xref: /freebsd/sys/netinet/tcp_syncache.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*-
2  * Copyright (c) 2001 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Jonathan Lemon
6  * and NAI Labs, the Security Research Division of Network Associates, Inc.
7  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8  * DARPA CHATS research program.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior written
20  *    permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $FreeBSD$
35  */
36 
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mac.h>
47 #include <sys/mbuf.h>
48 #include <sys/md5.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 
54 #include <net/if.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/in_var.h>
61 #include <netinet/in_pcb.h>
62 #include <netinet/ip_var.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #include <netinet/icmp6.h>
66 #include <netinet6/nd6.h>
67 #include <netinet6/ip6_var.h>
68 #include <netinet6/in6_pcb.h>
69 #endif
70 #include <netinet/tcp.h>
71 #include <netinet/tcp_fsm.h>
72 #include <netinet/tcp_seq.h>
73 #include <netinet/tcp_timer.h>
74 #include <netinet/tcp_var.h>
75 #ifdef INET6
76 #include <netinet6/tcp6_var.h>
77 #endif
78 
79 #ifdef IPSEC
80 #include <netinet6/ipsec.h>
81 #ifdef INET6
82 #include <netinet6/ipsec6.h>
83 #endif
84 #include <netkey/key.h>
85 #endif /*IPSEC*/
86 
87 #include <machine/in_cksum.h>
88 #include <vm/uma.h>
89 
90 static int tcp_syncookies = 1;
91 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
92     &tcp_syncookies, 0,
93     "Use TCP SYN cookies if the syncache overflows");
94 
95 static void	 syncache_drop(struct syncache *, struct syncache_head *);
96 static void	 syncache_free(struct syncache *);
97 static void	 syncache_insert(struct syncache *, struct syncache_head *);
98 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
99 static int	 syncache_respond(struct syncache *, struct mbuf *);
100 static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
101 		    struct mbuf *m);
102 static void	 syncache_timer(void *);
103 static u_int32_t syncookie_generate(struct syncache *);
104 static struct syncache *syncookie_lookup(struct in_conninfo *,
105 		    struct tcphdr *, struct socket *);
106 
107 /*
108  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
109  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
110  * the odds are that the user has given up attempting to connect by then.
111  */
112 #define SYNCACHE_MAXREXMTS		3
113 
114 /* Arbitrary values */
115 #define TCP_SYNCACHE_HASHSIZE		512
116 #define TCP_SYNCACHE_BUCKETLIMIT	30
117 
118 struct tcp_syncache {
119 	struct	syncache_head *hashbase;
120 	uma_zone_t zone;
121 	u_int	hashsize;
122 	u_int	hashmask;
123 	u_int	bucket_limit;
124 	u_int	cache_count;
125 	u_int	cache_limit;
126 	u_int	rexmt_limit;
127 	u_int	hash_secret;
128 	u_int	next_reseed;
129 	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
130 	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
131 };
132 static struct tcp_syncache tcp_syncache;
133 
134 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
135 
136 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
137      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
138 
139 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
140      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
141 
142 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
143      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
144 
145 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
146      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
147 
148 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
149      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
150 
151 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
152 
153 #define SYNCACHE_HASH(inc, mask) 					\
154 	((tcp_syncache.hash_secret ^					\
155 	  (inc)->inc_faddr.s_addr ^					\
156 	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
157 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
158 
159 #define SYNCACHE_HASH6(inc, mask) 					\
160 	((tcp_syncache.hash_secret ^					\
161 	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
162 	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
163 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
164 
165 #define ENDPTS_EQ(a, b) (						\
166 	(a)->ie_fport == (b)->ie_fport &&				\
167 	(a)->ie_lport == (b)->ie_lport &&				\
168 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
169 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
170 )
171 
172 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
173 
174 #define SYNCACHE_TIMEOUT(sc, slot) do {					\
175 	sc->sc_rxtslot = slot;						\
176 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];	\
177 	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq);	\
178 	if (!callout_active(&tcp_syncache.tt_timerq[slot]))		\
179 		callout_reset(&tcp_syncache.tt_timerq[slot],		\
180 		    TCPTV_RTOBASE * tcp_backoff[slot],			\
181 		    syncache_timer, (void *)((intptr_t)slot));		\
182 } while (0)
183 
184 static void
185 syncache_free(struct syncache *sc)
186 {
187 	struct rtentry *rt;
188 
189 	if (sc->sc_ipopts)
190 		(void) m_free(sc->sc_ipopts);
191 #ifdef INET6
192 	if (sc->sc_inc.inc_isipv6)
193 		rt = sc->sc_route6.ro_rt;
194 	else
195 #endif
196 		rt = sc->sc_route.ro_rt;
197 	if (rt != NULL) {
198 		/*
199 		 * If this is the only reference to a protocol cloned
200 		 * route, remove it immediately.
201 		 */
202 		if (rt->rt_flags & RTF_WASCLONED &&
203 		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
204 		    rt->rt_refcnt == 1)
205 			rtrequest(RTM_DELETE, rt_key(rt),
206 			    rt->rt_gateway, rt_mask(rt),
207 			    rt->rt_flags, NULL);
208 		RTFREE(rt);
209 	}
210 	uma_zfree(tcp_syncache.zone, sc);
211 }
212 
213 void
214 syncache_init(void)
215 {
216 	int i;
217 
218 	tcp_syncache.cache_count = 0;
219 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
220 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
221 	tcp_syncache.cache_limit =
222 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
223 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
224 	tcp_syncache.next_reseed = 0;
225 	tcp_syncache.hash_secret = arc4random();
226 
227         TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
228 	    &tcp_syncache.hashsize);
229         TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
230 	    &tcp_syncache.cache_limit);
231         TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
232 	    &tcp_syncache.bucket_limit);
233 	if (!powerof2(tcp_syncache.hashsize)) {
234                 printf("WARNING: syncache hash size is not a power of 2.\n");
235 		tcp_syncache.hashsize = 512;	/* safe default */
236         }
237 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
238 
239 	/* Allocate the hash table. */
240 	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
241 	    tcp_syncache.hashsize * sizeof(struct syncache_head),
242 	    M_SYNCACHE, M_WAITOK);
243 
244 	/* Initialize the hash buckets. */
245 	for (i = 0; i < tcp_syncache.hashsize; i++) {
246 		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
247 		tcp_syncache.hashbase[i].sch_length = 0;
248 	}
249 
250 	/* Initialize the timer queues. */
251 	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
252 		TAILQ_INIT(&tcp_syncache.timerq[i]);
253 		callout_init(&tcp_syncache.tt_timerq[i], 0);
254 	}
255 
256 	/*
257 	 * Allocate the syncache entries.  Allow the zone to allocate one
258 	 * more entry than cache limit, so a new entry can bump out an
259 	 * older one.
260 	 */
261 	tcp_syncache.cache_limit -= 1;
262 	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
263 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
264 	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
265 }
266 
267 static void
268 syncache_insert(sc, sch)
269 	struct syncache *sc;
270 	struct syncache_head *sch;
271 {
272 	struct syncache *sc2;
273 	int s, i;
274 
275 	/*
276 	 * Make sure that we don't overflow the per-bucket
277 	 * limit or the total cache size limit.
278 	 */
279 	s = splnet();
280 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
281 		/*
282 		 * The bucket is full, toss the oldest element.
283 		 */
284 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
285 		sc2->sc_tp->ts_recent = ticks;
286 		syncache_drop(sc2, sch);
287 		tcpstat.tcps_sc_bucketoverflow++;
288 	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
289 		/*
290 		 * The cache is full.  Toss the oldest entry in the
291 		 * entire cache.  This is the front entry in the
292 		 * first non-empty timer queue with the largest
293 		 * timeout value.
294 		 */
295 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
296 			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
297 			if (sc2 != NULL)
298 				break;
299 		}
300 		sc2->sc_tp->ts_recent = ticks;
301 		syncache_drop(sc2, NULL);
302 		tcpstat.tcps_sc_cacheoverflow++;
303 	}
304 
305 	/* Initialize the entry's timer. */
306 	SYNCACHE_TIMEOUT(sc, 0);
307 
308 	/* Put it into the bucket. */
309 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
310 	sch->sch_length++;
311 	tcp_syncache.cache_count++;
312 	tcpstat.tcps_sc_added++;
313 	splx(s);
314 }
315 
316 static void
317 syncache_drop(sc, sch)
318 	struct syncache *sc;
319 	struct syncache_head *sch;
320 {
321 	int s;
322 
323 	if (sch == NULL) {
324 #ifdef INET6
325 		if (sc->sc_inc.inc_isipv6) {
326 			sch = &tcp_syncache.hashbase[
327 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
328 		} else
329 #endif
330 		{
331 			sch = &tcp_syncache.hashbase[
332 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
333 		}
334 	}
335 
336 	s = splnet();
337 
338 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
339 	sch->sch_length--;
340 	tcp_syncache.cache_count--;
341 
342 	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
343 	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
344 		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
345 	splx(s);
346 
347 	syncache_free(sc);
348 }
349 
350 /*
351  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
352  * If we have retransmitted an entry the maximum number of times, expire it.
353  */
354 static void
355 syncache_timer(xslot)
356 	void *xslot;
357 {
358 	intptr_t slot = (intptr_t)xslot;
359 	struct syncache *sc, *nsc;
360 	struct inpcb *inp;
361 	int s;
362 
363 	s = splnet();
364         if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
365             !callout_active(&tcp_syncache.tt_timerq[slot])) {
366                 splx(s);
367                 return;
368         }
369         callout_deactivate(&tcp_syncache.tt_timerq[slot]);
370 
371         nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
372 	INP_INFO_RLOCK(&tcbinfo);
373 	while (nsc != NULL) {
374 		if (ticks < nsc->sc_rxttime)
375 			break;
376 		sc = nsc;
377 		inp = sc->sc_tp->t_inpcb;
378 		INP_LOCK(inp);
379 		if (slot == SYNCACHE_MAXREXMTS ||
380 		    slot >= tcp_syncache.rexmt_limit ||
381 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
382 			nsc = TAILQ_NEXT(sc, sc_timerq);
383 			syncache_drop(sc, NULL);
384 			tcpstat.tcps_sc_stale++;
385 			INP_UNLOCK(inp);
386 			continue;
387 		}
388 		/*
389 		 * syncache_respond() may call back into the syncache to
390 		 * to modify another entry, so do not obtain the next
391 		 * entry on the timer chain until it has completed.
392 		 */
393 		(void) syncache_respond(sc, NULL);
394 		INP_UNLOCK(inp);
395 		nsc = TAILQ_NEXT(sc, sc_timerq);
396 		tcpstat.tcps_sc_retransmitted++;
397 		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
398 		SYNCACHE_TIMEOUT(sc, slot + 1);
399 	}
400 	INP_INFO_RUNLOCK(&tcbinfo);
401 	if (nsc != NULL)
402 		callout_reset(&tcp_syncache.tt_timerq[slot],
403 		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
404 	splx(s);
405 }
406 
407 /*
408  * Find an entry in the syncache.
409  */
410 struct syncache *
411 syncache_lookup(inc, schp)
412 	struct in_conninfo *inc;
413 	struct syncache_head **schp;
414 {
415 	struct syncache *sc;
416 	struct syncache_head *sch;
417 	int s;
418 
419 #ifdef INET6
420 	if (inc->inc_isipv6) {
421 		sch = &tcp_syncache.hashbase[
422 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
423 		*schp = sch;
424 		s = splnet();
425 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
426 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
427 				splx(s);
428 				return (sc);
429 			}
430 		}
431 		splx(s);
432 	} else
433 #endif
434 	{
435 		sch = &tcp_syncache.hashbase[
436 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
437 		*schp = sch;
438 		s = splnet();
439 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
440 #ifdef INET6
441 			if (sc->sc_inc.inc_isipv6)
442 				continue;
443 #endif
444 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
445 				splx(s);
446 				return (sc);
447 			}
448 		}
449 		splx(s);
450 	}
451 	return (NULL);
452 }
453 
454 /*
455  * This function is called when we get a RST for a
456  * non-existent connection, so that we can see if the
457  * connection is in the syn cache.  If it is, zap it.
458  */
459 void
460 syncache_chkrst(inc, th)
461 	struct in_conninfo *inc;
462 	struct tcphdr *th;
463 {
464 	struct syncache *sc;
465 	struct syncache_head *sch;
466 
467 	sc = syncache_lookup(inc, &sch);
468 	if (sc == NULL)
469 		return;
470 	/*
471 	 * If the RST bit is set, check the sequence number to see
472 	 * if this is a valid reset segment.
473 	 * RFC 793 page 37:
474 	 *   In all states except SYN-SENT, all reset (RST) segments
475 	 *   are validated by checking their SEQ-fields.  A reset is
476 	 *   valid if its sequence number is in the window.
477 	 *
478 	 *   The sequence number in the reset segment is normally an
479 	 *   echo of our outgoing acknowlegement numbers, but some hosts
480 	 *   send a reset with the sequence number at the rightmost edge
481 	 *   of our receive window, and we have to handle this case.
482 	 */
483 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
484 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
485 		syncache_drop(sc, sch);
486 		tcpstat.tcps_sc_reset++;
487 	}
488 }
489 
490 void
491 syncache_badack(inc)
492 	struct in_conninfo *inc;
493 {
494 	struct syncache *sc;
495 	struct syncache_head *sch;
496 
497 	sc = syncache_lookup(inc, &sch);
498 	if (sc != NULL) {
499 		syncache_drop(sc, sch);
500 		tcpstat.tcps_sc_badack++;
501 	}
502 }
503 
504 void
505 syncache_unreach(inc, th)
506 	struct in_conninfo *inc;
507 	struct tcphdr *th;
508 {
509 	struct syncache *sc;
510 	struct syncache_head *sch;
511 
512 	/* we are called at splnet() here */
513 	sc = syncache_lookup(inc, &sch);
514 	if (sc == NULL)
515 		return;
516 
517 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
518 	if (ntohl(th->th_seq) != sc->sc_iss)
519 		return;
520 
521 	/*
522 	 * If we've rertransmitted 3 times and this is our second error,
523 	 * we remove the entry.  Otherwise, we allow it to continue on.
524 	 * This prevents us from incorrectly nuking an entry during a
525 	 * spurious network outage.
526 	 *
527 	 * See tcp_notify().
528 	 */
529 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
530 		sc->sc_flags |= SCF_UNREACH;
531 		return;
532 	}
533 	syncache_drop(sc, sch);
534 	tcpstat.tcps_sc_unreach++;
535 }
536 
537 /*
538  * Build a new TCP socket structure from a syncache entry.
539  */
540 static struct socket *
541 syncache_socket(sc, lso, m)
542 	struct syncache *sc;
543 	struct socket *lso;
544 	struct mbuf *m;
545 {
546 	struct inpcb *inp = NULL;
547 	struct socket *so;
548 	struct tcpcb *tp;
549 
550 	/*
551 	 * Ok, create the full blown connection, and set things up
552 	 * as they would have been set up if we had created the
553 	 * connection when the SYN arrived.  If we can't create
554 	 * the connection, abort it.
555 	 */
556 	so = sonewconn(lso, SS_ISCONNECTED);
557 	if (so == NULL) {
558 		/*
559 		 * Drop the connection; we will send a RST if the peer
560 		 * retransmits the ACK,
561 		 */
562 		tcpstat.tcps_listendrop++;
563 		goto abort;
564 	}
565 #ifdef MAC
566 	mac_set_socket_peer_from_mbuf(m, so);
567 #endif
568 
569 	inp = sotoinpcb(so);
570 
571 	/*
572 	 * Insert new socket into hash list.
573 	 */
574 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
575 #ifdef INET6
576 	if (sc->sc_inc.inc_isipv6) {
577 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
578 	} else {
579 		inp->inp_vflag &= ~INP_IPV6;
580 		inp->inp_vflag |= INP_IPV4;
581 #endif
582 		inp->inp_laddr = sc->sc_inc.inc_laddr;
583 #ifdef INET6
584 	}
585 #endif
586 	inp->inp_lport = sc->sc_inc.inc_lport;
587 	if (in_pcbinshash(inp) != 0) {
588 		/*
589 		 * Undo the assignments above if we failed to
590 		 * put the PCB on the hash lists.
591 		 */
592 #ifdef INET6
593 		if (sc->sc_inc.inc_isipv6)
594 			inp->in6p_laddr = in6addr_any;
595        		else
596 #endif
597 			inp->inp_laddr.s_addr = INADDR_ANY;
598 		inp->inp_lport = 0;
599 		goto abort;
600 	}
601 #ifdef IPSEC
602 	/* copy old policy into new socket's */
603 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
604 		printf("syncache_expand: could not copy policy\n");
605 #endif
606 #ifdef INET6
607 	if (sc->sc_inc.inc_isipv6) {
608 		struct inpcb *oinp = sotoinpcb(lso);
609 		struct in6_addr laddr6;
610 		struct sockaddr_in6 *sin6;
611 		/*
612 		 * Inherit socket options from the listening socket.
613 		 * Note that in6p_inputopts are not (and should not be)
614 		 * copied, since it stores previously received options and is
615 		 * used to detect if each new option is different than the
616 		 * previous one and hence should be passed to a user.
617                  * If we copied in6p_inputopts, a user would not be able to
618 		 * receive options just after calling the accept system call.
619 		 */
620 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
621 		if (oinp->in6p_outputopts)
622 			inp->in6p_outputopts =
623 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
624 		inp->in6p_route = sc->sc_route6;
625 		sc->sc_route6.ro_rt = NULL;
626 
627 		MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
628 		    M_SONAME, M_NOWAIT | M_ZERO);
629 		if (sin6 == NULL)
630 			goto abort;
631 		sin6->sin6_family = AF_INET6;
632 		sin6->sin6_len = sizeof(*sin6);
633 		sin6->sin6_addr = sc->sc_inc.inc6_faddr;
634 		sin6->sin6_port = sc->sc_inc.inc_fport;
635 		laddr6 = inp->in6p_laddr;
636 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
637 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
638 		if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
639 			inp->in6p_laddr = laddr6;
640 			FREE(sin6, M_SONAME);
641 			goto abort;
642 		}
643 		FREE(sin6, M_SONAME);
644 	} else
645 #endif
646 	{
647 		struct in_addr laddr;
648 		struct sockaddr_in *sin;
649 
650 		inp->inp_options = ip_srcroute();
651 		if (inp->inp_options == NULL) {
652 			inp->inp_options = sc->sc_ipopts;
653 			sc->sc_ipopts = NULL;
654 		}
655 		inp->inp_route = sc->sc_route;
656 		sc->sc_route.ro_rt = NULL;
657 
658 		MALLOC(sin, struct sockaddr_in *, sizeof *sin,
659 		    M_SONAME, M_NOWAIT | M_ZERO);
660 		if (sin == NULL)
661 			goto abort;
662 		sin->sin_family = AF_INET;
663 		sin->sin_len = sizeof(*sin);
664 		sin->sin_addr = sc->sc_inc.inc_faddr;
665 		sin->sin_port = sc->sc_inc.inc_fport;
666 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
667 		laddr = inp->inp_laddr;
668 		if (inp->inp_laddr.s_addr == INADDR_ANY)
669 			inp->inp_laddr = sc->sc_inc.inc_laddr;
670 		if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
671 			inp->inp_laddr = laddr;
672 			FREE(sin, M_SONAME);
673 			goto abort;
674 		}
675 		FREE(sin, M_SONAME);
676 	}
677 
678 	tp = intotcpcb(inp);
679 	tp->t_state = TCPS_SYN_RECEIVED;
680 	tp->iss = sc->sc_iss;
681 	tp->irs = sc->sc_irs;
682 	tcp_rcvseqinit(tp);
683 	tcp_sendseqinit(tp);
684 	tp->snd_wl1 = sc->sc_irs;
685 	tp->rcv_up = sc->sc_irs + 1;
686 	tp->rcv_wnd = sc->sc_wnd;
687 	tp->rcv_adv += tp->rcv_wnd;
688 
689 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
690 	if (sc->sc_flags & SCF_NOOPT)
691 		tp->t_flags |= TF_NOOPT;
692 	if (sc->sc_flags & SCF_WINSCALE) {
693 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
694 		tp->requested_s_scale = sc->sc_requested_s_scale;
695 		tp->request_r_scale = sc->sc_request_r_scale;
696 	}
697 	if (sc->sc_flags & SCF_TIMESTAMP) {
698 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
699 		tp->ts_recent = sc->sc_tsrecent;
700 		tp->ts_recent_age = ticks;
701 	}
702 	if (sc->sc_flags & SCF_CC) {
703 		/*
704 		 * Initialization of the tcpcb for transaction;
705 		 *   set SND.WND = SEG.WND,
706 		 *   initialize CCsend and CCrecv.
707 		 */
708 		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
709 		tp->cc_send = sc->sc_cc_send;
710 		tp->cc_recv = sc->sc_cc_recv;
711 	}
712 
713 	tcp_mss(tp, sc->sc_peer_mss);
714 
715 	/*
716 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
717 	 */
718 	if (sc->sc_rxtslot != 0)
719                 tp->snd_cwnd = tp->t_maxseg;
720 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
721 
722 	tcpstat.tcps_accepts++;
723 	return (so);
724 
725 abort:
726 	if (so != NULL)
727 		(void) soabort(so);
728 	return (NULL);
729 }
730 
731 /*
732  * This function gets called when we receive an ACK for a
733  * socket in the LISTEN state.  We look up the connection
734  * in the syncache, and if its there, we pull it out of
735  * the cache and turn it into a full-blown connection in
736  * the SYN-RECEIVED state.
737  */
738 int
739 syncache_expand(inc, th, sop, m)
740 	struct in_conninfo *inc;
741 	struct tcphdr *th;
742 	struct socket **sop;
743 	struct mbuf *m;
744 {
745 	struct syncache *sc;
746 	struct syncache_head *sch;
747 	struct socket *so;
748 
749 	sc = syncache_lookup(inc, &sch);
750 	if (sc == NULL) {
751 		/*
752 		 * There is no syncache entry, so see if this ACK is
753 		 * a returning syncookie.  To do this, first:
754 		 *  A. See if this socket has had a syncache entry dropped in
755 		 *     the past.  We don't want to accept a bogus syncookie
756  		 *     if we've never received a SYN.
757 		 *  B. check that the syncookie is valid.  If it is, then
758 		 *     cobble up a fake syncache entry, and return.
759 		 */
760 		if (!tcp_syncookies)
761 			return (0);
762 		sc = syncookie_lookup(inc, th, *sop);
763 		if (sc == NULL)
764 			return (0);
765 		sch = NULL;
766 		tcpstat.tcps_sc_recvcookie++;
767 	}
768 
769 	/*
770 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
771 	 */
772 	if (th->th_ack != sc->sc_iss + 1)
773 		return (0);
774 
775 	so = syncache_socket(sc, *sop, m);
776 	if (so == NULL) {
777 #if 0
778 resetandabort:
779 		/* XXXjlemon check this - is this correct? */
780 		(void) tcp_respond(NULL, m, m, th,
781 		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
782 #endif
783 		m_freem(m);			/* XXX only needed for above */
784 		tcpstat.tcps_sc_aborted++;
785 	} else {
786 		sc->sc_flags |= SCF_KEEPROUTE;
787 		tcpstat.tcps_sc_completed++;
788 	}
789 	if (sch == NULL)
790 		syncache_free(sc);
791 	else
792 		syncache_drop(sc, sch);
793 	*sop = so;
794 	return (1);
795 }
796 
797 /*
798  * Given a LISTEN socket and an inbound SYN request, add
799  * this to the syn cache, and send back a segment:
800  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
801  * to the source.
802  *
803  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
804  * Doing so would require that we hold onto the data and deliver it
805  * to the application.  However, if we are the target of a SYN-flood
806  * DoS attack, an attacker could send data which would eventually
807  * consume all available buffer space if it were ACKed.  By not ACKing
808  * the data, we avoid this DoS scenario.
809  */
810 int
811 syncache_add(inc, to, th, sop, m)
812 	struct in_conninfo *inc;
813 	struct tcpopt *to;
814 	struct tcphdr *th;
815 	struct socket **sop;
816 	struct mbuf *m;
817 {
818 	struct tcpcb *tp;
819 	struct socket *so;
820 	struct syncache *sc = NULL;
821 	struct syncache_head *sch;
822 	struct mbuf *ipopts = NULL;
823 	struct rmxp_tao *taop;
824 	int i, s, win;
825 
826 	so = *sop;
827 	tp = sototcpcb(so);
828 
829 	/*
830 	 * Remember the IP options, if any.
831 	 */
832 #ifdef INET6
833 	if (!inc->inc_isipv6)
834 #endif
835 		ipopts = ip_srcroute();
836 
837 	/*
838 	 * See if we already have an entry for this connection.
839 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
840 	 *
841 	 * XXX
842 	 * should the syncache be re-initialized with the contents
843 	 * of the new SYN here (which may have different options?)
844 	 */
845 	sc = syncache_lookup(inc, &sch);
846 	if (sc != NULL) {
847 		tcpstat.tcps_sc_dupsyn++;
848 		if (ipopts) {
849 			/*
850 			 * If we were remembering a previous source route,
851 			 * forget it and use the new one we've been given.
852 			 */
853 			if (sc->sc_ipopts)
854 				(void) m_free(sc->sc_ipopts);
855 			sc->sc_ipopts = ipopts;
856 		}
857 		/*
858 		 * Update timestamp if present.
859 		 */
860 		if (sc->sc_flags & SCF_TIMESTAMP)
861 			sc->sc_tsrecent = to->to_tsval;
862 		/*
863 		 * PCB may have changed, pick up new values.
864 		 */
865 		sc->sc_tp = tp;
866 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
867 		if (syncache_respond(sc, m) == 0) {
868 		        s = splnet();
869 			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
870 			    sc, sc_timerq);
871 			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
872 		        splx(s);
873 		 	tcpstat.tcps_sndacks++;
874 			tcpstat.tcps_sndtotal++;
875 		}
876 		*sop = NULL;
877 		return (1);
878 	}
879 
880 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
881 	if (sc == NULL) {
882 		/*
883 		 * The zone allocator couldn't provide more entries.
884 		 * Treat this as if the cache was full; drop the oldest
885 		 * entry and insert the new one.
886 		 */
887 		s = splnet();
888 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
889 			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
890 			if (sc != NULL)
891 				break;
892 		}
893 		sc->sc_tp->ts_recent = ticks;
894 		syncache_drop(sc, NULL);
895 		splx(s);
896 		tcpstat.tcps_sc_zonefail++;
897 		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
898 		if (sc == NULL) {
899 			if (ipopts)
900 				(void) m_free(ipopts);
901 			return (0);
902 		}
903 	}
904 
905 	/*
906 	 * Fill in the syncache values.
907 	 */
908 	bzero(sc, sizeof(*sc));
909 	sc->sc_tp = tp;
910 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
911 	sc->sc_ipopts = ipopts;
912 	sc->sc_inc.inc_fport = inc->inc_fport;
913 	sc->sc_inc.inc_lport = inc->inc_lport;
914 #ifdef INET6
915 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
916 	if (inc->inc_isipv6) {
917 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
918 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
919 		sc->sc_route6.ro_rt = NULL;
920 	} else
921 #endif
922 	{
923 		sc->sc_inc.inc_faddr = inc->inc_faddr;
924 		sc->sc_inc.inc_laddr = inc->inc_laddr;
925 		sc->sc_route.ro_rt = NULL;
926 	}
927 	sc->sc_irs = th->th_seq;
928 	if (tcp_syncookies)
929 		sc->sc_iss = syncookie_generate(sc);
930 	else
931 		sc->sc_iss = arc4random();
932 
933 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
934 	win = sbspace(&so->so_rcv);
935 	win = imax(win, 0);
936 	win = imin(win, TCP_MAXWIN);
937 	sc->sc_wnd = win;
938 
939 	sc->sc_flags = 0;
940 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
941 	if (tcp_do_rfc1323) {
942 		/*
943 		 * A timestamp received in a SYN makes
944 		 * it ok to send timestamp requests and replies.
945 		 */
946 		if (to->to_flags & TOF_TS) {
947 			sc->sc_tsrecent = to->to_tsval;
948 			sc->sc_flags |= SCF_TIMESTAMP;
949 		}
950 		if (to->to_flags & TOF_SCALE) {
951 			int wscale = 0;
952 
953 			/* Compute proper scaling value from buffer space */
954 			while (wscale < TCP_MAX_WINSHIFT &&
955 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
956 				wscale++;
957 			sc->sc_request_r_scale = wscale;
958 			sc->sc_requested_s_scale = to->to_requested_s_scale;
959 			sc->sc_flags |= SCF_WINSCALE;
960 		}
961 	}
962 	if (tcp_do_rfc1644) {
963 		/*
964 		 * A CC or CC.new option received in a SYN makes
965 		 * it ok to send CC in subsequent segments.
966 		 */
967 		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
968 			sc->sc_cc_recv = to->to_cc;
969 			sc->sc_cc_send = CC_INC(tcp_ccgen);
970 			sc->sc_flags |= SCF_CC;
971 		}
972 	}
973 	if (tp->t_flags & TF_NOOPT)
974 		sc->sc_flags = SCF_NOOPT;
975 
976 	/*
977 	 * XXX
978 	 * We have the option here of not doing TAO (even if the segment
979 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
980 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
981 	 * also. However, there should be a hueristic to determine when to
982 	 * do this, and is not present at the moment.
983 	 */
984 
985 	/*
986 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
987 	 * - compare SEG.CC against cached CC from the same host, if any.
988 	 * - if SEG.CC > chached value, SYN must be new and is accepted
989 	 *	immediately: save new CC in the cache, mark the socket
990 	 *	connected, enter ESTABLISHED state, turn on flag to
991 	 *	send a SYN in the next segment.
992 	 *	A virtual advertised window is set in rcv_adv to
993 	 *	initialize SWS prevention.  Then enter normal segment
994 	 *	processing: drop SYN, process data and FIN.
995 	 * - otherwise do a normal 3-way handshake.
996 	 */
997 	taop = tcp_gettaocache(&sc->sc_inc);
998 	if ((to->to_flags & TOF_CC) != 0) {
999 		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1000 		    sc->sc_flags & SCF_CC &&
1001 		    taop != NULL && taop->tao_cc != 0 &&
1002 		    CC_GT(to->to_cc, taop->tao_cc)) {
1003 			sc->sc_rxtslot = 0;
1004 			so = syncache_socket(sc, *sop, m);
1005 			if (so != NULL) {
1006 				sc->sc_flags |= SCF_KEEPROUTE;
1007 				taop->tao_cc = to->to_cc;
1008 				*sop = so;
1009 			}
1010 			syncache_free(sc);
1011 			return (so != NULL);
1012 		}
1013 	} else {
1014 		/*
1015 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1016 		 */
1017 		if (taop != NULL)
1018 			taop->tao_cc = 0;
1019 	}
1020 	/*
1021 	 * TAO test failed or there was no CC option,
1022 	 *    do a standard 3-way handshake.
1023 	 */
1024 	if (syncache_respond(sc, m) == 0) {
1025 		syncache_insert(sc, sch);
1026 		tcpstat.tcps_sndacks++;
1027 		tcpstat.tcps_sndtotal++;
1028 	} else {
1029 		syncache_free(sc);
1030 		tcpstat.tcps_sc_dropped++;
1031 	}
1032 	*sop = NULL;
1033 	return (1);
1034 }
1035 
1036 static int
1037 syncache_respond(sc, m)
1038 	struct syncache *sc;
1039 	struct mbuf *m;
1040 {
1041 	u_int8_t *optp;
1042 	int optlen, error;
1043 	u_int16_t tlen, hlen, mssopt;
1044 	struct ip *ip = NULL;
1045 	struct rtentry *rt;
1046 	struct tcphdr *th;
1047 #ifdef INET6
1048 	struct ip6_hdr *ip6 = NULL;
1049 #endif
1050 
1051 #ifdef INET6
1052 	if (sc->sc_inc.inc_isipv6) {
1053 		rt = tcp_rtlookup6(&sc->sc_inc);
1054 		if (rt != NULL)
1055 			mssopt = rt->rt_ifp->if_mtu -
1056 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1057 		else
1058 			mssopt = tcp_v6mssdflt;
1059 		hlen = sizeof(struct ip6_hdr);
1060 	} else
1061 #endif
1062 	{
1063 		rt = tcp_rtlookup(&sc->sc_inc);
1064 		if (rt != NULL)
1065 			mssopt = rt->rt_ifp->if_mtu -
1066 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1067 		else
1068 			mssopt = tcp_mssdflt;
1069 		hlen = sizeof(struct ip);
1070 	}
1071 
1072 	/* Compute the size of the TCP options. */
1073 	if (sc->sc_flags & SCF_NOOPT) {
1074 		optlen = 0;
1075 	} else {
1076 		optlen = TCPOLEN_MAXSEG +
1077 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1078 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1079 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1080 	}
1081 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1082 
1083 	/*
1084 	 * XXX
1085 	 * assume that the entire packet will fit in a header mbuf
1086 	 */
1087 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1088 
1089 	/*
1090 	 * XXX shouldn't this reuse the mbuf if possible ?
1091 	 * Create the IP+TCP header from scratch.
1092 	 */
1093 	if (m)
1094 		m_freem(m);
1095 
1096 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1097 	if (m == NULL)
1098 		return (ENOBUFS);
1099 	m->m_data += max_linkhdr;
1100 	m->m_len = tlen;
1101 	m->m_pkthdr.len = tlen;
1102 	m->m_pkthdr.rcvif = NULL;
1103 #ifdef MAC
1104 	mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1105 #endif
1106 
1107 #ifdef IPSEC
1108 	/* use IPsec policy on listening socket to send SYN,ACK */
1109 	if (ipsec_setsocket(m, sc->sc_tp->t_inpcb->inp_socket) != 0) {
1110 		m_freem(m);
1111 		return (ENOBUFS);
1112 	}
1113 #endif
1114 
1115 #ifdef INET6
1116 	if (sc->sc_inc.inc_isipv6) {
1117 		ip6 = mtod(m, struct ip6_hdr *);
1118 		ip6->ip6_vfc = IPV6_VERSION;
1119 		ip6->ip6_nxt = IPPROTO_TCP;
1120 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122 		ip6->ip6_plen = htons(tlen - hlen);
1123 		/* ip6_hlim is set after checksum */
1124 		/* ip6_flow = ??? */
1125 
1126 		th = (struct tcphdr *)(ip6 + 1);
1127 	} else
1128 #endif
1129 	{
1130 		ip = mtod(m, struct ip *);
1131 		ip->ip_v = IPVERSION;
1132 		ip->ip_hl = sizeof(struct ip) >> 2;
1133 		ip->ip_len = tlen;
1134 		ip->ip_id = 0;
1135 		ip->ip_off = 0;
1136 		ip->ip_sum = 0;
1137 		ip->ip_p = IPPROTO_TCP;
1138 		ip->ip_src = sc->sc_inc.inc_laddr;
1139 		ip->ip_dst = sc->sc_inc.inc_faddr;
1140 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1141 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1142 
1143 		/*
1144 		 * See if we should do MTU discovery.  Route lookups are expensive,
1145 		 * so we will only unset the DF bit if:
1146 		 *
1147 		 *	1) path_mtu_discovery is disabled
1148 		 *	2) the SCF_UNREACH flag has been set
1149 		 */
1150 		if (path_mtu_discovery
1151 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1152 		       ip->ip_off |= IP_DF;
1153 		}
1154 
1155 		th = (struct tcphdr *)(ip + 1);
1156 	}
1157 	th->th_sport = sc->sc_inc.inc_lport;
1158 	th->th_dport = sc->sc_inc.inc_fport;
1159 
1160 	th->th_seq = htonl(sc->sc_iss);
1161 	th->th_ack = htonl(sc->sc_irs + 1);
1162 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1163 	th->th_x2 = 0;
1164 	th->th_flags = TH_SYN|TH_ACK;
1165 	th->th_win = htons(sc->sc_wnd);
1166 	th->th_urp = 0;
1167 
1168 	/* Tack on the TCP options. */
1169 	if (optlen == 0)
1170 		goto no_options;
1171 	optp = (u_int8_t *)(th + 1);
1172 	*optp++ = TCPOPT_MAXSEG;
1173 	*optp++ = TCPOLEN_MAXSEG;
1174 	*optp++ = (mssopt >> 8) & 0xff;
1175 	*optp++ = mssopt & 0xff;
1176 
1177 	if (sc->sc_flags & SCF_WINSCALE) {
1178 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1179 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1180 		    sc->sc_request_r_scale);
1181 		optp += 4;
1182 	}
1183 
1184 	if (sc->sc_flags & SCF_TIMESTAMP) {
1185 		u_int32_t *lp = (u_int32_t *)(optp);
1186 
1187 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1188 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1189 		*lp++ = htonl(ticks);
1190 		*lp   = htonl(sc->sc_tsrecent);
1191 		optp += TCPOLEN_TSTAMP_APPA;
1192 	}
1193 
1194 	/*
1195          * Send CC and CC.echo if we received CC from our peer.
1196          */
1197         if (sc->sc_flags & SCF_CC) {
1198 		u_int32_t *lp = (u_int32_t *)(optp);
1199 
1200 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1201 		*lp++ = htonl(sc->sc_cc_send);
1202 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1203 		*lp   = htonl(sc->sc_cc_recv);
1204 		optp += TCPOLEN_CC_APPA * 2;
1205 	}
1206 no_options:
1207 
1208 #ifdef INET6
1209 	if (sc->sc_inc.inc_isipv6) {
1210 		struct route_in6 *ro6 = &sc->sc_route6;
1211 
1212 		th->th_sum = 0;
1213 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1214 		ip6->ip6_hlim = in6_selecthlim(NULL,
1215 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1216 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL);
1217 	} else
1218 #endif
1219 	{
1220         	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1221 		    htons(tlen - hlen + IPPROTO_TCP));
1222 		m->m_pkthdr.csum_flags = CSUM_TCP;
1223 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1224 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL);
1225 	}
1226 	return (error);
1227 }
1228 
1229 /*
1230  * cookie layers:
1231  *
1232  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1233  *	| peer iss                                                      |
1234  *	| MD5(laddr,faddr,lport,fport,secret)             |. . . . . . .|
1235  *	|                     0                       |(A)|             |
1236  * (A): peer mss index
1237  */
1238 
1239 /*
1240  * The values below are chosen to minimize the size of the tcp_secret
1241  * table, as well as providing roughly a 4 second lifetime for the cookie.
1242  */
1243 
1244 #define SYNCOOKIE_HASHSHIFT	2	/* log2(# of 32bit words from hash) */
1245 #define SYNCOOKIE_WNDBITS	7	/* exposed bits for window indexing */
1246 #define SYNCOOKIE_TIMESHIFT	5	/* scale ticks to window time units */
1247 
1248 #define SYNCOOKIE_HASHMASK	((1 << SYNCOOKIE_HASHSHIFT) - 1)
1249 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1250 #define SYNCOOKIE_NSECRETS	(1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1251 #define SYNCOOKIE_TIMEOUT \
1252     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1253 #define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1254 
1255 static struct {
1256 	u_int32_t	ts_secbits;
1257 	u_int		ts_expire;
1258 } tcp_secret[SYNCOOKIE_NSECRETS];
1259 
1260 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1261 
1262 static MD5_CTX syn_ctx;
1263 
1264 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1265 
1266 /*
1267  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1268  * original SYN was accepted, the connection is established.  The second
1269  * SYN is inflight, and if it arrives with an ISN that falls within the
1270  * receive window, the connection is killed.
1271  *
1272  * However, since cookies have other problems, this may not be worth
1273  * worrying about.
1274  */
1275 
1276 static u_int32_t
1277 syncookie_generate(struct syncache *sc)
1278 {
1279 	u_int32_t md5_buffer[4];
1280 	u_int32_t data;
1281 	int wnd, idx;
1282 
1283 	wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1284 	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1285 	if (tcp_secret[idx].ts_expire < ticks) {
1286 		tcp_secret[idx].ts_secbits = arc4random();
1287 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1288 	}
1289 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1290 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1291 			break;
1292 	data = (data << SYNCOOKIE_WNDBITS) | wnd;
1293 	data ^= sc->sc_irs;				/* peer's iss */
1294 	MD5Init(&syn_ctx);
1295 #ifdef INET6
1296 	if (sc->sc_inc.inc_isipv6) {
1297 		MD5Add(sc->sc_inc.inc6_laddr);
1298 		MD5Add(sc->sc_inc.inc6_faddr);
1299 	} else
1300 #endif
1301 	{
1302 		MD5Add(sc->sc_inc.inc_laddr);
1303 		MD5Add(sc->sc_inc.inc_faddr);
1304 	}
1305 	MD5Add(sc->sc_inc.inc_lport);
1306 	MD5Add(sc->sc_inc.inc_fport);
1307 	MD5Add(tcp_secret[idx].ts_secbits);
1308 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1309 	data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1310 	return (data);
1311 }
1312 
1313 static struct syncache *
1314 syncookie_lookup(inc, th, so)
1315 	struct in_conninfo *inc;
1316 	struct tcphdr *th;
1317 	struct socket *so;
1318 {
1319 	u_int32_t md5_buffer[4];
1320 	struct syncache *sc;
1321 	u_int32_t data;
1322 	int wnd, idx;
1323 
1324 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1325 	wnd = data & SYNCOOKIE_WNDMASK;
1326 	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1327 	if (tcp_secret[idx].ts_expire < ticks ||
1328 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1329 		return (NULL);
1330 	MD5Init(&syn_ctx);
1331 #ifdef INET6
1332 	if (inc->inc_isipv6) {
1333 		MD5Add(inc->inc6_laddr);
1334 		MD5Add(inc->inc6_faddr);
1335 	} else
1336 #endif
1337 	{
1338 		MD5Add(inc->inc_laddr);
1339 		MD5Add(inc->inc_faddr);
1340 	}
1341 	MD5Add(inc->inc_lport);
1342 	MD5Add(inc->inc_fport);
1343 	MD5Add(tcp_secret[idx].ts_secbits);
1344 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1345 	data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1346 	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1347 		return (NULL);
1348 	data = data >> SYNCOOKIE_WNDBITS;
1349 
1350 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1351 	if (sc == NULL)
1352 		return (NULL);
1353 	/*
1354 	 * Fill in the syncache values.
1355 	 * XXX duplicate code from syncache_add
1356 	 */
1357 	sc->sc_ipopts = NULL;
1358 	sc->sc_inc.inc_fport = inc->inc_fport;
1359 	sc->sc_inc.inc_lport = inc->inc_lport;
1360 #ifdef INET6
1361 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1362 	if (inc->inc_isipv6) {
1363 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1364 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1365 		sc->sc_route6.ro_rt = NULL;
1366 	} else
1367 #endif
1368 	{
1369 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1370 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1371 		sc->sc_route.ro_rt = NULL;
1372 	}
1373 	sc->sc_irs = th->th_seq - 1;
1374 	sc->sc_iss = th->th_ack - 1;
1375 	wnd = sbspace(&so->so_rcv);
1376 	wnd = imax(wnd, 0);
1377 	wnd = imin(wnd, TCP_MAXWIN);
1378 	sc->sc_wnd = wnd;
1379 	sc->sc_flags = 0;
1380 	sc->sc_rxtslot = 0;
1381 	sc->sc_peer_mss = tcp_msstab[data];
1382 	return (sc);
1383 }
1384