xref: /freebsd/sys/netinet/tcp_syncache.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/hash.h>
44 #include <sys/refcount.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/limits.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/proc.h>		/* for proc0 declaration */
53 #include <sys/random.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/ucred.h>
58 
59 #include <sys/md5.h>
60 #include <crypto/siphash/siphash.h>
61 
62 #include <vm/uma.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/route.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_var.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_options.h>
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet6/nd6.h>
80 #include <netinet6/ip6_var.h>
81 #include <netinet6/in6_pcb.h>
82 #endif
83 #include <netinet/tcp.h>
84 #ifdef TCP_RFC7413
85 #include <netinet/tcp_fastopen.h>
86 #endif
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 static VNET_DEFINE(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
133 		    const struct mbuf *);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	 syncookie_reseed(void *);
148 #ifdef INVARIANTS
149 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
150 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
151 		    struct socket *lso);
152 #endif
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
157  * the odds are that the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		3
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
166 #define	V_tcp_syncache			VNET(tcp_syncache)
167 
168 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
169     "TCP SYN cache");
170 
171 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
172     &VNET_NAME(tcp_syncache.bucket_limit), 0,
173     "Per-bucket hash limit for syncache");
174 
175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
176     &VNET_NAME(tcp_syncache.cache_limit), 0,
177     "Overall entry limit for syncache");
178 
179 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
180     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.hashsize), 0,
184     "Size of TCP syncache hashtable");
185 
186 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
188     "Limit on SYN/ACK retransmissions");
189 
190 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
191 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
192     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
193     "Send reset on socket allocation failure");
194 
195 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
196 
197 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
198 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
199 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
200 
201 /*
202  * Requires the syncache entry to be already removed from the bucket list.
203  */
204 static void
205 syncache_free(struct syncache *sc)
206 {
207 
208 	if (sc->sc_ipopts)
209 		(void) m_free(sc->sc_ipopts);
210 	if (sc->sc_cred)
211 		crfree(sc->sc_cred);
212 #ifdef MAC
213 	mac_syncache_destroy(&sc->sc_label);
214 #endif
215 
216 	uma_zfree(V_tcp_syncache.zone, sc);
217 }
218 
219 void
220 syncache_init(void)
221 {
222 	int i;
223 
224 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
225 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
226 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
227 	V_tcp_syncache.hash_secret = arc4random();
228 
229 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
230 	    &V_tcp_syncache.hashsize);
231 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
232 	    &V_tcp_syncache.bucket_limit);
233 	if (!powerof2(V_tcp_syncache.hashsize) ||
234 	    V_tcp_syncache.hashsize == 0) {
235 		printf("WARNING: syncache hash size is not a power of 2.\n");
236 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
237 	}
238 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
239 
240 	/* Set limits. */
241 	V_tcp_syncache.cache_limit =
242 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
243 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
244 	    &V_tcp_syncache.cache_limit);
245 
246 	/* Allocate the hash table. */
247 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
248 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
249 
250 #ifdef VIMAGE
251 	V_tcp_syncache.vnet = curvnet;
252 #endif
253 
254 	/* Initialize the hash buckets. */
255 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
256 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
257 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
258 			 NULL, MTX_DEF);
259 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
260 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
261 		V_tcp_syncache.hashbase[i].sch_length = 0;
262 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
263 		V_tcp_syncache.hashbase[i].sch_last_overflow =
264 		    -(SYNCOOKIE_LIFETIME + 1);
265 	}
266 
267 	/* Create the syncache entry zone. */
268 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
270 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
271 	    V_tcp_syncache.cache_limit);
272 
273 	/* Start the SYN cookie reseeder callout. */
274 	callout_init(&V_tcp_syncache.secret.reseed, 1);
275 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
276 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
277 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
278 	    syncookie_reseed, &V_tcp_syncache);
279 }
280 
281 #ifdef VIMAGE
282 void
283 syncache_destroy(void)
284 {
285 	struct syncache_head *sch;
286 	struct syncache *sc, *nsc;
287 	int i;
288 
289 	/*
290 	 * Stop the re-seed timer before freeing resources.  No need to
291 	 * possibly schedule it another time.
292 	 */
293 	callout_drain(&V_tcp_syncache.secret.reseed);
294 
295 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
296 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
297 
298 		sch = &V_tcp_syncache.hashbase[i];
299 		callout_drain(&sch->sch_timer);
300 
301 		SCH_LOCK(sch);
302 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
303 			syncache_drop(sc, sch);
304 		SCH_UNLOCK(sch);
305 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
306 		    ("%s: sch->sch_bucket not empty", __func__));
307 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
308 		    __func__, sch->sch_length));
309 		mtx_destroy(&sch->sch_mtx);
310 	}
311 
312 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
313 	    ("%s: cache_count not 0", __func__));
314 
315 	/* Free the allocated global resources. */
316 	uma_zdestroy(V_tcp_syncache.zone);
317 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
318 }
319 #endif
320 
321 /*
322  * Inserts a syncache entry into the specified bucket row.
323  * Locks and unlocks the syncache_head autonomously.
324  */
325 static void
326 syncache_insert(struct syncache *sc, struct syncache_head *sch)
327 {
328 	struct syncache *sc2;
329 
330 	SCH_LOCK(sch);
331 
332 	/*
333 	 * Make sure that we don't overflow the per-bucket limit.
334 	 * If the bucket is full, toss the oldest element.
335 	 */
336 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
337 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
338 			("sch->sch_length incorrect"));
339 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
340 		sch->sch_last_overflow = time_uptime;
341 		syncache_drop(sc2, sch);
342 		TCPSTAT_INC(tcps_sc_bucketoverflow);
343 	}
344 
345 	/* Put it into the bucket. */
346 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
347 	sch->sch_length++;
348 
349 #ifdef TCP_OFFLOAD
350 	if (ADDED_BY_TOE(sc)) {
351 		struct toedev *tod = sc->sc_tod;
352 
353 		tod->tod_syncache_added(tod, sc->sc_todctx);
354 	}
355 #endif
356 
357 	/* Reinitialize the bucket row's timer. */
358 	if (sch->sch_length == 1)
359 		sch->sch_nextc = ticks + INT_MAX;
360 	syncache_timeout(sc, sch, 1);
361 
362 	SCH_UNLOCK(sch);
363 
364 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
365 	TCPSTAT_INC(tcps_sc_added);
366 }
367 
368 /*
369  * Remove and free entry from syncache bucket row.
370  * Expects locked syncache head.
371  */
372 static void
373 syncache_drop(struct syncache *sc, struct syncache_head *sch)
374 {
375 
376 	SCH_LOCK_ASSERT(sch);
377 
378 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
379 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
380 	sch->sch_length--;
381 
382 #ifdef TCP_OFFLOAD
383 	if (ADDED_BY_TOE(sc)) {
384 		struct toedev *tod = sc->sc_tod;
385 
386 		tod->tod_syncache_removed(tod, sc->sc_todctx);
387 	}
388 #endif
389 
390 	syncache_free(sc);
391 }
392 
393 /*
394  * Engage/reengage time on bucket row.
395  */
396 static void
397 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
398 {
399 	sc->sc_rxttime = ticks +
400 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
401 	sc->sc_rxmits++;
402 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
403 		sch->sch_nextc = sc->sc_rxttime;
404 		if (docallout)
405 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
406 			    syncache_timer, (void *)sch);
407 	}
408 }
409 
410 /*
411  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
412  * If we have retransmitted an entry the maximum number of times, expire it.
413  * One separate timer for each bucket row.
414  */
415 static void
416 syncache_timer(void *xsch)
417 {
418 	struct syncache_head *sch = (struct syncache_head *)xsch;
419 	struct syncache *sc, *nsc;
420 	int tick = ticks;
421 	char *s;
422 
423 	CURVNET_SET(sch->sch_sc->vnet);
424 
425 	/* NB: syncache_head has already been locked by the callout. */
426 	SCH_LOCK_ASSERT(sch);
427 
428 	/*
429 	 * In the following cycle we may remove some entries and/or
430 	 * advance some timeouts, so re-initialize the bucket timer.
431 	 */
432 	sch->sch_nextc = tick + INT_MAX;
433 
434 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
435 		/*
436 		 * We do not check if the listen socket still exists
437 		 * and accept the case where the listen socket may be
438 		 * gone by the time we resend the SYN/ACK.  We do
439 		 * not expect this to happens often. If it does,
440 		 * then the RST will be sent by the time the remote
441 		 * host does the SYN/ACK->ACK.
442 		 */
443 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
444 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
445 				sch->sch_nextc = sc->sc_rxttime;
446 			continue;
447 		}
448 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
449 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
450 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
451 				    "giving up and removing syncache entry\n",
452 				    s, __func__);
453 				free(s, M_TCPLOG);
454 			}
455 			syncache_drop(sc, sch);
456 			TCPSTAT_INC(tcps_sc_stale);
457 			continue;
458 		}
459 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
460 			log(LOG_DEBUG, "%s; %s: Response timeout, "
461 			    "retransmitting (%u) SYN|ACK\n",
462 			    s, __func__, sc->sc_rxmits);
463 			free(s, M_TCPLOG);
464 		}
465 
466 		syncache_respond(sc, sch, 1, NULL);
467 		TCPSTAT_INC(tcps_sc_retransmitted);
468 		syncache_timeout(sc, sch, 0);
469 	}
470 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
471 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
472 			syncache_timer, (void *)(sch));
473 	CURVNET_RESTORE();
474 }
475 
476 /*
477  * Find an entry in the syncache.
478  * Returns always with locked syncache_head plus a matching entry or NULL.
479  */
480 static struct syncache *
481 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
482 {
483 	struct syncache *sc;
484 	struct syncache_head *sch;
485 	uint32_t hash;
486 
487 	/*
488 	 * The hash is built on foreign port + local port + foreign address.
489 	 * We rely on the fact that struct in_conninfo starts with 16 bits
490 	 * of foreign port, then 16 bits of local port then followed by 128
491 	 * bits of foreign address.  In case of IPv4 address, the first 3
492 	 * 32-bit words of the address always are zeroes.
493 	 */
494 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
495 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
496 
497 	sch = &V_tcp_syncache.hashbase[hash];
498 	*schp = sch;
499 	SCH_LOCK(sch);
500 
501 	/* Circle through bucket row to find matching entry. */
502 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
503 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
504 		    sizeof(struct in_endpoints)) == 0)
505 			break;
506 
507 	return (sc);	/* Always returns with locked sch. */
508 }
509 
510 /*
511  * This function is called when we get a RST for a
512  * non-existent connection, so that we can see if the
513  * connection is in the syn cache.  If it is, zap it.
514  */
515 void
516 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
517 {
518 	struct syncache *sc;
519 	struct syncache_head *sch;
520 	char *s = NULL;
521 
522 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
523 	SCH_LOCK_ASSERT(sch);
524 
525 	/*
526 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
527 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
528 	 */
529 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
530 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
531 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
532 			    "FIN flag set, segment ignored\n", s, __func__);
533 		TCPSTAT_INC(tcps_badrst);
534 		goto done;
535 	}
536 
537 	/*
538 	 * No corresponding connection was found in syncache.
539 	 * If syncookies are enabled and possibly exclusively
540 	 * used, or we are under memory pressure, a valid RST
541 	 * may not find a syncache entry.  In that case we're
542 	 * done and no SYN|ACK retransmissions will happen.
543 	 * Otherwise the RST was misdirected or spoofed.
544 	 */
545 	if (sc == NULL) {
546 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
547 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
548 			    "syncache entry (possibly syncookie only), "
549 			    "segment ignored\n", s, __func__);
550 		TCPSTAT_INC(tcps_badrst);
551 		goto done;
552 	}
553 
554 	/*
555 	 * If the RST bit is set, check the sequence number to see
556 	 * if this is a valid reset segment.
557 	 * RFC 793 page 37:
558 	 *   In all states except SYN-SENT, all reset (RST) segments
559 	 *   are validated by checking their SEQ-fields.  A reset is
560 	 *   valid if its sequence number is in the window.
561 	 *
562 	 *   The sequence number in the reset segment is normally an
563 	 *   echo of our outgoing acknowlegement numbers, but some hosts
564 	 *   send a reset with the sequence number at the rightmost edge
565 	 *   of our receive window, and we have to handle this case.
566 	 */
567 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
568 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
569 		syncache_drop(sc, sch);
570 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
571 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
572 			    "connection attempt aborted by remote endpoint\n",
573 			    s, __func__);
574 		TCPSTAT_INC(tcps_sc_reset);
575 	} else {
576 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
577 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
578 			    "IRS %u (+WND %u), segment ignored\n",
579 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
580 		TCPSTAT_INC(tcps_badrst);
581 	}
582 
583 done:
584 	if (s != NULL)
585 		free(s, M_TCPLOG);
586 	SCH_UNLOCK(sch);
587 }
588 
589 void
590 syncache_badack(struct in_conninfo *inc)
591 {
592 	struct syncache *sc;
593 	struct syncache_head *sch;
594 
595 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
596 	SCH_LOCK_ASSERT(sch);
597 	if (sc != NULL) {
598 		syncache_drop(sc, sch);
599 		TCPSTAT_INC(tcps_sc_badack);
600 	}
601 	SCH_UNLOCK(sch);
602 }
603 
604 void
605 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
606 {
607 	struct syncache *sc;
608 	struct syncache_head *sch;
609 
610 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
611 	SCH_LOCK_ASSERT(sch);
612 	if (sc == NULL)
613 		goto done;
614 
615 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
616 	if (ntohl(th->th_seq) != sc->sc_iss)
617 		goto done;
618 
619 	/*
620 	 * If we've rertransmitted 3 times and this is our second error,
621 	 * we remove the entry.  Otherwise, we allow it to continue on.
622 	 * This prevents us from incorrectly nuking an entry during a
623 	 * spurious network outage.
624 	 *
625 	 * See tcp_notify().
626 	 */
627 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
628 		sc->sc_flags |= SCF_UNREACH;
629 		goto done;
630 	}
631 	syncache_drop(sc, sch);
632 	TCPSTAT_INC(tcps_sc_unreach);
633 done:
634 	SCH_UNLOCK(sch);
635 }
636 
637 /*
638  * Build a new TCP socket structure from a syncache entry.
639  *
640  * On success return the newly created socket with its underlying inp locked.
641  */
642 static struct socket *
643 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
644 {
645 	struct tcp_function_block *blk;
646 	struct inpcb *inp = NULL;
647 	struct socket *so;
648 	struct tcpcb *tp;
649 	int error;
650 	char *s;
651 
652 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
653 
654 	/*
655 	 * Ok, create the full blown connection, and set things up
656 	 * as they would have been set up if we had created the
657 	 * connection when the SYN arrived.  If we can't create
658 	 * the connection, abort it.
659 	 */
660 	so = sonewconn(lso, 0);
661 	if (so == NULL) {
662 		/*
663 		 * Drop the connection; we will either send a RST or
664 		 * have the peer retransmit its SYN again after its
665 		 * RTO and try again.
666 		 */
667 		TCPSTAT_INC(tcps_listendrop);
668 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
669 			log(LOG_DEBUG, "%s; %s: Socket create failed "
670 			    "due to limits or memory shortage\n",
671 			    s, __func__);
672 			free(s, M_TCPLOG);
673 		}
674 		goto abort2;
675 	}
676 #ifdef MAC
677 	mac_socketpeer_set_from_mbuf(m, so);
678 #endif
679 
680 	inp = sotoinpcb(so);
681 	inp->inp_inc.inc_fibnum = so->so_fibnum;
682 	INP_WLOCK(inp);
683 	/*
684 	 * Exclusive pcbinfo lock is not required in syncache socket case even
685 	 * if two inpcb locks can be acquired simultaneously:
686 	 *  - the inpcb in LISTEN state,
687 	 *  - the newly created inp.
688 	 *
689 	 * In this case, an inp cannot be at same time in LISTEN state and
690 	 * just created by an accept() call.
691 	 */
692 	INP_HASH_WLOCK(&V_tcbinfo);
693 
694 	/* Insert new socket into PCB hash list. */
695 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
696 #ifdef INET6
697 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
698 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
699 	} else {
700 		inp->inp_vflag &= ~INP_IPV6;
701 		inp->inp_vflag |= INP_IPV4;
702 #endif
703 		inp->inp_laddr = sc->sc_inc.inc_laddr;
704 #ifdef INET6
705 	}
706 #endif
707 
708 	/*
709 	 * If there's an mbuf and it has a flowid, then let's initialise the
710 	 * inp with that particular flowid.
711 	 */
712 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
713 		inp->inp_flowid = m->m_pkthdr.flowid;
714 		inp->inp_flowtype = M_HASHTYPE_GET(m);
715 	}
716 
717 	/*
718 	 * Install in the reservation hash table for now, but don't yet
719 	 * install a connection group since the full 4-tuple isn't yet
720 	 * configured.
721 	 */
722 	inp->inp_lport = sc->sc_inc.inc_lport;
723 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
724 		/*
725 		 * Undo the assignments above if we failed to
726 		 * put the PCB on the hash lists.
727 		 */
728 #ifdef INET6
729 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
730 			inp->in6p_laddr = in6addr_any;
731 		else
732 #endif
733 			inp->inp_laddr.s_addr = INADDR_ANY;
734 		inp->inp_lport = 0;
735 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
736 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
737 			    "with error %i\n",
738 			    s, __func__, error);
739 			free(s, M_TCPLOG);
740 		}
741 		INP_HASH_WUNLOCK(&V_tcbinfo);
742 		goto abort;
743 	}
744 #ifdef INET6
745 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
746 		struct inpcb *oinp = sotoinpcb(lso);
747 		struct in6_addr laddr6;
748 		struct sockaddr_in6 sin6;
749 		/*
750 		 * Inherit socket options from the listening socket.
751 		 * Note that in6p_inputopts are not (and should not be)
752 		 * copied, since it stores previously received options and is
753 		 * used to detect if each new option is different than the
754 		 * previous one and hence should be passed to a user.
755 		 * If we copied in6p_inputopts, a user would not be able to
756 		 * receive options just after calling the accept system call.
757 		 */
758 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
759 		if (oinp->in6p_outputopts)
760 			inp->in6p_outputopts =
761 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
762 
763 		sin6.sin6_family = AF_INET6;
764 		sin6.sin6_len = sizeof(sin6);
765 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
766 		sin6.sin6_port = sc->sc_inc.inc_fport;
767 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
768 		laddr6 = inp->in6p_laddr;
769 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
770 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
771 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
772 		    thread0.td_ucred, m)) != 0) {
773 			inp->in6p_laddr = laddr6;
774 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
775 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
776 				    "with error %i\n",
777 				    s, __func__, error);
778 				free(s, M_TCPLOG);
779 			}
780 			INP_HASH_WUNLOCK(&V_tcbinfo);
781 			goto abort;
782 		}
783 		/* Override flowlabel from in6_pcbconnect. */
784 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
785 		inp->inp_flow |= sc->sc_flowlabel;
786 	}
787 #endif /* INET6 */
788 #if defined(INET) && defined(INET6)
789 	else
790 #endif
791 #ifdef INET
792 	{
793 		struct in_addr laddr;
794 		struct sockaddr_in sin;
795 
796 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
797 
798 		if (inp->inp_options == NULL) {
799 			inp->inp_options = sc->sc_ipopts;
800 			sc->sc_ipopts = NULL;
801 		}
802 
803 		sin.sin_family = AF_INET;
804 		sin.sin_len = sizeof(sin);
805 		sin.sin_addr = sc->sc_inc.inc_faddr;
806 		sin.sin_port = sc->sc_inc.inc_fport;
807 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
808 		laddr = inp->inp_laddr;
809 		if (inp->inp_laddr.s_addr == INADDR_ANY)
810 			inp->inp_laddr = sc->sc_inc.inc_laddr;
811 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
812 		    thread0.td_ucred, m)) != 0) {
813 			inp->inp_laddr = laddr;
814 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
815 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
816 				    "with error %i\n",
817 				    s, __func__, error);
818 				free(s, M_TCPLOG);
819 			}
820 			INP_HASH_WUNLOCK(&V_tcbinfo);
821 			goto abort;
822 		}
823 	}
824 #endif /* INET */
825 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
826 	/* Copy old policy into new socket's. */
827 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
828 		printf("syncache_socket: could not copy policy\n");
829 #endif
830 	INP_HASH_WUNLOCK(&V_tcbinfo);
831 	tp = intotcpcb(inp);
832 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
833 	tp->iss = sc->sc_iss;
834 	tp->irs = sc->sc_irs;
835 	tcp_rcvseqinit(tp);
836 	tcp_sendseqinit(tp);
837 	blk = sototcpcb(lso)->t_fb;
838 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
839 		/*
840 		 * Our parents t_fb was not the default,
841 		 * we need to release our ref on tp->t_fb and
842 		 * pickup one on the new entry.
843 		 */
844 		struct tcp_function_block *rblk;
845 
846 		rblk = find_and_ref_tcp_fb(blk);
847 		KASSERT(rblk != NULL,
848 		    ("cannot find blk %p out of syncache?", blk));
849 		if (tp->t_fb->tfb_tcp_fb_fini)
850 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
851 		refcount_release(&tp->t_fb->tfb_refcnt);
852 		tp->t_fb = rblk;
853 		if (tp->t_fb->tfb_tcp_fb_init) {
854 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
855 		}
856 	}
857 	tp->snd_wl1 = sc->sc_irs;
858 	tp->snd_max = tp->iss + 1;
859 	tp->snd_nxt = tp->iss + 1;
860 	tp->rcv_up = sc->sc_irs + 1;
861 	tp->rcv_wnd = sc->sc_wnd;
862 	tp->rcv_adv += tp->rcv_wnd;
863 	tp->last_ack_sent = tp->rcv_nxt;
864 
865 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
866 	if (sc->sc_flags & SCF_NOOPT)
867 		tp->t_flags |= TF_NOOPT;
868 	else {
869 		if (sc->sc_flags & SCF_WINSCALE) {
870 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
871 			tp->snd_scale = sc->sc_requested_s_scale;
872 			tp->request_r_scale = sc->sc_requested_r_scale;
873 		}
874 		if (sc->sc_flags & SCF_TIMESTAMP) {
875 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
876 			tp->ts_recent = sc->sc_tsreflect;
877 			tp->ts_recent_age = tcp_ts_getticks();
878 			tp->ts_offset = sc->sc_tsoff;
879 		}
880 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
881 		if (sc->sc_flags & SCF_SIGNATURE)
882 			tp->t_flags |= TF_SIGNATURE;
883 #endif
884 		if (sc->sc_flags & SCF_SACK)
885 			tp->t_flags |= TF_SACK_PERMIT;
886 	}
887 
888 	if (sc->sc_flags & SCF_ECN)
889 		tp->t_flags |= TF_ECN_PERMIT;
890 
891 	/*
892 	 * Set up MSS and get cached values from tcp_hostcache.
893 	 * This might overwrite some of the defaults we just set.
894 	 */
895 	tcp_mss(tp, sc->sc_peer_mss);
896 
897 	/*
898 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
899 	 * limited to one segment in cc_conn_init().
900 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
901 	 */
902 	if (sc->sc_rxmits > 1)
903 		tp->snd_cwnd = 1;
904 
905 #ifdef TCP_OFFLOAD
906 	/*
907 	 * Allow a TOE driver to install its hooks.  Note that we hold the
908 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
909 	 * new connection before the TOE driver has done its thing.
910 	 */
911 	if (ADDED_BY_TOE(sc)) {
912 		struct toedev *tod = sc->sc_tod;
913 
914 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
915 	}
916 #endif
917 	/*
918 	 * Copy and activate timers.
919 	 */
920 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
921 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
922 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
923 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
924 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
925 
926 	TCPSTAT_INC(tcps_accepts);
927 	return (so);
928 
929 abort:
930 	INP_WUNLOCK(inp);
931 abort2:
932 	if (so != NULL)
933 		soabort(so);
934 	return (NULL);
935 }
936 
937 /*
938  * This function gets called when we receive an ACK for a
939  * socket in the LISTEN state.  We look up the connection
940  * in the syncache, and if its there, we pull it out of
941  * the cache and turn it into a full-blown connection in
942  * the SYN-RECEIVED state.
943  *
944  * On syncache_socket() success the newly created socket
945  * has its underlying inp locked.
946  */
947 int
948 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
949     struct socket **lsop, struct mbuf *m)
950 {
951 	struct syncache *sc;
952 	struct syncache_head *sch;
953 	struct syncache scs;
954 	char *s;
955 
956 	/*
957 	 * Global TCP locks are held because we manipulate the PCB lists
958 	 * and create a new socket.
959 	 */
960 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
961 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
962 	    ("%s: can handle only ACK", __func__));
963 
964 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
965 	SCH_LOCK_ASSERT(sch);
966 
967 #ifdef INVARIANTS
968 	/*
969 	 * Test code for syncookies comparing the syncache stored
970 	 * values with the reconstructed values from the cookie.
971 	 */
972 	if (sc != NULL)
973 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
974 #endif
975 
976 	if (sc == NULL) {
977 		/*
978 		 * There is no syncache entry, so see if this ACK is
979 		 * a returning syncookie.  To do this, first:
980 		 *  A. Check if syncookies are used in case of syncache
981 		 *     overflows
982 		 *  B. See if this socket has had a syncache entry dropped in
983 		 *     the recent past. We don't want to accept a bogus
984 		 *     syncookie if we've never received a SYN or accept it
985 		 *     twice.
986 		 *  C. check that the syncookie is valid.  If it is, then
987 		 *     cobble up a fake syncache entry, and return.
988 		 */
989 		if (!V_tcp_syncookies) {
990 			SCH_UNLOCK(sch);
991 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
992 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
993 				    "segment rejected (syncookies disabled)\n",
994 				    s, __func__);
995 			goto failed;
996 		}
997 		if (!V_tcp_syncookiesonly &&
998 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
999 			SCH_UNLOCK(sch);
1000 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1001 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1002 				    "segment rejected (no syncache entry)\n",
1003 				    s, __func__);
1004 			goto failed;
1005 		}
1006 		bzero(&scs, sizeof(scs));
1007 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1008 		SCH_UNLOCK(sch);
1009 		if (sc == NULL) {
1010 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1011 				log(LOG_DEBUG, "%s; %s: Segment failed "
1012 				    "SYNCOOKIE authentication, segment rejected "
1013 				    "(probably spoofed)\n", s, __func__);
1014 			goto failed;
1015 		}
1016 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1017 		/* If received ACK has MD5 signature, check it. */
1018 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1019 		    (!TCPMD5_ENABLED() ||
1020 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1021 			/* Drop the ACK. */
1022 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1023 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1024 				    "MD5 signature doesn't match.\n",
1025 				    s, __func__);
1026 				free(s, M_TCPLOG);
1027 			}
1028 			TCPSTAT_INC(tcps_sig_err_sigopt);
1029 			return (-1); /* Do not send RST */
1030 		}
1031 #endif /* TCP_SIGNATURE */
1032 	} else {
1033 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1034 		/*
1035 		 * If listening socket requested TCP digests, check that
1036 		 * received ACK has signature and it is correct.
1037 		 * If not, drop the ACK and leave sc entry in th cache,
1038 		 * because SYN was received with correct signature.
1039 		 */
1040 		if (sc->sc_flags & SCF_SIGNATURE) {
1041 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1042 				/* No signature */
1043 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1044 				SCH_UNLOCK(sch);
1045 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1046 					log(LOG_DEBUG, "%s; %s: Segment "
1047 					    "rejected, MD5 signature wasn't "
1048 					    "provided.\n", s, __func__);
1049 					free(s, M_TCPLOG);
1050 				}
1051 				return (-1); /* Do not send RST */
1052 			}
1053 			if (!TCPMD5_ENABLED() ||
1054 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1055 				/* Doesn't match or no SA */
1056 				SCH_UNLOCK(sch);
1057 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1058 					log(LOG_DEBUG, "%s; %s: Segment "
1059 					    "rejected, MD5 signature doesn't "
1060 					    "match.\n", s, __func__);
1061 					free(s, M_TCPLOG);
1062 				}
1063 				return (-1); /* Do not send RST */
1064 			}
1065 		}
1066 #endif /* TCP_SIGNATURE */
1067 		/*
1068 		 * Pull out the entry to unlock the bucket row.
1069 		 *
1070 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1071 		 * tcp_state_change().  The tcpcb is not existent at this
1072 		 * moment.  A new one will be allocated via syncache_socket->
1073 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1074 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1075 		 */
1076 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1077 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1078 		sch->sch_length--;
1079 #ifdef TCP_OFFLOAD
1080 		if (ADDED_BY_TOE(sc)) {
1081 			struct toedev *tod = sc->sc_tod;
1082 
1083 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1084 		}
1085 #endif
1086 		SCH_UNLOCK(sch);
1087 	}
1088 
1089 	/*
1090 	 * Segment validation:
1091 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1092 	 */
1093 	if (th->th_ack != sc->sc_iss + 1) {
1094 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1095 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1096 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1097 		goto failed;
1098 	}
1099 
1100 	/*
1101 	 * The SEQ must fall in the window starting at the received
1102 	 * initial receive sequence number + 1 (the SYN).
1103 	 */
1104 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1105 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1106 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1107 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1108 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1109 		goto failed;
1110 	}
1111 
1112 	/*
1113 	 * If timestamps were not negotiated during SYN/ACK they
1114 	 * must not appear on any segment during this session.
1115 	 */
1116 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1117 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1118 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1119 			    "segment rejected\n", s, __func__);
1120 		goto failed;
1121 	}
1122 
1123 	/*
1124 	 * If timestamps were negotiated during SYN/ACK they should
1125 	 * appear on every segment during this session.
1126 	 * XXXAO: This is only informal as there have been unverified
1127 	 * reports of non-compliants stacks.
1128 	 */
1129 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1130 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1131 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1132 			    "no action\n", s, __func__);
1133 			free(s, M_TCPLOG);
1134 			s = NULL;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * If timestamps were negotiated, the reflected timestamp
1140 	 * must be equal to what we actually sent in the SYN|ACK
1141 	 * except in the case of 0. Some boxes are known for sending
1142 	 * broken timestamp replies during the 3whs (and potentially
1143 	 * during the connection also).
1144 	 *
1145 	 * Accept the final ACK of 3whs with reflected timestamp of 0
1146 	 * instead of sending a RST and deleting the syncache entry.
1147 	 */
1148 	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1149 	    to->to_tsecr != sc->sc_ts) {
1150 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1151 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1152 			    "segment rejected\n",
1153 			    s, __func__, to->to_tsecr, sc->sc_ts);
1154 		goto failed;
1155 	}
1156 
1157 	*lsop = syncache_socket(sc, *lsop, m);
1158 
1159 	if (*lsop == NULL)
1160 		TCPSTAT_INC(tcps_sc_aborted);
1161 	else
1162 		TCPSTAT_INC(tcps_sc_completed);
1163 
1164 /* how do we find the inp for the new socket? */
1165 	if (sc != &scs)
1166 		syncache_free(sc);
1167 	return (1);
1168 failed:
1169 	if (sc != NULL && sc != &scs)
1170 		syncache_free(sc);
1171 	if (s != NULL)
1172 		free(s, M_TCPLOG);
1173 	*lsop = NULL;
1174 	return (0);
1175 }
1176 
1177 #ifdef TCP_RFC7413
1178 static void
1179 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1180     uint64_t response_cookie)
1181 {
1182 	struct inpcb *inp;
1183 	struct tcpcb *tp;
1184 	unsigned int *pending_counter;
1185 
1186 	/*
1187 	 * Global TCP locks are held because we manipulate the PCB lists
1188 	 * and create a new socket.
1189 	 */
1190 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1191 
1192 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1193 	*lsop = syncache_socket(sc, *lsop, m);
1194 	if (*lsop == NULL) {
1195 		TCPSTAT_INC(tcps_sc_aborted);
1196 		atomic_subtract_int(pending_counter, 1);
1197 	} else {
1198 		inp = sotoinpcb(*lsop);
1199 		tp = intotcpcb(inp);
1200 		tp->t_flags |= TF_FASTOPEN;
1201 		tp->t_tfo_cookie = response_cookie;
1202 		tp->snd_max = tp->iss;
1203 		tp->snd_nxt = tp->iss;
1204 		tp->t_tfo_pending = pending_counter;
1205 		TCPSTAT_INC(tcps_sc_completed);
1206 	}
1207 }
1208 #endif /* TCP_RFC7413 */
1209 
1210 /*
1211  * Given a LISTEN socket and an inbound SYN request, add
1212  * this to the syn cache, and send back a segment:
1213  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1214  * to the source.
1215  *
1216  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1217  * Doing so would require that we hold onto the data and deliver it
1218  * to the application.  However, if we are the target of a SYN-flood
1219  * DoS attack, an attacker could send data which would eventually
1220  * consume all available buffer space if it were ACKed.  By not ACKing
1221  * the data, we avoid this DoS scenario.
1222  *
1223  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1224  * cookie is processed and a new socket is created.  In this case, any data
1225  * accompanying the SYN will be queued to the socket by tcp_input() and will
1226  * be ACKed either when the application sends response data or the delayed
1227  * ACK timer expires, whichever comes first.
1228  */
1229 int
1230 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1231     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1232     void *todctx)
1233 {
1234 	struct tcpcb *tp;
1235 	struct socket *so;
1236 	struct syncache *sc = NULL;
1237 	struct syncache_head *sch;
1238 	struct mbuf *ipopts = NULL;
1239 	u_int ltflags;
1240 	int win, ip_ttl, ip_tos;
1241 	char *s;
1242 	int rv = 0;
1243 #ifdef INET6
1244 	int autoflowlabel = 0;
1245 #endif
1246 #ifdef MAC
1247 	struct label *maclabel;
1248 #endif
1249 	struct syncache scs;
1250 	struct ucred *cred;
1251 #ifdef TCP_RFC7413
1252 	uint64_t tfo_response_cookie;
1253 	unsigned int *tfo_pending = NULL;
1254 	int tfo_cookie_valid = 0;
1255 	int tfo_response_cookie_valid = 0;
1256 #endif
1257 
1258 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1259 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1260 	    ("%s: unexpected tcp flags", __func__));
1261 
1262 	/*
1263 	 * Combine all so/tp operations very early to drop the INP lock as
1264 	 * soon as possible.
1265 	 */
1266 	so = *lsop;
1267 	tp = sototcpcb(so);
1268 	cred = crhold(so->so_cred);
1269 
1270 #ifdef INET6
1271 	if ((inc->inc_flags & INC_ISIPV6) &&
1272 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1273 		autoflowlabel = 1;
1274 #endif
1275 	ip_ttl = inp->inp_ip_ttl;
1276 	ip_tos = inp->inp_ip_tos;
1277 	win = sbspace(&so->so_rcv);
1278 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1279 
1280 #ifdef TCP_RFC7413
1281 	if (V_tcp_fastopen_enabled && IS_FASTOPEN(tp->t_flags) &&
1282 	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1283 		/*
1284 		 * Limit the number of pending TFO connections to
1285 		 * approximately half of the queue limit.  This prevents TFO
1286 		 * SYN floods from starving the service by filling the
1287 		 * listen queue with bogus TFO connections.
1288 		 */
1289 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1290 		    (so->so_qlimit / 2)) {
1291 			int result;
1292 
1293 			result = tcp_fastopen_check_cookie(inc,
1294 			    to->to_tfo_cookie, to->to_tfo_len,
1295 			    &tfo_response_cookie);
1296 			tfo_cookie_valid = (result > 0);
1297 			tfo_response_cookie_valid = (result >= 0);
1298 		}
1299 
1300 		/*
1301 		 * Remember the TFO pending counter as it will have to be
1302 		 * decremented below if we don't make it to syncache_tfo_expand().
1303 		 */
1304 		tfo_pending = tp->t_tfo_pending;
1305 	}
1306 #endif
1307 
1308 	/* By the time we drop the lock these should no longer be used. */
1309 	so = NULL;
1310 	tp = NULL;
1311 
1312 #ifdef MAC
1313 	if (mac_syncache_init(&maclabel) != 0) {
1314 		INP_WUNLOCK(inp);
1315 		goto done;
1316 	} else
1317 		mac_syncache_create(maclabel, inp);
1318 #endif
1319 #ifdef TCP_RFC7413
1320 	if (!tfo_cookie_valid)
1321 #endif
1322 		INP_WUNLOCK(inp);
1323 
1324 	/*
1325 	 * Remember the IP options, if any.
1326 	 */
1327 #ifdef INET6
1328 	if (!(inc->inc_flags & INC_ISIPV6))
1329 #endif
1330 #ifdef INET
1331 		ipopts = (m) ? ip_srcroute(m) : NULL;
1332 #else
1333 		ipopts = NULL;
1334 #endif
1335 
1336 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1337 	/*
1338 	 * If listening socket requested TCP digests, check that received
1339 	 * SYN has signature and it is correct. If signature doesn't match
1340 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1341 	 */
1342 	if (ltflags & TF_SIGNATURE) {
1343 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1344 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1345 			goto done;
1346 		}
1347 		if (!TCPMD5_ENABLED() ||
1348 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1349 			goto done;
1350 	}
1351 #endif	/* TCP_SIGNATURE */
1352 	/*
1353 	 * See if we already have an entry for this connection.
1354 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1355 	 *
1356 	 * XXX: should the syncache be re-initialized with the contents
1357 	 * of the new SYN here (which may have different options?)
1358 	 *
1359 	 * XXX: We do not check the sequence number to see if this is a
1360 	 * real retransmit or a new connection attempt.  The question is
1361 	 * how to handle such a case; either ignore it as spoofed, or
1362 	 * drop the current entry and create a new one?
1363 	 */
1364 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1365 	SCH_LOCK_ASSERT(sch);
1366 	if (sc != NULL) {
1367 #ifdef TCP_RFC7413
1368 		if (tfo_cookie_valid)
1369 			INP_WUNLOCK(inp);
1370 #endif
1371 		TCPSTAT_INC(tcps_sc_dupsyn);
1372 		if (ipopts) {
1373 			/*
1374 			 * If we were remembering a previous source route,
1375 			 * forget it and use the new one we've been given.
1376 			 */
1377 			if (sc->sc_ipopts)
1378 				(void) m_free(sc->sc_ipopts);
1379 			sc->sc_ipopts = ipopts;
1380 		}
1381 		/*
1382 		 * Update timestamp if present.
1383 		 */
1384 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1385 			sc->sc_tsreflect = to->to_tsval;
1386 		else
1387 			sc->sc_flags &= ~SCF_TIMESTAMP;
1388 #ifdef MAC
1389 		/*
1390 		 * Since we have already unconditionally allocated label
1391 		 * storage, free it up.  The syncache entry will already
1392 		 * have an initialized label we can use.
1393 		 */
1394 		mac_syncache_destroy(&maclabel);
1395 #endif
1396 		/* Retransmit SYN|ACK and reset retransmit count. */
1397 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1398 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1399 			    "resetting timer and retransmitting SYN|ACK\n",
1400 			    s, __func__);
1401 			free(s, M_TCPLOG);
1402 		}
1403 		if (syncache_respond(sc, sch, 1, m) == 0) {
1404 			sc->sc_rxmits = 0;
1405 			syncache_timeout(sc, sch, 1);
1406 			TCPSTAT_INC(tcps_sndacks);
1407 			TCPSTAT_INC(tcps_sndtotal);
1408 		}
1409 		SCH_UNLOCK(sch);
1410 		goto done;
1411 	}
1412 
1413 #ifdef TCP_RFC7413
1414 	if (tfo_cookie_valid) {
1415 		bzero(&scs, sizeof(scs));
1416 		sc = &scs;
1417 		goto skip_alloc;
1418 	}
1419 #endif
1420 
1421 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1422 	if (sc == NULL) {
1423 		/*
1424 		 * The zone allocator couldn't provide more entries.
1425 		 * Treat this as if the cache was full; drop the oldest
1426 		 * entry and insert the new one.
1427 		 */
1428 		TCPSTAT_INC(tcps_sc_zonefail);
1429 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1430 			sch->sch_last_overflow = time_uptime;
1431 			syncache_drop(sc, sch);
1432 		}
1433 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1434 		if (sc == NULL) {
1435 			if (V_tcp_syncookies) {
1436 				bzero(&scs, sizeof(scs));
1437 				sc = &scs;
1438 			} else {
1439 				SCH_UNLOCK(sch);
1440 				if (ipopts)
1441 					(void) m_free(ipopts);
1442 				goto done;
1443 			}
1444 		}
1445 	}
1446 
1447 #ifdef TCP_RFC7413
1448 skip_alloc:
1449 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1450 		sc->sc_tfo_cookie = &tfo_response_cookie;
1451 #endif
1452 
1453 	/*
1454 	 * Fill in the syncache values.
1455 	 */
1456 #ifdef MAC
1457 	sc->sc_label = maclabel;
1458 #endif
1459 	sc->sc_cred = cred;
1460 	cred = NULL;
1461 	sc->sc_ipopts = ipopts;
1462 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1463 #ifdef INET6
1464 	if (!(inc->inc_flags & INC_ISIPV6))
1465 #endif
1466 	{
1467 		sc->sc_ip_tos = ip_tos;
1468 		sc->sc_ip_ttl = ip_ttl;
1469 	}
1470 #ifdef TCP_OFFLOAD
1471 	sc->sc_tod = tod;
1472 	sc->sc_todctx = todctx;
1473 #endif
1474 	sc->sc_irs = th->th_seq;
1475 	sc->sc_iss = arc4random();
1476 	sc->sc_flags = 0;
1477 	sc->sc_flowlabel = 0;
1478 
1479 	/*
1480 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1481 	 * win was derived from socket earlier in the function.
1482 	 */
1483 	win = imax(win, 0);
1484 	win = imin(win, TCP_MAXWIN);
1485 	sc->sc_wnd = win;
1486 
1487 	if (V_tcp_do_rfc1323) {
1488 		/*
1489 		 * A timestamp received in a SYN makes
1490 		 * it ok to send timestamp requests and replies.
1491 		 */
1492 		if (to->to_flags & TOF_TS) {
1493 			sc->sc_tsreflect = to->to_tsval;
1494 			sc->sc_ts = tcp_ts_getticks();
1495 			sc->sc_flags |= SCF_TIMESTAMP;
1496 		}
1497 		if (to->to_flags & TOF_SCALE) {
1498 			int wscale = 0;
1499 
1500 			/*
1501 			 * Pick the smallest possible scaling factor that
1502 			 * will still allow us to scale up to sb_max, aka
1503 			 * kern.ipc.maxsockbuf.
1504 			 *
1505 			 * We do this because there are broken firewalls that
1506 			 * will corrupt the window scale option, leading to
1507 			 * the other endpoint believing that our advertised
1508 			 * window is unscaled.  At scale factors larger than
1509 			 * 5 the unscaled window will drop below 1500 bytes,
1510 			 * leading to serious problems when traversing these
1511 			 * broken firewalls.
1512 			 *
1513 			 * With the default maxsockbuf of 256K, a scale factor
1514 			 * of 3 will be chosen by this algorithm.  Those who
1515 			 * choose a larger maxsockbuf should watch out
1516 			 * for the compatibility problems mentioned above.
1517 			 *
1518 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1519 			 * or <SYN,ACK>) segment itself is never scaled.
1520 			 */
1521 			while (wscale < TCP_MAX_WINSHIFT &&
1522 			    (TCP_MAXWIN << wscale) < sb_max)
1523 				wscale++;
1524 			sc->sc_requested_r_scale = wscale;
1525 			sc->sc_requested_s_scale = to->to_wscale;
1526 			sc->sc_flags |= SCF_WINSCALE;
1527 		}
1528 	}
1529 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1530 	/*
1531 	 * If listening socket requested TCP digests, flag this in the
1532 	 * syncache so that syncache_respond() will do the right thing
1533 	 * with the SYN+ACK.
1534 	 */
1535 	if (ltflags & TF_SIGNATURE)
1536 		sc->sc_flags |= SCF_SIGNATURE;
1537 #endif	/* TCP_SIGNATURE */
1538 	if (to->to_flags & TOF_SACKPERM)
1539 		sc->sc_flags |= SCF_SACK;
1540 	if (to->to_flags & TOF_MSS)
1541 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1542 	if (ltflags & TF_NOOPT)
1543 		sc->sc_flags |= SCF_NOOPT;
1544 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1545 		sc->sc_flags |= SCF_ECN;
1546 
1547 	if (V_tcp_syncookies)
1548 		sc->sc_iss = syncookie_generate(sch, sc);
1549 #ifdef INET6
1550 	if (autoflowlabel) {
1551 		if (V_tcp_syncookies)
1552 			sc->sc_flowlabel = sc->sc_iss;
1553 		else
1554 			sc->sc_flowlabel = ip6_randomflowlabel();
1555 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1556 	}
1557 #endif
1558 	SCH_UNLOCK(sch);
1559 
1560 #ifdef TCP_RFC7413
1561 	if (tfo_cookie_valid) {
1562 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1563 		/* INP_WUNLOCK(inp) will be performed by the caller */
1564 		rv = 1;
1565 		goto tfo_expanded;
1566 	}
1567 #endif
1568 
1569 	/*
1570 	 * Do a standard 3-way handshake.
1571 	 */
1572 	if (syncache_respond(sc, sch, 0, m) == 0) {
1573 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1574 			syncache_free(sc);
1575 		else if (sc != &scs)
1576 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1577 		TCPSTAT_INC(tcps_sndacks);
1578 		TCPSTAT_INC(tcps_sndtotal);
1579 	} else {
1580 		if (sc != &scs)
1581 			syncache_free(sc);
1582 		TCPSTAT_INC(tcps_sc_dropped);
1583 	}
1584 
1585 done:
1586 	if (m) {
1587 		*lsop = NULL;
1588 		m_freem(m);
1589 	}
1590 #ifdef TCP_RFC7413
1591 	/*
1592 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1593 	 * result in a new socket was processed and the associated pending
1594 	 * counter has not yet been decremented.  All such TFO processing paths
1595 	 * transit this point.
1596 	 */
1597 	if (tfo_pending != NULL)
1598 		tcp_fastopen_decrement_counter(tfo_pending);
1599 
1600 tfo_expanded:
1601 #endif
1602 	if (cred != NULL)
1603 		crfree(cred);
1604 #ifdef MAC
1605 	if (sc == &scs)
1606 		mac_syncache_destroy(&maclabel);
1607 #endif
1608 	return (rv);
1609 }
1610 
1611 /*
1612  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1613  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1614  */
1615 static int
1616 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1617     const struct mbuf *m0)
1618 {
1619 	struct ip *ip = NULL;
1620 	struct mbuf *m;
1621 	struct tcphdr *th = NULL;
1622 	int optlen, error = 0;	/* Make compiler happy */
1623 	u_int16_t hlen, tlen, mssopt;
1624 	struct tcpopt to;
1625 #ifdef INET6
1626 	struct ip6_hdr *ip6 = NULL;
1627 #endif
1628 	hlen =
1629 #ifdef INET6
1630 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1631 #endif
1632 		sizeof(struct ip);
1633 	tlen = hlen + sizeof(struct tcphdr);
1634 
1635 	/* Determine MSS we advertize to other end of connection. */
1636 	mssopt = tcp_mssopt(&sc->sc_inc);
1637 	if (sc->sc_peer_mss)
1638 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1639 
1640 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1641 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1642 	    ("syncache: mbuf too small"));
1643 
1644 	/* Create the IP+TCP header from scratch. */
1645 	m = m_gethdr(M_NOWAIT, MT_DATA);
1646 	if (m == NULL)
1647 		return (ENOBUFS);
1648 #ifdef MAC
1649 	mac_syncache_create_mbuf(sc->sc_label, m);
1650 #endif
1651 	m->m_data += max_linkhdr;
1652 	m->m_len = tlen;
1653 	m->m_pkthdr.len = tlen;
1654 	m->m_pkthdr.rcvif = NULL;
1655 
1656 #ifdef INET6
1657 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1658 		ip6 = mtod(m, struct ip6_hdr *);
1659 		ip6->ip6_vfc = IPV6_VERSION;
1660 		ip6->ip6_nxt = IPPROTO_TCP;
1661 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1662 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1663 		ip6->ip6_plen = htons(tlen - hlen);
1664 		/* ip6_hlim is set after checksum */
1665 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1666 		ip6->ip6_flow |= sc->sc_flowlabel;
1667 
1668 		th = (struct tcphdr *)(ip6 + 1);
1669 	}
1670 #endif
1671 #if defined(INET6) && defined(INET)
1672 	else
1673 #endif
1674 #ifdef INET
1675 	{
1676 		ip = mtod(m, struct ip *);
1677 		ip->ip_v = IPVERSION;
1678 		ip->ip_hl = sizeof(struct ip) >> 2;
1679 		ip->ip_len = htons(tlen);
1680 		ip->ip_id = 0;
1681 		ip->ip_off = 0;
1682 		ip->ip_sum = 0;
1683 		ip->ip_p = IPPROTO_TCP;
1684 		ip->ip_src = sc->sc_inc.inc_laddr;
1685 		ip->ip_dst = sc->sc_inc.inc_faddr;
1686 		ip->ip_ttl = sc->sc_ip_ttl;
1687 		ip->ip_tos = sc->sc_ip_tos;
1688 
1689 		/*
1690 		 * See if we should do MTU discovery.  Route lookups are
1691 		 * expensive, so we will only unset the DF bit if:
1692 		 *
1693 		 *	1) path_mtu_discovery is disabled
1694 		 *	2) the SCF_UNREACH flag has been set
1695 		 */
1696 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1697 		       ip->ip_off |= htons(IP_DF);
1698 
1699 		th = (struct tcphdr *)(ip + 1);
1700 	}
1701 #endif /* INET */
1702 	th->th_sport = sc->sc_inc.inc_lport;
1703 	th->th_dport = sc->sc_inc.inc_fport;
1704 
1705 	th->th_seq = htonl(sc->sc_iss);
1706 	th->th_ack = htonl(sc->sc_irs + 1);
1707 	th->th_off = sizeof(struct tcphdr) >> 2;
1708 	th->th_x2 = 0;
1709 	th->th_flags = TH_SYN|TH_ACK;
1710 	th->th_win = htons(sc->sc_wnd);
1711 	th->th_urp = 0;
1712 
1713 	if (sc->sc_flags & SCF_ECN) {
1714 		th->th_flags |= TH_ECE;
1715 		TCPSTAT_INC(tcps_ecn_shs);
1716 	}
1717 
1718 	/* Tack on the TCP options. */
1719 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1720 		to.to_flags = 0;
1721 
1722 		to.to_mss = mssopt;
1723 		to.to_flags = TOF_MSS;
1724 		if (sc->sc_flags & SCF_WINSCALE) {
1725 			to.to_wscale = sc->sc_requested_r_scale;
1726 			to.to_flags |= TOF_SCALE;
1727 		}
1728 		if (sc->sc_flags & SCF_TIMESTAMP) {
1729 			/* Virgin timestamp or TCP cookie enhanced one. */
1730 			to.to_tsval = sc->sc_ts;
1731 			to.to_tsecr = sc->sc_tsreflect;
1732 			to.to_flags |= TOF_TS;
1733 		}
1734 		if (sc->sc_flags & SCF_SACK)
1735 			to.to_flags |= TOF_SACKPERM;
1736 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1737 		if (sc->sc_flags & SCF_SIGNATURE)
1738 			to.to_flags |= TOF_SIGNATURE;
1739 #endif
1740 #ifdef TCP_RFC7413
1741 		if (sc->sc_tfo_cookie) {
1742 			to.to_flags |= TOF_FASTOPEN;
1743 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1744 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1745 			/* don't send cookie again when retransmitting response */
1746 			sc->sc_tfo_cookie = NULL;
1747 		}
1748 #endif
1749 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1750 
1751 		/* Adjust headers by option size. */
1752 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1753 		m->m_len += optlen;
1754 		m->m_pkthdr.len += optlen;
1755 #ifdef INET6
1756 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1757 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1758 		else
1759 #endif
1760 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1761 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1762 		if (sc->sc_flags & SCF_SIGNATURE) {
1763 			KASSERT(to.to_flags & TOF_SIGNATURE,
1764 			    ("tcp_addoptions() didn't set tcp_signature"));
1765 
1766 			/* NOTE: to.to_signature is inside of mbuf */
1767 			if (!TCPMD5_ENABLED() ||
1768 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1769 				m_freem(m);
1770 				return (EACCES);
1771 			}
1772 		}
1773 #endif
1774 	} else
1775 		optlen = 0;
1776 
1777 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1778 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1779 	/*
1780 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1781 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1782 	 * to SYN|ACK due to lack of inp here.
1783 	 */
1784 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1785 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1786 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1787 	}
1788 #ifdef INET6
1789 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1790 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1791 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1792 		    IPPROTO_TCP, 0);
1793 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1794 #ifdef TCP_OFFLOAD
1795 		if (ADDED_BY_TOE(sc)) {
1796 			struct toedev *tod = sc->sc_tod;
1797 
1798 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1799 
1800 			return (error);
1801 		}
1802 #endif
1803 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1804 	}
1805 #endif
1806 #if defined(INET6) && defined(INET)
1807 	else
1808 #endif
1809 #ifdef INET
1810 	{
1811 		m->m_pkthdr.csum_flags = CSUM_TCP;
1812 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1813 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1814 #ifdef TCP_OFFLOAD
1815 		if (ADDED_BY_TOE(sc)) {
1816 			struct toedev *tod = sc->sc_tod;
1817 
1818 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1819 
1820 			return (error);
1821 		}
1822 #endif
1823 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1824 	}
1825 #endif
1826 	return (error);
1827 }
1828 
1829 /*
1830  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1831  * that exceed the capacity of the syncache by avoiding the storage of any
1832  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1833  * attacks where the attacker does not have access to our responses.
1834  *
1835  * Syncookies encode and include all necessary information about the
1836  * connection setup within the SYN|ACK that we send back.  That way we
1837  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1838  * (if ever).  Normally the syncache and syncookies are running in parallel
1839  * with the latter taking over when the former is exhausted.  When matching
1840  * syncache entry is found the syncookie is ignored.
1841  *
1842  * The only reliable information persisting the 3WHS is our initial sequence
1843  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1844  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1845  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1846  * returns and signifies a legitimate connection if it matches the ACK.
1847  *
1848  * The available space of 32 bits to store the hash and to encode the SYN
1849  * option information is very tight and we should have at least 24 bits for
1850  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1851  *
1852  * SYN option information we have to encode to fully restore a connection:
1853  * MSS: is imporant to chose an optimal segment size to avoid IP level
1854  *   fragmentation along the path.  The common MSS values can be encoded
1855  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1856  *   in the table leading to a slight increase in packetization overhead.
1857  * WSCALE: is necessary to allow large windows to be used for high delay-
1858  *   bandwidth product links.  Not scaling the window when it was initially
1859  *   negotiated is bad for performance as lack of scaling further decreases
1860  *   the apparent available send window.  We only need to encode the WSCALE
1861  *   we received from the remote end.  Our end can be recalculated at any
1862  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1863  *   Uncommon values are captured by the next lower value in the table
1864  *   making us under-estimate the available window size halving our
1865  *   theoretically possible maximum throughput for that connection.
1866  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1867  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1868  *   that are included in all segments on a connection.  We enable them when
1869  *   the ACK has them.
1870  *
1871  * Security of syncookies and attack vectors:
1872  *
1873  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1874  * together with the gloabl secret to make it unique per connection attempt.
1875  * Thus any change of any of those parameters results in a different MAC output
1876  * in an unpredictable way unless a collision is encountered.  24 bits of the
1877  * MAC are embedded into the ISS.
1878  *
1879  * To prevent replay attacks two rotating global secrets are updated with a
1880  * new random value every 15 seconds.  The life-time of a syncookie is thus
1881  * 15-30 seconds.
1882  *
1883  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1884  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1885  * text attack by varying and testing the all parameters under his control.
1886  * The strength depends on the size and randomness of the secret, and the
1887  * cryptographic security of the MAC function.  Due to the constant updating
1888  * of the secret the attacker has at most 29.999 seconds to find the secret
1889  * and launch spoofed connections.  After that he has to start all over again.
1890  *
1891  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1892  * size an average of 4,823 attempts are required for a 50% chance of success
1893  * to spoof a single syncookie (birthday collision paradox).  However the
1894  * attacker is blind and doesn't know if one of his attempts succeeded unless
1895  * he has a side channel to interfere success from.  A single connection setup
1896  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1897  * This many attempts are required for each one blind spoofed connection.  For
1898  * every additional spoofed connection he has to launch another N attempts.
1899  * Thus for a sustained rate 100 spoofed connections per second approximately
1900  * 1,800,000 packets per second would have to be sent.
1901  *
1902  * NB: The MAC function should be fast so that it doesn't become a CPU
1903  * exhaustion attack vector itself.
1904  *
1905  * References:
1906  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1907  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1908  *   http://cr.yp.to/syncookies.html    (overview)
1909  *   http://cr.yp.to/syncookies/archive (details)
1910  *
1911  *
1912  * Schematic construction of a syncookie enabled Initial Sequence Number:
1913  *  0        1         2         3
1914  *  12345678901234567890123456789012
1915  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1916  *
1917  *  x 24 MAC (truncated)
1918  *  W  3 Send Window Scale index
1919  *  M  3 MSS index
1920  *  S  1 SACK permitted
1921  *  P  1 Odd/even secret
1922  */
1923 
1924 /*
1925  * Distribution and probability of certain MSS values.  Those in between are
1926  * rounded down to the next lower one.
1927  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1928  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1929  */
1930 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1931 
1932 /*
1933  * Distribution and probability of certain WSCALE values.  We have to map the
1934  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1935  * bits based on prevalence of certain values.  Where we don't have an exact
1936  * match for are rounded down to the next lower one letting us under-estimate
1937  * the true available window.  At the moment this would happen only for the
1938  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1939  * and window size).  The absence of the WSCALE option (no scaling in either
1940  * direction) is encoded with index zero.
1941  * [WSCALE values histograms, Allman, 2012]
1942  *                            X 10 10 35  5  6 14 10%   by host
1943  *                            X 11  4  5  5 18 49  3%   by connections
1944  */
1945 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1946 
1947 /*
1948  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1949  * and good cryptographic properties.
1950  */
1951 static uint32_t
1952 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1953     uint8_t *secbits, uintptr_t secmod)
1954 {
1955 	SIPHASH_CTX ctx;
1956 	uint32_t siphash[2];
1957 
1958 	SipHash24_Init(&ctx);
1959 	SipHash_SetKey(&ctx, secbits);
1960 	switch (inc->inc_flags & INC_ISIPV6) {
1961 #ifdef INET
1962 	case 0:
1963 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1964 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1965 		break;
1966 #endif
1967 #ifdef INET6
1968 	case INC_ISIPV6:
1969 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1970 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1971 		break;
1972 #endif
1973 	}
1974 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1975 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1976 	SipHash_Update(&ctx, &irs, sizeof(irs));
1977 	SipHash_Update(&ctx, &flags, sizeof(flags));
1978 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1979 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1980 
1981 	return (siphash[0] ^ siphash[1]);
1982 }
1983 
1984 static tcp_seq
1985 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1986 {
1987 	u_int i, mss, secbit, wscale;
1988 	uint32_t iss, hash;
1989 	uint8_t *secbits;
1990 	union syncookie cookie;
1991 
1992 	SCH_LOCK_ASSERT(sch);
1993 
1994 	cookie.cookie = 0;
1995 
1996 	/* Map our computed MSS into the 3-bit index. */
1997 	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1998 	for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > mss && i > 0;
1999 	     i--)
2000 		;
2001 	cookie.flags.mss_idx = i;
2002 
2003 	/*
2004 	 * Map the send window scale into the 3-bit index but only if
2005 	 * the wscale option was received.
2006 	 */
2007 	if (sc->sc_flags & SCF_WINSCALE) {
2008 		wscale = sc->sc_requested_s_scale;
2009 		for (i = nitems(tcp_sc_wstab) - 1;
2010 		    tcp_sc_wstab[i] > wscale && i > 0;
2011 		     i--)
2012 			;
2013 		cookie.flags.wscale_idx = i;
2014 	}
2015 
2016 	/* Can we do SACK? */
2017 	if (sc->sc_flags & SCF_SACK)
2018 		cookie.flags.sack_ok = 1;
2019 
2020 	/* Which of the two secrets to use. */
2021 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2022 	cookie.flags.odd_even = secbit;
2023 
2024 	secbits = sch->sch_sc->secret.key[secbit];
2025 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2026 	    (uintptr_t)sch);
2027 
2028 	/*
2029 	 * Put the flags into the hash and XOR them to get better ISS number
2030 	 * variance.  This doesn't enhance the cryptographic strength and is
2031 	 * done to prevent the 8 cookie bits from showing up directly on the
2032 	 * wire.
2033 	 */
2034 	iss = hash & ~0xff;
2035 	iss |= cookie.cookie ^ (hash >> 24);
2036 
2037 	/* Randomize the timestamp. */
2038 	if (sc->sc_flags & SCF_TIMESTAMP) {
2039 		sc->sc_ts = arc4random();
2040 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
2041 	}
2042 
2043 	TCPSTAT_INC(tcps_sc_sendcookie);
2044 	return (iss);
2045 }
2046 
2047 static struct syncache *
2048 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2049     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2050     struct socket *lso)
2051 {
2052 	uint32_t hash;
2053 	uint8_t *secbits;
2054 	tcp_seq ack, seq;
2055 	int wnd, wscale = 0;
2056 	union syncookie cookie;
2057 
2058 	SCH_LOCK_ASSERT(sch);
2059 
2060 	/*
2061 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2062 	 * advances.
2063 	 */
2064 	ack = th->th_ack - 1;
2065 	seq = th->th_seq - 1;
2066 
2067 	/*
2068 	 * Unpack the flags containing enough information to restore the
2069 	 * connection.
2070 	 */
2071 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2072 
2073 	/* Which of the two secrets to use. */
2074 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2075 
2076 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2077 
2078 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2079 	if ((ack & ~0xff) != (hash & ~0xff))
2080 		return (NULL);
2081 
2082 	/* Fill in the syncache values. */
2083 	sc->sc_flags = 0;
2084 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2085 	sc->sc_ipopts = NULL;
2086 
2087 	sc->sc_irs = seq;
2088 	sc->sc_iss = ack;
2089 
2090 	switch (inc->inc_flags & INC_ISIPV6) {
2091 #ifdef INET
2092 	case 0:
2093 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2094 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2095 		break;
2096 #endif
2097 #ifdef INET6
2098 	case INC_ISIPV6:
2099 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2100 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2101 		break;
2102 #endif
2103 	}
2104 
2105 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2106 
2107 	/* We can simply recompute receive window scale we sent earlier. */
2108 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2109 		wscale++;
2110 
2111 	/* Only use wscale if it was enabled in the orignal SYN. */
2112 	if (cookie.flags.wscale_idx > 0) {
2113 		sc->sc_requested_r_scale = wscale;
2114 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2115 		sc->sc_flags |= SCF_WINSCALE;
2116 	}
2117 
2118 	wnd = sbspace(&lso->so_rcv);
2119 	wnd = imax(wnd, 0);
2120 	wnd = imin(wnd, TCP_MAXWIN);
2121 	sc->sc_wnd = wnd;
2122 
2123 	if (cookie.flags.sack_ok)
2124 		sc->sc_flags |= SCF_SACK;
2125 
2126 	if (to->to_flags & TOF_TS) {
2127 		sc->sc_flags |= SCF_TIMESTAMP;
2128 		sc->sc_tsreflect = to->to_tsval;
2129 		sc->sc_ts = to->to_tsecr;
2130 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2131 	}
2132 
2133 	if (to->to_flags & TOF_SIGNATURE)
2134 		sc->sc_flags |= SCF_SIGNATURE;
2135 
2136 	sc->sc_rxmits = 0;
2137 
2138 	TCPSTAT_INC(tcps_sc_recvcookie);
2139 	return (sc);
2140 }
2141 
2142 #ifdef INVARIANTS
2143 static int
2144 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2145     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2146     struct socket *lso)
2147 {
2148 	struct syncache scs, *scx;
2149 	char *s;
2150 
2151 	bzero(&scs, sizeof(scs));
2152 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2153 
2154 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2155 		return (0);
2156 
2157 	if (scx != NULL) {
2158 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2159 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2160 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2161 
2162 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2163 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2164 			    s, __func__, sc->sc_requested_r_scale,
2165 			    scx->sc_requested_r_scale);
2166 
2167 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2168 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2169 			    s, __func__, sc->sc_requested_s_scale,
2170 			    scx->sc_requested_s_scale);
2171 
2172 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2173 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2174 	}
2175 
2176 	if (s != NULL)
2177 		free(s, M_TCPLOG);
2178 	return (0);
2179 }
2180 #endif /* INVARIANTS */
2181 
2182 static void
2183 syncookie_reseed(void *arg)
2184 {
2185 	struct tcp_syncache *sc = arg;
2186 	uint8_t *secbits;
2187 	int secbit;
2188 
2189 	/*
2190 	 * Reseeding the secret doesn't have to be protected by a lock.
2191 	 * It only must be ensured that the new random values are visible
2192 	 * to all CPUs in a SMP environment.  The atomic with release
2193 	 * semantics ensures that.
2194 	 */
2195 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2196 	secbits = sc->secret.key[secbit];
2197 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2198 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2199 
2200 	/* Reschedule ourself. */
2201 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2202 }
2203 
2204 /*
2205  * Exports the syncache entries to userland so that netstat can display
2206  * them alongside the other sockets.  This function is intended to be
2207  * called only from tcp_pcblist.
2208  *
2209  * Due to concurrency on an active system, the number of pcbs exported
2210  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2211  * amount of space the caller allocated for this function to use.
2212  */
2213 int
2214 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2215 {
2216 	struct xtcpcb xt;
2217 	struct syncache *sc;
2218 	struct syncache_head *sch;
2219 	int count, error, i;
2220 
2221 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2222 		sch = &V_tcp_syncache.hashbase[i];
2223 		SCH_LOCK(sch);
2224 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2225 			if (count >= max_pcbs) {
2226 				SCH_UNLOCK(sch);
2227 				goto exit;
2228 			}
2229 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2230 				continue;
2231 			bzero(&xt, sizeof(xt));
2232 			xt.xt_len = sizeof(xt);
2233 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2234 				xt.xt_inp.inp_vflag = INP_IPV6;
2235 			else
2236 				xt.xt_inp.inp_vflag = INP_IPV4;
2237 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2238 			    sizeof (struct in_conninfo));
2239 			xt.t_state = TCPS_SYN_RECEIVED;
2240 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2241 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2242 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2243 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2244 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2245 			if (error) {
2246 				SCH_UNLOCK(sch);
2247 				goto exit;
2248 			}
2249 			count++;
2250 		}
2251 		SCH_UNLOCK(sch);
2252 	}
2253 exit:
2254 	*pcbs_exported = count;
2255 	return error;
2256 }
2257