xref: /freebsd/sys/netinet/tcp_syncache.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, struct syncache_head *,
134 		    const struct mbuf *);
135 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136 		    struct mbuf *m);
137 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138 		    int docallout);
139 static void	 syncache_timer(void *);
140 
141 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142 		    uint8_t *, uintptr_t);
143 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144 static struct syncache
145 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146 		    struct syncache *, struct tcphdr *, struct tcpopt *,
147 		    struct socket *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
158  * the odds are that the user has given up attempting to connect by then.
159  */
160 #define SYNCACHE_MAXREXMTS		3
161 
162 /* Arbitrary values */
163 #define TCP_SYNCACHE_HASHSIZE		512
164 #define TCP_SYNCACHE_BUCKETLIMIT	30
165 
166 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
167 #define	V_tcp_syncache			VNET(tcp_syncache)
168 
169 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
170     "TCP SYN cache");
171 
172 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
173     &VNET_NAME(tcp_syncache.bucket_limit), 0,
174     "Per-bucket hash limit for syncache");
175 
176 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
177     &VNET_NAME(tcp_syncache.cache_limit), 0,
178     "Overall entry limit for syncache");
179 
180 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
181     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
182 
183 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
184     &VNET_NAME(tcp_syncache.hashsize), 0,
185     "Size of TCP syncache hashtable");
186 
187 static int
188 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
189 {
190 	int error;
191 	u_int new;
192 
193 	new = V_tcp_syncache.rexmt_limit;
194 	error = sysctl_handle_int(oidp, &new, 0, req);
195 	if ((error == 0) && (req->newptr != NULL)) {
196 		if (new > TCP_MAXRXTSHIFT)
197 			error = EINVAL;
198 		else
199 			V_tcp_syncache.rexmt_limit = new;
200 	}
201 	return (error);
202 }
203 
204 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
205     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
206     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
207     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
208     "Limit on SYN/ACK retransmissions");
209 
210 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
212     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
213     "Send reset on socket allocation failure");
214 
215 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
216 
217 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
218 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
219 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
220 
221 /*
222  * Requires the syncache entry to be already removed from the bucket list.
223  */
224 static void
225 syncache_free(struct syncache *sc)
226 {
227 
228 	if (sc->sc_ipopts)
229 		(void) m_free(sc->sc_ipopts);
230 	if (sc->sc_cred)
231 		crfree(sc->sc_cred);
232 #ifdef MAC
233 	mac_syncache_destroy(&sc->sc_label);
234 #endif
235 
236 	uma_zfree(V_tcp_syncache.zone, sc);
237 }
238 
239 void
240 syncache_init(void)
241 {
242 	int i;
243 
244 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
245 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
246 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
247 	V_tcp_syncache.hash_secret = arc4random();
248 
249 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
250 	    &V_tcp_syncache.hashsize);
251 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
252 	    &V_tcp_syncache.bucket_limit);
253 	if (!powerof2(V_tcp_syncache.hashsize) ||
254 	    V_tcp_syncache.hashsize == 0) {
255 		printf("WARNING: syncache hash size is not a power of 2.\n");
256 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
257 	}
258 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
259 
260 	/* Set limits. */
261 	V_tcp_syncache.cache_limit =
262 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
263 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
264 	    &V_tcp_syncache.cache_limit);
265 
266 	/* Allocate the hash table. */
267 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
268 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
269 
270 #ifdef VIMAGE
271 	V_tcp_syncache.vnet = curvnet;
272 #endif
273 
274 	/* Initialize the hash buckets. */
275 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
276 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
277 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
278 			 NULL, MTX_DEF);
279 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
280 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
281 		V_tcp_syncache.hashbase[i].sch_length = 0;
282 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
283 		V_tcp_syncache.hashbase[i].sch_last_overflow =
284 		    -(SYNCOOKIE_LIFETIME + 1);
285 	}
286 
287 	/* Create the syncache entry zone. */
288 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
289 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
290 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
291 	    V_tcp_syncache.cache_limit);
292 
293 	/* Start the SYN cookie reseeder callout. */
294 	callout_init(&V_tcp_syncache.secret.reseed, 1);
295 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
296 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
297 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
298 	    syncookie_reseed, &V_tcp_syncache);
299 }
300 
301 #ifdef VIMAGE
302 void
303 syncache_destroy(void)
304 {
305 	struct syncache_head *sch;
306 	struct syncache *sc, *nsc;
307 	int i;
308 
309 	/*
310 	 * Stop the re-seed timer before freeing resources.  No need to
311 	 * possibly schedule it another time.
312 	 */
313 	callout_drain(&V_tcp_syncache.secret.reseed);
314 
315 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
316 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
317 
318 		sch = &V_tcp_syncache.hashbase[i];
319 		callout_drain(&sch->sch_timer);
320 
321 		SCH_LOCK(sch);
322 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
323 			syncache_drop(sc, sch);
324 		SCH_UNLOCK(sch);
325 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
326 		    ("%s: sch->sch_bucket not empty", __func__));
327 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
328 		    __func__, sch->sch_length));
329 		mtx_destroy(&sch->sch_mtx);
330 	}
331 
332 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
333 	    ("%s: cache_count not 0", __func__));
334 
335 	/* Free the allocated global resources. */
336 	uma_zdestroy(V_tcp_syncache.zone);
337 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
338 }
339 #endif
340 
341 /*
342  * Inserts a syncache entry into the specified bucket row.
343  * Locks and unlocks the syncache_head autonomously.
344  */
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 {
348 	struct syncache *sc2;
349 
350 	SCH_LOCK(sch);
351 
352 	/*
353 	 * Make sure that we don't overflow the per-bucket limit.
354 	 * If the bucket is full, toss the oldest element.
355 	 */
356 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
357 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
358 			("sch->sch_length incorrect"));
359 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
360 		sch->sch_last_overflow = time_uptime;
361 		syncache_drop(sc2, sch);
362 		TCPSTAT_INC(tcps_sc_bucketoverflow);
363 	}
364 
365 	/* Put it into the bucket. */
366 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
367 	sch->sch_length++;
368 
369 #ifdef TCP_OFFLOAD
370 	if (ADDED_BY_TOE(sc)) {
371 		struct toedev *tod = sc->sc_tod;
372 
373 		tod->tod_syncache_added(tod, sc->sc_todctx);
374 	}
375 #endif
376 
377 	/* Reinitialize the bucket row's timer. */
378 	if (sch->sch_length == 1)
379 		sch->sch_nextc = ticks + INT_MAX;
380 	syncache_timeout(sc, sch, 1);
381 
382 	SCH_UNLOCK(sch);
383 
384 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
385 	TCPSTAT_INC(tcps_sc_added);
386 }
387 
388 /*
389  * Remove and free entry from syncache bucket row.
390  * Expects locked syncache head.
391  */
392 static void
393 syncache_drop(struct syncache *sc, struct syncache_head *sch)
394 {
395 
396 	SCH_LOCK_ASSERT(sch);
397 
398 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
399 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
400 	sch->sch_length--;
401 
402 #ifdef TCP_OFFLOAD
403 	if (ADDED_BY_TOE(sc)) {
404 		struct toedev *tod = sc->sc_tod;
405 
406 		tod->tod_syncache_removed(tod, sc->sc_todctx);
407 	}
408 #endif
409 
410 	syncache_free(sc);
411 }
412 
413 /*
414  * Engage/reengage time on bucket row.
415  */
416 static void
417 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
418 {
419 	int rexmt;
420 
421 	if (sc->sc_rxmits == 0)
422 		rexmt = TCPTV_RTOBASE;
423 	else
424 		TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
425 		    tcp_rexmit_min, TCPTV_REXMTMAX);
426 	sc->sc_rxttime = ticks + rexmt;
427 	sc->sc_rxmits++;
428 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
429 		sch->sch_nextc = sc->sc_rxttime;
430 		if (docallout)
431 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
432 			    syncache_timer, (void *)sch);
433 	}
434 }
435 
436 /*
437  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
438  * If we have retransmitted an entry the maximum number of times, expire it.
439  * One separate timer for each bucket row.
440  */
441 static void
442 syncache_timer(void *xsch)
443 {
444 	struct syncache_head *sch = (struct syncache_head *)xsch;
445 	struct syncache *sc, *nsc;
446 	int tick = ticks;
447 	char *s;
448 
449 	CURVNET_SET(sch->sch_sc->vnet);
450 
451 	/* NB: syncache_head has already been locked by the callout. */
452 	SCH_LOCK_ASSERT(sch);
453 
454 	/*
455 	 * In the following cycle we may remove some entries and/or
456 	 * advance some timeouts, so re-initialize the bucket timer.
457 	 */
458 	sch->sch_nextc = tick + INT_MAX;
459 
460 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
461 		/*
462 		 * We do not check if the listen socket still exists
463 		 * and accept the case where the listen socket may be
464 		 * gone by the time we resend the SYN/ACK.  We do
465 		 * not expect this to happens often. If it does,
466 		 * then the RST will be sent by the time the remote
467 		 * host does the SYN/ACK->ACK.
468 		 */
469 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
470 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
471 				sch->sch_nextc = sc->sc_rxttime;
472 			continue;
473 		}
474 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
475 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
476 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
477 				    "giving up and removing syncache entry\n",
478 				    s, __func__);
479 				free(s, M_TCPLOG);
480 			}
481 			syncache_drop(sc, sch);
482 			TCPSTAT_INC(tcps_sc_stale);
483 			continue;
484 		}
485 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
486 			log(LOG_DEBUG, "%s; %s: Response timeout, "
487 			    "retransmitting (%u) SYN|ACK\n",
488 			    s, __func__, sc->sc_rxmits);
489 			free(s, M_TCPLOG);
490 		}
491 
492 		syncache_respond(sc, sch, NULL);
493 		TCPSTAT_INC(tcps_sc_retransmitted);
494 		syncache_timeout(sc, sch, 0);
495 	}
496 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
497 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
498 			syncache_timer, (void *)(sch));
499 	CURVNET_RESTORE();
500 }
501 
502 /*
503  * Find an entry in the syncache.
504  * Returns always with locked syncache_head plus a matching entry or NULL.
505  */
506 static struct syncache *
507 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
508 {
509 	struct syncache *sc;
510 	struct syncache_head *sch;
511 	uint32_t hash;
512 
513 	/*
514 	 * The hash is built on foreign port + local port + foreign address.
515 	 * We rely on the fact that struct in_conninfo starts with 16 bits
516 	 * of foreign port, then 16 bits of local port then followed by 128
517 	 * bits of foreign address.  In case of IPv4 address, the first 3
518 	 * 32-bit words of the address always are zeroes.
519 	 */
520 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
521 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
522 
523 	sch = &V_tcp_syncache.hashbase[hash];
524 	*schp = sch;
525 	SCH_LOCK(sch);
526 
527 	/* Circle through bucket row to find matching entry. */
528 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
529 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
530 		    sizeof(struct in_endpoints)) == 0)
531 			break;
532 
533 	return (sc);	/* Always returns with locked sch. */
534 }
535 
536 /*
537  * This function is called when we get a RST for a
538  * non-existent connection, so that we can see if the
539  * connection is in the syn cache.  If it is, zap it.
540  */
541 void
542 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
543 {
544 	struct syncache *sc;
545 	struct syncache_head *sch;
546 	char *s = NULL;
547 
548 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
549 	SCH_LOCK_ASSERT(sch);
550 
551 	/*
552 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
553 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
554 	 */
555 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
556 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
557 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
558 			    "FIN flag set, segment ignored\n", s, __func__);
559 		TCPSTAT_INC(tcps_badrst);
560 		goto done;
561 	}
562 
563 	/*
564 	 * No corresponding connection was found in syncache.
565 	 * If syncookies are enabled and possibly exclusively
566 	 * used, or we are under memory pressure, a valid RST
567 	 * may not find a syncache entry.  In that case we're
568 	 * done and no SYN|ACK retransmissions will happen.
569 	 * Otherwise the RST was misdirected or spoofed.
570 	 */
571 	if (sc == NULL) {
572 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
573 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
574 			    "syncache entry (possibly syncookie only), "
575 			    "segment ignored\n", s, __func__);
576 		TCPSTAT_INC(tcps_badrst);
577 		goto done;
578 	}
579 
580 	/*
581 	 * If the RST bit is set, check the sequence number to see
582 	 * if this is a valid reset segment.
583 	 * RFC 793 page 37:
584 	 *   In all states except SYN-SENT, all reset (RST) segments
585 	 *   are validated by checking their SEQ-fields.  A reset is
586 	 *   valid if its sequence number is in the window.
587 	 *
588 	 *   The sequence number in the reset segment is normally an
589 	 *   echo of our outgoing acknowlegement numbers, but some hosts
590 	 *   send a reset with the sequence number at the rightmost edge
591 	 *   of our receive window, and we have to handle this case.
592 	 */
593 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
594 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
595 		syncache_drop(sc, sch);
596 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
597 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
598 			    "connection attempt aborted by remote endpoint\n",
599 			    s, __func__);
600 		TCPSTAT_INC(tcps_sc_reset);
601 	} else {
602 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
603 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
604 			    "IRS %u (+WND %u), segment ignored\n",
605 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
606 		TCPSTAT_INC(tcps_badrst);
607 	}
608 
609 done:
610 	if (s != NULL)
611 		free(s, M_TCPLOG);
612 	SCH_UNLOCK(sch);
613 }
614 
615 void
616 syncache_badack(struct in_conninfo *inc)
617 {
618 	struct syncache *sc;
619 	struct syncache_head *sch;
620 
621 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
622 	SCH_LOCK_ASSERT(sch);
623 	if (sc != NULL) {
624 		syncache_drop(sc, sch);
625 		TCPSTAT_INC(tcps_sc_badack);
626 	}
627 	SCH_UNLOCK(sch);
628 }
629 
630 void
631 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
632 {
633 	struct syncache *sc;
634 	struct syncache_head *sch;
635 
636 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
637 	SCH_LOCK_ASSERT(sch);
638 	if (sc == NULL)
639 		goto done;
640 
641 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
642 	if (ntohl(th_seq) != sc->sc_iss)
643 		goto done;
644 
645 	/*
646 	 * If we've rertransmitted 3 times and this is our second error,
647 	 * we remove the entry.  Otherwise, we allow it to continue on.
648 	 * This prevents us from incorrectly nuking an entry during a
649 	 * spurious network outage.
650 	 *
651 	 * See tcp_notify().
652 	 */
653 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
654 		sc->sc_flags |= SCF_UNREACH;
655 		goto done;
656 	}
657 	syncache_drop(sc, sch);
658 	TCPSTAT_INC(tcps_sc_unreach);
659 done:
660 	SCH_UNLOCK(sch);
661 }
662 
663 /*
664  * Build a new TCP socket structure from a syncache entry.
665  *
666  * On success return the newly created socket with its underlying inp locked.
667  */
668 static struct socket *
669 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
670 {
671 	struct tcp_function_block *blk;
672 	struct inpcb *inp = NULL;
673 	struct socket *so;
674 	struct tcpcb *tp;
675 	int error;
676 	char *s;
677 
678 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
679 
680 	/*
681 	 * Ok, create the full blown connection, and set things up
682 	 * as they would have been set up if we had created the
683 	 * connection when the SYN arrived.  If we can't create
684 	 * the connection, abort it.
685 	 */
686 	so = sonewconn(lso, 0);
687 	if (so == NULL) {
688 		/*
689 		 * Drop the connection; we will either send a RST or
690 		 * have the peer retransmit its SYN again after its
691 		 * RTO and try again.
692 		 */
693 		TCPSTAT_INC(tcps_listendrop);
694 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
695 			log(LOG_DEBUG, "%s; %s: Socket create failed "
696 			    "due to limits or memory shortage\n",
697 			    s, __func__);
698 			free(s, M_TCPLOG);
699 		}
700 		goto abort2;
701 	}
702 #ifdef MAC
703 	mac_socketpeer_set_from_mbuf(m, so);
704 #endif
705 
706 	inp = sotoinpcb(so);
707 	inp->inp_inc.inc_fibnum = so->so_fibnum;
708 	INP_WLOCK(inp);
709 	/*
710 	 * Exclusive pcbinfo lock is not required in syncache socket case even
711 	 * if two inpcb locks can be acquired simultaneously:
712 	 *  - the inpcb in LISTEN state,
713 	 *  - the newly created inp.
714 	 *
715 	 * In this case, an inp cannot be at same time in LISTEN state and
716 	 * just created by an accept() call.
717 	 */
718 	INP_HASH_WLOCK(&V_tcbinfo);
719 
720 	/* Insert new socket into PCB hash list. */
721 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
722 #ifdef INET6
723 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
724 		inp->inp_vflag &= ~INP_IPV4;
725 		inp->inp_vflag |= INP_IPV6;
726 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
727 	} else {
728 		inp->inp_vflag &= ~INP_IPV6;
729 		inp->inp_vflag |= INP_IPV4;
730 #endif
731 		inp->inp_laddr = sc->sc_inc.inc_laddr;
732 #ifdef INET6
733 	}
734 #endif
735 
736 	/*
737 	 * If there's an mbuf and it has a flowid, then let's initialise the
738 	 * inp with that particular flowid.
739 	 */
740 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
741 		inp->inp_flowid = m->m_pkthdr.flowid;
742 		inp->inp_flowtype = M_HASHTYPE_GET(m);
743 	}
744 
745 	/*
746 	 * Install in the reservation hash table for now, but don't yet
747 	 * install a connection group since the full 4-tuple isn't yet
748 	 * configured.
749 	 */
750 	inp->inp_lport = sc->sc_inc.inc_lport;
751 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
752 		/*
753 		 * Undo the assignments above if we failed to
754 		 * put the PCB on the hash lists.
755 		 */
756 #ifdef INET6
757 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
758 			inp->in6p_laddr = in6addr_any;
759 		else
760 #endif
761 			inp->inp_laddr.s_addr = INADDR_ANY;
762 		inp->inp_lport = 0;
763 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
764 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
765 			    "with error %i\n",
766 			    s, __func__, error);
767 			free(s, M_TCPLOG);
768 		}
769 		INP_HASH_WUNLOCK(&V_tcbinfo);
770 		goto abort;
771 	}
772 #ifdef INET6
773 	if (inp->inp_vflag & INP_IPV6PROTO) {
774 		struct inpcb *oinp = sotoinpcb(lso);
775 
776 		/*
777 		 * Inherit socket options from the listening socket.
778 		 * Note that in6p_inputopts are not (and should not be)
779 		 * copied, since it stores previously received options and is
780 		 * used to detect if each new option is different than the
781 		 * previous one and hence should be passed to a user.
782 		 * If we copied in6p_inputopts, a user would not be able to
783 		 * receive options just after calling the accept system call.
784 		 */
785 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
786 		if (oinp->in6p_outputopts)
787 			inp->in6p_outputopts =
788 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
789 	}
790 
791 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
792 		struct in6_addr laddr6;
793 		struct sockaddr_in6 sin6;
794 
795 		sin6.sin6_family = AF_INET6;
796 		sin6.sin6_len = sizeof(sin6);
797 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
798 		sin6.sin6_port = sc->sc_inc.inc_fport;
799 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
800 		laddr6 = inp->in6p_laddr;
801 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
802 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
803 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
804 		    thread0.td_ucred, m)) != 0) {
805 			inp->in6p_laddr = laddr6;
806 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
807 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
808 				    "with error %i\n",
809 				    s, __func__, error);
810 				free(s, M_TCPLOG);
811 			}
812 			INP_HASH_WUNLOCK(&V_tcbinfo);
813 			goto abort;
814 		}
815 		/* Override flowlabel from in6_pcbconnect. */
816 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
817 		inp->inp_flow |= sc->sc_flowlabel;
818 	}
819 #endif /* INET6 */
820 #if defined(INET) && defined(INET6)
821 	else
822 #endif
823 #ifdef INET
824 	{
825 		struct in_addr laddr;
826 		struct sockaddr_in sin;
827 
828 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
829 
830 		if (inp->inp_options == NULL) {
831 			inp->inp_options = sc->sc_ipopts;
832 			sc->sc_ipopts = NULL;
833 		}
834 
835 		sin.sin_family = AF_INET;
836 		sin.sin_len = sizeof(sin);
837 		sin.sin_addr = sc->sc_inc.inc_faddr;
838 		sin.sin_port = sc->sc_inc.inc_fport;
839 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
840 		laddr = inp->inp_laddr;
841 		if (inp->inp_laddr.s_addr == INADDR_ANY)
842 			inp->inp_laddr = sc->sc_inc.inc_laddr;
843 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
844 		    thread0.td_ucred, m)) != 0) {
845 			inp->inp_laddr = laddr;
846 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
847 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
848 				    "with error %i\n",
849 				    s, __func__, error);
850 				free(s, M_TCPLOG);
851 			}
852 			INP_HASH_WUNLOCK(&V_tcbinfo);
853 			goto abort;
854 		}
855 	}
856 #endif /* INET */
857 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
858 	/* Copy old policy into new socket's. */
859 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
860 		printf("syncache_socket: could not copy policy\n");
861 #endif
862 	INP_HASH_WUNLOCK(&V_tcbinfo);
863 	tp = intotcpcb(inp);
864 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
865 	tp->iss = sc->sc_iss;
866 	tp->irs = sc->sc_irs;
867 	tcp_rcvseqinit(tp);
868 	tcp_sendseqinit(tp);
869 	blk = sototcpcb(lso)->t_fb;
870 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
871 		/*
872 		 * Our parents t_fb was not the default,
873 		 * we need to release our ref on tp->t_fb and
874 		 * pickup one on the new entry.
875 		 */
876 		struct tcp_function_block *rblk;
877 
878 		rblk = find_and_ref_tcp_fb(blk);
879 		KASSERT(rblk != NULL,
880 		    ("cannot find blk %p out of syncache?", blk));
881 		if (tp->t_fb->tfb_tcp_fb_fini)
882 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
883 		refcount_release(&tp->t_fb->tfb_refcnt);
884 		tp->t_fb = rblk;
885 		/*
886 		 * XXXrrs this is quite dangerous, it is possible
887 		 * for the new function to fail to init. We also
888 		 * are not asking if the handoff_is_ok though at
889 		 * the very start thats probalbly ok.
890 		 */
891 		if (tp->t_fb->tfb_tcp_fb_init) {
892 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
893 		}
894 	}
895 	tp->snd_wl1 = sc->sc_irs;
896 	tp->snd_max = tp->iss + 1;
897 	tp->snd_nxt = tp->iss + 1;
898 	tp->rcv_up = sc->sc_irs + 1;
899 	tp->rcv_wnd = sc->sc_wnd;
900 	tp->rcv_adv += tp->rcv_wnd;
901 	tp->last_ack_sent = tp->rcv_nxt;
902 
903 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
904 	if (sc->sc_flags & SCF_NOOPT)
905 		tp->t_flags |= TF_NOOPT;
906 	else {
907 		if (sc->sc_flags & SCF_WINSCALE) {
908 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
909 			tp->snd_scale = sc->sc_requested_s_scale;
910 			tp->request_r_scale = sc->sc_requested_r_scale;
911 		}
912 		if (sc->sc_flags & SCF_TIMESTAMP) {
913 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
914 			tp->ts_recent = sc->sc_tsreflect;
915 			tp->ts_recent_age = tcp_ts_getticks();
916 			tp->ts_offset = sc->sc_tsoff;
917 		}
918 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
919 		if (sc->sc_flags & SCF_SIGNATURE)
920 			tp->t_flags |= TF_SIGNATURE;
921 #endif
922 		if (sc->sc_flags & SCF_SACK)
923 			tp->t_flags |= TF_SACK_PERMIT;
924 	}
925 
926 	if (sc->sc_flags & SCF_ECN)
927 		tp->t_flags |= TF_ECN_PERMIT;
928 
929 	/*
930 	 * Set up MSS and get cached values from tcp_hostcache.
931 	 * This might overwrite some of the defaults we just set.
932 	 */
933 	tcp_mss(tp, sc->sc_peer_mss);
934 
935 	/*
936 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
937 	 * limited to one segment in cc_conn_init().
938 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
939 	 */
940 	if (sc->sc_rxmits > 1)
941 		tp->snd_cwnd = 1;
942 
943 #ifdef TCP_OFFLOAD
944 	/*
945 	 * Allow a TOE driver to install its hooks.  Note that we hold the
946 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
947 	 * new connection before the TOE driver has done its thing.
948 	 */
949 	if (ADDED_BY_TOE(sc)) {
950 		struct toedev *tod = sc->sc_tod;
951 
952 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
953 	}
954 #endif
955 	/*
956 	 * Copy and activate timers.
957 	 */
958 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
959 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
960 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
961 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
962 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
963 
964 	TCPSTAT_INC(tcps_accepts);
965 	return (so);
966 
967 abort:
968 	INP_WUNLOCK(inp);
969 abort2:
970 	if (so != NULL)
971 		soabort(so);
972 	return (NULL);
973 }
974 
975 /*
976  * This function gets called when we receive an ACK for a
977  * socket in the LISTEN state.  We look up the connection
978  * in the syncache, and if its there, we pull it out of
979  * the cache and turn it into a full-blown connection in
980  * the SYN-RECEIVED state.
981  *
982  * On syncache_socket() success the newly created socket
983  * has its underlying inp locked.
984  */
985 int
986 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
987     struct socket **lsop, struct mbuf *m)
988 {
989 	struct syncache *sc;
990 	struct syncache_head *sch;
991 	struct syncache scs;
992 	char *s;
993 
994 	/*
995 	 * Global TCP locks are held because we manipulate the PCB lists
996 	 * and create a new socket.
997 	 */
998 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
999 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1000 	    ("%s: can handle only ACK", __func__));
1001 
1002 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1003 	SCH_LOCK_ASSERT(sch);
1004 
1005 #ifdef INVARIANTS
1006 	/*
1007 	 * Test code for syncookies comparing the syncache stored
1008 	 * values with the reconstructed values from the cookie.
1009 	 */
1010 	if (sc != NULL)
1011 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1012 #endif
1013 
1014 	if (sc == NULL) {
1015 		/*
1016 		 * There is no syncache entry, so see if this ACK is
1017 		 * a returning syncookie.  To do this, first:
1018 		 *  A. Check if syncookies are used in case of syncache
1019 		 *     overflows
1020 		 *  B. See if this socket has had a syncache entry dropped in
1021 		 *     the recent past. We don't want to accept a bogus
1022 		 *     syncookie if we've never received a SYN or accept it
1023 		 *     twice.
1024 		 *  C. check that the syncookie is valid.  If it is, then
1025 		 *     cobble up a fake syncache entry, and return.
1026 		 */
1027 		if (!V_tcp_syncookies) {
1028 			SCH_UNLOCK(sch);
1029 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1030 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1031 				    "segment rejected (syncookies disabled)\n",
1032 				    s, __func__);
1033 			goto failed;
1034 		}
1035 		if (!V_tcp_syncookiesonly &&
1036 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1037 			SCH_UNLOCK(sch);
1038 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1039 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1040 				    "segment rejected (no syncache entry)\n",
1041 				    s, __func__);
1042 			goto failed;
1043 		}
1044 		bzero(&scs, sizeof(scs));
1045 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1046 		SCH_UNLOCK(sch);
1047 		if (sc == NULL) {
1048 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1049 				log(LOG_DEBUG, "%s; %s: Segment failed "
1050 				    "SYNCOOKIE authentication, segment rejected "
1051 				    "(probably spoofed)\n", s, __func__);
1052 			goto failed;
1053 		}
1054 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1055 		/* If received ACK has MD5 signature, check it. */
1056 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1057 		    (!TCPMD5_ENABLED() ||
1058 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1059 			/* Drop the ACK. */
1060 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1061 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1062 				    "MD5 signature doesn't match.\n",
1063 				    s, __func__);
1064 				free(s, M_TCPLOG);
1065 			}
1066 			TCPSTAT_INC(tcps_sig_err_sigopt);
1067 			return (-1); /* Do not send RST */
1068 		}
1069 #endif /* TCP_SIGNATURE */
1070 	} else {
1071 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1072 		/*
1073 		 * If listening socket requested TCP digests, check that
1074 		 * received ACK has signature and it is correct.
1075 		 * If not, drop the ACK and leave sc entry in th cache,
1076 		 * because SYN was received with correct signature.
1077 		 */
1078 		if (sc->sc_flags & SCF_SIGNATURE) {
1079 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1080 				/* No signature */
1081 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1082 				SCH_UNLOCK(sch);
1083 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1084 					log(LOG_DEBUG, "%s; %s: Segment "
1085 					    "rejected, MD5 signature wasn't "
1086 					    "provided.\n", s, __func__);
1087 					free(s, M_TCPLOG);
1088 				}
1089 				return (-1); /* Do not send RST */
1090 			}
1091 			if (!TCPMD5_ENABLED() ||
1092 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1093 				/* Doesn't match or no SA */
1094 				SCH_UNLOCK(sch);
1095 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1096 					log(LOG_DEBUG, "%s; %s: Segment "
1097 					    "rejected, MD5 signature doesn't "
1098 					    "match.\n", s, __func__);
1099 					free(s, M_TCPLOG);
1100 				}
1101 				return (-1); /* Do not send RST */
1102 			}
1103 		}
1104 #endif /* TCP_SIGNATURE */
1105 		/*
1106 		 * Pull out the entry to unlock the bucket row.
1107 		 *
1108 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1109 		 * tcp_state_change().  The tcpcb is not existent at this
1110 		 * moment.  A new one will be allocated via syncache_socket->
1111 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1112 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1113 		 */
1114 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1115 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1116 		sch->sch_length--;
1117 #ifdef TCP_OFFLOAD
1118 		if (ADDED_BY_TOE(sc)) {
1119 			struct toedev *tod = sc->sc_tod;
1120 
1121 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1122 		}
1123 #endif
1124 		SCH_UNLOCK(sch);
1125 	}
1126 
1127 	/*
1128 	 * Segment validation:
1129 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1130 	 */
1131 	if (th->th_ack != sc->sc_iss + 1) {
1132 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1133 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1134 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1135 		goto failed;
1136 	}
1137 
1138 	/*
1139 	 * The SEQ must fall in the window starting at the received
1140 	 * initial receive sequence number + 1 (the SYN).
1141 	 */
1142 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1143 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1144 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1145 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1146 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1147 		goto failed;
1148 	}
1149 
1150 	/*
1151 	 * If timestamps were not negotiated during SYN/ACK they
1152 	 * must not appear on any segment during this session.
1153 	 */
1154 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1155 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1156 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1157 			    "segment rejected\n", s, __func__);
1158 		goto failed;
1159 	}
1160 
1161 	/*
1162 	 * If timestamps were negotiated during SYN/ACK they should
1163 	 * appear on every segment during this session.
1164 	 * XXXAO: This is only informal as there have been unverified
1165 	 * reports of non-compliants stacks.
1166 	 */
1167 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1168 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1169 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1170 			    "no action\n", s, __func__);
1171 			free(s, M_TCPLOG);
1172 			s = NULL;
1173 		}
1174 	}
1175 
1176 	*lsop = syncache_socket(sc, *lsop, m);
1177 
1178 	if (*lsop == NULL)
1179 		TCPSTAT_INC(tcps_sc_aborted);
1180 	else
1181 		TCPSTAT_INC(tcps_sc_completed);
1182 
1183 /* how do we find the inp for the new socket? */
1184 	if (sc != &scs)
1185 		syncache_free(sc);
1186 	return (1);
1187 failed:
1188 	if (sc != NULL && sc != &scs)
1189 		syncache_free(sc);
1190 	if (s != NULL)
1191 		free(s, M_TCPLOG);
1192 	*lsop = NULL;
1193 	return (0);
1194 }
1195 
1196 static void
1197 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1198     uint64_t response_cookie)
1199 {
1200 	struct inpcb *inp;
1201 	struct tcpcb *tp;
1202 	unsigned int *pending_counter;
1203 
1204 	/*
1205 	 * Global TCP locks are held because we manipulate the PCB lists
1206 	 * and create a new socket.
1207 	 */
1208 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1209 
1210 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1211 	*lsop = syncache_socket(sc, *lsop, m);
1212 	if (*lsop == NULL) {
1213 		TCPSTAT_INC(tcps_sc_aborted);
1214 		atomic_subtract_int(pending_counter, 1);
1215 	} else {
1216 		soisconnected(*lsop);
1217 		inp = sotoinpcb(*lsop);
1218 		tp = intotcpcb(inp);
1219 		tp->t_flags |= TF_FASTOPEN;
1220 		tp->t_tfo_cookie.server = response_cookie;
1221 		tp->snd_max = tp->iss;
1222 		tp->snd_nxt = tp->iss;
1223 		tp->t_tfo_pending = pending_counter;
1224 		TCPSTAT_INC(tcps_sc_completed);
1225 	}
1226 }
1227 
1228 /*
1229  * Given a LISTEN socket and an inbound SYN request, add
1230  * this to the syn cache, and send back a segment:
1231  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1232  * to the source.
1233  *
1234  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1235  * Doing so would require that we hold onto the data and deliver it
1236  * to the application.  However, if we are the target of a SYN-flood
1237  * DoS attack, an attacker could send data which would eventually
1238  * consume all available buffer space if it were ACKed.  By not ACKing
1239  * the data, we avoid this DoS scenario.
1240  *
1241  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1242  * cookie is processed and a new socket is created.  In this case, any data
1243  * accompanying the SYN will be queued to the socket by tcp_input() and will
1244  * be ACKed either when the application sends response data or the delayed
1245  * ACK timer expires, whichever comes first.
1246  */
1247 int
1248 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1249     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1250     void *todctx)
1251 {
1252 	struct tcpcb *tp;
1253 	struct socket *so;
1254 	struct syncache *sc = NULL;
1255 	struct syncache_head *sch;
1256 	struct mbuf *ipopts = NULL;
1257 	u_int ltflags;
1258 	int win, ip_ttl, ip_tos;
1259 	char *s;
1260 	int rv = 0;
1261 #ifdef INET6
1262 	int autoflowlabel = 0;
1263 #endif
1264 #ifdef MAC
1265 	struct label *maclabel;
1266 #endif
1267 	struct syncache scs;
1268 	struct ucred *cred;
1269 	uint64_t tfo_response_cookie;
1270 	unsigned int *tfo_pending = NULL;
1271 	int tfo_cookie_valid = 0;
1272 	int tfo_response_cookie_valid = 0;
1273 
1274 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1275 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1276 	    ("%s: unexpected tcp flags", __func__));
1277 
1278 	/*
1279 	 * Combine all so/tp operations very early to drop the INP lock as
1280 	 * soon as possible.
1281 	 */
1282 	so = *lsop;
1283 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1284 	tp = sototcpcb(so);
1285 	cred = crhold(so->so_cred);
1286 
1287 #ifdef INET6
1288 	if ((inc->inc_flags & INC_ISIPV6) &&
1289 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1290 		autoflowlabel = 1;
1291 #endif
1292 	ip_ttl = inp->inp_ip_ttl;
1293 	ip_tos = inp->inp_ip_tos;
1294 	win = so->sol_sbrcv_hiwat;
1295 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1296 
1297 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1298 	    (tp->t_tfo_pending != NULL) &&
1299 	    (to->to_flags & TOF_FASTOPEN)) {
1300 		/*
1301 		 * Limit the number of pending TFO connections to
1302 		 * approximately half of the queue limit.  This prevents TFO
1303 		 * SYN floods from starving the service by filling the
1304 		 * listen queue with bogus TFO connections.
1305 		 */
1306 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1307 		    (so->sol_qlimit / 2)) {
1308 			int result;
1309 
1310 			result = tcp_fastopen_check_cookie(inc,
1311 			    to->to_tfo_cookie, to->to_tfo_len,
1312 			    &tfo_response_cookie);
1313 			tfo_cookie_valid = (result > 0);
1314 			tfo_response_cookie_valid = (result >= 0);
1315 		}
1316 
1317 		/*
1318 		 * Remember the TFO pending counter as it will have to be
1319 		 * decremented below if we don't make it to syncache_tfo_expand().
1320 		 */
1321 		tfo_pending = tp->t_tfo_pending;
1322 	}
1323 
1324 	/* By the time we drop the lock these should no longer be used. */
1325 	so = NULL;
1326 	tp = NULL;
1327 
1328 #ifdef MAC
1329 	if (mac_syncache_init(&maclabel) != 0) {
1330 		INP_WUNLOCK(inp);
1331 		goto done;
1332 	} else
1333 		mac_syncache_create(maclabel, inp);
1334 #endif
1335 	if (!tfo_cookie_valid)
1336 		INP_WUNLOCK(inp);
1337 
1338 	/*
1339 	 * Remember the IP options, if any.
1340 	 */
1341 #ifdef INET6
1342 	if (!(inc->inc_flags & INC_ISIPV6))
1343 #endif
1344 #ifdef INET
1345 		ipopts = (m) ? ip_srcroute(m) : NULL;
1346 #else
1347 		ipopts = NULL;
1348 #endif
1349 
1350 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1351 	/*
1352 	 * If listening socket requested TCP digests, check that received
1353 	 * SYN has signature and it is correct. If signature doesn't match
1354 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1355 	 */
1356 	if (ltflags & TF_SIGNATURE) {
1357 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1358 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1359 			goto done;
1360 		}
1361 		if (!TCPMD5_ENABLED() ||
1362 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1363 			goto done;
1364 	}
1365 #endif	/* TCP_SIGNATURE */
1366 	/*
1367 	 * See if we already have an entry for this connection.
1368 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1369 	 *
1370 	 * XXX: should the syncache be re-initialized with the contents
1371 	 * of the new SYN here (which may have different options?)
1372 	 *
1373 	 * XXX: We do not check the sequence number to see if this is a
1374 	 * real retransmit or a new connection attempt.  The question is
1375 	 * how to handle such a case; either ignore it as spoofed, or
1376 	 * drop the current entry and create a new one?
1377 	 */
1378 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1379 	SCH_LOCK_ASSERT(sch);
1380 	if (sc != NULL) {
1381 		if (tfo_cookie_valid)
1382 			INP_WUNLOCK(inp);
1383 		TCPSTAT_INC(tcps_sc_dupsyn);
1384 		if (ipopts) {
1385 			/*
1386 			 * If we were remembering a previous source route,
1387 			 * forget it and use the new one we've been given.
1388 			 */
1389 			if (sc->sc_ipopts)
1390 				(void) m_free(sc->sc_ipopts);
1391 			sc->sc_ipopts = ipopts;
1392 		}
1393 		/*
1394 		 * Update timestamp if present.
1395 		 */
1396 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1397 			sc->sc_tsreflect = to->to_tsval;
1398 		else
1399 			sc->sc_flags &= ~SCF_TIMESTAMP;
1400 #ifdef MAC
1401 		/*
1402 		 * Since we have already unconditionally allocated label
1403 		 * storage, free it up.  The syncache entry will already
1404 		 * have an initialized label we can use.
1405 		 */
1406 		mac_syncache_destroy(&maclabel);
1407 #endif
1408 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1409 		/* Retransmit SYN|ACK and reset retransmit count. */
1410 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1411 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1412 			    "resetting timer and retransmitting SYN|ACK\n",
1413 			    s, __func__);
1414 			free(s, M_TCPLOG);
1415 		}
1416 		if (syncache_respond(sc, sch, m) == 0) {
1417 			sc->sc_rxmits = 0;
1418 			syncache_timeout(sc, sch, 1);
1419 			TCPSTAT_INC(tcps_sndacks);
1420 			TCPSTAT_INC(tcps_sndtotal);
1421 		}
1422 		SCH_UNLOCK(sch);
1423 		goto donenoprobe;
1424 	}
1425 
1426 	if (tfo_cookie_valid) {
1427 		bzero(&scs, sizeof(scs));
1428 		sc = &scs;
1429 		goto skip_alloc;
1430 	}
1431 
1432 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1433 	if (sc == NULL) {
1434 		/*
1435 		 * The zone allocator couldn't provide more entries.
1436 		 * Treat this as if the cache was full; drop the oldest
1437 		 * entry and insert the new one.
1438 		 */
1439 		TCPSTAT_INC(tcps_sc_zonefail);
1440 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1441 			sch->sch_last_overflow = time_uptime;
1442 			syncache_drop(sc, sch);
1443 		}
1444 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1445 		if (sc == NULL) {
1446 			if (V_tcp_syncookies) {
1447 				bzero(&scs, sizeof(scs));
1448 				sc = &scs;
1449 			} else {
1450 				SCH_UNLOCK(sch);
1451 				if (ipopts)
1452 					(void) m_free(ipopts);
1453 				goto done;
1454 			}
1455 		}
1456 	}
1457 
1458 skip_alloc:
1459 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1460 		sc->sc_tfo_cookie = &tfo_response_cookie;
1461 
1462 	/*
1463 	 * Fill in the syncache values.
1464 	 */
1465 #ifdef MAC
1466 	sc->sc_label = maclabel;
1467 #endif
1468 	sc->sc_cred = cred;
1469 	cred = NULL;
1470 	sc->sc_ipopts = ipopts;
1471 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1472 #ifdef INET6
1473 	if (!(inc->inc_flags & INC_ISIPV6))
1474 #endif
1475 	{
1476 		sc->sc_ip_tos = ip_tos;
1477 		sc->sc_ip_ttl = ip_ttl;
1478 	}
1479 #ifdef TCP_OFFLOAD
1480 	sc->sc_tod = tod;
1481 	sc->sc_todctx = todctx;
1482 #endif
1483 	sc->sc_irs = th->th_seq;
1484 	sc->sc_iss = arc4random();
1485 	sc->sc_flags = 0;
1486 	sc->sc_flowlabel = 0;
1487 
1488 	/*
1489 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1490 	 * win was derived from socket earlier in the function.
1491 	 */
1492 	win = imax(win, 0);
1493 	win = imin(win, TCP_MAXWIN);
1494 	sc->sc_wnd = win;
1495 
1496 	if (V_tcp_do_rfc1323) {
1497 		/*
1498 		 * A timestamp received in a SYN makes
1499 		 * it ok to send timestamp requests and replies.
1500 		 */
1501 		if (to->to_flags & TOF_TS) {
1502 			sc->sc_tsreflect = to->to_tsval;
1503 			sc->sc_flags |= SCF_TIMESTAMP;
1504 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1505 		}
1506 		if (to->to_flags & TOF_SCALE) {
1507 			int wscale = 0;
1508 
1509 			/*
1510 			 * Pick the smallest possible scaling factor that
1511 			 * will still allow us to scale up to sb_max, aka
1512 			 * kern.ipc.maxsockbuf.
1513 			 *
1514 			 * We do this because there are broken firewalls that
1515 			 * will corrupt the window scale option, leading to
1516 			 * the other endpoint believing that our advertised
1517 			 * window is unscaled.  At scale factors larger than
1518 			 * 5 the unscaled window will drop below 1500 bytes,
1519 			 * leading to serious problems when traversing these
1520 			 * broken firewalls.
1521 			 *
1522 			 * With the default maxsockbuf of 256K, a scale factor
1523 			 * of 3 will be chosen by this algorithm.  Those who
1524 			 * choose a larger maxsockbuf should watch out
1525 			 * for the compatibility problems mentioned above.
1526 			 *
1527 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1528 			 * or <SYN,ACK>) segment itself is never scaled.
1529 			 */
1530 			while (wscale < TCP_MAX_WINSHIFT &&
1531 			    (TCP_MAXWIN << wscale) < sb_max)
1532 				wscale++;
1533 			sc->sc_requested_r_scale = wscale;
1534 			sc->sc_requested_s_scale = to->to_wscale;
1535 			sc->sc_flags |= SCF_WINSCALE;
1536 		}
1537 	}
1538 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1539 	/*
1540 	 * If listening socket requested TCP digests, flag this in the
1541 	 * syncache so that syncache_respond() will do the right thing
1542 	 * with the SYN+ACK.
1543 	 */
1544 	if (ltflags & TF_SIGNATURE)
1545 		sc->sc_flags |= SCF_SIGNATURE;
1546 #endif	/* TCP_SIGNATURE */
1547 	if (to->to_flags & TOF_SACKPERM)
1548 		sc->sc_flags |= SCF_SACK;
1549 	if (to->to_flags & TOF_MSS)
1550 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1551 	if (ltflags & TF_NOOPT)
1552 		sc->sc_flags |= SCF_NOOPT;
1553 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1554 		sc->sc_flags |= SCF_ECN;
1555 
1556 	if (V_tcp_syncookies)
1557 		sc->sc_iss = syncookie_generate(sch, sc);
1558 #ifdef INET6
1559 	if (autoflowlabel) {
1560 		if (V_tcp_syncookies)
1561 			sc->sc_flowlabel = sc->sc_iss;
1562 		else
1563 			sc->sc_flowlabel = ip6_randomflowlabel();
1564 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1565 	}
1566 #endif
1567 	SCH_UNLOCK(sch);
1568 
1569 	if (tfo_cookie_valid) {
1570 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1571 		/* INP_WUNLOCK(inp) will be performed by the caller */
1572 		rv = 1;
1573 		goto tfo_expanded;
1574 	}
1575 
1576 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1577 	/*
1578 	 * Do a standard 3-way handshake.
1579 	 */
1580 	if (syncache_respond(sc, sch, m) == 0) {
1581 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1582 			syncache_free(sc);
1583 		else if (sc != &scs)
1584 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1585 		TCPSTAT_INC(tcps_sndacks);
1586 		TCPSTAT_INC(tcps_sndtotal);
1587 	} else {
1588 		if (sc != &scs)
1589 			syncache_free(sc);
1590 		TCPSTAT_INC(tcps_sc_dropped);
1591 	}
1592 	goto donenoprobe;
1593 
1594 done:
1595 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1596 donenoprobe:
1597 	if (m) {
1598 		*lsop = NULL;
1599 		m_freem(m);
1600 	}
1601 	/*
1602 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1603 	 * result in a new socket was processed and the associated pending
1604 	 * counter has not yet been decremented.  All such TFO processing paths
1605 	 * transit this point.
1606 	 */
1607 	if (tfo_pending != NULL)
1608 		tcp_fastopen_decrement_counter(tfo_pending);
1609 
1610 tfo_expanded:
1611 	if (cred != NULL)
1612 		crfree(cred);
1613 #ifdef MAC
1614 	if (sc == &scs)
1615 		mac_syncache_destroy(&maclabel);
1616 #endif
1617 	return (rv);
1618 }
1619 
1620 /*
1621  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1622  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1623  */
1624 static int
1625 syncache_respond(struct syncache *sc, struct syncache_head *sch,
1626     const struct mbuf *m0)
1627 {
1628 	struct ip *ip = NULL;
1629 	struct mbuf *m;
1630 	struct tcphdr *th = NULL;
1631 	int optlen, error = 0;	/* Make compiler happy */
1632 	u_int16_t hlen, tlen, mssopt;
1633 	struct tcpopt to;
1634 #ifdef INET6
1635 	struct ip6_hdr *ip6 = NULL;
1636 #endif
1637 	hlen =
1638 #ifdef INET6
1639 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1640 #endif
1641 		sizeof(struct ip);
1642 	tlen = hlen + sizeof(struct tcphdr);
1643 
1644 	/* Determine MSS we advertize to other end of connection. */
1645 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1646 
1647 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1648 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1649 	    ("syncache: mbuf too small"));
1650 
1651 	/* Create the IP+TCP header from scratch. */
1652 	m = m_gethdr(M_NOWAIT, MT_DATA);
1653 	if (m == NULL)
1654 		return (ENOBUFS);
1655 #ifdef MAC
1656 	mac_syncache_create_mbuf(sc->sc_label, m);
1657 #endif
1658 	m->m_data += max_linkhdr;
1659 	m->m_len = tlen;
1660 	m->m_pkthdr.len = tlen;
1661 	m->m_pkthdr.rcvif = NULL;
1662 
1663 #ifdef INET6
1664 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1665 		ip6 = mtod(m, struct ip6_hdr *);
1666 		ip6->ip6_vfc = IPV6_VERSION;
1667 		ip6->ip6_nxt = IPPROTO_TCP;
1668 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1669 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1670 		ip6->ip6_plen = htons(tlen - hlen);
1671 		/* ip6_hlim is set after checksum */
1672 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1673 		ip6->ip6_flow |= sc->sc_flowlabel;
1674 
1675 		th = (struct tcphdr *)(ip6 + 1);
1676 	}
1677 #endif
1678 #if defined(INET6) && defined(INET)
1679 	else
1680 #endif
1681 #ifdef INET
1682 	{
1683 		ip = mtod(m, struct ip *);
1684 		ip->ip_v = IPVERSION;
1685 		ip->ip_hl = sizeof(struct ip) >> 2;
1686 		ip->ip_len = htons(tlen);
1687 		ip->ip_id = 0;
1688 		ip->ip_off = 0;
1689 		ip->ip_sum = 0;
1690 		ip->ip_p = IPPROTO_TCP;
1691 		ip->ip_src = sc->sc_inc.inc_laddr;
1692 		ip->ip_dst = sc->sc_inc.inc_faddr;
1693 		ip->ip_ttl = sc->sc_ip_ttl;
1694 		ip->ip_tos = sc->sc_ip_tos;
1695 
1696 		/*
1697 		 * See if we should do MTU discovery.  Route lookups are
1698 		 * expensive, so we will only unset the DF bit if:
1699 		 *
1700 		 *	1) path_mtu_discovery is disabled
1701 		 *	2) the SCF_UNREACH flag has been set
1702 		 */
1703 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1704 		       ip->ip_off |= htons(IP_DF);
1705 
1706 		th = (struct tcphdr *)(ip + 1);
1707 	}
1708 #endif /* INET */
1709 	th->th_sport = sc->sc_inc.inc_lport;
1710 	th->th_dport = sc->sc_inc.inc_fport;
1711 
1712 	th->th_seq = htonl(sc->sc_iss);
1713 	th->th_ack = htonl(sc->sc_irs + 1);
1714 	th->th_off = sizeof(struct tcphdr) >> 2;
1715 	th->th_x2 = 0;
1716 	th->th_flags = TH_SYN|TH_ACK;
1717 	th->th_win = htons(sc->sc_wnd);
1718 	th->th_urp = 0;
1719 
1720 	if (sc->sc_flags & SCF_ECN) {
1721 		th->th_flags |= TH_ECE;
1722 		TCPSTAT_INC(tcps_ecn_shs);
1723 	}
1724 
1725 	/* Tack on the TCP options. */
1726 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1727 		to.to_flags = 0;
1728 
1729 		to.to_mss = mssopt;
1730 		to.to_flags = TOF_MSS;
1731 		if (sc->sc_flags & SCF_WINSCALE) {
1732 			to.to_wscale = sc->sc_requested_r_scale;
1733 			to.to_flags |= TOF_SCALE;
1734 		}
1735 		if (sc->sc_flags & SCF_TIMESTAMP) {
1736 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1737 			to.to_tsecr = sc->sc_tsreflect;
1738 			to.to_flags |= TOF_TS;
1739 		}
1740 		if (sc->sc_flags & SCF_SACK)
1741 			to.to_flags |= TOF_SACKPERM;
1742 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1743 		if (sc->sc_flags & SCF_SIGNATURE)
1744 			to.to_flags |= TOF_SIGNATURE;
1745 #endif
1746 		if (sc->sc_tfo_cookie) {
1747 			to.to_flags |= TOF_FASTOPEN;
1748 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1749 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1750 			/* don't send cookie again when retransmitting response */
1751 			sc->sc_tfo_cookie = NULL;
1752 		}
1753 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1754 
1755 		/* Adjust headers by option size. */
1756 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1757 		m->m_len += optlen;
1758 		m->m_pkthdr.len += optlen;
1759 #ifdef INET6
1760 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1761 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1762 		else
1763 #endif
1764 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1765 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1766 		if (sc->sc_flags & SCF_SIGNATURE) {
1767 			KASSERT(to.to_flags & TOF_SIGNATURE,
1768 			    ("tcp_addoptions() didn't set tcp_signature"));
1769 
1770 			/* NOTE: to.to_signature is inside of mbuf */
1771 			if (!TCPMD5_ENABLED() ||
1772 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1773 				m_freem(m);
1774 				return (EACCES);
1775 			}
1776 		}
1777 #endif
1778 	} else
1779 		optlen = 0;
1780 
1781 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1782 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1783 	/*
1784 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1785 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1786 	 * to SYN|ACK due to lack of inp here.
1787 	 */
1788 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1789 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1790 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1791 	}
1792 #ifdef INET6
1793 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1794 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1795 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1796 		    IPPROTO_TCP, 0);
1797 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1798 #ifdef TCP_OFFLOAD
1799 		if (ADDED_BY_TOE(sc)) {
1800 			struct toedev *tod = sc->sc_tod;
1801 
1802 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1803 
1804 			return (error);
1805 		}
1806 #endif
1807 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1808 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1809 	}
1810 #endif
1811 #if defined(INET6) && defined(INET)
1812 	else
1813 #endif
1814 #ifdef INET
1815 	{
1816 		m->m_pkthdr.csum_flags = CSUM_TCP;
1817 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1818 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1819 #ifdef TCP_OFFLOAD
1820 		if (ADDED_BY_TOE(sc)) {
1821 			struct toedev *tod = sc->sc_tod;
1822 
1823 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1824 
1825 			return (error);
1826 		}
1827 #endif
1828 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1829 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1830 	}
1831 #endif
1832 	return (error);
1833 }
1834 
1835 /*
1836  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1837  * that exceed the capacity of the syncache by avoiding the storage of any
1838  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1839  * attacks where the attacker does not have access to our responses.
1840  *
1841  * Syncookies encode and include all necessary information about the
1842  * connection setup within the SYN|ACK that we send back.  That way we
1843  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1844  * (if ever).  Normally the syncache and syncookies are running in parallel
1845  * with the latter taking over when the former is exhausted.  When matching
1846  * syncache entry is found the syncookie is ignored.
1847  *
1848  * The only reliable information persisting the 3WHS is our initial sequence
1849  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1850  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1851  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1852  * returns and signifies a legitimate connection if it matches the ACK.
1853  *
1854  * The available space of 32 bits to store the hash and to encode the SYN
1855  * option information is very tight and we should have at least 24 bits for
1856  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1857  *
1858  * SYN option information we have to encode to fully restore a connection:
1859  * MSS: is imporant to chose an optimal segment size to avoid IP level
1860  *   fragmentation along the path.  The common MSS values can be encoded
1861  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1862  *   in the table leading to a slight increase in packetization overhead.
1863  * WSCALE: is necessary to allow large windows to be used for high delay-
1864  *   bandwidth product links.  Not scaling the window when it was initially
1865  *   negotiated is bad for performance as lack of scaling further decreases
1866  *   the apparent available send window.  We only need to encode the WSCALE
1867  *   we received from the remote end.  Our end can be recalculated at any
1868  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1869  *   Uncommon values are captured by the next lower value in the table
1870  *   making us under-estimate the available window size halving our
1871  *   theoretically possible maximum throughput for that connection.
1872  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1873  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1874  *   that are included in all segments on a connection.  We enable them when
1875  *   the ACK has them.
1876  *
1877  * Security of syncookies and attack vectors:
1878  *
1879  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1880  * together with the gloabl secret to make it unique per connection attempt.
1881  * Thus any change of any of those parameters results in a different MAC output
1882  * in an unpredictable way unless a collision is encountered.  24 bits of the
1883  * MAC are embedded into the ISS.
1884  *
1885  * To prevent replay attacks two rotating global secrets are updated with a
1886  * new random value every 15 seconds.  The life-time of a syncookie is thus
1887  * 15-30 seconds.
1888  *
1889  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1890  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1891  * text attack by varying and testing the all parameters under his control.
1892  * The strength depends on the size and randomness of the secret, and the
1893  * cryptographic security of the MAC function.  Due to the constant updating
1894  * of the secret the attacker has at most 29.999 seconds to find the secret
1895  * and launch spoofed connections.  After that he has to start all over again.
1896  *
1897  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1898  * size an average of 4,823 attempts are required for a 50% chance of success
1899  * to spoof a single syncookie (birthday collision paradox).  However the
1900  * attacker is blind and doesn't know if one of his attempts succeeded unless
1901  * he has a side channel to interfere success from.  A single connection setup
1902  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1903  * This many attempts are required for each one blind spoofed connection.  For
1904  * every additional spoofed connection he has to launch another N attempts.
1905  * Thus for a sustained rate 100 spoofed connections per second approximately
1906  * 1,800,000 packets per second would have to be sent.
1907  *
1908  * NB: The MAC function should be fast so that it doesn't become a CPU
1909  * exhaustion attack vector itself.
1910  *
1911  * References:
1912  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1913  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1914  *   http://cr.yp.to/syncookies.html    (overview)
1915  *   http://cr.yp.to/syncookies/archive (details)
1916  *
1917  *
1918  * Schematic construction of a syncookie enabled Initial Sequence Number:
1919  *  0        1         2         3
1920  *  12345678901234567890123456789012
1921  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1922  *
1923  *  x 24 MAC (truncated)
1924  *  W  3 Send Window Scale index
1925  *  M  3 MSS index
1926  *  S  1 SACK permitted
1927  *  P  1 Odd/even secret
1928  */
1929 
1930 /*
1931  * Distribution and probability of certain MSS values.  Those in between are
1932  * rounded down to the next lower one.
1933  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1934  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1935  */
1936 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1937 
1938 /*
1939  * Distribution and probability of certain WSCALE values.  We have to map the
1940  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1941  * bits based on prevalence of certain values.  Where we don't have an exact
1942  * match for are rounded down to the next lower one letting us under-estimate
1943  * the true available window.  At the moment this would happen only for the
1944  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1945  * and window size).  The absence of the WSCALE option (no scaling in either
1946  * direction) is encoded with index zero.
1947  * [WSCALE values histograms, Allman, 2012]
1948  *                            X 10 10 35  5  6 14 10%   by host
1949  *                            X 11  4  5  5 18 49  3%   by connections
1950  */
1951 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1952 
1953 /*
1954  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1955  * and good cryptographic properties.
1956  */
1957 static uint32_t
1958 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1959     uint8_t *secbits, uintptr_t secmod)
1960 {
1961 	SIPHASH_CTX ctx;
1962 	uint32_t siphash[2];
1963 
1964 	SipHash24_Init(&ctx);
1965 	SipHash_SetKey(&ctx, secbits);
1966 	switch (inc->inc_flags & INC_ISIPV6) {
1967 #ifdef INET
1968 	case 0:
1969 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1970 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1971 		break;
1972 #endif
1973 #ifdef INET6
1974 	case INC_ISIPV6:
1975 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1976 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1977 		break;
1978 #endif
1979 	}
1980 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1981 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1982 	SipHash_Update(&ctx, &irs, sizeof(irs));
1983 	SipHash_Update(&ctx, &flags, sizeof(flags));
1984 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1985 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1986 
1987 	return (siphash[0] ^ siphash[1]);
1988 }
1989 
1990 static tcp_seq
1991 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1992 {
1993 	u_int i, secbit, wscale;
1994 	uint32_t iss, hash;
1995 	uint8_t *secbits;
1996 	union syncookie cookie;
1997 
1998 	SCH_LOCK_ASSERT(sch);
1999 
2000 	cookie.cookie = 0;
2001 
2002 	/* Map our computed MSS into the 3-bit index. */
2003 	for (i = nitems(tcp_sc_msstab) - 1;
2004 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2005 	     i--)
2006 		;
2007 	cookie.flags.mss_idx = i;
2008 
2009 	/*
2010 	 * Map the send window scale into the 3-bit index but only if
2011 	 * the wscale option was received.
2012 	 */
2013 	if (sc->sc_flags & SCF_WINSCALE) {
2014 		wscale = sc->sc_requested_s_scale;
2015 		for (i = nitems(tcp_sc_wstab) - 1;
2016 		    tcp_sc_wstab[i] > wscale && i > 0;
2017 		     i--)
2018 			;
2019 		cookie.flags.wscale_idx = i;
2020 	}
2021 
2022 	/* Can we do SACK? */
2023 	if (sc->sc_flags & SCF_SACK)
2024 		cookie.flags.sack_ok = 1;
2025 
2026 	/* Which of the two secrets to use. */
2027 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2028 	cookie.flags.odd_even = secbit;
2029 
2030 	secbits = sch->sch_sc->secret.key[secbit];
2031 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2032 	    (uintptr_t)sch);
2033 
2034 	/*
2035 	 * Put the flags into the hash and XOR them to get better ISS number
2036 	 * variance.  This doesn't enhance the cryptographic strength and is
2037 	 * done to prevent the 8 cookie bits from showing up directly on the
2038 	 * wire.
2039 	 */
2040 	iss = hash & ~0xff;
2041 	iss |= cookie.cookie ^ (hash >> 24);
2042 
2043 	TCPSTAT_INC(tcps_sc_sendcookie);
2044 	return (iss);
2045 }
2046 
2047 static struct syncache *
2048 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2049     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2050     struct socket *lso)
2051 {
2052 	uint32_t hash;
2053 	uint8_t *secbits;
2054 	tcp_seq ack, seq;
2055 	int wnd, wscale = 0;
2056 	union syncookie cookie;
2057 
2058 	SCH_LOCK_ASSERT(sch);
2059 
2060 	/*
2061 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2062 	 * advances.
2063 	 */
2064 	ack = th->th_ack - 1;
2065 	seq = th->th_seq - 1;
2066 
2067 	/*
2068 	 * Unpack the flags containing enough information to restore the
2069 	 * connection.
2070 	 */
2071 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2072 
2073 	/* Which of the two secrets to use. */
2074 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2075 
2076 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2077 
2078 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2079 	if ((ack & ~0xff) != (hash & ~0xff))
2080 		return (NULL);
2081 
2082 	/* Fill in the syncache values. */
2083 	sc->sc_flags = 0;
2084 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2085 	sc->sc_ipopts = NULL;
2086 
2087 	sc->sc_irs = seq;
2088 	sc->sc_iss = ack;
2089 
2090 	switch (inc->inc_flags & INC_ISIPV6) {
2091 #ifdef INET
2092 	case 0:
2093 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2094 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2095 		break;
2096 #endif
2097 #ifdef INET6
2098 	case INC_ISIPV6:
2099 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2100 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2101 		break;
2102 #endif
2103 	}
2104 
2105 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2106 
2107 	/* We can simply recompute receive window scale we sent earlier. */
2108 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2109 		wscale++;
2110 
2111 	/* Only use wscale if it was enabled in the orignal SYN. */
2112 	if (cookie.flags.wscale_idx > 0) {
2113 		sc->sc_requested_r_scale = wscale;
2114 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2115 		sc->sc_flags |= SCF_WINSCALE;
2116 	}
2117 
2118 	wnd = lso->sol_sbrcv_hiwat;
2119 	wnd = imax(wnd, 0);
2120 	wnd = imin(wnd, TCP_MAXWIN);
2121 	sc->sc_wnd = wnd;
2122 
2123 	if (cookie.flags.sack_ok)
2124 		sc->sc_flags |= SCF_SACK;
2125 
2126 	if (to->to_flags & TOF_TS) {
2127 		sc->sc_flags |= SCF_TIMESTAMP;
2128 		sc->sc_tsreflect = to->to_tsval;
2129 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2130 	}
2131 
2132 	if (to->to_flags & TOF_SIGNATURE)
2133 		sc->sc_flags |= SCF_SIGNATURE;
2134 
2135 	sc->sc_rxmits = 0;
2136 
2137 	TCPSTAT_INC(tcps_sc_recvcookie);
2138 	return (sc);
2139 }
2140 
2141 #ifdef INVARIANTS
2142 static int
2143 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2144     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2145     struct socket *lso)
2146 {
2147 	struct syncache scs, *scx;
2148 	char *s;
2149 
2150 	bzero(&scs, sizeof(scs));
2151 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2152 
2153 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2154 		return (0);
2155 
2156 	if (scx != NULL) {
2157 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2158 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2159 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2160 
2161 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2162 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2163 			    s, __func__, sc->sc_requested_r_scale,
2164 			    scx->sc_requested_r_scale);
2165 
2166 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2167 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2168 			    s, __func__, sc->sc_requested_s_scale,
2169 			    scx->sc_requested_s_scale);
2170 
2171 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2172 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2173 	}
2174 
2175 	if (s != NULL)
2176 		free(s, M_TCPLOG);
2177 	return (0);
2178 }
2179 #endif /* INVARIANTS */
2180 
2181 static void
2182 syncookie_reseed(void *arg)
2183 {
2184 	struct tcp_syncache *sc = arg;
2185 	uint8_t *secbits;
2186 	int secbit;
2187 
2188 	/*
2189 	 * Reseeding the secret doesn't have to be protected by a lock.
2190 	 * It only must be ensured that the new random values are visible
2191 	 * to all CPUs in a SMP environment.  The atomic with release
2192 	 * semantics ensures that.
2193 	 */
2194 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2195 	secbits = sc->secret.key[secbit];
2196 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2197 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2198 
2199 	/* Reschedule ourself. */
2200 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2201 }
2202 
2203 /*
2204  * Exports the syncache entries to userland so that netstat can display
2205  * them alongside the other sockets.  This function is intended to be
2206  * called only from tcp_pcblist.
2207  *
2208  * Due to concurrency on an active system, the number of pcbs exported
2209  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2210  * amount of space the caller allocated for this function to use.
2211  */
2212 int
2213 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2214 {
2215 	struct xtcpcb xt;
2216 	struct syncache *sc;
2217 	struct syncache_head *sch;
2218 	int count, error, i;
2219 
2220 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2221 		sch = &V_tcp_syncache.hashbase[i];
2222 		SCH_LOCK(sch);
2223 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2224 			if (count >= max_pcbs) {
2225 				SCH_UNLOCK(sch);
2226 				goto exit;
2227 			}
2228 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2229 				continue;
2230 			bzero(&xt, sizeof(xt));
2231 			xt.xt_len = sizeof(xt);
2232 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2233 				xt.xt_inp.inp_vflag = INP_IPV6;
2234 			else
2235 				xt.xt_inp.inp_vflag = INP_IPV4;
2236 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2237 			    sizeof (struct in_conninfo));
2238 			xt.t_state = TCPS_SYN_RECEIVED;
2239 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2240 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2241 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2242 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2243 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2244 			if (error) {
2245 				SCH_UNLOCK(sch);
2246 				goto exit;
2247 			}
2248 			count++;
2249 		}
2250 		SCH_UNLOCK(sch);
2251 	}
2252 exit:
2253 	*pcbs_exported = count;
2254 	return error;
2255 }
2256