xref: /freebsd/sys/netinet/tcp_syncache.c (revision c1cdf6a42f0d951ba720688dfc6ce07608b02f6e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, struct syncache_head *,
134 		    const struct mbuf *, int);
135 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136 		    struct mbuf *m);
137 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138 		    int docallout);
139 static void	 syncache_timer(void *);
140 
141 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142 		    uint8_t *, uintptr_t);
143 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144 static struct syncache
145 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146 		    struct syncache *, struct tcphdr *, struct tcpopt *,
147 		    struct socket *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
158  * the odds are that the user has given up attempting to connect by then.
159  */
160 #define SYNCACHE_MAXREXMTS		3
161 
162 /* Arbitrary values */
163 #define TCP_SYNCACHE_HASHSIZE		512
164 #define TCP_SYNCACHE_BUCKETLIMIT	30
165 
166 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
167 #define	V_tcp_syncache			VNET(tcp_syncache)
168 
169 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
170     "TCP SYN cache");
171 
172 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
173     &VNET_NAME(tcp_syncache.bucket_limit), 0,
174     "Per-bucket hash limit for syncache");
175 
176 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
177     &VNET_NAME(tcp_syncache.cache_limit), 0,
178     "Overall entry limit for syncache");
179 
180 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
181     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
182 
183 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
184     &VNET_NAME(tcp_syncache.hashsize), 0,
185     "Size of TCP syncache hashtable");
186 
187 static int
188 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
189 {
190 	int error;
191 	u_int new;
192 
193 	new = V_tcp_syncache.rexmt_limit;
194 	error = sysctl_handle_int(oidp, &new, 0, req);
195 	if ((error == 0) && (req->newptr != NULL)) {
196 		if (new > TCP_MAXRXTSHIFT)
197 			error = EINVAL;
198 		else
199 			V_tcp_syncache.rexmt_limit = new;
200 	}
201 	return (error);
202 }
203 
204 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
205     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
206     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
207     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
208     "Limit on SYN/ACK retransmissions");
209 
210 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
212     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
213     "Send reset on socket allocation failure");
214 
215 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
216 
217 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
218 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
219 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
220 
221 /*
222  * Requires the syncache entry to be already removed from the bucket list.
223  */
224 static void
225 syncache_free(struct syncache *sc)
226 {
227 
228 	if (sc->sc_ipopts)
229 		(void) m_free(sc->sc_ipopts);
230 	if (sc->sc_cred)
231 		crfree(sc->sc_cred);
232 #ifdef MAC
233 	mac_syncache_destroy(&sc->sc_label);
234 #endif
235 
236 	uma_zfree(V_tcp_syncache.zone, sc);
237 }
238 
239 void
240 syncache_init(void)
241 {
242 	int i;
243 
244 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
245 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
246 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
247 	V_tcp_syncache.hash_secret = arc4random();
248 
249 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
250 	    &V_tcp_syncache.hashsize);
251 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
252 	    &V_tcp_syncache.bucket_limit);
253 	if (!powerof2(V_tcp_syncache.hashsize) ||
254 	    V_tcp_syncache.hashsize == 0) {
255 		printf("WARNING: syncache hash size is not a power of 2.\n");
256 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
257 	}
258 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
259 
260 	/* Set limits. */
261 	V_tcp_syncache.cache_limit =
262 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
263 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
264 	    &V_tcp_syncache.cache_limit);
265 
266 	/* Allocate the hash table. */
267 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
268 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
269 
270 #ifdef VIMAGE
271 	V_tcp_syncache.vnet = curvnet;
272 #endif
273 
274 	/* Initialize the hash buckets. */
275 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
276 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
277 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
278 			 NULL, MTX_DEF);
279 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
280 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
281 		V_tcp_syncache.hashbase[i].sch_length = 0;
282 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
283 		V_tcp_syncache.hashbase[i].sch_last_overflow =
284 		    -(SYNCOOKIE_LIFETIME + 1);
285 	}
286 
287 	/* Create the syncache entry zone. */
288 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
289 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
290 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
291 	    V_tcp_syncache.cache_limit);
292 
293 	/* Start the SYN cookie reseeder callout. */
294 	callout_init(&V_tcp_syncache.secret.reseed, 1);
295 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
296 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
297 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
298 	    syncookie_reseed, &V_tcp_syncache);
299 }
300 
301 #ifdef VIMAGE
302 void
303 syncache_destroy(void)
304 {
305 	struct syncache_head *sch;
306 	struct syncache *sc, *nsc;
307 	int i;
308 
309 	/*
310 	 * Stop the re-seed timer before freeing resources.  No need to
311 	 * possibly schedule it another time.
312 	 */
313 	callout_drain(&V_tcp_syncache.secret.reseed);
314 
315 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
316 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
317 
318 		sch = &V_tcp_syncache.hashbase[i];
319 		callout_drain(&sch->sch_timer);
320 
321 		SCH_LOCK(sch);
322 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
323 			syncache_drop(sc, sch);
324 		SCH_UNLOCK(sch);
325 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
326 		    ("%s: sch->sch_bucket not empty", __func__));
327 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
328 		    __func__, sch->sch_length));
329 		mtx_destroy(&sch->sch_mtx);
330 	}
331 
332 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
333 	    ("%s: cache_count not 0", __func__));
334 
335 	/* Free the allocated global resources. */
336 	uma_zdestroy(V_tcp_syncache.zone);
337 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
338 }
339 #endif
340 
341 /*
342  * Inserts a syncache entry into the specified bucket row.
343  * Locks and unlocks the syncache_head autonomously.
344  */
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 {
348 	struct syncache *sc2;
349 
350 	SCH_LOCK(sch);
351 
352 	/*
353 	 * Make sure that we don't overflow the per-bucket limit.
354 	 * If the bucket is full, toss the oldest element.
355 	 */
356 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
357 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
358 			("sch->sch_length incorrect"));
359 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
360 		sch->sch_last_overflow = time_uptime;
361 		syncache_drop(sc2, sch);
362 		TCPSTAT_INC(tcps_sc_bucketoverflow);
363 	}
364 
365 	/* Put it into the bucket. */
366 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
367 	sch->sch_length++;
368 
369 #ifdef TCP_OFFLOAD
370 	if (ADDED_BY_TOE(sc)) {
371 		struct toedev *tod = sc->sc_tod;
372 
373 		tod->tod_syncache_added(tod, sc->sc_todctx);
374 	}
375 #endif
376 
377 	/* Reinitialize the bucket row's timer. */
378 	if (sch->sch_length == 1)
379 		sch->sch_nextc = ticks + INT_MAX;
380 	syncache_timeout(sc, sch, 1);
381 
382 	SCH_UNLOCK(sch);
383 
384 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
385 	TCPSTAT_INC(tcps_sc_added);
386 }
387 
388 /*
389  * Remove and free entry from syncache bucket row.
390  * Expects locked syncache head.
391  */
392 static void
393 syncache_drop(struct syncache *sc, struct syncache_head *sch)
394 {
395 
396 	SCH_LOCK_ASSERT(sch);
397 
398 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
399 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
400 	sch->sch_length--;
401 
402 #ifdef TCP_OFFLOAD
403 	if (ADDED_BY_TOE(sc)) {
404 		struct toedev *tod = sc->sc_tod;
405 
406 		tod->tod_syncache_removed(tod, sc->sc_todctx);
407 	}
408 #endif
409 
410 	syncache_free(sc);
411 }
412 
413 /*
414  * Engage/reengage time on bucket row.
415  */
416 static void
417 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
418 {
419 	int rexmt;
420 
421 	if (sc->sc_rxmits == 0)
422 		rexmt = TCPTV_RTOBASE;
423 	else
424 		TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
425 		    tcp_rexmit_min, TCPTV_REXMTMAX);
426 	sc->sc_rxttime = ticks + rexmt;
427 	sc->sc_rxmits++;
428 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
429 		sch->sch_nextc = sc->sc_rxttime;
430 		if (docallout)
431 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
432 			    syncache_timer, (void *)sch);
433 	}
434 }
435 
436 /*
437  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
438  * If we have retransmitted an entry the maximum number of times, expire it.
439  * One separate timer for each bucket row.
440  */
441 static void
442 syncache_timer(void *xsch)
443 {
444 	struct syncache_head *sch = (struct syncache_head *)xsch;
445 	struct syncache *sc, *nsc;
446 	int tick = ticks;
447 	char *s;
448 
449 	CURVNET_SET(sch->sch_sc->vnet);
450 
451 	/* NB: syncache_head has already been locked by the callout. */
452 	SCH_LOCK_ASSERT(sch);
453 
454 	/*
455 	 * In the following cycle we may remove some entries and/or
456 	 * advance some timeouts, so re-initialize the bucket timer.
457 	 */
458 	sch->sch_nextc = tick + INT_MAX;
459 
460 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
461 		/*
462 		 * We do not check if the listen socket still exists
463 		 * and accept the case where the listen socket may be
464 		 * gone by the time we resend the SYN/ACK.  We do
465 		 * not expect this to happens often. If it does,
466 		 * then the RST will be sent by the time the remote
467 		 * host does the SYN/ACK->ACK.
468 		 */
469 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
470 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
471 				sch->sch_nextc = sc->sc_rxttime;
472 			continue;
473 		}
474 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
475 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
476 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
477 				    "giving up and removing syncache entry\n",
478 				    s, __func__);
479 				free(s, M_TCPLOG);
480 			}
481 			syncache_drop(sc, sch);
482 			TCPSTAT_INC(tcps_sc_stale);
483 			continue;
484 		}
485 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
486 			log(LOG_DEBUG, "%s; %s: Response timeout, "
487 			    "retransmitting (%u) SYN|ACK\n",
488 			    s, __func__, sc->sc_rxmits);
489 			free(s, M_TCPLOG);
490 		}
491 
492 		syncache_respond(sc, sch, NULL, TH_SYN|TH_ACK);
493 		TCPSTAT_INC(tcps_sc_retransmitted);
494 		syncache_timeout(sc, sch, 0);
495 	}
496 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
497 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
498 			syncache_timer, (void *)(sch));
499 	CURVNET_RESTORE();
500 }
501 
502 /*
503  * Find an entry in the syncache.
504  * Returns always with locked syncache_head plus a matching entry or NULL.
505  */
506 static struct syncache *
507 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
508 {
509 	struct syncache *sc;
510 	struct syncache_head *sch;
511 	uint32_t hash;
512 
513 	/*
514 	 * The hash is built on foreign port + local port + foreign address.
515 	 * We rely on the fact that struct in_conninfo starts with 16 bits
516 	 * of foreign port, then 16 bits of local port then followed by 128
517 	 * bits of foreign address.  In case of IPv4 address, the first 3
518 	 * 32-bit words of the address always are zeroes.
519 	 */
520 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
521 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
522 
523 	sch = &V_tcp_syncache.hashbase[hash];
524 	*schp = sch;
525 	SCH_LOCK(sch);
526 
527 	/* Circle through bucket row to find matching entry. */
528 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
529 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
530 		    sizeof(struct in_endpoints)) == 0)
531 			break;
532 
533 	return (sc);	/* Always returns with locked sch. */
534 }
535 
536 /*
537  * This function is called when we get a RST for a
538  * non-existent connection, so that we can see if the
539  * connection is in the syn cache.  If it is, zap it.
540  * If required send a challenge ACK.
541  */
542 void
543 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
544 {
545 	struct syncache *sc;
546 	struct syncache_head *sch;
547 	char *s = NULL;
548 
549 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
550 	SCH_LOCK_ASSERT(sch);
551 
552 	/*
553 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
554 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
555 	 */
556 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
557 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
558 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
559 			    "FIN flag set, segment ignored\n", s, __func__);
560 		TCPSTAT_INC(tcps_badrst);
561 		goto done;
562 	}
563 
564 	/*
565 	 * No corresponding connection was found in syncache.
566 	 * If syncookies are enabled and possibly exclusively
567 	 * used, or we are under memory pressure, a valid RST
568 	 * may not find a syncache entry.  In that case we're
569 	 * done and no SYN|ACK retransmissions will happen.
570 	 * Otherwise the RST was misdirected or spoofed.
571 	 */
572 	if (sc == NULL) {
573 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
574 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
575 			    "syncache entry (possibly syncookie only), "
576 			    "segment ignored\n", s, __func__);
577 		TCPSTAT_INC(tcps_badrst);
578 		goto done;
579 	}
580 
581 	/*
582 	 * If the RST bit is set, check the sequence number to see
583 	 * if this is a valid reset segment.
584 	 * RFC 793 page 37:
585 	 *   In all states except SYN-SENT, all reset (RST) segments
586 	 *   are validated by checking their SEQ-fields.  A reset is
587 	 *   valid if its sequence number is in the window.
588 	 *
589 	 *   The sequence number in the reset segment is normally an
590 	 *   echo of our outgoing acknowlegement numbers, but some hosts
591 	 *   send a reset with the sequence number at the rightmost edge
592 	 *   of our receive window, and we have to handle this case.
593 	 */
594 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
595 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
596 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
597 		if (V_tcp_insecure_rst ||
598 		    th->th_seq == sc->sc_irs + 1) {
599 			syncache_drop(sc, sch);
600 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
601 				log(LOG_DEBUG,
602 				    "%s; %s: Our SYN|ACK was rejected, "
603 				    "connection attempt aborted by remote "
604 				    "endpoint\n",
605 				    s, __func__);
606 			TCPSTAT_INC(tcps_sc_reset);
607 		} else {
608 			TCPSTAT_INC(tcps_badrst);
609 			/* Send challenge ACK. */
610 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
611 				log(LOG_DEBUG, "%s; %s: RST with invalid "
612 				    " SEQ %u != NXT %u (+WND %u), "
613 				    "sending challenge ACK\n",
614 				    s, __func__,
615 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
616 			syncache_respond(sc, sch, m, TH_ACK);
617 		}
618 	} else {
619 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
620 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
621 			    "NXT %u (+WND %u), segment ignored\n",
622 			    s, __func__,
623 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
624 		TCPSTAT_INC(tcps_badrst);
625 	}
626 
627 done:
628 	if (s != NULL)
629 		free(s, M_TCPLOG);
630 	SCH_UNLOCK(sch);
631 }
632 
633 void
634 syncache_badack(struct in_conninfo *inc)
635 {
636 	struct syncache *sc;
637 	struct syncache_head *sch;
638 
639 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
640 	SCH_LOCK_ASSERT(sch);
641 	if (sc != NULL) {
642 		syncache_drop(sc, sch);
643 		TCPSTAT_INC(tcps_sc_badack);
644 	}
645 	SCH_UNLOCK(sch);
646 }
647 
648 void
649 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
650 {
651 	struct syncache *sc;
652 	struct syncache_head *sch;
653 
654 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
655 	SCH_LOCK_ASSERT(sch);
656 	if (sc == NULL)
657 		goto done;
658 
659 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
660 	if (ntohl(th_seq) != sc->sc_iss)
661 		goto done;
662 
663 	/*
664 	 * If we've rertransmitted 3 times and this is our second error,
665 	 * we remove the entry.  Otherwise, we allow it to continue on.
666 	 * This prevents us from incorrectly nuking an entry during a
667 	 * spurious network outage.
668 	 *
669 	 * See tcp_notify().
670 	 */
671 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
672 		sc->sc_flags |= SCF_UNREACH;
673 		goto done;
674 	}
675 	syncache_drop(sc, sch);
676 	TCPSTAT_INC(tcps_sc_unreach);
677 done:
678 	SCH_UNLOCK(sch);
679 }
680 
681 /*
682  * Build a new TCP socket structure from a syncache entry.
683  *
684  * On success return the newly created socket with its underlying inp locked.
685  */
686 static struct socket *
687 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
688 {
689 	struct tcp_function_block *blk;
690 	struct inpcb *inp = NULL;
691 	struct socket *so;
692 	struct tcpcb *tp;
693 	int error;
694 	char *s;
695 
696 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
697 
698 	/*
699 	 * Ok, create the full blown connection, and set things up
700 	 * as they would have been set up if we had created the
701 	 * connection when the SYN arrived.  If we can't create
702 	 * the connection, abort it.
703 	 */
704 	so = sonewconn(lso, 0);
705 	if (so == NULL) {
706 		/*
707 		 * Drop the connection; we will either send a RST or
708 		 * have the peer retransmit its SYN again after its
709 		 * RTO and try again.
710 		 */
711 		TCPSTAT_INC(tcps_listendrop);
712 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
713 			log(LOG_DEBUG, "%s; %s: Socket create failed "
714 			    "due to limits or memory shortage\n",
715 			    s, __func__);
716 			free(s, M_TCPLOG);
717 		}
718 		goto abort2;
719 	}
720 #ifdef MAC
721 	mac_socketpeer_set_from_mbuf(m, so);
722 #endif
723 
724 	inp = sotoinpcb(so);
725 	inp->inp_inc.inc_fibnum = so->so_fibnum;
726 	INP_WLOCK(inp);
727 	/*
728 	 * Exclusive pcbinfo lock is not required in syncache socket case even
729 	 * if two inpcb locks can be acquired simultaneously:
730 	 *  - the inpcb in LISTEN state,
731 	 *  - the newly created inp.
732 	 *
733 	 * In this case, an inp cannot be at same time in LISTEN state and
734 	 * just created by an accept() call.
735 	 */
736 	INP_HASH_WLOCK(&V_tcbinfo);
737 
738 	/* Insert new socket into PCB hash list. */
739 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
740 #ifdef INET6
741 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
742 		inp->inp_vflag &= ~INP_IPV4;
743 		inp->inp_vflag |= INP_IPV6;
744 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
745 	} else {
746 		inp->inp_vflag &= ~INP_IPV6;
747 		inp->inp_vflag |= INP_IPV4;
748 #endif
749 		inp->inp_laddr = sc->sc_inc.inc_laddr;
750 #ifdef INET6
751 	}
752 #endif
753 
754 	/*
755 	 * If there's an mbuf and it has a flowid, then let's initialise the
756 	 * inp with that particular flowid.
757 	 */
758 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
759 		inp->inp_flowid = m->m_pkthdr.flowid;
760 		inp->inp_flowtype = M_HASHTYPE_GET(m);
761 	}
762 
763 	/*
764 	 * Install in the reservation hash table for now, but don't yet
765 	 * install a connection group since the full 4-tuple isn't yet
766 	 * configured.
767 	 */
768 	inp->inp_lport = sc->sc_inc.inc_lport;
769 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
770 		/*
771 		 * Undo the assignments above if we failed to
772 		 * put the PCB on the hash lists.
773 		 */
774 #ifdef INET6
775 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
776 			inp->in6p_laddr = in6addr_any;
777 		else
778 #endif
779 			inp->inp_laddr.s_addr = INADDR_ANY;
780 		inp->inp_lport = 0;
781 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
782 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
783 			    "with error %i\n",
784 			    s, __func__, error);
785 			free(s, M_TCPLOG);
786 		}
787 		INP_HASH_WUNLOCK(&V_tcbinfo);
788 		goto abort;
789 	}
790 #ifdef INET6
791 	if (inp->inp_vflag & INP_IPV6PROTO) {
792 		struct inpcb *oinp = sotoinpcb(lso);
793 
794 		/*
795 		 * Inherit socket options from the listening socket.
796 		 * Note that in6p_inputopts are not (and should not be)
797 		 * copied, since it stores previously received options and is
798 		 * used to detect if each new option is different than the
799 		 * previous one and hence should be passed to a user.
800 		 * If we copied in6p_inputopts, a user would not be able to
801 		 * receive options just after calling the accept system call.
802 		 */
803 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
804 		if (oinp->in6p_outputopts)
805 			inp->in6p_outputopts =
806 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
807 	}
808 
809 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
810 		struct in6_addr laddr6;
811 		struct sockaddr_in6 sin6;
812 
813 		sin6.sin6_family = AF_INET6;
814 		sin6.sin6_len = sizeof(sin6);
815 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
816 		sin6.sin6_port = sc->sc_inc.inc_fport;
817 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
818 		laddr6 = inp->in6p_laddr;
819 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
820 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
821 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
822 		    thread0.td_ucred, m)) != 0) {
823 			inp->in6p_laddr = laddr6;
824 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
825 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
826 				    "with error %i\n",
827 				    s, __func__, error);
828 				free(s, M_TCPLOG);
829 			}
830 			INP_HASH_WUNLOCK(&V_tcbinfo);
831 			goto abort;
832 		}
833 		/* Override flowlabel from in6_pcbconnect. */
834 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
835 		inp->inp_flow |= sc->sc_flowlabel;
836 	}
837 #endif /* INET6 */
838 #if defined(INET) && defined(INET6)
839 	else
840 #endif
841 #ifdef INET
842 	{
843 		struct in_addr laddr;
844 		struct sockaddr_in sin;
845 
846 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
847 
848 		if (inp->inp_options == NULL) {
849 			inp->inp_options = sc->sc_ipopts;
850 			sc->sc_ipopts = NULL;
851 		}
852 
853 		sin.sin_family = AF_INET;
854 		sin.sin_len = sizeof(sin);
855 		sin.sin_addr = sc->sc_inc.inc_faddr;
856 		sin.sin_port = sc->sc_inc.inc_fport;
857 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
858 		laddr = inp->inp_laddr;
859 		if (inp->inp_laddr.s_addr == INADDR_ANY)
860 			inp->inp_laddr = sc->sc_inc.inc_laddr;
861 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
862 		    thread0.td_ucred, m)) != 0) {
863 			inp->inp_laddr = laddr;
864 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
865 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
866 				    "with error %i\n",
867 				    s, __func__, error);
868 				free(s, M_TCPLOG);
869 			}
870 			INP_HASH_WUNLOCK(&V_tcbinfo);
871 			goto abort;
872 		}
873 	}
874 #endif /* INET */
875 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
876 	/* Copy old policy into new socket's. */
877 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
878 		printf("syncache_socket: could not copy policy\n");
879 #endif
880 	INP_HASH_WUNLOCK(&V_tcbinfo);
881 	tp = intotcpcb(inp);
882 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
883 	tp->iss = sc->sc_iss;
884 	tp->irs = sc->sc_irs;
885 	tcp_rcvseqinit(tp);
886 	tcp_sendseqinit(tp);
887 	blk = sototcpcb(lso)->t_fb;
888 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
889 		/*
890 		 * Our parents t_fb was not the default,
891 		 * we need to release our ref on tp->t_fb and
892 		 * pickup one on the new entry.
893 		 */
894 		struct tcp_function_block *rblk;
895 
896 		rblk = find_and_ref_tcp_fb(blk);
897 		KASSERT(rblk != NULL,
898 		    ("cannot find blk %p out of syncache?", blk));
899 		if (tp->t_fb->tfb_tcp_fb_fini)
900 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
901 		refcount_release(&tp->t_fb->tfb_refcnt);
902 		tp->t_fb = rblk;
903 		/*
904 		 * XXXrrs this is quite dangerous, it is possible
905 		 * for the new function to fail to init. We also
906 		 * are not asking if the handoff_is_ok though at
907 		 * the very start thats probalbly ok.
908 		 */
909 		if (tp->t_fb->tfb_tcp_fb_init) {
910 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
911 		}
912 	}
913 	tp->snd_wl1 = sc->sc_irs;
914 	tp->snd_max = tp->iss + 1;
915 	tp->snd_nxt = tp->iss + 1;
916 	tp->rcv_up = sc->sc_irs + 1;
917 	tp->rcv_wnd = sc->sc_wnd;
918 	tp->rcv_adv += tp->rcv_wnd;
919 	tp->last_ack_sent = tp->rcv_nxt;
920 
921 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
922 	if (sc->sc_flags & SCF_NOOPT)
923 		tp->t_flags |= TF_NOOPT;
924 	else {
925 		if (sc->sc_flags & SCF_WINSCALE) {
926 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
927 			tp->snd_scale = sc->sc_requested_s_scale;
928 			tp->request_r_scale = sc->sc_requested_r_scale;
929 		}
930 		if (sc->sc_flags & SCF_TIMESTAMP) {
931 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
932 			tp->ts_recent = sc->sc_tsreflect;
933 			tp->ts_recent_age = tcp_ts_getticks();
934 			tp->ts_offset = sc->sc_tsoff;
935 		}
936 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
937 		if (sc->sc_flags & SCF_SIGNATURE)
938 			tp->t_flags |= TF_SIGNATURE;
939 #endif
940 		if (sc->sc_flags & SCF_SACK)
941 			tp->t_flags |= TF_SACK_PERMIT;
942 	}
943 
944 	if (sc->sc_flags & SCF_ECN)
945 		tp->t_flags |= TF_ECN_PERMIT;
946 
947 	/*
948 	 * Set up MSS and get cached values from tcp_hostcache.
949 	 * This might overwrite some of the defaults we just set.
950 	 */
951 	tcp_mss(tp, sc->sc_peer_mss);
952 
953 	/*
954 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
955 	 * limited to one segment in cc_conn_init().
956 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
957 	 */
958 	if (sc->sc_rxmits > 1)
959 		tp->snd_cwnd = 1;
960 
961 #ifdef TCP_OFFLOAD
962 	/*
963 	 * Allow a TOE driver to install its hooks.  Note that we hold the
964 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
965 	 * new connection before the TOE driver has done its thing.
966 	 */
967 	if (ADDED_BY_TOE(sc)) {
968 		struct toedev *tod = sc->sc_tod;
969 
970 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
971 	}
972 #endif
973 	/*
974 	 * Copy and activate timers.
975 	 */
976 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
977 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
978 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
979 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
980 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
981 
982 	TCPSTAT_INC(tcps_accepts);
983 	return (so);
984 
985 abort:
986 	INP_WUNLOCK(inp);
987 abort2:
988 	if (so != NULL)
989 		soabort(so);
990 	return (NULL);
991 }
992 
993 /*
994  * This function gets called when we receive an ACK for a
995  * socket in the LISTEN state.  We look up the connection
996  * in the syncache, and if its there, we pull it out of
997  * the cache and turn it into a full-blown connection in
998  * the SYN-RECEIVED state.
999  *
1000  * On syncache_socket() success the newly created socket
1001  * has its underlying inp locked.
1002  */
1003 int
1004 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1005     struct socket **lsop, struct mbuf *m)
1006 {
1007 	struct syncache *sc;
1008 	struct syncache_head *sch;
1009 	struct syncache scs;
1010 	char *s;
1011 
1012 	/*
1013 	 * Global TCP locks are held because we manipulate the PCB lists
1014 	 * and create a new socket.
1015 	 */
1016 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1017 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1018 	    ("%s: can handle only ACK", __func__));
1019 
1020 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1021 	SCH_LOCK_ASSERT(sch);
1022 
1023 #ifdef INVARIANTS
1024 	/*
1025 	 * Test code for syncookies comparing the syncache stored
1026 	 * values with the reconstructed values from the cookie.
1027 	 */
1028 	if (sc != NULL)
1029 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1030 #endif
1031 
1032 	if (sc == NULL) {
1033 		/*
1034 		 * There is no syncache entry, so see if this ACK is
1035 		 * a returning syncookie.  To do this, first:
1036 		 *  A. Check if syncookies are used in case of syncache
1037 		 *     overflows
1038 		 *  B. See if this socket has had a syncache entry dropped in
1039 		 *     the recent past. We don't want to accept a bogus
1040 		 *     syncookie if we've never received a SYN or accept it
1041 		 *     twice.
1042 		 *  C. check that the syncookie is valid.  If it is, then
1043 		 *     cobble up a fake syncache entry, and return.
1044 		 */
1045 		if (!V_tcp_syncookies) {
1046 			SCH_UNLOCK(sch);
1047 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1048 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1049 				    "segment rejected (syncookies disabled)\n",
1050 				    s, __func__);
1051 			goto failed;
1052 		}
1053 		if (!V_tcp_syncookiesonly &&
1054 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1055 			SCH_UNLOCK(sch);
1056 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1057 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1058 				    "segment rejected (no syncache entry)\n",
1059 				    s, __func__);
1060 			goto failed;
1061 		}
1062 		bzero(&scs, sizeof(scs));
1063 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1064 		SCH_UNLOCK(sch);
1065 		if (sc == NULL) {
1066 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1067 				log(LOG_DEBUG, "%s; %s: Segment failed "
1068 				    "SYNCOOKIE authentication, segment rejected "
1069 				    "(probably spoofed)\n", s, __func__);
1070 			goto failed;
1071 		}
1072 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1073 		/* If received ACK has MD5 signature, check it. */
1074 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1075 		    (!TCPMD5_ENABLED() ||
1076 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1077 			/* Drop the ACK. */
1078 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1079 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1080 				    "MD5 signature doesn't match.\n",
1081 				    s, __func__);
1082 				free(s, M_TCPLOG);
1083 			}
1084 			TCPSTAT_INC(tcps_sig_err_sigopt);
1085 			return (-1); /* Do not send RST */
1086 		}
1087 #endif /* TCP_SIGNATURE */
1088 	} else {
1089 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1090 		/*
1091 		 * If listening socket requested TCP digests, check that
1092 		 * received ACK has signature and it is correct.
1093 		 * If not, drop the ACK and leave sc entry in th cache,
1094 		 * because SYN was received with correct signature.
1095 		 */
1096 		if (sc->sc_flags & SCF_SIGNATURE) {
1097 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1098 				/* No signature */
1099 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1100 				SCH_UNLOCK(sch);
1101 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1102 					log(LOG_DEBUG, "%s; %s: Segment "
1103 					    "rejected, MD5 signature wasn't "
1104 					    "provided.\n", s, __func__);
1105 					free(s, M_TCPLOG);
1106 				}
1107 				return (-1); /* Do not send RST */
1108 			}
1109 			if (!TCPMD5_ENABLED() ||
1110 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1111 				/* Doesn't match or no SA */
1112 				SCH_UNLOCK(sch);
1113 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1114 					log(LOG_DEBUG, "%s; %s: Segment "
1115 					    "rejected, MD5 signature doesn't "
1116 					    "match.\n", s, __func__);
1117 					free(s, M_TCPLOG);
1118 				}
1119 				return (-1); /* Do not send RST */
1120 			}
1121 		}
1122 #endif /* TCP_SIGNATURE */
1123 		/*
1124 		 * Pull out the entry to unlock the bucket row.
1125 		 *
1126 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1127 		 * tcp_state_change().  The tcpcb is not existent at this
1128 		 * moment.  A new one will be allocated via syncache_socket->
1129 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1130 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1131 		 */
1132 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1133 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1134 		sch->sch_length--;
1135 #ifdef TCP_OFFLOAD
1136 		if (ADDED_BY_TOE(sc)) {
1137 			struct toedev *tod = sc->sc_tod;
1138 
1139 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1140 		}
1141 #endif
1142 		SCH_UNLOCK(sch);
1143 	}
1144 
1145 	/*
1146 	 * Segment validation:
1147 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1148 	 */
1149 	if (th->th_ack != sc->sc_iss + 1) {
1150 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1151 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1152 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1153 		goto failed;
1154 	}
1155 
1156 	/*
1157 	 * The SEQ must fall in the window starting at the received
1158 	 * initial receive sequence number + 1 (the SYN).
1159 	 */
1160 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1161 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1162 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1163 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1164 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1165 		goto failed;
1166 	}
1167 
1168 	/*
1169 	 * If timestamps were not negotiated during SYN/ACK they
1170 	 * must not appear on any segment during this session.
1171 	 */
1172 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1173 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1174 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1175 			    "segment rejected\n", s, __func__);
1176 		goto failed;
1177 	}
1178 
1179 	/*
1180 	 * If timestamps were negotiated during SYN/ACK they should
1181 	 * appear on every segment during this session.
1182 	 * XXXAO: This is only informal as there have been unverified
1183 	 * reports of non-compliants stacks.
1184 	 */
1185 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1186 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1187 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1188 			    "no action\n", s, __func__);
1189 			free(s, M_TCPLOG);
1190 			s = NULL;
1191 		}
1192 	}
1193 
1194 	*lsop = syncache_socket(sc, *lsop, m);
1195 
1196 	if (*lsop == NULL)
1197 		TCPSTAT_INC(tcps_sc_aborted);
1198 	else
1199 		TCPSTAT_INC(tcps_sc_completed);
1200 
1201 /* how do we find the inp for the new socket? */
1202 	if (sc != &scs)
1203 		syncache_free(sc);
1204 	return (1);
1205 failed:
1206 	if (sc != NULL && sc != &scs)
1207 		syncache_free(sc);
1208 	if (s != NULL)
1209 		free(s, M_TCPLOG);
1210 	*lsop = NULL;
1211 	return (0);
1212 }
1213 
1214 static void
1215 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1216     uint64_t response_cookie)
1217 {
1218 	struct inpcb *inp;
1219 	struct tcpcb *tp;
1220 	unsigned int *pending_counter;
1221 
1222 	/*
1223 	 * Global TCP locks are held because we manipulate the PCB lists
1224 	 * and create a new socket.
1225 	 */
1226 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1227 
1228 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1229 	*lsop = syncache_socket(sc, *lsop, m);
1230 	if (*lsop == NULL) {
1231 		TCPSTAT_INC(tcps_sc_aborted);
1232 		atomic_subtract_int(pending_counter, 1);
1233 	} else {
1234 		soisconnected(*lsop);
1235 		inp = sotoinpcb(*lsop);
1236 		tp = intotcpcb(inp);
1237 		tp->t_flags |= TF_FASTOPEN;
1238 		tp->t_tfo_cookie.server = response_cookie;
1239 		tp->snd_max = tp->iss;
1240 		tp->snd_nxt = tp->iss;
1241 		tp->t_tfo_pending = pending_counter;
1242 		TCPSTAT_INC(tcps_sc_completed);
1243 	}
1244 }
1245 
1246 /*
1247  * Given a LISTEN socket and an inbound SYN request, add
1248  * this to the syn cache, and send back a segment:
1249  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1250  * to the source.
1251  *
1252  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1253  * Doing so would require that we hold onto the data and deliver it
1254  * to the application.  However, if we are the target of a SYN-flood
1255  * DoS attack, an attacker could send data which would eventually
1256  * consume all available buffer space if it were ACKed.  By not ACKing
1257  * the data, we avoid this DoS scenario.
1258  *
1259  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1260  * cookie is processed and a new socket is created.  In this case, any data
1261  * accompanying the SYN will be queued to the socket by tcp_input() and will
1262  * be ACKed either when the application sends response data or the delayed
1263  * ACK timer expires, whichever comes first.
1264  */
1265 int
1266 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1267     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1268     void *todctx)
1269 {
1270 	struct tcpcb *tp;
1271 	struct socket *so;
1272 	struct syncache *sc = NULL;
1273 	struct syncache_head *sch;
1274 	struct mbuf *ipopts = NULL;
1275 	u_int ltflags;
1276 	int win, ip_ttl, ip_tos;
1277 	char *s;
1278 	int rv = 0;
1279 #ifdef INET6
1280 	int autoflowlabel = 0;
1281 #endif
1282 #ifdef MAC
1283 	struct label *maclabel;
1284 #endif
1285 	struct syncache scs;
1286 	struct ucred *cred;
1287 	uint64_t tfo_response_cookie;
1288 	unsigned int *tfo_pending = NULL;
1289 	int tfo_cookie_valid = 0;
1290 	int tfo_response_cookie_valid = 0;
1291 
1292 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1293 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1294 	    ("%s: unexpected tcp flags", __func__));
1295 
1296 	/*
1297 	 * Combine all so/tp operations very early to drop the INP lock as
1298 	 * soon as possible.
1299 	 */
1300 	so = *lsop;
1301 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1302 	tp = sototcpcb(so);
1303 	cred = crhold(so->so_cred);
1304 
1305 #ifdef INET6
1306 	if ((inc->inc_flags & INC_ISIPV6) &&
1307 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1308 		autoflowlabel = 1;
1309 #endif
1310 	ip_ttl = inp->inp_ip_ttl;
1311 	ip_tos = inp->inp_ip_tos;
1312 	win = so->sol_sbrcv_hiwat;
1313 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1314 
1315 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1316 	    (tp->t_tfo_pending != NULL) &&
1317 	    (to->to_flags & TOF_FASTOPEN)) {
1318 		/*
1319 		 * Limit the number of pending TFO connections to
1320 		 * approximately half of the queue limit.  This prevents TFO
1321 		 * SYN floods from starving the service by filling the
1322 		 * listen queue with bogus TFO connections.
1323 		 */
1324 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1325 		    (so->sol_qlimit / 2)) {
1326 			int result;
1327 
1328 			result = tcp_fastopen_check_cookie(inc,
1329 			    to->to_tfo_cookie, to->to_tfo_len,
1330 			    &tfo_response_cookie);
1331 			tfo_cookie_valid = (result > 0);
1332 			tfo_response_cookie_valid = (result >= 0);
1333 		}
1334 
1335 		/*
1336 		 * Remember the TFO pending counter as it will have to be
1337 		 * decremented below if we don't make it to syncache_tfo_expand().
1338 		 */
1339 		tfo_pending = tp->t_tfo_pending;
1340 	}
1341 
1342 	/* By the time we drop the lock these should no longer be used. */
1343 	so = NULL;
1344 	tp = NULL;
1345 
1346 #ifdef MAC
1347 	if (mac_syncache_init(&maclabel) != 0) {
1348 		INP_WUNLOCK(inp);
1349 		goto done;
1350 	} else
1351 		mac_syncache_create(maclabel, inp);
1352 #endif
1353 	if (!tfo_cookie_valid)
1354 		INP_WUNLOCK(inp);
1355 
1356 	/*
1357 	 * Remember the IP options, if any.
1358 	 */
1359 #ifdef INET6
1360 	if (!(inc->inc_flags & INC_ISIPV6))
1361 #endif
1362 #ifdef INET
1363 		ipopts = (m) ? ip_srcroute(m) : NULL;
1364 #else
1365 		ipopts = NULL;
1366 #endif
1367 
1368 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1369 	/*
1370 	 * If listening socket requested TCP digests, check that received
1371 	 * SYN has signature and it is correct. If signature doesn't match
1372 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1373 	 */
1374 	if (ltflags & TF_SIGNATURE) {
1375 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1376 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1377 			goto done;
1378 		}
1379 		if (!TCPMD5_ENABLED() ||
1380 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1381 			goto done;
1382 	}
1383 #endif	/* TCP_SIGNATURE */
1384 	/*
1385 	 * See if we already have an entry for this connection.
1386 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1387 	 *
1388 	 * XXX: should the syncache be re-initialized with the contents
1389 	 * of the new SYN here (which may have different options?)
1390 	 *
1391 	 * XXX: We do not check the sequence number to see if this is a
1392 	 * real retransmit or a new connection attempt.  The question is
1393 	 * how to handle such a case; either ignore it as spoofed, or
1394 	 * drop the current entry and create a new one?
1395 	 */
1396 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1397 	SCH_LOCK_ASSERT(sch);
1398 	if (sc != NULL) {
1399 		if (tfo_cookie_valid)
1400 			INP_WUNLOCK(inp);
1401 		TCPSTAT_INC(tcps_sc_dupsyn);
1402 		if (ipopts) {
1403 			/*
1404 			 * If we were remembering a previous source route,
1405 			 * forget it and use the new one we've been given.
1406 			 */
1407 			if (sc->sc_ipopts)
1408 				(void) m_free(sc->sc_ipopts);
1409 			sc->sc_ipopts = ipopts;
1410 		}
1411 		/*
1412 		 * Update timestamp if present.
1413 		 */
1414 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1415 			sc->sc_tsreflect = to->to_tsval;
1416 		else
1417 			sc->sc_flags &= ~SCF_TIMESTAMP;
1418 #ifdef MAC
1419 		/*
1420 		 * Since we have already unconditionally allocated label
1421 		 * storage, free it up.  The syncache entry will already
1422 		 * have an initialized label we can use.
1423 		 */
1424 		mac_syncache_destroy(&maclabel);
1425 #endif
1426 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1427 		/* Retransmit SYN|ACK and reset retransmit count. */
1428 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1429 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1430 			    "resetting timer and retransmitting SYN|ACK\n",
1431 			    s, __func__);
1432 			free(s, M_TCPLOG);
1433 		}
1434 		if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1435 			sc->sc_rxmits = 0;
1436 			syncache_timeout(sc, sch, 1);
1437 			TCPSTAT_INC(tcps_sndacks);
1438 			TCPSTAT_INC(tcps_sndtotal);
1439 		}
1440 		SCH_UNLOCK(sch);
1441 		goto donenoprobe;
1442 	}
1443 
1444 	if (tfo_cookie_valid) {
1445 		bzero(&scs, sizeof(scs));
1446 		sc = &scs;
1447 		goto skip_alloc;
1448 	}
1449 
1450 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1451 	if (sc == NULL) {
1452 		/*
1453 		 * The zone allocator couldn't provide more entries.
1454 		 * Treat this as if the cache was full; drop the oldest
1455 		 * entry and insert the new one.
1456 		 */
1457 		TCPSTAT_INC(tcps_sc_zonefail);
1458 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1459 			sch->sch_last_overflow = time_uptime;
1460 			syncache_drop(sc, sch);
1461 		}
1462 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1463 		if (sc == NULL) {
1464 			if (V_tcp_syncookies) {
1465 				bzero(&scs, sizeof(scs));
1466 				sc = &scs;
1467 			} else {
1468 				SCH_UNLOCK(sch);
1469 				if (ipopts)
1470 					(void) m_free(ipopts);
1471 				goto done;
1472 			}
1473 		}
1474 	}
1475 
1476 skip_alloc:
1477 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1478 		sc->sc_tfo_cookie = &tfo_response_cookie;
1479 
1480 	/*
1481 	 * Fill in the syncache values.
1482 	 */
1483 #ifdef MAC
1484 	sc->sc_label = maclabel;
1485 #endif
1486 	sc->sc_cred = cred;
1487 	cred = NULL;
1488 	sc->sc_ipopts = ipopts;
1489 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1490 #ifdef INET6
1491 	if (!(inc->inc_flags & INC_ISIPV6))
1492 #endif
1493 	{
1494 		sc->sc_ip_tos = ip_tos;
1495 		sc->sc_ip_ttl = ip_ttl;
1496 	}
1497 #ifdef TCP_OFFLOAD
1498 	sc->sc_tod = tod;
1499 	sc->sc_todctx = todctx;
1500 #endif
1501 	sc->sc_irs = th->th_seq;
1502 	sc->sc_iss = arc4random();
1503 	sc->sc_flags = 0;
1504 	sc->sc_flowlabel = 0;
1505 
1506 	/*
1507 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1508 	 * win was derived from socket earlier in the function.
1509 	 */
1510 	win = imax(win, 0);
1511 	win = imin(win, TCP_MAXWIN);
1512 	sc->sc_wnd = win;
1513 
1514 	if (V_tcp_do_rfc1323) {
1515 		/*
1516 		 * A timestamp received in a SYN makes
1517 		 * it ok to send timestamp requests and replies.
1518 		 */
1519 		if (to->to_flags & TOF_TS) {
1520 			sc->sc_tsreflect = to->to_tsval;
1521 			sc->sc_flags |= SCF_TIMESTAMP;
1522 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1523 		}
1524 		if (to->to_flags & TOF_SCALE) {
1525 			int wscale = 0;
1526 
1527 			/*
1528 			 * Pick the smallest possible scaling factor that
1529 			 * will still allow us to scale up to sb_max, aka
1530 			 * kern.ipc.maxsockbuf.
1531 			 *
1532 			 * We do this because there are broken firewalls that
1533 			 * will corrupt the window scale option, leading to
1534 			 * the other endpoint believing that our advertised
1535 			 * window is unscaled.  At scale factors larger than
1536 			 * 5 the unscaled window will drop below 1500 bytes,
1537 			 * leading to serious problems when traversing these
1538 			 * broken firewalls.
1539 			 *
1540 			 * With the default maxsockbuf of 256K, a scale factor
1541 			 * of 3 will be chosen by this algorithm.  Those who
1542 			 * choose a larger maxsockbuf should watch out
1543 			 * for the compatibility problems mentioned above.
1544 			 *
1545 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1546 			 * or <SYN,ACK>) segment itself is never scaled.
1547 			 */
1548 			while (wscale < TCP_MAX_WINSHIFT &&
1549 			    (TCP_MAXWIN << wscale) < sb_max)
1550 				wscale++;
1551 			sc->sc_requested_r_scale = wscale;
1552 			sc->sc_requested_s_scale = to->to_wscale;
1553 			sc->sc_flags |= SCF_WINSCALE;
1554 		}
1555 	}
1556 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1557 	/*
1558 	 * If listening socket requested TCP digests, flag this in the
1559 	 * syncache so that syncache_respond() will do the right thing
1560 	 * with the SYN+ACK.
1561 	 */
1562 	if (ltflags & TF_SIGNATURE)
1563 		sc->sc_flags |= SCF_SIGNATURE;
1564 #endif	/* TCP_SIGNATURE */
1565 	if (to->to_flags & TOF_SACKPERM)
1566 		sc->sc_flags |= SCF_SACK;
1567 	if (to->to_flags & TOF_MSS)
1568 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1569 	if (ltflags & TF_NOOPT)
1570 		sc->sc_flags |= SCF_NOOPT;
1571 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1572 		sc->sc_flags |= SCF_ECN;
1573 
1574 	if (V_tcp_syncookies)
1575 		sc->sc_iss = syncookie_generate(sch, sc);
1576 #ifdef INET6
1577 	if (autoflowlabel) {
1578 		if (V_tcp_syncookies)
1579 			sc->sc_flowlabel = sc->sc_iss;
1580 		else
1581 			sc->sc_flowlabel = ip6_randomflowlabel();
1582 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1583 	}
1584 #endif
1585 	SCH_UNLOCK(sch);
1586 
1587 	if (tfo_cookie_valid) {
1588 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1589 		/* INP_WUNLOCK(inp) will be performed by the caller */
1590 		rv = 1;
1591 		goto tfo_expanded;
1592 	}
1593 
1594 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1595 	/*
1596 	 * Do a standard 3-way handshake.
1597 	 */
1598 	if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1599 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1600 			syncache_free(sc);
1601 		else if (sc != &scs)
1602 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1603 		TCPSTAT_INC(tcps_sndacks);
1604 		TCPSTAT_INC(tcps_sndtotal);
1605 	} else {
1606 		if (sc != &scs)
1607 			syncache_free(sc);
1608 		TCPSTAT_INC(tcps_sc_dropped);
1609 	}
1610 	goto donenoprobe;
1611 
1612 done:
1613 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1614 donenoprobe:
1615 	if (m) {
1616 		*lsop = NULL;
1617 		m_freem(m);
1618 	}
1619 	/*
1620 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1621 	 * result in a new socket was processed and the associated pending
1622 	 * counter has not yet been decremented.  All such TFO processing paths
1623 	 * transit this point.
1624 	 */
1625 	if (tfo_pending != NULL)
1626 		tcp_fastopen_decrement_counter(tfo_pending);
1627 
1628 tfo_expanded:
1629 	if (cred != NULL)
1630 		crfree(cred);
1631 #ifdef MAC
1632 	if (sc == &scs)
1633 		mac_syncache_destroy(&maclabel);
1634 #endif
1635 	return (rv);
1636 }
1637 
1638 /*
1639  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1640  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1641  */
1642 static int
1643 syncache_respond(struct syncache *sc, struct syncache_head *sch,
1644     const struct mbuf *m0, int flags)
1645 {
1646 	struct ip *ip = NULL;
1647 	struct mbuf *m;
1648 	struct tcphdr *th = NULL;
1649 	int optlen, error = 0;	/* Make compiler happy */
1650 	u_int16_t hlen, tlen, mssopt;
1651 	struct tcpopt to;
1652 #ifdef INET6
1653 	struct ip6_hdr *ip6 = NULL;
1654 #endif
1655 	hlen =
1656 #ifdef INET6
1657 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1658 #endif
1659 		sizeof(struct ip);
1660 	tlen = hlen + sizeof(struct tcphdr);
1661 
1662 	/* Determine MSS we advertize to other end of connection. */
1663 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1664 
1665 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1666 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1667 	    ("syncache: mbuf too small"));
1668 
1669 	/* Create the IP+TCP header from scratch. */
1670 	m = m_gethdr(M_NOWAIT, MT_DATA);
1671 	if (m == NULL)
1672 		return (ENOBUFS);
1673 #ifdef MAC
1674 	mac_syncache_create_mbuf(sc->sc_label, m);
1675 #endif
1676 	m->m_data += max_linkhdr;
1677 	m->m_len = tlen;
1678 	m->m_pkthdr.len = tlen;
1679 	m->m_pkthdr.rcvif = NULL;
1680 
1681 #ifdef INET6
1682 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1683 		ip6 = mtod(m, struct ip6_hdr *);
1684 		ip6->ip6_vfc = IPV6_VERSION;
1685 		ip6->ip6_nxt = IPPROTO_TCP;
1686 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1687 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1688 		ip6->ip6_plen = htons(tlen - hlen);
1689 		/* ip6_hlim is set after checksum */
1690 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1691 		ip6->ip6_flow |= sc->sc_flowlabel;
1692 
1693 		th = (struct tcphdr *)(ip6 + 1);
1694 	}
1695 #endif
1696 #if defined(INET6) && defined(INET)
1697 	else
1698 #endif
1699 #ifdef INET
1700 	{
1701 		ip = mtod(m, struct ip *);
1702 		ip->ip_v = IPVERSION;
1703 		ip->ip_hl = sizeof(struct ip) >> 2;
1704 		ip->ip_len = htons(tlen);
1705 		ip->ip_id = 0;
1706 		ip->ip_off = 0;
1707 		ip->ip_sum = 0;
1708 		ip->ip_p = IPPROTO_TCP;
1709 		ip->ip_src = sc->sc_inc.inc_laddr;
1710 		ip->ip_dst = sc->sc_inc.inc_faddr;
1711 		ip->ip_ttl = sc->sc_ip_ttl;
1712 		ip->ip_tos = sc->sc_ip_tos;
1713 
1714 		/*
1715 		 * See if we should do MTU discovery.  Route lookups are
1716 		 * expensive, so we will only unset the DF bit if:
1717 		 *
1718 		 *	1) path_mtu_discovery is disabled
1719 		 *	2) the SCF_UNREACH flag has been set
1720 		 */
1721 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1722 		       ip->ip_off |= htons(IP_DF);
1723 
1724 		th = (struct tcphdr *)(ip + 1);
1725 	}
1726 #endif /* INET */
1727 	th->th_sport = sc->sc_inc.inc_lport;
1728 	th->th_dport = sc->sc_inc.inc_fport;
1729 
1730 	if (flags & TH_SYN)
1731 		th->th_seq = htonl(sc->sc_iss);
1732 	else
1733 		th->th_seq = htonl(sc->sc_iss + 1);
1734 	th->th_ack = htonl(sc->sc_irs + 1);
1735 	th->th_off = sizeof(struct tcphdr) >> 2;
1736 	th->th_x2 = 0;
1737 	th->th_flags = flags;
1738 	th->th_win = htons(sc->sc_wnd);
1739 	th->th_urp = 0;
1740 
1741 	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1742 		th->th_flags |= TH_ECE;
1743 		TCPSTAT_INC(tcps_ecn_shs);
1744 	}
1745 
1746 	/* Tack on the TCP options. */
1747 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1748 		to.to_flags = 0;
1749 
1750 		if (flags & TH_SYN) {
1751 			to.to_mss = mssopt;
1752 			to.to_flags = TOF_MSS;
1753 			if (sc->sc_flags & SCF_WINSCALE) {
1754 				to.to_wscale = sc->sc_requested_r_scale;
1755 				to.to_flags |= TOF_SCALE;
1756 			}
1757 			if (sc->sc_flags & SCF_SACK)
1758 				to.to_flags |= TOF_SACKPERM;
1759 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1760 			if (sc->sc_flags & SCF_SIGNATURE)
1761 				to.to_flags |= TOF_SIGNATURE;
1762 #endif
1763 			if (sc->sc_tfo_cookie) {
1764 				to.to_flags |= TOF_FASTOPEN;
1765 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1766 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1767 				/* don't send cookie again when retransmitting response */
1768 				sc->sc_tfo_cookie = NULL;
1769 			}
1770 		}
1771 		if (sc->sc_flags & SCF_TIMESTAMP) {
1772 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1773 			to.to_tsecr = sc->sc_tsreflect;
1774 			to.to_flags |= TOF_TS;
1775 		}
1776 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1777 
1778 		/* Adjust headers by option size. */
1779 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1780 		m->m_len += optlen;
1781 		m->m_pkthdr.len += optlen;
1782 #ifdef INET6
1783 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1784 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1785 		else
1786 #endif
1787 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1788 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1789 		if (sc->sc_flags & SCF_SIGNATURE) {
1790 			KASSERT(to.to_flags & TOF_SIGNATURE,
1791 			    ("tcp_addoptions() didn't set tcp_signature"));
1792 
1793 			/* NOTE: to.to_signature is inside of mbuf */
1794 			if (!TCPMD5_ENABLED() ||
1795 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1796 				m_freem(m);
1797 				return (EACCES);
1798 			}
1799 		}
1800 #endif
1801 	} else
1802 		optlen = 0;
1803 
1804 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1805 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1806 	/*
1807 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1808 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1809 	 * to SYN|ACK due to lack of inp here.
1810 	 */
1811 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1812 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1813 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1814 	}
1815 #ifdef INET6
1816 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1817 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1818 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1819 		    IPPROTO_TCP, 0);
1820 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1821 #ifdef TCP_OFFLOAD
1822 		if (ADDED_BY_TOE(sc)) {
1823 			struct toedev *tod = sc->sc_tod;
1824 
1825 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1826 
1827 			return (error);
1828 		}
1829 #endif
1830 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1831 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1832 	}
1833 #endif
1834 #if defined(INET6) && defined(INET)
1835 	else
1836 #endif
1837 #ifdef INET
1838 	{
1839 		m->m_pkthdr.csum_flags = CSUM_TCP;
1840 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1841 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1842 #ifdef TCP_OFFLOAD
1843 		if (ADDED_BY_TOE(sc)) {
1844 			struct toedev *tod = sc->sc_tod;
1845 
1846 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1847 
1848 			return (error);
1849 		}
1850 #endif
1851 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1852 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1853 	}
1854 #endif
1855 	return (error);
1856 }
1857 
1858 /*
1859  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1860  * that exceed the capacity of the syncache by avoiding the storage of any
1861  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1862  * attacks where the attacker does not have access to our responses.
1863  *
1864  * Syncookies encode and include all necessary information about the
1865  * connection setup within the SYN|ACK that we send back.  That way we
1866  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1867  * (if ever).  Normally the syncache and syncookies are running in parallel
1868  * with the latter taking over when the former is exhausted.  When matching
1869  * syncache entry is found the syncookie is ignored.
1870  *
1871  * The only reliable information persisting the 3WHS is our initial sequence
1872  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1873  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1874  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1875  * returns and signifies a legitimate connection if it matches the ACK.
1876  *
1877  * The available space of 32 bits to store the hash and to encode the SYN
1878  * option information is very tight and we should have at least 24 bits for
1879  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1880  *
1881  * SYN option information we have to encode to fully restore a connection:
1882  * MSS: is imporant to chose an optimal segment size to avoid IP level
1883  *   fragmentation along the path.  The common MSS values can be encoded
1884  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1885  *   in the table leading to a slight increase in packetization overhead.
1886  * WSCALE: is necessary to allow large windows to be used for high delay-
1887  *   bandwidth product links.  Not scaling the window when it was initially
1888  *   negotiated is bad for performance as lack of scaling further decreases
1889  *   the apparent available send window.  We only need to encode the WSCALE
1890  *   we received from the remote end.  Our end can be recalculated at any
1891  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1892  *   Uncommon values are captured by the next lower value in the table
1893  *   making us under-estimate the available window size halving our
1894  *   theoretically possible maximum throughput for that connection.
1895  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1896  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1897  *   that are included in all segments on a connection.  We enable them when
1898  *   the ACK has them.
1899  *
1900  * Security of syncookies and attack vectors:
1901  *
1902  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1903  * together with the gloabl secret to make it unique per connection attempt.
1904  * Thus any change of any of those parameters results in a different MAC output
1905  * in an unpredictable way unless a collision is encountered.  24 bits of the
1906  * MAC are embedded into the ISS.
1907  *
1908  * To prevent replay attacks two rotating global secrets are updated with a
1909  * new random value every 15 seconds.  The life-time of a syncookie is thus
1910  * 15-30 seconds.
1911  *
1912  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1913  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1914  * text attack by varying and testing the all parameters under his control.
1915  * The strength depends on the size and randomness of the secret, and the
1916  * cryptographic security of the MAC function.  Due to the constant updating
1917  * of the secret the attacker has at most 29.999 seconds to find the secret
1918  * and launch spoofed connections.  After that he has to start all over again.
1919  *
1920  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1921  * size an average of 4,823 attempts are required for a 50% chance of success
1922  * to spoof a single syncookie (birthday collision paradox).  However the
1923  * attacker is blind and doesn't know if one of his attempts succeeded unless
1924  * he has a side channel to interfere success from.  A single connection setup
1925  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1926  * This many attempts are required for each one blind spoofed connection.  For
1927  * every additional spoofed connection he has to launch another N attempts.
1928  * Thus for a sustained rate 100 spoofed connections per second approximately
1929  * 1,800,000 packets per second would have to be sent.
1930  *
1931  * NB: The MAC function should be fast so that it doesn't become a CPU
1932  * exhaustion attack vector itself.
1933  *
1934  * References:
1935  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1936  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1937  *   http://cr.yp.to/syncookies.html    (overview)
1938  *   http://cr.yp.to/syncookies/archive (details)
1939  *
1940  *
1941  * Schematic construction of a syncookie enabled Initial Sequence Number:
1942  *  0        1         2         3
1943  *  12345678901234567890123456789012
1944  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1945  *
1946  *  x 24 MAC (truncated)
1947  *  W  3 Send Window Scale index
1948  *  M  3 MSS index
1949  *  S  1 SACK permitted
1950  *  P  1 Odd/even secret
1951  */
1952 
1953 /*
1954  * Distribution and probability of certain MSS values.  Those in between are
1955  * rounded down to the next lower one.
1956  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1957  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1958  */
1959 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1960 
1961 /*
1962  * Distribution and probability of certain WSCALE values.  We have to map the
1963  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1964  * bits based on prevalence of certain values.  Where we don't have an exact
1965  * match for are rounded down to the next lower one letting us under-estimate
1966  * the true available window.  At the moment this would happen only for the
1967  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1968  * and window size).  The absence of the WSCALE option (no scaling in either
1969  * direction) is encoded with index zero.
1970  * [WSCALE values histograms, Allman, 2012]
1971  *                            X 10 10 35  5  6 14 10%   by host
1972  *                            X 11  4  5  5 18 49  3%   by connections
1973  */
1974 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1975 
1976 /*
1977  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1978  * and good cryptographic properties.
1979  */
1980 static uint32_t
1981 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1982     uint8_t *secbits, uintptr_t secmod)
1983 {
1984 	SIPHASH_CTX ctx;
1985 	uint32_t siphash[2];
1986 
1987 	SipHash24_Init(&ctx);
1988 	SipHash_SetKey(&ctx, secbits);
1989 	switch (inc->inc_flags & INC_ISIPV6) {
1990 #ifdef INET
1991 	case 0:
1992 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1993 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1994 		break;
1995 #endif
1996 #ifdef INET6
1997 	case INC_ISIPV6:
1998 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1999 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2000 		break;
2001 #endif
2002 	}
2003 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2004 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2005 	SipHash_Update(&ctx, &irs, sizeof(irs));
2006 	SipHash_Update(&ctx, &flags, sizeof(flags));
2007 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2008 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2009 
2010 	return (siphash[0] ^ siphash[1]);
2011 }
2012 
2013 static tcp_seq
2014 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2015 {
2016 	u_int i, secbit, wscale;
2017 	uint32_t iss, hash;
2018 	uint8_t *secbits;
2019 	union syncookie cookie;
2020 
2021 	SCH_LOCK_ASSERT(sch);
2022 
2023 	cookie.cookie = 0;
2024 
2025 	/* Map our computed MSS into the 3-bit index. */
2026 	for (i = nitems(tcp_sc_msstab) - 1;
2027 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2028 	     i--)
2029 		;
2030 	cookie.flags.mss_idx = i;
2031 
2032 	/*
2033 	 * Map the send window scale into the 3-bit index but only if
2034 	 * the wscale option was received.
2035 	 */
2036 	if (sc->sc_flags & SCF_WINSCALE) {
2037 		wscale = sc->sc_requested_s_scale;
2038 		for (i = nitems(tcp_sc_wstab) - 1;
2039 		    tcp_sc_wstab[i] > wscale && i > 0;
2040 		     i--)
2041 			;
2042 		cookie.flags.wscale_idx = i;
2043 	}
2044 
2045 	/* Can we do SACK? */
2046 	if (sc->sc_flags & SCF_SACK)
2047 		cookie.flags.sack_ok = 1;
2048 
2049 	/* Which of the two secrets to use. */
2050 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2051 	cookie.flags.odd_even = secbit;
2052 
2053 	secbits = sch->sch_sc->secret.key[secbit];
2054 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2055 	    (uintptr_t)sch);
2056 
2057 	/*
2058 	 * Put the flags into the hash and XOR them to get better ISS number
2059 	 * variance.  This doesn't enhance the cryptographic strength and is
2060 	 * done to prevent the 8 cookie bits from showing up directly on the
2061 	 * wire.
2062 	 */
2063 	iss = hash & ~0xff;
2064 	iss |= cookie.cookie ^ (hash >> 24);
2065 
2066 	TCPSTAT_INC(tcps_sc_sendcookie);
2067 	return (iss);
2068 }
2069 
2070 static struct syncache *
2071 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2072     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2073     struct socket *lso)
2074 {
2075 	uint32_t hash;
2076 	uint8_t *secbits;
2077 	tcp_seq ack, seq;
2078 	int wnd, wscale = 0;
2079 	union syncookie cookie;
2080 
2081 	SCH_LOCK_ASSERT(sch);
2082 
2083 	/*
2084 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2085 	 * advances.
2086 	 */
2087 	ack = th->th_ack - 1;
2088 	seq = th->th_seq - 1;
2089 
2090 	/*
2091 	 * Unpack the flags containing enough information to restore the
2092 	 * connection.
2093 	 */
2094 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2095 
2096 	/* Which of the two secrets to use. */
2097 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2098 
2099 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2100 
2101 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2102 	if ((ack & ~0xff) != (hash & ~0xff))
2103 		return (NULL);
2104 
2105 	/* Fill in the syncache values. */
2106 	sc->sc_flags = 0;
2107 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2108 	sc->sc_ipopts = NULL;
2109 
2110 	sc->sc_irs = seq;
2111 	sc->sc_iss = ack;
2112 
2113 	switch (inc->inc_flags & INC_ISIPV6) {
2114 #ifdef INET
2115 	case 0:
2116 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2117 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2118 		break;
2119 #endif
2120 #ifdef INET6
2121 	case INC_ISIPV6:
2122 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2123 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2124 		break;
2125 #endif
2126 	}
2127 
2128 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2129 
2130 	/* We can simply recompute receive window scale we sent earlier. */
2131 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2132 		wscale++;
2133 
2134 	/* Only use wscale if it was enabled in the orignal SYN. */
2135 	if (cookie.flags.wscale_idx > 0) {
2136 		sc->sc_requested_r_scale = wscale;
2137 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2138 		sc->sc_flags |= SCF_WINSCALE;
2139 	}
2140 
2141 	wnd = lso->sol_sbrcv_hiwat;
2142 	wnd = imax(wnd, 0);
2143 	wnd = imin(wnd, TCP_MAXWIN);
2144 	sc->sc_wnd = wnd;
2145 
2146 	if (cookie.flags.sack_ok)
2147 		sc->sc_flags |= SCF_SACK;
2148 
2149 	if (to->to_flags & TOF_TS) {
2150 		sc->sc_flags |= SCF_TIMESTAMP;
2151 		sc->sc_tsreflect = to->to_tsval;
2152 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2153 	}
2154 
2155 	if (to->to_flags & TOF_SIGNATURE)
2156 		sc->sc_flags |= SCF_SIGNATURE;
2157 
2158 	sc->sc_rxmits = 0;
2159 
2160 	TCPSTAT_INC(tcps_sc_recvcookie);
2161 	return (sc);
2162 }
2163 
2164 #ifdef INVARIANTS
2165 static int
2166 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2167     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2168     struct socket *lso)
2169 {
2170 	struct syncache scs, *scx;
2171 	char *s;
2172 
2173 	bzero(&scs, sizeof(scs));
2174 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2175 
2176 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2177 		return (0);
2178 
2179 	if (scx != NULL) {
2180 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2181 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2182 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2183 
2184 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2185 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2186 			    s, __func__, sc->sc_requested_r_scale,
2187 			    scx->sc_requested_r_scale);
2188 
2189 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2190 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2191 			    s, __func__, sc->sc_requested_s_scale,
2192 			    scx->sc_requested_s_scale);
2193 
2194 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2195 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2196 	}
2197 
2198 	if (s != NULL)
2199 		free(s, M_TCPLOG);
2200 	return (0);
2201 }
2202 #endif /* INVARIANTS */
2203 
2204 static void
2205 syncookie_reseed(void *arg)
2206 {
2207 	struct tcp_syncache *sc = arg;
2208 	uint8_t *secbits;
2209 	int secbit;
2210 
2211 	/*
2212 	 * Reseeding the secret doesn't have to be protected by a lock.
2213 	 * It only must be ensured that the new random values are visible
2214 	 * to all CPUs in a SMP environment.  The atomic with release
2215 	 * semantics ensures that.
2216 	 */
2217 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2218 	secbits = sc->secret.key[secbit];
2219 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2220 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2221 
2222 	/* Reschedule ourself. */
2223 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2224 }
2225 
2226 /*
2227  * Exports the syncache entries to userland so that netstat can display
2228  * them alongside the other sockets.  This function is intended to be
2229  * called only from tcp_pcblist.
2230  *
2231  * Due to concurrency on an active system, the number of pcbs exported
2232  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2233  * amount of space the caller allocated for this function to use.
2234  */
2235 int
2236 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2237 {
2238 	struct xtcpcb xt;
2239 	struct syncache *sc;
2240 	struct syncache_head *sch;
2241 	int count, error, i;
2242 
2243 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2244 		sch = &V_tcp_syncache.hashbase[i];
2245 		SCH_LOCK(sch);
2246 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2247 			if (count >= max_pcbs) {
2248 				SCH_UNLOCK(sch);
2249 				goto exit;
2250 			}
2251 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2252 				continue;
2253 			bzero(&xt, sizeof(xt));
2254 			xt.xt_len = sizeof(xt);
2255 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2256 				xt.xt_inp.inp_vflag = INP_IPV6;
2257 			else
2258 				xt.xt_inp.inp_vflag = INP_IPV4;
2259 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2260 			    sizeof (struct in_conninfo));
2261 			xt.t_state = TCPS_SYN_RECEIVED;
2262 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2263 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2264 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2265 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2266 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2267 			if (error) {
2268 				SCH_UNLOCK(sch);
2269 				goto exit;
2270 			}
2271 			count++;
2272 		}
2273 		SCH_UNLOCK(sch);
2274 	}
2275 exit:
2276 	*pcbs_exported = count;
2277 	return error;
2278 }
2279