xref: /freebsd/sys/netinet/tcp_syncache.c (revision e52d92164754cbfff84767d4c6eb3cc93e8c21ae)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 static VNET_DEFINE(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
133 		    const struct mbuf *);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	 syncookie_reseed(void *);
148 #ifdef INVARIANTS
149 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
150 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
151 		    struct socket *lso);
152 #endif
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
157  * the odds are that the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		3
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
166 #define	V_tcp_syncache			VNET(tcp_syncache)
167 
168 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
169     "TCP SYN cache");
170 
171 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
172     &VNET_NAME(tcp_syncache.bucket_limit), 0,
173     "Per-bucket hash limit for syncache");
174 
175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
176     &VNET_NAME(tcp_syncache.cache_limit), 0,
177     "Overall entry limit for syncache");
178 
179 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
180     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.hashsize), 0,
184     "Size of TCP syncache hashtable");
185 
186 static int
187 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
188 {
189 	int error;
190 	u_int new;
191 
192 	new = V_tcp_syncache.rexmt_limit;
193 	error = sysctl_handle_int(oidp, &new, 0, req);
194 	if ((error == 0) && (req->newptr != NULL)) {
195 		if (new > TCP_MAXRXTSHIFT)
196 			error = EINVAL;
197 		else
198 			V_tcp_syncache.rexmt_limit = new;
199 	}
200 	return (error);
201 }
202 
203 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
204     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
205     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
206     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
207     "Limit on SYN/ACK retransmissions");
208 
209 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
211     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
212     "Send reset on socket allocation failure");
213 
214 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
215 
216 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
217 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
218 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
219 
220 /*
221  * Requires the syncache entry to be already removed from the bucket list.
222  */
223 static void
224 syncache_free(struct syncache *sc)
225 {
226 
227 	if (sc->sc_ipopts)
228 		(void) m_free(sc->sc_ipopts);
229 	if (sc->sc_cred)
230 		crfree(sc->sc_cred);
231 #ifdef MAC
232 	mac_syncache_destroy(&sc->sc_label);
233 #endif
234 
235 	uma_zfree(V_tcp_syncache.zone, sc);
236 }
237 
238 void
239 syncache_init(void)
240 {
241 	int i;
242 
243 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
244 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
245 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
246 	V_tcp_syncache.hash_secret = arc4random();
247 
248 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
249 	    &V_tcp_syncache.hashsize);
250 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
251 	    &V_tcp_syncache.bucket_limit);
252 	if (!powerof2(V_tcp_syncache.hashsize) ||
253 	    V_tcp_syncache.hashsize == 0) {
254 		printf("WARNING: syncache hash size is not a power of 2.\n");
255 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
256 	}
257 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
258 
259 	/* Set limits. */
260 	V_tcp_syncache.cache_limit =
261 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
262 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
263 	    &V_tcp_syncache.cache_limit);
264 
265 	/* Allocate the hash table. */
266 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
267 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
268 
269 #ifdef VIMAGE
270 	V_tcp_syncache.vnet = curvnet;
271 #endif
272 
273 	/* Initialize the hash buckets. */
274 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
275 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
276 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
277 			 NULL, MTX_DEF);
278 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
279 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
280 		V_tcp_syncache.hashbase[i].sch_length = 0;
281 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
282 		V_tcp_syncache.hashbase[i].sch_last_overflow =
283 		    -(SYNCOOKIE_LIFETIME + 1);
284 	}
285 
286 	/* Create the syncache entry zone. */
287 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
288 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
289 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
290 	    V_tcp_syncache.cache_limit);
291 
292 	/* Start the SYN cookie reseeder callout. */
293 	callout_init(&V_tcp_syncache.secret.reseed, 1);
294 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
295 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
296 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
297 	    syncookie_reseed, &V_tcp_syncache);
298 }
299 
300 #ifdef VIMAGE
301 void
302 syncache_destroy(void)
303 {
304 	struct syncache_head *sch;
305 	struct syncache *sc, *nsc;
306 	int i;
307 
308 	/*
309 	 * Stop the re-seed timer before freeing resources.  No need to
310 	 * possibly schedule it another time.
311 	 */
312 	callout_drain(&V_tcp_syncache.secret.reseed);
313 
314 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
315 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
316 
317 		sch = &V_tcp_syncache.hashbase[i];
318 		callout_drain(&sch->sch_timer);
319 
320 		SCH_LOCK(sch);
321 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
322 			syncache_drop(sc, sch);
323 		SCH_UNLOCK(sch);
324 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
325 		    ("%s: sch->sch_bucket not empty", __func__));
326 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
327 		    __func__, sch->sch_length));
328 		mtx_destroy(&sch->sch_mtx);
329 	}
330 
331 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
332 	    ("%s: cache_count not 0", __func__));
333 
334 	/* Free the allocated global resources. */
335 	uma_zdestroy(V_tcp_syncache.zone);
336 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
337 }
338 #endif
339 
340 /*
341  * Inserts a syncache entry into the specified bucket row.
342  * Locks and unlocks the syncache_head autonomously.
343  */
344 static void
345 syncache_insert(struct syncache *sc, struct syncache_head *sch)
346 {
347 	struct syncache *sc2;
348 
349 	SCH_LOCK(sch);
350 
351 	/*
352 	 * Make sure that we don't overflow the per-bucket limit.
353 	 * If the bucket is full, toss the oldest element.
354 	 */
355 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
356 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
357 			("sch->sch_length incorrect"));
358 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
359 		sch->sch_last_overflow = time_uptime;
360 		syncache_drop(sc2, sch);
361 		TCPSTAT_INC(tcps_sc_bucketoverflow);
362 	}
363 
364 	/* Put it into the bucket. */
365 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
366 	sch->sch_length++;
367 
368 #ifdef TCP_OFFLOAD
369 	if (ADDED_BY_TOE(sc)) {
370 		struct toedev *tod = sc->sc_tod;
371 
372 		tod->tod_syncache_added(tod, sc->sc_todctx);
373 	}
374 #endif
375 
376 	/* Reinitialize the bucket row's timer. */
377 	if (sch->sch_length == 1)
378 		sch->sch_nextc = ticks + INT_MAX;
379 	syncache_timeout(sc, sch, 1);
380 
381 	SCH_UNLOCK(sch);
382 
383 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
384 	TCPSTAT_INC(tcps_sc_added);
385 }
386 
387 /*
388  * Remove and free entry from syncache bucket row.
389  * Expects locked syncache head.
390  */
391 static void
392 syncache_drop(struct syncache *sc, struct syncache_head *sch)
393 {
394 
395 	SCH_LOCK_ASSERT(sch);
396 
397 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
398 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
399 	sch->sch_length--;
400 
401 #ifdef TCP_OFFLOAD
402 	if (ADDED_BY_TOE(sc)) {
403 		struct toedev *tod = sc->sc_tod;
404 
405 		tod->tod_syncache_removed(tod, sc->sc_todctx);
406 	}
407 #endif
408 
409 	syncache_free(sc);
410 }
411 
412 /*
413  * Engage/reengage time on bucket row.
414  */
415 static void
416 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
417 {
418 	int rexmt;
419 
420 	if (sc->sc_rxmits == 0)
421 		rexmt = TCPTV_RTOBASE;
422 	else
423 		TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
424 		    tcp_rexmit_min, TCPTV_REXMTMAX);
425 	sc->sc_rxttime = ticks + rexmt;
426 	sc->sc_rxmits++;
427 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
428 		sch->sch_nextc = sc->sc_rxttime;
429 		if (docallout)
430 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
431 			    syncache_timer, (void *)sch);
432 	}
433 }
434 
435 /*
436  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
437  * If we have retransmitted an entry the maximum number of times, expire it.
438  * One separate timer for each bucket row.
439  */
440 static void
441 syncache_timer(void *xsch)
442 {
443 	struct syncache_head *sch = (struct syncache_head *)xsch;
444 	struct syncache *sc, *nsc;
445 	int tick = ticks;
446 	char *s;
447 
448 	CURVNET_SET(sch->sch_sc->vnet);
449 
450 	/* NB: syncache_head has already been locked by the callout. */
451 	SCH_LOCK_ASSERT(sch);
452 
453 	/*
454 	 * In the following cycle we may remove some entries and/or
455 	 * advance some timeouts, so re-initialize the bucket timer.
456 	 */
457 	sch->sch_nextc = tick + INT_MAX;
458 
459 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
460 		/*
461 		 * We do not check if the listen socket still exists
462 		 * and accept the case where the listen socket may be
463 		 * gone by the time we resend the SYN/ACK.  We do
464 		 * not expect this to happens often. If it does,
465 		 * then the RST will be sent by the time the remote
466 		 * host does the SYN/ACK->ACK.
467 		 */
468 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
469 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
470 				sch->sch_nextc = sc->sc_rxttime;
471 			continue;
472 		}
473 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
474 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
475 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
476 				    "giving up and removing syncache entry\n",
477 				    s, __func__);
478 				free(s, M_TCPLOG);
479 			}
480 			syncache_drop(sc, sch);
481 			TCPSTAT_INC(tcps_sc_stale);
482 			continue;
483 		}
484 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
485 			log(LOG_DEBUG, "%s; %s: Response timeout, "
486 			    "retransmitting (%u) SYN|ACK\n",
487 			    s, __func__, sc->sc_rxmits);
488 			free(s, M_TCPLOG);
489 		}
490 
491 		syncache_respond(sc, sch, 1, NULL);
492 		TCPSTAT_INC(tcps_sc_retransmitted);
493 		syncache_timeout(sc, sch, 0);
494 	}
495 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
496 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
497 			syncache_timer, (void *)(sch));
498 	CURVNET_RESTORE();
499 }
500 
501 /*
502  * Find an entry in the syncache.
503  * Returns always with locked syncache_head plus a matching entry or NULL.
504  */
505 static struct syncache *
506 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
507 {
508 	struct syncache *sc;
509 	struct syncache_head *sch;
510 	uint32_t hash;
511 
512 	/*
513 	 * The hash is built on foreign port + local port + foreign address.
514 	 * We rely on the fact that struct in_conninfo starts with 16 bits
515 	 * of foreign port, then 16 bits of local port then followed by 128
516 	 * bits of foreign address.  In case of IPv4 address, the first 3
517 	 * 32-bit words of the address always are zeroes.
518 	 */
519 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
520 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
521 
522 	sch = &V_tcp_syncache.hashbase[hash];
523 	*schp = sch;
524 	SCH_LOCK(sch);
525 
526 	/* Circle through bucket row to find matching entry. */
527 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
528 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
529 		    sizeof(struct in_endpoints)) == 0)
530 			break;
531 
532 	return (sc);	/* Always returns with locked sch. */
533 }
534 
535 /*
536  * This function is called when we get a RST for a
537  * non-existent connection, so that we can see if the
538  * connection is in the syn cache.  If it is, zap it.
539  */
540 void
541 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
542 {
543 	struct syncache *sc;
544 	struct syncache_head *sch;
545 	char *s = NULL;
546 
547 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
548 	SCH_LOCK_ASSERT(sch);
549 
550 	/*
551 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
552 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
553 	 */
554 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
555 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
556 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
557 			    "FIN flag set, segment ignored\n", s, __func__);
558 		TCPSTAT_INC(tcps_badrst);
559 		goto done;
560 	}
561 
562 	/*
563 	 * No corresponding connection was found in syncache.
564 	 * If syncookies are enabled and possibly exclusively
565 	 * used, or we are under memory pressure, a valid RST
566 	 * may not find a syncache entry.  In that case we're
567 	 * done and no SYN|ACK retransmissions will happen.
568 	 * Otherwise the RST was misdirected or spoofed.
569 	 */
570 	if (sc == NULL) {
571 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
572 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
573 			    "syncache entry (possibly syncookie only), "
574 			    "segment ignored\n", s, __func__);
575 		TCPSTAT_INC(tcps_badrst);
576 		goto done;
577 	}
578 
579 	/*
580 	 * If the RST bit is set, check the sequence number to see
581 	 * if this is a valid reset segment.
582 	 * RFC 793 page 37:
583 	 *   In all states except SYN-SENT, all reset (RST) segments
584 	 *   are validated by checking their SEQ-fields.  A reset is
585 	 *   valid if its sequence number is in the window.
586 	 *
587 	 *   The sequence number in the reset segment is normally an
588 	 *   echo of our outgoing acknowlegement numbers, but some hosts
589 	 *   send a reset with the sequence number at the rightmost edge
590 	 *   of our receive window, and we have to handle this case.
591 	 */
592 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
593 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
594 		syncache_drop(sc, sch);
595 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
596 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
597 			    "connection attempt aborted by remote endpoint\n",
598 			    s, __func__);
599 		TCPSTAT_INC(tcps_sc_reset);
600 	} else {
601 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
602 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
603 			    "IRS %u (+WND %u), segment ignored\n",
604 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
605 		TCPSTAT_INC(tcps_badrst);
606 	}
607 
608 done:
609 	if (s != NULL)
610 		free(s, M_TCPLOG);
611 	SCH_UNLOCK(sch);
612 }
613 
614 void
615 syncache_badack(struct in_conninfo *inc)
616 {
617 	struct syncache *sc;
618 	struct syncache_head *sch;
619 
620 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
621 	SCH_LOCK_ASSERT(sch);
622 	if (sc != NULL) {
623 		syncache_drop(sc, sch);
624 		TCPSTAT_INC(tcps_sc_badack);
625 	}
626 	SCH_UNLOCK(sch);
627 }
628 
629 void
630 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
631 {
632 	struct syncache *sc;
633 	struct syncache_head *sch;
634 
635 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
636 	SCH_LOCK_ASSERT(sch);
637 	if (sc == NULL)
638 		goto done;
639 
640 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
641 	if (ntohl(th_seq) != sc->sc_iss)
642 		goto done;
643 
644 	/*
645 	 * If we've rertransmitted 3 times and this is our second error,
646 	 * we remove the entry.  Otherwise, we allow it to continue on.
647 	 * This prevents us from incorrectly nuking an entry during a
648 	 * spurious network outage.
649 	 *
650 	 * See tcp_notify().
651 	 */
652 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
653 		sc->sc_flags |= SCF_UNREACH;
654 		goto done;
655 	}
656 	syncache_drop(sc, sch);
657 	TCPSTAT_INC(tcps_sc_unreach);
658 done:
659 	SCH_UNLOCK(sch);
660 }
661 
662 /*
663  * Build a new TCP socket structure from a syncache entry.
664  *
665  * On success return the newly created socket with its underlying inp locked.
666  */
667 static struct socket *
668 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
669 {
670 	struct tcp_function_block *blk;
671 	struct inpcb *inp = NULL;
672 	struct socket *so;
673 	struct tcpcb *tp;
674 	int error;
675 	char *s;
676 
677 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
678 
679 	/*
680 	 * Ok, create the full blown connection, and set things up
681 	 * as they would have been set up if we had created the
682 	 * connection when the SYN arrived.  If we can't create
683 	 * the connection, abort it.
684 	 */
685 	so = sonewconn(lso, 0);
686 	if (so == NULL) {
687 		/*
688 		 * Drop the connection; we will either send a RST or
689 		 * have the peer retransmit its SYN again after its
690 		 * RTO and try again.
691 		 */
692 		TCPSTAT_INC(tcps_listendrop);
693 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
694 			log(LOG_DEBUG, "%s; %s: Socket create failed "
695 			    "due to limits or memory shortage\n",
696 			    s, __func__);
697 			free(s, M_TCPLOG);
698 		}
699 		goto abort2;
700 	}
701 #ifdef MAC
702 	mac_socketpeer_set_from_mbuf(m, so);
703 #endif
704 
705 	inp = sotoinpcb(so);
706 	inp->inp_inc.inc_fibnum = so->so_fibnum;
707 	INP_WLOCK(inp);
708 	/*
709 	 * Exclusive pcbinfo lock is not required in syncache socket case even
710 	 * if two inpcb locks can be acquired simultaneously:
711 	 *  - the inpcb in LISTEN state,
712 	 *  - the newly created inp.
713 	 *
714 	 * In this case, an inp cannot be at same time in LISTEN state and
715 	 * just created by an accept() call.
716 	 */
717 	INP_HASH_WLOCK(&V_tcbinfo);
718 
719 	/* Insert new socket into PCB hash list. */
720 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
721 #ifdef INET6
722 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
723 		inp->inp_vflag &= ~INP_IPV4;
724 		inp->inp_vflag |= INP_IPV6;
725 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
726 	} else {
727 		inp->inp_vflag &= ~INP_IPV6;
728 		inp->inp_vflag |= INP_IPV4;
729 #endif
730 		inp->inp_laddr = sc->sc_inc.inc_laddr;
731 #ifdef INET6
732 	}
733 #endif
734 
735 	/*
736 	 * If there's an mbuf and it has a flowid, then let's initialise the
737 	 * inp with that particular flowid.
738 	 */
739 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
740 		inp->inp_flowid = m->m_pkthdr.flowid;
741 		inp->inp_flowtype = M_HASHTYPE_GET(m);
742 	}
743 
744 	/*
745 	 * Install in the reservation hash table for now, but don't yet
746 	 * install a connection group since the full 4-tuple isn't yet
747 	 * configured.
748 	 */
749 	inp->inp_lport = sc->sc_inc.inc_lport;
750 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
751 		/*
752 		 * Undo the assignments above if we failed to
753 		 * put the PCB on the hash lists.
754 		 */
755 #ifdef INET6
756 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
757 			inp->in6p_laddr = in6addr_any;
758 		else
759 #endif
760 			inp->inp_laddr.s_addr = INADDR_ANY;
761 		inp->inp_lport = 0;
762 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
763 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
764 			    "with error %i\n",
765 			    s, __func__, error);
766 			free(s, M_TCPLOG);
767 		}
768 		INP_HASH_WUNLOCK(&V_tcbinfo);
769 		goto abort;
770 	}
771 #ifdef INET6
772 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
773 		struct inpcb *oinp = sotoinpcb(lso);
774 		struct in6_addr laddr6;
775 		struct sockaddr_in6 sin6;
776 		/*
777 		 * Inherit socket options from the listening socket.
778 		 * Note that in6p_inputopts are not (and should not be)
779 		 * copied, since it stores previously received options and is
780 		 * used to detect if each new option is different than the
781 		 * previous one and hence should be passed to a user.
782 		 * If we copied in6p_inputopts, a user would not be able to
783 		 * receive options just after calling the accept system call.
784 		 */
785 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
786 		if (oinp->in6p_outputopts)
787 			inp->in6p_outputopts =
788 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
789 
790 		sin6.sin6_family = AF_INET6;
791 		sin6.sin6_len = sizeof(sin6);
792 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
793 		sin6.sin6_port = sc->sc_inc.inc_fport;
794 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
795 		laddr6 = inp->in6p_laddr;
796 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
797 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
798 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
799 		    thread0.td_ucred, m)) != 0) {
800 			inp->in6p_laddr = laddr6;
801 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
802 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
803 				    "with error %i\n",
804 				    s, __func__, error);
805 				free(s, M_TCPLOG);
806 			}
807 			INP_HASH_WUNLOCK(&V_tcbinfo);
808 			goto abort;
809 		}
810 		/* Override flowlabel from in6_pcbconnect. */
811 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
812 		inp->inp_flow |= sc->sc_flowlabel;
813 	}
814 #endif /* INET6 */
815 #if defined(INET) && defined(INET6)
816 	else
817 #endif
818 #ifdef INET
819 	{
820 		struct in_addr laddr;
821 		struct sockaddr_in sin;
822 
823 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
824 
825 		if (inp->inp_options == NULL) {
826 			inp->inp_options = sc->sc_ipopts;
827 			sc->sc_ipopts = NULL;
828 		}
829 
830 		sin.sin_family = AF_INET;
831 		sin.sin_len = sizeof(sin);
832 		sin.sin_addr = sc->sc_inc.inc_faddr;
833 		sin.sin_port = sc->sc_inc.inc_fport;
834 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
835 		laddr = inp->inp_laddr;
836 		if (inp->inp_laddr.s_addr == INADDR_ANY)
837 			inp->inp_laddr = sc->sc_inc.inc_laddr;
838 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
839 		    thread0.td_ucred, m)) != 0) {
840 			inp->inp_laddr = laddr;
841 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
842 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
843 				    "with error %i\n",
844 				    s, __func__, error);
845 				free(s, M_TCPLOG);
846 			}
847 			INP_HASH_WUNLOCK(&V_tcbinfo);
848 			goto abort;
849 		}
850 	}
851 #endif /* INET */
852 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
853 	/* Copy old policy into new socket's. */
854 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
855 		printf("syncache_socket: could not copy policy\n");
856 #endif
857 	INP_HASH_WUNLOCK(&V_tcbinfo);
858 	tp = intotcpcb(inp);
859 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
860 	tp->iss = sc->sc_iss;
861 	tp->irs = sc->sc_irs;
862 	tcp_rcvseqinit(tp);
863 	tcp_sendseqinit(tp);
864 	blk = sototcpcb(lso)->t_fb;
865 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
866 		/*
867 		 * Our parents t_fb was not the default,
868 		 * we need to release our ref on tp->t_fb and
869 		 * pickup one on the new entry.
870 		 */
871 		struct tcp_function_block *rblk;
872 
873 		rblk = find_and_ref_tcp_fb(blk);
874 		KASSERT(rblk != NULL,
875 		    ("cannot find blk %p out of syncache?", blk));
876 		if (tp->t_fb->tfb_tcp_fb_fini)
877 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
878 		refcount_release(&tp->t_fb->tfb_refcnt);
879 		tp->t_fb = rblk;
880 		/*
881 		 * XXXrrs this is quite dangerous, it is possible
882 		 * for the new function to fail to init. We also
883 		 * are not asking if the handoff_is_ok though at
884 		 * the very start thats probalbly ok.
885 		 */
886 		if (tp->t_fb->tfb_tcp_fb_init) {
887 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
888 		}
889 	}
890 	tp->snd_wl1 = sc->sc_irs;
891 	tp->snd_max = tp->iss + 1;
892 	tp->snd_nxt = tp->iss + 1;
893 	tp->rcv_up = sc->sc_irs + 1;
894 	tp->rcv_wnd = sc->sc_wnd;
895 	tp->rcv_adv += tp->rcv_wnd;
896 	tp->last_ack_sent = tp->rcv_nxt;
897 
898 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
899 	if (sc->sc_flags & SCF_NOOPT)
900 		tp->t_flags |= TF_NOOPT;
901 	else {
902 		if (sc->sc_flags & SCF_WINSCALE) {
903 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
904 			tp->snd_scale = sc->sc_requested_s_scale;
905 			tp->request_r_scale = sc->sc_requested_r_scale;
906 		}
907 		if (sc->sc_flags & SCF_TIMESTAMP) {
908 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
909 			tp->ts_recent = sc->sc_tsreflect;
910 			tp->ts_recent_age = tcp_ts_getticks();
911 			tp->ts_offset = sc->sc_tsoff;
912 		}
913 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
914 		if (sc->sc_flags & SCF_SIGNATURE)
915 			tp->t_flags |= TF_SIGNATURE;
916 #endif
917 		if (sc->sc_flags & SCF_SACK)
918 			tp->t_flags |= TF_SACK_PERMIT;
919 	}
920 
921 	if (sc->sc_flags & SCF_ECN)
922 		tp->t_flags |= TF_ECN_PERMIT;
923 
924 	/*
925 	 * Set up MSS and get cached values from tcp_hostcache.
926 	 * This might overwrite some of the defaults we just set.
927 	 */
928 	tcp_mss(tp, sc->sc_peer_mss);
929 
930 	/*
931 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
932 	 * limited to one segment in cc_conn_init().
933 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
934 	 */
935 	if (sc->sc_rxmits > 1)
936 		tp->snd_cwnd = 1;
937 
938 #ifdef TCP_OFFLOAD
939 	/*
940 	 * Allow a TOE driver to install its hooks.  Note that we hold the
941 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
942 	 * new connection before the TOE driver has done its thing.
943 	 */
944 	if (ADDED_BY_TOE(sc)) {
945 		struct toedev *tod = sc->sc_tod;
946 
947 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
948 	}
949 #endif
950 	/*
951 	 * Copy and activate timers.
952 	 */
953 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
954 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
955 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
956 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
957 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
958 
959 	TCPSTAT_INC(tcps_accepts);
960 	return (so);
961 
962 abort:
963 	INP_WUNLOCK(inp);
964 abort2:
965 	if (so != NULL)
966 		soabort(so);
967 	return (NULL);
968 }
969 
970 /*
971  * This function gets called when we receive an ACK for a
972  * socket in the LISTEN state.  We look up the connection
973  * in the syncache, and if its there, we pull it out of
974  * the cache and turn it into a full-blown connection in
975  * the SYN-RECEIVED state.
976  *
977  * On syncache_socket() success the newly created socket
978  * has its underlying inp locked.
979  */
980 int
981 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
982     struct socket **lsop, struct mbuf *m)
983 {
984 	struct syncache *sc;
985 	struct syncache_head *sch;
986 	struct syncache scs;
987 	char *s;
988 
989 	/*
990 	 * Global TCP locks are held because we manipulate the PCB lists
991 	 * and create a new socket.
992 	 */
993 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
994 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
995 	    ("%s: can handle only ACK", __func__));
996 
997 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
998 	SCH_LOCK_ASSERT(sch);
999 
1000 #ifdef INVARIANTS
1001 	/*
1002 	 * Test code for syncookies comparing the syncache stored
1003 	 * values with the reconstructed values from the cookie.
1004 	 */
1005 	if (sc != NULL)
1006 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1007 #endif
1008 
1009 	if (sc == NULL) {
1010 		/*
1011 		 * There is no syncache entry, so see if this ACK is
1012 		 * a returning syncookie.  To do this, first:
1013 		 *  A. Check if syncookies are used in case of syncache
1014 		 *     overflows
1015 		 *  B. See if this socket has had a syncache entry dropped in
1016 		 *     the recent past. We don't want to accept a bogus
1017 		 *     syncookie if we've never received a SYN or accept it
1018 		 *     twice.
1019 		 *  C. check that the syncookie is valid.  If it is, then
1020 		 *     cobble up a fake syncache entry, and return.
1021 		 */
1022 		if (!V_tcp_syncookies) {
1023 			SCH_UNLOCK(sch);
1024 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1025 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1026 				    "segment rejected (syncookies disabled)\n",
1027 				    s, __func__);
1028 			goto failed;
1029 		}
1030 		if (!V_tcp_syncookiesonly &&
1031 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1032 			SCH_UNLOCK(sch);
1033 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1034 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1035 				    "segment rejected (no syncache entry)\n",
1036 				    s, __func__);
1037 			goto failed;
1038 		}
1039 		bzero(&scs, sizeof(scs));
1040 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1041 		SCH_UNLOCK(sch);
1042 		if (sc == NULL) {
1043 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1044 				log(LOG_DEBUG, "%s; %s: Segment failed "
1045 				    "SYNCOOKIE authentication, segment rejected "
1046 				    "(probably spoofed)\n", s, __func__);
1047 			goto failed;
1048 		}
1049 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1050 		/* If received ACK has MD5 signature, check it. */
1051 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1052 		    (!TCPMD5_ENABLED() ||
1053 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1054 			/* Drop the ACK. */
1055 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1056 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1057 				    "MD5 signature doesn't match.\n",
1058 				    s, __func__);
1059 				free(s, M_TCPLOG);
1060 			}
1061 			TCPSTAT_INC(tcps_sig_err_sigopt);
1062 			return (-1); /* Do not send RST */
1063 		}
1064 #endif /* TCP_SIGNATURE */
1065 	} else {
1066 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1067 		/*
1068 		 * If listening socket requested TCP digests, check that
1069 		 * received ACK has signature and it is correct.
1070 		 * If not, drop the ACK and leave sc entry in th cache,
1071 		 * because SYN was received with correct signature.
1072 		 */
1073 		if (sc->sc_flags & SCF_SIGNATURE) {
1074 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1075 				/* No signature */
1076 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1077 				SCH_UNLOCK(sch);
1078 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1079 					log(LOG_DEBUG, "%s; %s: Segment "
1080 					    "rejected, MD5 signature wasn't "
1081 					    "provided.\n", s, __func__);
1082 					free(s, M_TCPLOG);
1083 				}
1084 				return (-1); /* Do not send RST */
1085 			}
1086 			if (!TCPMD5_ENABLED() ||
1087 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1088 				/* Doesn't match or no SA */
1089 				SCH_UNLOCK(sch);
1090 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1091 					log(LOG_DEBUG, "%s; %s: Segment "
1092 					    "rejected, MD5 signature doesn't "
1093 					    "match.\n", s, __func__);
1094 					free(s, M_TCPLOG);
1095 				}
1096 				return (-1); /* Do not send RST */
1097 			}
1098 		}
1099 #endif /* TCP_SIGNATURE */
1100 		/*
1101 		 * Pull out the entry to unlock the bucket row.
1102 		 *
1103 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1104 		 * tcp_state_change().  The tcpcb is not existent at this
1105 		 * moment.  A new one will be allocated via syncache_socket->
1106 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1107 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1108 		 */
1109 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1110 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1111 		sch->sch_length--;
1112 #ifdef TCP_OFFLOAD
1113 		if (ADDED_BY_TOE(sc)) {
1114 			struct toedev *tod = sc->sc_tod;
1115 
1116 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1117 		}
1118 #endif
1119 		SCH_UNLOCK(sch);
1120 	}
1121 
1122 	/*
1123 	 * Segment validation:
1124 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1125 	 */
1126 	if (th->th_ack != sc->sc_iss + 1) {
1127 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1128 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1129 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1130 		goto failed;
1131 	}
1132 
1133 	/*
1134 	 * The SEQ must fall in the window starting at the received
1135 	 * initial receive sequence number + 1 (the SYN).
1136 	 */
1137 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1138 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1139 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1140 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1141 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1142 		goto failed;
1143 	}
1144 
1145 	/*
1146 	 * If timestamps were not negotiated during SYN/ACK they
1147 	 * must not appear on any segment during this session.
1148 	 */
1149 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1150 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1151 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1152 			    "segment rejected\n", s, __func__);
1153 		goto failed;
1154 	}
1155 
1156 	/*
1157 	 * If timestamps were negotiated during SYN/ACK they should
1158 	 * appear on every segment during this session.
1159 	 * XXXAO: This is only informal as there have been unverified
1160 	 * reports of non-compliants stacks.
1161 	 */
1162 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1163 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1164 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1165 			    "no action\n", s, __func__);
1166 			free(s, M_TCPLOG);
1167 			s = NULL;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * If timestamps were negotiated, the reflected timestamp
1173 	 * must be equal to what we actually sent in the SYN|ACK
1174 	 * except in the case of 0. Some boxes are known for sending
1175 	 * broken timestamp replies during the 3whs (and potentially
1176 	 * during the connection also).
1177 	 *
1178 	 * Accept the final ACK of 3whs with reflected timestamp of 0
1179 	 * instead of sending a RST and deleting the syncache entry.
1180 	 */
1181 	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1182 	    to->to_tsecr != sc->sc_ts) {
1183 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1184 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1185 			    "segment rejected\n",
1186 			    s, __func__, to->to_tsecr, sc->sc_ts);
1187 		goto failed;
1188 	}
1189 
1190 	*lsop = syncache_socket(sc, *lsop, m);
1191 
1192 	if (*lsop == NULL)
1193 		TCPSTAT_INC(tcps_sc_aborted);
1194 	else
1195 		TCPSTAT_INC(tcps_sc_completed);
1196 
1197 /* how do we find the inp for the new socket? */
1198 	if (sc != &scs)
1199 		syncache_free(sc);
1200 	return (1);
1201 failed:
1202 	if (sc != NULL && sc != &scs)
1203 		syncache_free(sc);
1204 	if (s != NULL)
1205 		free(s, M_TCPLOG);
1206 	*lsop = NULL;
1207 	return (0);
1208 }
1209 
1210 static void
1211 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1212     uint64_t response_cookie)
1213 {
1214 	struct inpcb *inp;
1215 	struct tcpcb *tp;
1216 	unsigned int *pending_counter;
1217 
1218 	/*
1219 	 * Global TCP locks are held because we manipulate the PCB lists
1220 	 * and create a new socket.
1221 	 */
1222 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1223 
1224 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1225 	*lsop = syncache_socket(sc, *lsop, m);
1226 	if (*lsop == NULL) {
1227 		TCPSTAT_INC(tcps_sc_aborted);
1228 		atomic_subtract_int(pending_counter, 1);
1229 	} else {
1230 		soisconnected(*lsop);
1231 		inp = sotoinpcb(*lsop);
1232 		tp = intotcpcb(inp);
1233 		tp->t_flags |= TF_FASTOPEN;
1234 		tp->t_tfo_cookie.server = response_cookie;
1235 		tp->snd_max = tp->iss;
1236 		tp->snd_nxt = tp->iss;
1237 		tp->t_tfo_pending = pending_counter;
1238 		TCPSTAT_INC(tcps_sc_completed);
1239 	}
1240 }
1241 
1242 /*
1243  * Given a LISTEN socket and an inbound SYN request, add
1244  * this to the syn cache, and send back a segment:
1245  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1246  * to the source.
1247  *
1248  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1249  * Doing so would require that we hold onto the data and deliver it
1250  * to the application.  However, if we are the target of a SYN-flood
1251  * DoS attack, an attacker could send data which would eventually
1252  * consume all available buffer space if it were ACKed.  By not ACKing
1253  * the data, we avoid this DoS scenario.
1254  *
1255  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1256  * cookie is processed and a new socket is created.  In this case, any data
1257  * accompanying the SYN will be queued to the socket by tcp_input() and will
1258  * be ACKed either when the application sends response data or the delayed
1259  * ACK timer expires, whichever comes first.
1260  */
1261 int
1262 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1263     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1264     void *todctx)
1265 {
1266 	struct tcpcb *tp;
1267 	struct socket *so;
1268 	struct syncache *sc = NULL;
1269 	struct syncache_head *sch;
1270 	struct mbuf *ipopts = NULL;
1271 	u_int ltflags;
1272 	int win, ip_ttl, ip_tos;
1273 	char *s;
1274 	int rv = 0;
1275 #ifdef INET6
1276 	int autoflowlabel = 0;
1277 #endif
1278 #ifdef MAC
1279 	struct label *maclabel;
1280 #endif
1281 	struct syncache scs;
1282 	struct ucred *cred;
1283 	uint64_t tfo_response_cookie;
1284 	unsigned int *tfo_pending = NULL;
1285 	int tfo_cookie_valid = 0;
1286 	int tfo_response_cookie_valid = 0;
1287 
1288 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1289 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1290 	    ("%s: unexpected tcp flags", __func__));
1291 
1292 	/*
1293 	 * Combine all so/tp operations very early to drop the INP lock as
1294 	 * soon as possible.
1295 	 */
1296 	so = *lsop;
1297 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1298 	tp = sototcpcb(so);
1299 	cred = crhold(so->so_cred);
1300 
1301 #ifdef INET6
1302 	if ((inc->inc_flags & INC_ISIPV6) &&
1303 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1304 		autoflowlabel = 1;
1305 #endif
1306 	ip_ttl = inp->inp_ip_ttl;
1307 	ip_tos = inp->inp_ip_tos;
1308 	win = so->sol_sbrcv_hiwat;
1309 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1310 
1311 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1312 	    (tp->t_tfo_pending != NULL) &&
1313 	    (to->to_flags & TOF_FASTOPEN)) {
1314 		/*
1315 		 * Limit the number of pending TFO connections to
1316 		 * approximately half of the queue limit.  This prevents TFO
1317 		 * SYN floods from starving the service by filling the
1318 		 * listen queue with bogus TFO connections.
1319 		 */
1320 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1321 		    (so->sol_qlimit / 2)) {
1322 			int result;
1323 
1324 			result = tcp_fastopen_check_cookie(inc,
1325 			    to->to_tfo_cookie, to->to_tfo_len,
1326 			    &tfo_response_cookie);
1327 			tfo_cookie_valid = (result > 0);
1328 			tfo_response_cookie_valid = (result >= 0);
1329 		}
1330 
1331 		/*
1332 		 * Remember the TFO pending counter as it will have to be
1333 		 * decremented below if we don't make it to syncache_tfo_expand().
1334 		 */
1335 		tfo_pending = tp->t_tfo_pending;
1336 	}
1337 
1338 	/* By the time we drop the lock these should no longer be used. */
1339 	so = NULL;
1340 	tp = NULL;
1341 
1342 #ifdef MAC
1343 	if (mac_syncache_init(&maclabel) != 0) {
1344 		INP_WUNLOCK(inp);
1345 		goto done;
1346 	} else
1347 		mac_syncache_create(maclabel, inp);
1348 #endif
1349 	if (!tfo_cookie_valid)
1350 		INP_WUNLOCK(inp);
1351 
1352 	/*
1353 	 * Remember the IP options, if any.
1354 	 */
1355 #ifdef INET6
1356 	if (!(inc->inc_flags & INC_ISIPV6))
1357 #endif
1358 #ifdef INET
1359 		ipopts = (m) ? ip_srcroute(m) : NULL;
1360 #else
1361 		ipopts = NULL;
1362 #endif
1363 
1364 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1365 	/*
1366 	 * If listening socket requested TCP digests, check that received
1367 	 * SYN has signature and it is correct. If signature doesn't match
1368 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1369 	 */
1370 	if (ltflags & TF_SIGNATURE) {
1371 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1372 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1373 			goto done;
1374 		}
1375 		if (!TCPMD5_ENABLED() ||
1376 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1377 			goto done;
1378 	}
1379 #endif	/* TCP_SIGNATURE */
1380 	/*
1381 	 * See if we already have an entry for this connection.
1382 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1383 	 *
1384 	 * XXX: should the syncache be re-initialized with the contents
1385 	 * of the new SYN here (which may have different options?)
1386 	 *
1387 	 * XXX: We do not check the sequence number to see if this is a
1388 	 * real retransmit or a new connection attempt.  The question is
1389 	 * how to handle such a case; either ignore it as spoofed, or
1390 	 * drop the current entry and create a new one?
1391 	 */
1392 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1393 	SCH_LOCK_ASSERT(sch);
1394 	if (sc != NULL) {
1395 		if (tfo_cookie_valid)
1396 			INP_WUNLOCK(inp);
1397 		TCPSTAT_INC(tcps_sc_dupsyn);
1398 		if (ipopts) {
1399 			/*
1400 			 * If we were remembering a previous source route,
1401 			 * forget it and use the new one we've been given.
1402 			 */
1403 			if (sc->sc_ipopts)
1404 				(void) m_free(sc->sc_ipopts);
1405 			sc->sc_ipopts = ipopts;
1406 		}
1407 		/*
1408 		 * Update timestamp if present.
1409 		 */
1410 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1411 			sc->sc_tsreflect = to->to_tsval;
1412 		else
1413 			sc->sc_flags &= ~SCF_TIMESTAMP;
1414 #ifdef MAC
1415 		/*
1416 		 * Since we have already unconditionally allocated label
1417 		 * storage, free it up.  The syncache entry will already
1418 		 * have an initialized label we can use.
1419 		 */
1420 		mac_syncache_destroy(&maclabel);
1421 #endif
1422 		/* Retransmit SYN|ACK and reset retransmit count. */
1423 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1424 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1425 			    "resetting timer and retransmitting SYN|ACK\n",
1426 			    s, __func__);
1427 			free(s, M_TCPLOG);
1428 		}
1429 		if (syncache_respond(sc, sch, 1, m) == 0) {
1430 			sc->sc_rxmits = 0;
1431 			syncache_timeout(sc, sch, 1);
1432 			TCPSTAT_INC(tcps_sndacks);
1433 			TCPSTAT_INC(tcps_sndtotal);
1434 		}
1435 		SCH_UNLOCK(sch);
1436 		goto done;
1437 	}
1438 
1439 	if (tfo_cookie_valid) {
1440 		bzero(&scs, sizeof(scs));
1441 		sc = &scs;
1442 		goto skip_alloc;
1443 	}
1444 
1445 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1446 	if (sc == NULL) {
1447 		/*
1448 		 * The zone allocator couldn't provide more entries.
1449 		 * Treat this as if the cache was full; drop the oldest
1450 		 * entry and insert the new one.
1451 		 */
1452 		TCPSTAT_INC(tcps_sc_zonefail);
1453 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1454 			sch->sch_last_overflow = time_uptime;
1455 			syncache_drop(sc, sch);
1456 		}
1457 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1458 		if (sc == NULL) {
1459 			if (V_tcp_syncookies) {
1460 				bzero(&scs, sizeof(scs));
1461 				sc = &scs;
1462 			} else {
1463 				SCH_UNLOCK(sch);
1464 				if (ipopts)
1465 					(void) m_free(ipopts);
1466 				goto done;
1467 			}
1468 		}
1469 	}
1470 
1471 skip_alloc:
1472 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1473 		sc->sc_tfo_cookie = &tfo_response_cookie;
1474 
1475 	/*
1476 	 * Fill in the syncache values.
1477 	 */
1478 #ifdef MAC
1479 	sc->sc_label = maclabel;
1480 #endif
1481 	sc->sc_cred = cred;
1482 	cred = NULL;
1483 	sc->sc_ipopts = ipopts;
1484 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1485 #ifdef INET6
1486 	if (!(inc->inc_flags & INC_ISIPV6))
1487 #endif
1488 	{
1489 		sc->sc_ip_tos = ip_tos;
1490 		sc->sc_ip_ttl = ip_ttl;
1491 	}
1492 #ifdef TCP_OFFLOAD
1493 	sc->sc_tod = tod;
1494 	sc->sc_todctx = todctx;
1495 #endif
1496 	sc->sc_irs = th->th_seq;
1497 	sc->sc_iss = arc4random();
1498 	sc->sc_flags = 0;
1499 	sc->sc_flowlabel = 0;
1500 
1501 	/*
1502 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1503 	 * win was derived from socket earlier in the function.
1504 	 */
1505 	win = imax(win, 0);
1506 	win = imin(win, TCP_MAXWIN);
1507 	sc->sc_wnd = win;
1508 
1509 	if (V_tcp_do_rfc1323) {
1510 		/*
1511 		 * A timestamp received in a SYN makes
1512 		 * it ok to send timestamp requests and replies.
1513 		 */
1514 		if (to->to_flags & TOF_TS) {
1515 			sc->sc_tsreflect = to->to_tsval;
1516 			sc->sc_ts = tcp_ts_getticks();
1517 			sc->sc_flags |= SCF_TIMESTAMP;
1518 		}
1519 		if (to->to_flags & TOF_SCALE) {
1520 			int wscale = 0;
1521 
1522 			/*
1523 			 * Pick the smallest possible scaling factor that
1524 			 * will still allow us to scale up to sb_max, aka
1525 			 * kern.ipc.maxsockbuf.
1526 			 *
1527 			 * We do this because there are broken firewalls that
1528 			 * will corrupt the window scale option, leading to
1529 			 * the other endpoint believing that our advertised
1530 			 * window is unscaled.  At scale factors larger than
1531 			 * 5 the unscaled window will drop below 1500 bytes,
1532 			 * leading to serious problems when traversing these
1533 			 * broken firewalls.
1534 			 *
1535 			 * With the default maxsockbuf of 256K, a scale factor
1536 			 * of 3 will be chosen by this algorithm.  Those who
1537 			 * choose a larger maxsockbuf should watch out
1538 			 * for the compatibility problems mentioned above.
1539 			 *
1540 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1541 			 * or <SYN,ACK>) segment itself is never scaled.
1542 			 */
1543 			while (wscale < TCP_MAX_WINSHIFT &&
1544 			    (TCP_MAXWIN << wscale) < sb_max)
1545 				wscale++;
1546 			sc->sc_requested_r_scale = wscale;
1547 			sc->sc_requested_s_scale = to->to_wscale;
1548 			sc->sc_flags |= SCF_WINSCALE;
1549 		}
1550 	}
1551 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1552 	/*
1553 	 * If listening socket requested TCP digests, flag this in the
1554 	 * syncache so that syncache_respond() will do the right thing
1555 	 * with the SYN+ACK.
1556 	 */
1557 	if (ltflags & TF_SIGNATURE)
1558 		sc->sc_flags |= SCF_SIGNATURE;
1559 #endif	/* TCP_SIGNATURE */
1560 	if (to->to_flags & TOF_SACKPERM)
1561 		sc->sc_flags |= SCF_SACK;
1562 	if (to->to_flags & TOF_MSS)
1563 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1564 	if (ltflags & TF_NOOPT)
1565 		sc->sc_flags |= SCF_NOOPT;
1566 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1567 		sc->sc_flags |= SCF_ECN;
1568 
1569 	if (V_tcp_syncookies)
1570 		sc->sc_iss = syncookie_generate(sch, sc);
1571 #ifdef INET6
1572 	if (autoflowlabel) {
1573 		if (V_tcp_syncookies)
1574 			sc->sc_flowlabel = sc->sc_iss;
1575 		else
1576 			sc->sc_flowlabel = ip6_randomflowlabel();
1577 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1578 	}
1579 #endif
1580 	SCH_UNLOCK(sch);
1581 
1582 	if (tfo_cookie_valid) {
1583 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1584 		/* INP_WUNLOCK(inp) will be performed by the caller */
1585 		rv = 1;
1586 		goto tfo_expanded;
1587 	}
1588 
1589 	/*
1590 	 * Do a standard 3-way handshake.
1591 	 */
1592 	if (syncache_respond(sc, sch, 0, m) == 0) {
1593 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1594 			syncache_free(sc);
1595 		else if (sc != &scs)
1596 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1597 		TCPSTAT_INC(tcps_sndacks);
1598 		TCPSTAT_INC(tcps_sndtotal);
1599 	} else {
1600 		if (sc != &scs)
1601 			syncache_free(sc);
1602 		TCPSTAT_INC(tcps_sc_dropped);
1603 	}
1604 
1605 done:
1606 	if (m) {
1607 		*lsop = NULL;
1608 		m_freem(m);
1609 	}
1610 	/*
1611 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1612 	 * result in a new socket was processed and the associated pending
1613 	 * counter has not yet been decremented.  All such TFO processing paths
1614 	 * transit this point.
1615 	 */
1616 	if (tfo_pending != NULL)
1617 		tcp_fastopen_decrement_counter(tfo_pending);
1618 
1619 tfo_expanded:
1620 	if (cred != NULL)
1621 		crfree(cred);
1622 #ifdef MAC
1623 	if (sc == &scs)
1624 		mac_syncache_destroy(&maclabel);
1625 #endif
1626 	return (rv);
1627 }
1628 
1629 /*
1630  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1631  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1632  */
1633 static int
1634 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1635     const struct mbuf *m0)
1636 {
1637 	struct ip *ip = NULL;
1638 	struct mbuf *m;
1639 	struct tcphdr *th = NULL;
1640 	int optlen, error = 0;	/* Make compiler happy */
1641 	u_int16_t hlen, tlen, mssopt;
1642 	struct tcpopt to;
1643 #ifdef INET6
1644 	struct ip6_hdr *ip6 = NULL;
1645 #endif
1646 	hlen =
1647 #ifdef INET6
1648 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1649 #endif
1650 		sizeof(struct ip);
1651 	tlen = hlen + sizeof(struct tcphdr);
1652 
1653 	/* Determine MSS we advertize to other end of connection. */
1654 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1655 
1656 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1657 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1658 	    ("syncache: mbuf too small"));
1659 
1660 	/* Create the IP+TCP header from scratch. */
1661 	m = m_gethdr(M_NOWAIT, MT_DATA);
1662 	if (m == NULL)
1663 		return (ENOBUFS);
1664 #ifdef MAC
1665 	mac_syncache_create_mbuf(sc->sc_label, m);
1666 #endif
1667 	m->m_data += max_linkhdr;
1668 	m->m_len = tlen;
1669 	m->m_pkthdr.len = tlen;
1670 	m->m_pkthdr.rcvif = NULL;
1671 
1672 #ifdef INET6
1673 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1674 		ip6 = mtod(m, struct ip6_hdr *);
1675 		ip6->ip6_vfc = IPV6_VERSION;
1676 		ip6->ip6_nxt = IPPROTO_TCP;
1677 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1678 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1679 		ip6->ip6_plen = htons(tlen - hlen);
1680 		/* ip6_hlim is set after checksum */
1681 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1682 		ip6->ip6_flow |= sc->sc_flowlabel;
1683 
1684 		th = (struct tcphdr *)(ip6 + 1);
1685 	}
1686 #endif
1687 #if defined(INET6) && defined(INET)
1688 	else
1689 #endif
1690 #ifdef INET
1691 	{
1692 		ip = mtod(m, struct ip *);
1693 		ip->ip_v = IPVERSION;
1694 		ip->ip_hl = sizeof(struct ip) >> 2;
1695 		ip->ip_len = htons(tlen);
1696 		ip->ip_id = 0;
1697 		ip->ip_off = 0;
1698 		ip->ip_sum = 0;
1699 		ip->ip_p = IPPROTO_TCP;
1700 		ip->ip_src = sc->sc_inc.inc_laddr;
1701 		ip->ip_dst = sc->sc_inc.inc_faddr;
1702 		ip->ip_ttl = sc->sc_ip_ttl;
1703 		ip->ip_tos = sc->sc_ip_tos;
1704 
1705 		/*
1706 		 * See if we should do MTU discovery.  Route lookups are
1707 		 * expensive, so we will only unset the DF bit if:
1708 		 *
1709 		 *	1) path_mtu_discovery is disabled
1710 		 *	2) the SCF_UNREACH flag has been set
1711 		 */
1712 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1713 		       ip->ip_off |= htons(IP_DF);
1714 
1715 		th = (struct tcphdr *)(ip + 1);
1716 	}
1717 #endif /* INET */
1718 	th->th_sport = sc->sc_inc.inc_lport;
1719 	th->th_dport = sc->sc_inc.inc_fport;
1720 
1721 	th->th_seq = htonl(sc->sc_iss);
1722 	th->th_ack = htonl(sc->sc_irs + 1);
1723 	th->th_off = sizeof(struct tcphdr) >> 2;
1724 	th->th_x2 = 0;
1725 	th->th_flags = TH_SYN|TH_ACK;
1726 	th->th_win = htons(sc->sc_wnd);
1727 	th->th_urp = 0;
1728 
1729 	if (sc->sc_flags & SCF_ECN) {
1730 		th->th_flags |= TH_ECE;
1731 		TCPSTAT_INC(tcps_ecn_shs);
1732 	}
1733 
1734 	/* Tack on the TCP options. */
1735 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1736 		to.to_flags = 0;
1737 
1738 		to.to_mss = mssopt;
1739 		to.to_flags = TOF_MSS;
1740 		if (sc->sc_flags & SCF_WINSCALE) {
1741 			to.to_wscale = sc->sc_requested_r_scale;
1742 			to.to_flags |= TOF_SCALE;
1743 		}
1744 		if (sc->sc_flags & SCF_TIMESTAMP) {
1745 			/* Virgin timestamp or TCP cookie enhanced one. */
1746 			to.to_tsval = sc->sc_ts;
1747 			to.to_tsecr = sc->sc_tsreflect;
1748 			to.to_flags |= TOF_TS;
1749 		}
1750 		if (sc->sc_flags & SCF_SACK)
1751 			to.to_flags |= TOF_SACKPERM;
1752 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1753 		if (sc->sc_flags & SCF_SIGNATURE)
1754 			to.to_flags |= TOF_SIGNATURE;
1755 #endif
1756 		if (sc->sc_tfo_cookie) {
1757 			to.to_flags |= TOF_FASTOPEN;
1758 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1759 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1760 			/* don't send cookie again when retransmitting response */
1761 			sc->sc_tfo_cookie = NULL;
1762 		}
1763 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1764 
1765 		/* Adjust headers by option size. */
1766 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1767 		m->m_len += optlen;
1768 		m->m_pkthdr.len += optlen;
1769 #ifdef INET6
1770 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1771 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1772 		else
1773 #endif
1774 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1775 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1776 		if (sc->sc_flags & SCF_SIGNATURE) {
1777 			KASSERT(to.to_flags & TOF_SIGNATURE,
1778 			    ("tcp_addoptions() didn't set tcp_signature"));
1779 
1780 			/* NOTE: to.to_signature is inside of mbuf */
1781 			if (!TCPMD5_ENABLED() ||
1782 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1783 				m_freem(m);
1784 				return (EACCES);
1785 			}
1786 		}
1787 #endif
1788 	} else
1789 		optlen = 0;
1790 
1791 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1792 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1793 	/*
1794 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1795 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1796 	 * to SYN|ACK due to lack of inp here.
1797 	 */
1798 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1799 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1800 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1801 	}
1802 #ifdef INET6
1803 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1804 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1805 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1806 		    IPPROTO_TCP, 0);
1807 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1808 #ifdef TCP_OFFLOAD
1809 		if (ADDED_BY_TOE(sc)) {
1810 			struct toedev *tod = sc->sc_tod;
1811 
1812 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1813 
1814 			return (error);
1815 		}
1816 #endif
1817 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1818 	}
1819 #endif
1820 #if defined(INET6) && defined(INET)
1821 	else
1822 #endif
1823 #ifdef INET
1824 	{
1825 		m->m_pkthdr.csum_flags = CSUM_TCP;
1826 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1827 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1828 #ifdef TCP_OFFLOAD
1829 		if (ADDED_BY_TOE(sc)) {
1830 			struct toedev *tod = sc->sc_tod;
1831 
1832 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1833 
1834 			return (error);
1835 		}
1836 #endif
1837 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1838 	}
1839 #endif
1840 	return (error);
1841 }
1842 
1843 /*
1844  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1845  * that exceed the capacity of the syncache by avoiding the storage of any
1846  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1847  * attacks where the attacker does not have access to our responses.
1848  *
1849  * Syncookies encode and include all necessary information about the
1850  * connection setup within the SYN|ACK that we send back.  That way we
1851  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1852  * (if ever).  Normally the syncache and syncookies are running in parallel
1853  * with the latter taking over when the former is exhausted.  When matching
1854  * syncache entry is found the syncookie is ignored.
1855  *
1856  * The only reliable information persisting the 3WHS is our initial sequence
1857  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1858  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1859  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1860  * returns and signifies a legitimate connection if it matches the ACK.
1861  *
1862  * The available space of 32 bits to store the hash and to encode the SYN
1863  * option information is very tight and we should have at least 24 bits for
1864  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1865  *
1866  * SYN option information we have to encode to fully restore a connection:
1867  * MSS: is imporant to chose an optimal segment size to avoid IP level
1868  *   fragmentation along the path.  The common MSS values can be encoded
1869  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1870  *   in the table leading to a slight increase in packetization overhead.
1871  * WSCALE: is necessary to allow large windows to be used for high delay-
1872  *   bandwidth product links.  Not scaling the window when it was initially
1873  *   negotiated is bad for performance as lack of scaling further decreases
1874  *   the apparent available send window.  We only need to encode the WSCALE
1875  *   we received from the remote end.  Our end can be recalculated at any
1876  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1877  *   Uncommon values are captured by the next lower value in the table
1878  *   making us under-estimate the available window size halving our
1879  *   theoretically possible maximum throughput for that connection.
1880  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1881  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1882  *   that are included in all segments on a connection.  We enable them when
1883  *   the ACK has them.
1884  *
1885  * Security of syncookies and attack vectors:
1886  *
1887  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1888  * together with the gloabl secret to make it unique per connection attempt.
1889  * Thus any change of any of those parameters results in a different MAC output
1890  * in an unpredictable way unless a collision is encountered.  24 bits of the
1891  * MAC are embedded into the ISS.
1892  *
1893  * To prevent replay attacks two rotating global secrets are updated with a
1894  * new random value every 15 seconds.  The life-time of a syncookie is thus
1895  * 15-30 seconds.
1896  *
1897  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1898  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1899  * text attack by varying and testing the all parameters under his control.
1900  * The strength depends on the size and randomness of the secret, and the
1901  * cryptographic security of the MAC function.  Due to the constant updating
1902  * of the secret the attacker has at most 29.999 seconds to find the secret
1903  * and launch spoofed connections.  After that he has to start all over again.
1904  *
1905  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1906  * size an average of 4,823 attempts are required for a 50% chance of success
1907  * to spoof a single syncookie (birthday collision paradox).  However the
1908  * attacker is blind and doesn't know if one of his attempts succeeded unless
1909  * he has a side channel to interfere success from.  A single connection setup
1910  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1911  * This many attempts are required for each one blind spoofed connection.  For
1912  * every additional spoofed connection he has to launch another N attempts.
1913  * Thus for a sustained rate 100 spoofed connections per second approximately
1914  * 1,800,000 packets per second would have to be sent.
1915  *
1916  * NB: The MAC function should be fast so that it doesn't become a CPU
1917  * exhaustion attack vector itself.
1918  *
1919  * References:
1920  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1921  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1922  *   http://cr.yp.to/syncookies.html    (overview)
1923  *   http://cr.yp.to/syncookies/archive (details)
1924  *
1925  *
1926  * Schematic construction of a syncookie enabled Initial Sequence Number:
1927  *  0        1         2         3
1928  *  12345678901234567890123456789012
1929  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1930  *
1931  *  x 24 MAC (truncated)
1932  *  W  3 Send Window Scale index
1933  *  M  3 MSS index
1934  *  S  1 SACK permitted
1935  *  P  1 Odd/even secret
1936  */
1937 
1938 /*
1939  * Distribution and probability of certain MSS values.  Those in between are
1940  * rounded down to the next lower one.
1941  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1942  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1943  */
1944 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1945 
1946 /*
1947  * Distribution and probability of certain WSCALE values.  We have to map the
1948  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1949  * bits based on prevalence of certain values.  Where we don't have an exact
1950  * match for are rounded down to the next lower one letting us under-estimate
1951  * the true available window.  At the moment this would happen only for the
1952  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1953  * and window size).  The absence of the WSCALE option (no scaling in either
1954  * direction) is encoded with index zero.
1955  * [WSCALE values histograms, Allman, 2012]
1956  *                            X 10 10 35  5  6 14 10%   by host
1957  *                            X 11  4  5  5 18 49  3%   by connections
1958  */
1959 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1960 
1961 /*
1962  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1963  * and good cryptographic properties.
1964  */
1965 static uint32_t
1966 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1967     uint8_t *secbits, uintptr_t secmod)
1968 {
1969 	SIPHASH_CTX ctx;
1970 	uint32_t siphash[2];
1971 
1972 	SipHash24_Init(&ctx);
1973 	SipHash_SetKey(&ctx, secbits);
1974 	switch (inc->inc_flags & INC_ISIPV6) {
1975 #ifdef INET
1976 	case 0:
1977 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1978 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1979 		break;
1980 #endif
1981 #ifdef INET6
1982 	case INC_ISIPV6:
1983 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1984 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1985 		break;
1986 #endif
1987 	}
1988 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1989 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1990 	SipHash_Update(&ctx, &irs, sizeof(irs));
1991 	SipHash_Update(&ctx, &flags, sizeof(flags));
1992 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1993 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1994 
1995 	return (siphash[0] ^ siphash[1]);
1996 }
1997 
1998 static tcp_seq
1999 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2000 {
2001 	u_int i, secbit, wscale;
2002 	uint32_t iss, hash;
2003 	uint8_t *secbits;
2004 	union syncookie cookie;
2005 
2006 	SCH_LOCK_ASSERT(sch);
2007 
2008 	cookie.cookie = 0;
2009 
2010 	/* Map our computed MSS into the 3-bit index. */
2011 	for (i = nitems(tcp_sc_msstab) - 1;
2012 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2013 	     i--)
2014 		;
2015 	cookie.flags.mss_idx = i;
2016 
2017 	/*
2018 	 * Map the send window scale into the 3-bit index but only if
2019 	 * the wscale option was received.
2020 	 */
2021 	if (sc->sc_flags & SCF_WINSCALE) {
2022 		wscale = sc->sc_requested_s_scale;
2023 		for (i = nitems(tcp_sc_wstab) - 1;
2024 		    tcp_sc_wstab[i] > wscale && i > 0;
2025 		     i--)
2026 			;
2027 		cookie.flags.wscale_idx = i;
2028 	}
2029 
2030 	/* Can we do SACK? */
2031 	if (sc->sc_flags & SCF_SACK)
2032 		cookie.flags.sack_ok = 1;
2033 
2034 	/* Which of the two secrets to use. */
2035 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2036 	cookie.flags.odd_even = secbit;
2037 
2038 	secbits = sch->sch_sc->secret.key[secbit];
2039 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2040 	    (uintptr_t)sch);
2041 
2042 	/*
2043 	 * Put the flags into the hash and XOR them to get better ISS number
2044 	 * variance.  This doesn't enhance the cryptographic strength and is
2045 	 * done to prevent the 8 cookie bits from showing up directly on the
2046 	 * wire.
2047 	 */
2048 	iss = hash & ~0xff;
2049 	iss |= cookie.cookie ^ (hash >> 24);
2050 
2051 	/* Randomize the timestamp. */
2052 	if (sc->sc_flags & SCF_TIMESTAMP) {
2053 		sc->sc_ts = arc4random();
2054 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
2055 	}
2056 
2057 	TCPSTAT_INC(tcps_sc_sendcookie);
2058 	return (iss);
2059 }
2060 
2061 static struct syncache *
2062 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2063     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2064     struct socket *lso)
2065 {
2066 	uint32_t hash;
2067 	uint8_t *secbits;
2068 	tcp_seq ack, seq;
2069 	int wnd, wscale = 0;
2070 	union syncookie cookie;
2071 
2072 	SCH_LOCK_ASSERT(sch);
2073 
2074 	/*
2075 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2076 	 * advances.
2077 	 */
2078 	ack = th->th_ack - 1;
2079 	seq = th->th_seq - 1;
2080 
2081 	/*
2082 	 * Unpack the flags containing enough information to restore the
2083 	 * connection.
2084 	 */
2085 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2086 
2087 	/* Which of the two secrets to use. */
2088 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2089 
2090 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2091 
2092 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2093 	if ((ack & ~0xff) != (hash & ~0xff))
2094 		return (NULL);
2095 
2096 	/* Fill in the syncache values. */
2097 	sc->sc_flags = 0;
2098 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2099 	sc->sc_ipopts = NULL;
2100 
2101 	sc->sc_irs = seq;
2102 	sc->sc_iss = ack;
2103 
2104 	switch (inc->inc_flags & INC_ISIPV6) {
2105 #ifdef INET
2106 	case 0:
2107 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2108 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2109 		break;
2110 #endif
2111 #ifdef INET6
2112 	case INC_ISIPV6:
2113 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2114 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2115 		break;
2116 #endif
2117 	}
2118 
2119 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2120 
2121 	/* We can simply recompute receive window scale we sent earlier. */
2122 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2123 		wscale++;
2124 
2125 	/* Only use wscale if it was enabled in the orignal SYN. */
2126 	if (cookie.flags.wscale_idx > 0) {
2127 		sc->sc_requested_r_scale = wscale;
2128 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2129 		sc->sc_flags |= SCF_WINSCALE;
2130 	}
2131 
2132 	wnd = lso->sol_sbrcv_hiwat;
2133 	wnd = imax(wnd, 0);
2134 	wnd = imin(wnd, TCP_MAXWIN);
2135 	sc->sc_wnd = wnd;
2136 
2137 	if (cookie.flags.sack_ok)
2138 		sc->sc_flags |= SCF_SACK;
2139 
2140 	if (to->to_flags & TOF_TS) {
2141 		sc->sc_flags |= SCF_TIMESTAMP;
2142 		sc->sc_tsreflect = to->to_tsval;
2143 		sc->sc_ts = to->to_tsecr;
2144 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2145 	}
2146 
2147 	if (to->to_flags & TOF_SIGNATURE)
2148 		sc->sc_flags |= SCF_SIGNATURE;
2149 
2150 	sc->sc_rxmits = 0;
2151 
2152 	TCPSTAT_INC(tcps_sc_recvcookie);
2153 	return (sc);
2154 }
2155 
2156 #ifdef INVARIANTS
2157 static int
2158 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2159     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2160     struct socket *lso)
2161 {
2162 	struct syncache scs, *scx;
2163 	char *s;
2164 
2165 	bzero(&scs, sizeof(scs));
2166 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2167 
2168 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2169 		return (0);
2170 
2171 	if (scx != NULL) {
2172 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2173 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2174 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2175 
2176 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2177 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2178 			    s, __func__, sc->sc_requested_r_scale,
2179 			    scx->sc_requested_r_scale);
2180 
2181 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2182 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2183 			    s, __func__, sc->sc_requested_s_scale,
2184 			    scx->sc_requested_s_scale);
2185 
2186 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2187 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2188 	}
2189 
2190 	if (s != NULL)
2191 		free(s, M_TCPLOG);
2192 	return (0);
2193 }
2194 #endif /* INVARIANTS */
2195 
2196 static void
2197 syncookie_reseed(void *arg)
2198 {
2199 	struct tcp_syncache *sc = arg;
2200 	uint8_t *secbits;
2201 	int secbit;
2202 
2203 	/*
2204 	 * Reseeding the secret doesn't have to be protected by a lock.
2205 	 * It only must be ensured that the new random values are visible
2206 	 * to all CPUs in a SMP environment.  The atomic with release
2207 	 * semantics ensures that.
2208 	 */
2209 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2210 	secbits = sc->secret.key[secbit];
2211 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2212 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2213 
2214 	/* Reschedule ourself. */
2215 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2216 }
2217 
2218 /*
2219  * Exports the syncache entries to userland so that netstat can display
2220  * them alongside the other sockets.  This function is intended to be
2221  * called only from tcp_pcblist.
2222  *
2223  * Due to concurrency on an active system, the number of pcbs exported
2224  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2225  * amount of space the caller allocated for this function to use.
2226  */
2227 int
2228 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2229 {
2230 	struct xtcpcb xt;
2231 	struct syncache *sc;
2232 	struct syncache_head *sch;
2233 	int count, error, i;
2234 
2235 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2236 		sch = &V_tcp_syncache.hashbase[i];
2237 		SCH_LOCK(sch);
2238 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2239 			if (count >= max_pcbs) {
2240 				SCH_UNLOCK(sch);
2241 				goto exit;
2242 			}
2243 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2244 				continue;
2245 			bzero(&xt, sizeof(xt));
2246 			xt.xt_len = sizeof(xt);
2247 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2248 				xt.xt_inp.inp_vflag = INP_IPV6;
2249 			else
2250 				xt.xt_inp.inp_vflag = INP_IPV4;
2251 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2252 			    sizeof (struct in_conninfo));
2253 			xt.t_state = TCPS_SYN_RECEIVED;
2254 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2255 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2256 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2257 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2258 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2259 			if (error) {
2260 				SCH_UNLOCK(sch);
2261 				goto exit;
2262 			}
2263 			count++;
2264 		}
2265 		SCH_UNLOCK(sch);
2266 	}
2267 exit:
2268 	*pcbs_exported = count;
2269 	return error;
2270 }
2271