TOF_MSS;
1886 			if (sc->sc_flags & SCF_WINSCALE) {
1887 				to.to_wscale = sc->sc_requested_r_scale;
1888 				to.to_flags |= TOF_SCALE;
1889 			}
1890 			if (sc->sc_flags & SCF_SACK)
1891 				to.to_flags |= TOF_SACKPERM;
1892 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1893 			if (sc->sc_flags & SCF_SIGNATURE)
1894 				to.to_flags |= TOF_SIGNATURE;
1895 #endif
1896 			if (sc->sc_tfo_cookie) {
1897 				to.to_flags |= TOF_FASTOPEN;
1898 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1899 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1900 				/* don't send cookie again when retransmitting response */
1901 				sc->sc_tfo_cookie = NULL;
1902 			}
1903 		}
1904 		if (sc->sc_flags & SCF_TIMESTAMP) {
1905 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1906 			to.to_tsecr = sc->sc_tsreflect;
1907 			to.to_flags |= TOF_TS;
1908 		}
1909 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1910 
1911 		/* Adjust headers by option size. */
1912 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1913 		m->m_len += optlen;
1914 		m->m_pkthdr.len += optlen;
1915 #ifdef INET6
1916 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1917 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1918 		else
1919 #endif
1920 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1921 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1922 		if (sc->sc_flags & SCF_SIGNATURE) {
1923 			KASSERT(to.to_flags & TOF_SIGNATURE,
1924 			    ("tcp_addoptions() didn't set tcp_signature"));
1925 
1926 			/* NOTE: to.to_signature is inside of mbuf */
1927 			if (!TCPMD5_ENABLED() ||
1928 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1929 				m_freem(m);
1930 				return (EACCES);
1931 			}
1932 		}
1933 #endif
1934 	} else
1935 		optlen = 0;
1936 
1937 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1938 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1939 	/*
1940 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1941 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1942 	 * to SYN|ACK due to lack of inp here.
1943 	 */
1944 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1945 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1946 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1947 	}
1948 #ifdef INET6
1949 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1950 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1951 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1952 		    IPPROTO_TCP, 0);
1953 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1954 #ifdef TCP_OFFLOAD
1955 		if (ADDED_BY_TOE(sc)) {
1956 			struct toedev *tod = sc->sc_tod;
1957 
1958 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1959 
1960 			return (error);
1961 		}
1962 #endif
1963 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1964 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1965 	}
1966 #endif
1967 #if defined(INET6) && defined(INET)
1968 	else
1969 #endif
1970 #ifdef INET
1971 	{
1972 		m->m_pkthdr.csum_flags = CSUM_TCP;
1973 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1974 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1975 #ifdef TCP_OFFLOAD
1976 		if (ADDED_BY_TOE(sc)) {
1977 			struct toedev *tod = sc->sc_tod;
1978 
1979 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1980 
1981 			return (error);
1982 		}
1983 #endif
1984 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1985 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1986 	}
1987 #endif
1988 	return (error);
1989 }
1990 
1991 /*
1992  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1993  * that exceed the capacity of the syncache by avoiding the storage of any
1994  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1995  * attacks where the attacker does not have access to our responses.
1996  *
1997  * Syncookies encode and include all necessary information about the
1998  * connection setup within the SYN|ACK that we send back.  That way we
1999  * can avoid keeping any local state until the ACK to our SYN|ACK returns
2000  * (if ever).  Normally the syncache and syncookies are running in parallel
2001  * with the latter taking over when the former is exhausted.  When matching
2002  * syncache entry is found the syncookie is ignored.
2003  *
2004  * The only reliable information persisting the 3WHS is our initial sequence
2005  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2006  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2007  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2008  * returns and signifies a legitimate connection if it matches the ACK.
2009  *
2010  * The available space of 32 bits to store the hash and to encode the SYN
2011  * option information is very tight and we should have at least 24 bits for
2012  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2013  *
2014  * SYN option information we have to encode to fully restore a connection:
2015  * MSS: is imporant to chose an optimal segment size to avoid IP level
2016  *   fragmentation along the path.  The common MSS values can be encoded
2017  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2018  *   in the table leading to a slight increase in packetization overhead.
2019  * WSCALE: is necessary to allow large windows to be used for high delay-
2020  *   bandwidth product links.  Not scaling the window when it was initially
2021  *   negotiated is bad for performance as lack of scaling further decreases
2022  *   the apparent available send window.  We only need to encode the WSCALE
2023  *   we received from the remote end.  Our end can be recalculated at any
2024  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2025  *   Uncommon values are captured by the next lower value in the table
2026  *   making us under-estimate the available window size halving our
2027  *   theoretically possible maximum throughput for that connection.
2028  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2029  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2030  *   that are included in all segments on a connection.  We enable them when
2031  *   the ACK has them.
2032  *
2033  * Security of syncookies and attack vectors:
2034  *
2035  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2036  * together with the gloabl secret to make it unique per connection attempt.
2037  * Thus any change of any of those parameters results in a different MAC output
2038  * in an unpredictable way unless a collision is encountered.  24 bits of the
2039  * MAC are embedded into the ISS.
2040  *
2041  * To prevent replay attacks two rotating global secrets are updated with a
2042  * new random value every 15 seconds.  The life-time of a syncookie is thus
2043  * 15-30 seconds.
2044  *
2045  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2046  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2047  * text attack by varying and testing the all parameters under his control.
2048  * The strength depends on the size and randomness of the secret, and the
2049  * cryptographic security of the MAC function.  Due to the constant updating
2050  * of the secret the attacker has at most 29.999 seconds to find the secret
2051  * and launch spoofed connections.  After that he has to start all over again.
2052  *
2053  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2054  * size an average of 4,823 attempts are required for a 50% chance of success
2055  * to spoof a single syncookie (birthday collision paradox).  However the
2056  * attacker is blind and doesn't know if one of his attempts succeeded unless
2057  * he has a side channel to interfere success from.  A single connection setup
2058  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2059  * This many attempts are required for each one blind spoofed connection.  For
2060  * every additional spoofed connection he has to launch another N attempts.
2061  * Thus for a sustained rate 100 spoofed connections per second approximately
2062  * 1,800,000 packets per second would have to be sent.
2063  *
2064  * NB: The MAC function should be fast so that it doesn't become a CPU
2065  * exhaustion attack vector itself.
2066  *
2067  * References:
2068  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2069  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2070  *   http://cr.yp.to/syncookies.html    (overview)
2071  *   http://cr.yp.to/syncookies/archive (details)
2072  *
2073  *
2074  * Schematic construction of a syncookie enabled Initial Sequence Number:
2075  *  0        1         2         3
2076  *  12345678901234567890123456789012
2077  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2078  *
2079  *  x 24 MAC (truncated)
2080  *  W  3 Send Window Scale index
2081  *  M  3 MSS index
2082  *  S  1 SACK permitted
2083  *  P  1 Odd/even secret
2084  */
2085 
2086 /*
2087  * Distribution and probability of certain MSS values.  Those in between are
2088  * rounded down to the next lower one.
2089  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2090  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2091  */
2092 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2093 
2094 /*
2095  * Distribution and probability of certain WSCALE values.  We have to map the
2096  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2097  * bits based on prevalence of certain values.  Where we don't have an exact
2098  * match for are rounded down to the next lower one letting us under-estimate
2099  * the true available window.  At the moment this would happen only for the
2100  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2101  * and window size).  The absence of the WSCALE option (no scaling in either
2102  * direction) is encoded with index zero.
2103  * [WSCALE values histograms, Allman, 2012]
2104  *                            X 10 10 35  5  6 14 10%   by host
2105  *                            X 11  4  5  5 18 49  3%   by connections
2106  */
2107 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2108 
2109 /*
2110  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2111  * and good cryptographic properties.
2112  */
2113 static uint32_t
2114 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2115     uint8_t *secbits, uintptr_t secmod)
2116 {
2117 	SIPHASH_CTX ctx;
2118 	uint32_t siphash[2];
2119 
2120 	SipHash24_Init(&ctx);
2121 	SipHash_SetKey(&ctx, secbits);
2122 	switch (inc->inc_flags & INC_ISIPV6) {
2123 #ifdef INET
2124 	case 0:
2125 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2126 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2127 		break;
2128 #endif
2129 #ifdef INET6
2130 	case INC_ISIPV6:
2131 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2132 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2133 		break;
2134 #endif
2135 	}
2136 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2137 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2138 	SipHash_Update(&ctx, &irs, sizeof(irs));
2139 	SipHash_Update(&ctx, &flags, sizeof(flags));
2140 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2141 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2142 
2143 	return (siphash[0] ^ siphash[1]);
2144 }
2145 
2146 static tcp_seq
2147 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2148 {
2149 	u_int i, secbit, wscale;
2150 	uint32_t iss, hash;
2151 	uint8_t *secbits;
2152 	union syncookie cookie;
2153 
2154 	cookie.cookie = 0;
2155 
2156 	/* Map our computed MSS into the 3-bit index. */
2157 	for (i = nitems(tcp_sc_msstab) - 1;
2158 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2159 	     i--)
2160 		;
2161 	cookie.flags.mss_idx = i;
2162 
2163 	/*
2164 	 * Map the send window scale into the 3-bit index but only if
2165 	 * the wscale option was received.
2166 	 */
2167 	if (sc->sc_flags & SCF_WINSCALE) {
2168 		wscale = sc->sc_requested_s_scale;
2169 		for (i = nitems(tcp_sc_wstab) - 1;
2170 		    tcp_sc_wstab[i] > wscale && i > 0;
2171 		     i--)
2172 			;
2173 		cookie.flags.wscale_idx = i;
2174 	}
2175 
2176 	/* Can we do SACK? */
2177 	if (sc->sc_flags & SCF_SACK)
2178 		cookie.flags.sack_ok = 1;
2179 
2180 	/* Which of the two secrets to use. */
2181 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2182 	cookie.flags.odd_even = secbit;
2183 
2184 	secbits = V_tcp_syncache.secret.key[secbit];
2185 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2186 	    (uintptr_t)sch);
2187 
2188 	/*
2189 	 * Put the flags into the hash and XOR them to get better ISS number
2190 	 * variance.  This doesn't enhance the cryptographic strength and is
2191 	 * done to prevent the 8 cookie bits from showing up directly on the
2192 	 * wire.
2193 	 */
2194 	iss = hash & ~0xff;
2195 	iss |= cookie.cookie ^ (hash >> 24);
2196 
2197 	TCPSTAT_INC(tcps_sc_sendcookie);
2198 	return (iss);
2199 }
2200 
2201 static struct syncache *
2202 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2203     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2204     struct socket *lso)
2205 {
2206 	uint32_t hash;
2207 	uint8_t *secbits;
2208 	tcp_seq ack, seq;
2209 	int wnd, wscale = 0;
2210 	union syncookie cookie;
2211 
2212 	/*
2213 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2214 	 * advances.
2215 	 */
2216 	ack = th->th_ack - 1;
2217 	seq = th->th_seq - 1;
2218 
2219 	/*
2220 	 * Unpack the flags containing enough information to restore the
2221 	 * connection.
2222 	 */
2223 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2224 
2225 	/* Which of the two secrets to use. */
2226 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2227 
2228 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2229 
2230 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2231 	if ((ack & ~0xff) != (hash & ~0xff))
2232 		return (NULL);
2233 
2234 	/* Fill in the syncache values. */
2235 	sc->sc_flags = 0;
2236 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2237 	sc->sc_ipopts = NULL;
2238 
2239 	sc->sc_irs = seq;
2240 	sc->sc_iss = ack;
2241 
2242 	switch (inc->inc_flags & INC_ISIPV6) {
2243 #ifdef INET
2244 	case 0:
2245 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2246 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2247 		break;
2248 #endif
2249 #ifdef INET6
2250 	case INC_ISIPV6:
2251 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2252 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2253 		break;
2254 #endif
2255 	}
2256 
2257 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2258 
2259 	/* We can simply recompute receive window scale we sent earlier. */
2260 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2261 		wscale++;
2262 
2263 	/* Only use wscale if it was enabled in the orignal SYN. */
2264 	if (cookie.flags.wscale_idx > 0) {
2265 		sc->sc_requested_r_scale = wscale;
2266 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2267 		sc->sc_flags |= SCF_WINSCALE;
2268 	}
2269 
2270 	wnd = lso->sol_sbrcv_hiwat;
2271 	wnd = imax(wnd, 0);
2272 	wnd = imin(wnd, TCP_MAXWIN);
2273 	sc->sc_wnd = wnd;
2274 
2275 	if (cookie.flags.sack_ok)
2276 		sc->sc_flags |= SCF_SACK;
2277 
2278 	if (to->to_flags & TOF_TS) {
2279 		sc->sc_flags |= SCF_TIMESTAMP;
2280 		sc->sc_tsreflect = to->to_tsval;
2281 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2282 	}
2283 
2284 	if (to->to_flags & TOF_SIGNATURE)
2285 		sc->sc_flags |= SCF_SIGNATURE;
2286 
2287 	sc->sc_rxmits = 0;
2288 
2289 	TCPSTAT_INC(tcps_sc_recvcookie);
2290 	return (sc);
2291 }
2292 
2293 #ifdef INVARIANTS
2294 static int
2295 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2296     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2297     struct socket *lso)
2298 {
2299 	struct syncache scs, *scx;
2300 	char *s;
2301 
2302 	bzero(&scs, sizeof(scs));
2303 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2304 
2305 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2306 		return (0);
2307 
2308 	if (scx != NULL) {
2309 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2310 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2311 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2312 
2313 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2314 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2315 			    s, __func__, sc->sc_requested_r_scale,
2316 			    scx->sc_requested_r_scale);
2317 
2318 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2319 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2320 			    s, __func__, sc->sc_requested_s_scale,
2321 			    scx->sc_requested_s_scale);
2322 
2323 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2324 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2325 	}
2326 
2327 	if (s != NULL)
2328 		free(s, M_TCPLOG);
2329 	return (0);
2330 }
2331 #endif /* INVARIANTS */
2332 
2333 static void
2334 syncookie_reseed(void *arg)
2335 {
2336 	struct tcp_syncache *sc = arg;
2337 	uint8_t *secbits;
2338 	int secbit;
2339 
2340 	/*
2341 	 * Reseeding the secret doesn't have to be protected by a lock.
2342 	 * It only must be ensured that the new random values are visible
2343 	 * to all CPUs in a SMP environment.  The atomic with release
2344 	 * semantics ensures that.
2345 	 */
2346 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2347 	secbits = sc->secret.key[secbit];
2348 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2349 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2350 
2351 	/* Reschedule ourself. */
2352 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2353 }
2354 
2355 /*
2356  * We have overflowed a bucket. Let's pause dealing with the syncache.
2357  * This function will increment the bucketoverflow statistics appropriately
2358  * (once per pause when pausing is enabled; otherwise, once per overflow).
2359  */
2360 static void
2361 syncache_pause(struct in_conninfo *inc)
2362 {
2363 	time_t delta;
2364 	const char *s;
2365 
2366 	/* XXX:
2367 	 * 2. Add sysctl read here so we don't get the benefit of this
2368 	 * change without the new sysctl.
2369 	 */
2370 
2371 	/*
2372 	 * Try an unlocked read. If we already know that another thread
2373 	 * has activated the feature, there is no need to proceed.
2374 	 */
2375 	if (V_tcp_syncache.paused)
2376 		return;
2377 
2378 	/* Are cookied enabled? If not, we can't pause. */
2379 	if (!V_tcp_syncookies) {
2380 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2381 		return;
2382 	}
2383 
2384 	/*
2385 	 * We may be the first thread to find an overflow. Get the lock
2386 	 * and evaluate if we need to take action.
2387 	 */
2388 	mtx_lock(&V_tcp_syncache.pause_mtx);
2389 	if (V_tcp_syncache.paused) {
2390 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2391 		return;
2392 	}
2393 
2394 	/* Activate protection. */
2395 	V_tcp_syncache.paused = true;
2396 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2397 
2398 	/*
2399 	 * Determine the last backoff time. If we are seeing a re-newed
2400 	 * attack within that same time after last reactivating the syncache,
2401 	 * consider it an extension of the same attack.
2402 	 */
2403 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2404 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2405 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2406 			delta <<= 1;
2407 			V_tcp_syncache.pause_backoff++;
2408 		}
2409 	} else {
2410 		delta = TCP_SYNCACHE_PAUSE_TIME;
2411 		V_tcp_syncache.pause_backoff = 0;
2412 	}
2413 
2414 	/* Log a warning, including IP addresses, if able. */
2415 	if (inc != NULL)
2416 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2417 	else
2418 		s = (const char *)NULL;
2419 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2420 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2421 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2422 	    (s != NULL) ? ")" : "");
2423 	free(__DECONST(void *, s), M_TCPLOG);
2424 
2425 	/* Use the calculated delta to set a new pause time. */
2426 	V_tcp_syncache.pause_until = time_uptime + delta;
2427 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2428 	    &V_tcp_syncache);
2429 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2430 }
2431 
2432 /* Evaluate whether we need to unpause. */
2433 static void
2434 syncache_unpause(void *arg)
2435 {
2436 	struct tcp_syncache *sc;
2437 	time_t delta;
2438 
2439 	sc = arg;
2440 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2441 	callout_deactivate(&sc->pause_co);
2442 
2443 	/*
2444 	 * Check to make sure we are not running early. If the pause
2445 	 * time has expired, then deactivate the protection.
2446 	 */
2447 	if ((delta = sc->pause_until - time_uptime) > 0)
2448 		callout_schedule(&sc->pause_co, delta * hz);
2449 	else
2450 		sc->paused = false;
2451 }
2452 
2453 /*
2454  * Exports the syncache entries to userland so that netstat can display
2455  * them alongside the other sockets.  This function is intended to be
2456  * called only from tcp_pcblist.
2457  *
2458  * Due to concurrency on an active system, the number of pcbs exported
2459  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2460  * amount of space the caller allocated for this function to use.
2461  */
2462 int
2463 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2464 {
2465 	struct xtcpcb xt;
2466 	struct syncache *sc;
2467 	struct syncache_head *sch;
2468 	int count, error, i;
2469 
2470 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2471 		sch = &V_tcp_syncache.hashbase[i];
2472 		SCH_LOCK(sch);
2473 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2474 			if (count >= max_pcbs) {
2475 				SCH_UNLOCK(sch);
2476 				goto exit;
2477 			}
2478 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2479 				continue;
2480 			bzero(&xt, sizeof(xt));
2481 			xt.xt_len = sizeof(xt);
2482 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2483 				xt.xt_inp.inp_vflag = INP_IPV6;
2484 			else
2485 				xt.xt_inp.inp_vflag = INP_IPV4;
2486 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2487 			    sizeof (struct in_conninfo));
2488 			xt.t_state = TCPS_SYN_RECEIVED;
2489 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2490 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2491 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2492 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2493 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2494 			if (error) {
2495 				SCH_UNLOCK(sch);
2496 				goto exit;
2497 			}
2498 			count++;
2499 		}
2500 		SCH_UNLOCK(sch);
2501 	}
2502 exit:
2503 	*pcbs_exported = count;
2504 	return error;
2505 }
2506