xref: /freebsd/sys/netinet/tcp_syncache.c (revision bd96183d5e5761c849e857005ebc4a5a818a0a99)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/md5.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_options.h>
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/in6_pcb.h>
76 #endif
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/tcp_syncache.h>
83 #include <netinet/tcp_offload.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 
88 #ifdef IPSEC
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 #include <netipsec/key.h>
94 #endif /*IPSEC*/
95 
96 #include <machine/in_cksum.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
101 static VNET_DEFINE(int, tcp_syncookies);
102 static VNET_DEFINE(int, tcp_syncookiesonly);
103 VNET_DEFINE(int, tcp_sc_rst_sock_fail);
104 
105 #define	V_tcp_syncache			VNET(tcp_syncache)
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
108 
109 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
110     &VNET_NAME(tcp_syncookies), 0,
111     "Use TCP SYN cookies if the syncache overflows");
112 
113 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 #ifdef TCP_OFFLOAD_DISABLE
118 #define TOEPCB_ISSET(sc) (0)
119 #else
120 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
121 #endif
122 
123 static void	 syncache_drop(struct syncache *, struct syncache_head *);
124 static void	 syncache_free(struct syncache *);
125 static void	 syncache_insert(struct syncache *, struct syncache_head *);
126 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
127 static int	 syncache_respond(struct syncache *);
128 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129 		    struct mbuf *m);
130 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
131 		    int docallout);
132 static void	 syncache_timer(void *);
133 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
134 		    u_int32_t *);
135 static struct syncache
136 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137 		    struct syncache *, struct tcpopt *, struct tcphdr *,
138 		    struct socket *);
139 
140 /*
141  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
142  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
143  * the odds are that the user has given up attempting to connect by then.
144  */
145 #define SYNCACHE_MAXREXMTS		3
146 
147 /* Arbitrary values */
148 #define TCP_SYNCACHE_HASHSIZE		512
149 #define TCP_SYNCACHE_BUCKETLIMIT	30
150 
151 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152 
153 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
154     &VNET_NAME(tcp_syncache.bucket_limit), 0,
155     "Per-bucket hash limit for syncache");
156 
157 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
158     &VNET_NAME(tcp_syncache.cache_limit), 0,
159     "Overall entry limit for syncache");
160 
161 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
162     &VNET_NAME(tcp_syncache.cache_count), 0,
163     "Current number of entries in syncache");
164 
165 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
166     &VNET_NAME(tcp_syncache.hashsize), 0,
167     "Size of TCP syncache hashtable");
168 
169 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
170     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
171     "Limit on SYN/ACK retransmissions");
172 
173 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
174     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
175     "Send reset on socket allocation failure");
176 
177 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178 
179 #define SYNCACHE_HASH(inc, mask)					\
180 	((V_tcp_syncache.hash_secret ^					\
181 	  (inc)->inc_faddr.s_addr ^					\
182 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184 
185 #define SYNCACHE_HASH6(inc, mask)					\
186 	((V_tcp_syncache.hash_secret ^					\
187 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190 
191 #define ENDPTS_EQ(a, b) (						\
192 	(a)->ie_fport == (b)->ie_fport &&				\
193 	(a)->ie_lport == (b)->ie_lport &&				\
194 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196 )
197 
198 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199 
200 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203 
204 /*
205  * Requires the syncache entry to be already removed from the bucket list.
206  */
207 static void
208 syncache_free(struct syncache *sc)
209 {
210 
211 	if (sc->sc_ipopts)
212 		(void) m_free(sc->sc_ipopts);
213 	if (sc->sc_cred)
214 		crfree(sc->sc_cred);
215 #ifdef MAC
216 	mac_syncache_destroy(&sc->sc_label);
217 #endif
218 
219 	uma_zfree(V_tcp_syncache.zone, sc);
220 }
221 
222 void
223 syncache_init(void)
224 {
225 	int i;
226 
227 	V_tcp_syncookies = 1;
228 	V_tcp_syncookiesonly = 0;
229 	V_tcp_sc_rst_sock_fail = 1;
230 
231 	V_tcp_syncache.cache_count = 0;
232 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
233 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
234 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
235 	V_tcp_syncache.hash_secret = arc4random();
236 
237 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
238 	    &V_tcp_syncache.hashsize);
239 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
240 	    &V_tcp_syncache.bucket_limit);
241 	if (!powerof2(V_tcp_syncache.hashsize) ||
242 	    V_tcp_syncache.hashsize == 0) {
243 		printf("WARNING: syncache hash size is not a power of 2.\n");
244 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
245 	}
246 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
247 
248 	/* Set limits. */
249 	V_tcp_syncache.cache_limit =
250 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
251 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
252 	    &V_tcp_syncache.cache_limit);
253 
254 	/* Allocate the hash table. */
255 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
256 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
257 
258 	/* Initialize the hash buckets. */
259 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
260 #ifdef VIMAGE
261 		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
262 #endif
263 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
264 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
265 			 NULL, MTX_DEF);
266 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
267 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
268 		V_tcp_syncache.hashbase[i].sch_length = 0;
269 	}
270 
271 	/* Create the syncache entry zone. */
272 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
273 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
274 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
275 }
276 
277 #ifdef VIMAGE
278 void
279 syncache_destroy(void)
280 {
281 
282 	/* XXX walk the cache, free remaining objects, stop timers */
283 
284 	uma_zdestroy(V_tcp_syncache.zone);
285 	FREE(V_tcp_syncache.hashbase, M_SYNCACHE);
286 }
287 #endif
288 
289 /*
290  * Inserts a syncache entry into the specified bucket row.
291  * Locks and unlocks the syncache_head autonomously.
292  */
293 static void
294 syncache_insert(struct syncache *sc, struct syncache_head *sch)
295 {
296 	struct syncache *sc2;
297 
298 	SCH_LOCK(sch);
299 
300 	/*
301 	 * Make sure that we don't overflow the per-bucket limit.
302 	 * If the bucket is full, toss the oldest element.
303 	 */
304 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
305 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
306 			("sch->sch_length incorrect"));
307 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
308 		syncache_drop(sc2, sch);
309 		TCPSTAT_INC(tcps_sc_bucketoverflow);
310 	}
311 
312 	/* Put it into the bucket. */
313 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
314 	sch->sch_length++;
315 
316 	/* Reinitialize the bucket row's timer. */
317 	if (sch->sch_length == 1)
318 		sch->sch_nextc = ticks + INT_MAX;
319 	syncache_timeout(sc, sch, 1);
320 
321 	SCH_UNLOCK(sch);
322 
323 	V_tcp_syncache.cache_count++;
324 	TCPSTAT_INC(tcps_sc_added);
325 }
326 
327 /*
328  * Remove and free entry from syncache bucket row.
329  * Expects locked syncache head.
330  */
331 static void
332 syncache_drop(struct syncache *sc, struct syncache_head *sch)
333 {
334 
335 	SCH_LOCK_ASSERT(sch);
336 
337 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
338 	sch->sch_length--;
339 
340 #ifndef TCP_OFFLOAD_DISABLE
341 	if (sc->sc_tu)
342 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
343 #endif
344 	syncache_free(sc);
345 	V_tcp_syncache.cache_count--;
346 }
347 
348 /*
349  * Engage/reengage time on bucket row.
350  */
351 static void
352 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
353 {
354 	sc->sc_rxttime = ticks +
355 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
356 	sc->sc_rxmits++;
357 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
358 		sch->sch_nextc = sc->sc_rxttime;
359 		if (docallout)
360 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
361 			    syncache_timer, (void *)sch);
362 	}
363 }
364 
365 /*
366  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
367  * If we have retransmitted an entry the maximum number of times, expire it.
368  * One separate timer for each bucket row.
369  */
370 static void
371 syncache_timer(void *xsch)
372 {
373 	struct syncache_head *sch = (struct syncache_head *)xsch;
374 	struct syncache *sc, *nsc;
375 	int tick = ticks;
376 	char *s;
377 
378 	CURVNET_SET(sch->sch_vnet);
379 
380 	/* NB: syncache_head has already been locked by the callout. */
381 	SCH_LOCK_ASSERT(sch);
382 
383 	/*
384 	 * In the following cycle we may remove some entries and/or
385 	 * advance some timeouts, so re-initialize the bucket timer.
386 	 */
387 	sch->sch_nextc = tick + INT_MAX;
388 
389 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
390 		/*
391 		 * We do not check if the listen socket still exists
392 		 * and accept the case where the listen socket may be
393 		 * gone by the time we resend the SYN/ACK.  We do
394 		 * not expect this to happens often. If it does,
395 		 * then the RST will be sent by the time the remote
396 		 * host does the SYN/ACK->ACK.
397 		 */
398 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
399 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
400 				sch->sch_nextc = sc->sc_rxttime;
401 			continue;
402 		}
403 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
404 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
405 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
406 				    "giving up and removing syncache entry\n",
407 				    s, __func__);
408 				free(s, M_TCPLOG);
409 			}
410 			syncache_drop(sc, sch);
411 			TCPSTAT_INC(tcps_sc_stale);
412 			continue;
413 		}
414 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
415 			log(LOG_DEBUG, "%s; %s: Response timeout, "
416 			    "retransmitting (%u) SYN|ACK\n",
417 			    s, __func__, sc->sc_rxmits);
418 			free(s, M_TCPLOG);
419 		}
420 
421 		(void) syncache_respond(sc);
422 		TCPSTAT_INC(tcps_sc_retransmitted);
423 		syncache_timeout(sc, sch, 0);
424 	}
425 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
426 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
427 			syncache_timer, (void *)(sch));
428 	CURVNET_RESTORE();
429 }
430 
431 /*
432  * Find an entry in the syncache.
433  * Returns always with locked syncache_head plus a matching entry or NULL.
434  */
435 struct syncache *
436 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
437 {
438 	struct syncache *sc;
439 	struct syncache_head *sch;
440 
441 #ifdef INET6
442 	if (inc->inc_flags & INC_ISIPV6) {
443 		sch = &V_tcp_syncache.hashbase[
444 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
445 		*schp = sch;
446 
447 		SCH_LOCK(sch);
448 
449 		/* Circle through bucket row to find matching entry. */
450 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
451 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
452 				return (sc);
453 		}
454 	} else
455 #endif
456 	{
457 		sch = &V_tcp_syncache.hashbase[
458 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
459 		*schp = sch;
460 
461 		SCH_LOCK(sch);
462 
463 		/* Circle through bucket row to find matching entry. */
464 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
465 #ifdef INET6
466 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
467 				continue;
468 #endif
469 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
470 				return (sc);
471 		}
472 	}
473 	SCH_LOCK_ASSERT(*schp);
474 	return (NULL);			/* always returns with locked sch */
475 }
476 
477 /*
478  * This function is called when we get a RST for a
479  * non-existent connection, so that we can see if the
480  * connection is in the syn cache.  If it is, zap it.
481  */
482 void
483 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
484 {
485 	struct syncache *sc;
486 	struct syncache_head *sch;
487 	char *s = NULL;
488 
489 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
490 	SCH_LOCK_ASSERT(sch);
491 
492 	/*
493 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
494 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
495 	 */
496 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
497 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
498 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
499 			    "FIN flag set, segment ignored\n", s, __func__);
500 		TCPSTAT_INC(tcps_badrst);
501 		goto done;
502 	}
503 
504 	/*
505 	 * No corresponding connection was found in syncache.
506 	 * If syncookies are enabled and possibly exclusively
507 	 * used, or we are under memory pressure, a valid RST
508 	 * may not find a syncache entry.  In that case we're
509 	 * done and no SYN|ACK retransmissions will happen.
510 	 * Otherwise the the RST was misdirected or spoofed.
511 	 */
512 	if (sc == NULL) {
513 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
514 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
515 			    "syncache entry (possibly syncookie only), "
516 			    "segment ignored\n", s, __func__);
517 		TCPSTAT_INC(tcps_badrst);
518 		goto done;
519 	}
520 
521 	/*
522 	 * If the RST bit is set, check the sequence number to see
523 	 * if this is a valid reset segment.
524 	 * RFC 793 page 37:
525 	 *   In all states except SYN-SENT, all reset (RST) segments
526 	 *   are validated by checking their SEQ-fields.  A reset is
527 	 *   valid if its sequence number is in the window.
528 	 *
529 	 *   The sequence number in the reset segment is normally an
530 	 *   echo of our outgoing acknowlegement numbers, but some hosts
531 	 *   send a reset with the sequence number at the rightmost edge
532 	 *   of our receive window, and we have to handle this case.
533 	 */
534 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
535 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
536 		syncache_drop(sc, sch);
537 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
538 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
539 			    "connection attempt aborted by remote endpoint\n",
540 			    s, __func__);
541 		TCPSTAT_INC(tcps_sc_reset);
542 	} else {
543 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
544 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
545 			    "IRS %u (+WND %u), segment ignored\n",
546 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
547 		TCPSTAT_INC(tcps_badrst);
548 	}
549 
550 done:
551 	if (s != NULL)
552 		free(s, M_TCPLOG);
553 	SCH_UNLOCK(sch);
554 }
555 
556 void
557 syncache_badack(struct in_conninfo *inc)
558 {
559 	struct syncache *sc;
560 	struct syncache_head *sch;
561 
562 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
563 	SCH_LOCK_ASSERT(sch);
564 	if (sc != NULL) {
565 		syncache_drop(sc, sch);
566 		TCPSTAT_INC(tcps_sc_badack);
567 	}
568 	SCH_UNLOCK(sch);
569 }
570 
571 void
572 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
573 {
574 	struct syncache *sc;
575 	struct syncache_head *sch;
576 
577 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
578 	SCH_LOCK_ASSERT(sch);
579 	if (sc == NULL)
580 		goto done;
581 
582 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
583 	if (ntohl(th->th_seq) != sc->sc_iss)
584 		goto done;
585 
586 	/*
587 	 * If we've rertransmitted 3 times and this is our second error,
588 	 * we remove the entry.  Otherwise, we allow it to continue on.
589 	 * This prevents us from incorrectly nuking an entry during a
590 	 * spurious network outage.
591 	 *
592 	 * See tcp_notify().
593 	 */
594 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
595 		sc->sc_flags |= SCF_UNREACH;
596 		goto done;
597 	}
598 	syncache_drop(sc, sch);
599 	TCPSTAT_INC(tcps_sc_unreach);
600 done:
601 	SCH_UNLOCK(sch);
602 }
603 
604 /*
605  * Build a new TCP socket structure from a syncache entry.
606  */
607 static struct socket *
608 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
609 {
610 	struct inpcb *inp = NULL;
611 	struct socket *so;
612 	struct tcpcb *tp;
613 	char *s;
614 
615 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
616 
617 	/*
618 	 * Ok, create the full blown connection, and set things up
619 	 * as they would have been set up if we had created the
620 	 * connection when the SYN arrived.  If we can't create
621 	 * the connection, abort it.
622 	 */
623 	so = sonewconn(lso, SS_ISCONNECTED);
624 	if (so == NULL) {
625 		/*
626 		 * Drop the connection; we will either send a RST or
627 		 * have the peer retransmit its SYN again after its
628 		 * RTO and try again.
629 		 */
630 		TCPSTAT_INC(tcps_listendrop);
631 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
632 			log(LOG_DEBUG, "%s; %s: Socket create failed "
633 			    "due to limits or memory shortage\n",
634 			    s, __func__);
635 			free(s, M_TCPLOG);
636 		}
637 		goto abort2;
638 	}
639 #ifdef MAC
640 	mac_socketpeer_set_from_mbuf(m, so);
641 #endif
642 
643 	inp = sotoinpcb(so);
644 	inp->inp_inc.inc_fibnum = so->so_fibnum;
645 	INP_WLOCK(inp);
646 
647 	/* Insert new socket into PCB hash list. */
648 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
649 #ifdef INET6
650 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
651 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
652 	} else {
653 		inp->inp_vflag &= ~INP_IPV6;
654 		inp->inp_vflag |= INP_IPV4;
655 #endif
656 		inp->inp_laddr = sc->sc_inc.inc_laddr;
657 #ifdef INET6
658 	}
659 #endif
660 	inp->inp_lport = sc->sc_inc.inc_lport;
661 	if (in_pcbinshash(inp) != 0) {
662 		/*
663 		 * Undo the assignments above if we failed to
664 		 * put the PCB on the hash lists.
665 		 */
666 #ifdef INET6
667 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
668 			inp->in6p_laddr = in6addr_any;
669 		else
670 #endif
671 			inp->inp_laddr.s_addr = INADDR_ANY;
672 		inp->inp_lport = 0;
673 		goto abort;
674 	}
675 #ifdef IPSEC
676 	/* Copy old policy into new socket's. */
677 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
678 		printf("syncache_socket: could not copy policy\n");
679 #endif
680 #ifdef INET6
681 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
682 		struct inpcb *oinp = sotoinpcb(lso);
683 		struct in6_addr laddr6;
684 		struct sockaddr_in6 sin6;
685 		/*
686 		 * Inherit socket options from the listening socket.
687 		 * Note that in6p_inputopts are not (and should not be)
688 		 * copied, since it stores previously received options and is
689 		 * used to detect if each new option is different than the
690 		 * previous one and hence should be passed to a user.
691 		 * If we copied in6p_inputopts, a user would not be able to
692 		 * receive options just after calling the accept system call.
693 		 */
694 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
695 		if (oinp->in6p_outputopts)
696 			inp->in6p_outputopts =
697 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
698 
699 		sin6.sin6_family = AF_INET6;
700 		sin6.sin6_len = sizeof(sin6);
701 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
702 		sin6.sin6_port = sc->sc_inc.inc_fport;
703 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
704 		laddr6 = inp->in6p_laddr;
705 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
706 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
707 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
708 		    thread0.td_ucred)) {
709 			inp->in6p_laddr = laddr6;
710 			goto abort;
711 		}
712 		/* Override flowlabel from in6_pcbconnect. */
713 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
714 		inp->inp_flow |= sc->sc_flowlabel;
715 	} else
716 #endif
717 	{
718 		struct in_addr laddr;
719 		struct sockaddr_in sin;
720 
721 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
722 
723 		if (inp->inp_options == NULL) {
724 			inp->inp_options = sc->sc_ipopts;
725 			sc->sc_ipopts = NULL;
726 		}
727 
728 		sin.sin_family = AF_INET;
729 		sin.sin_len = sizeof(sin);
730 		sin.sin_addr = sc->sc_inc.inc_faddr;
731 		sin.sin_port = sc->sc_inc.inc_fport;
732 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
733 		laddr = inp->inp_laddr;
734 		if (inp->inp_laddr.s_addr == INADDR_ANY)
735 			inp->inp_laddr = sc->sc_inc.inc_laddr;
736 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
737 		    thread0.td_ucred)) {
738 			inp->inp_laddr = laddr;
739 			goto abort;
740 		}
741 	}
742 	tp = intotcpcb(inp);
743 	tp->t_state = TCPS_SYN_RECEIVED;
744 	tp->iss = sc->sc_iss;
745 	tp->irs = sc->sc_irs;
746 	tcp_rcvseqinit(tp);
747 	tcp_sendseqinit(tp);
748 	tp->snd_wl1 = sc->sc_irs;
749 	tp->snd_max = tp->iss + 1;
750 	tp->snd_nxt = tp->iss + 1;
751 	tp->rcv_up = sc->sc_irs + 1;
752 	tp->rcv_wnd = sc->sc_wnd;
753 	tp->rcv_adv += tp->rcv_wnd;
754 	tp->last_ack_sent = tp->rcv_nxt;
755 
756 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
757 	if (sc->sc_flags & SCF_NOOPT)
758 		tp->t_flags |= TF_NOOPT;
759 	else {
760 		if (sc->sc_flags & SCF_WINSCALE) {
761 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
762 			tp->snd_scale = sc->sc_requested_s_scale;
763 			tp->request_r_scale = sc->sc_requested_r_scale;
764 		}
765 		if (sc->sc_flags & SCF_TIMESTAMP) {
766 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
767 			tp->ts_recent = sc->sc_tsreflect;
768 			tp->ts_recent_age = ticks;
769 			tp->ts_offset = sc->sc_tsoff;
770 		}
771 #ifdef TCP_SIGNATURE
772 		if (sc->sc_flags & SCF_SIGNATURE)
773 			tp->t_flags |= TF_SIGNATURE;
774 #endif
775 		if (sc->sc_flags & SCF_SACK)
776 			tp->t_flags |= TF_SACK_PERMIT;
777 	}
778 
779 	if (sc->sc_flags & SCF_ECN)
780 		tp->t_flags |= TF_ECN_PERMIT;
781 
782 	/*
783 	 * Set up MSS and get cached values from tcp_hostcache.
784 	 * This might overwrite some of the defaults we just set.
785 	 */
786 	tcp_mss(tp, sc->sc_peer_mss);
787 
788 	/*
789 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
790 	 */
791 	if (sc->sc_rxmits)
792 		tp->snd_cwnd = tp->t_maxseg;
793 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
794 
795 	INP_WUNLOCK(inp);
796 
797 	TCPSTAT_INC(tcps_accepts);
798 	return (so);
799 
800 abort:
801 	INP_WUNLOCK(inp);
802 abort2:
803 	if (so != NULL)
804 		soabort(so);
805 	return (NULL);
806 }
807 
808 /*
809  * This function gets called when we receive an ACK for a
810  * socket in the LISTEN state.  We look up the connection
811  * in the syncache, and if its there, we pull it out of
812  * the cache and turn it into a full-blown connection in
813  * the SYN-RECEIVED state.
814  */
815 int
816 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
817     struct socket **lsop, struct mbuf *m)
818 {
819 	struct syncache *sc;
820 	struct syncache_head *sch;
821 	struct syncache scs;
822 	char *s;
823 
824 	/*
825 	 * Global TCP locks are held because we manipulate the PCB lists
826 	 * and create a new socket.
827 	 */
828 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
829 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
830 	    ("%s: can handle only ACK", __func__));
831 
832 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
833 	SCH_LOCK_ASSERT(sch);
834 	if (sc == NULL) {
835 		/*
836 		 * There is no syncache entry, so see if this ACK is
837 		 * a returning syncookie.  To do this, first:
838 		 *  A. See if this socket has had a syncache entry dropped in
839 		 *     the past.  We don't want to accept a bogus syncookie
840 		 *     if we've never received a SYN.
841 		 *  B. check that the syncookie is valid.  If it is, then
842 		 *     cobble up a fake syncache entry, and return.
843 		 */
844 		if (!V_tcp_syncookies) {
845 			SCH_UNLOCK(sch);
846 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
847 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
848 				    "segment rejected (syncookies disabled)\n",
849 				    s, __func__);
850 			goto failed;
851 		}
852 		bzero(&scs, sizeof(scs));
853 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
854 		SCH_UNLOCK(sch);
855 		if (sc == NULL) {
856 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
857 				log(LOG_DEBUG, "%s; %s: Segment failed "
858 				    "SYNCOOKIE authentication, segment rejected "
859 				    "(probably spoofed)\n", s, __func__);
860 			goto failed;
861 		}
862 	} else {
863 		/* Pull out the entry to unlock the bucket row. */
864 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
865 		sch->sch_length--;
866 		V_tcp_syncache.cache_count--;
867 		SCH_UNLOCK(sch);
868 	}
869 
870 	/*
871 	 * Segment validation:
872 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
873 	 */
874 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
875 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
876 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
877 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
878 		goto failed;
879 	}
880 
881 	/*
882 	 * The SEQ must fall in the window starting at the received
883 	 * initial receive sequence number + 1 (the SYN).
884 	 */
885 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
886 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
887 	    !TOEPCB_ISSET(sc)) {
888 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
889 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
890 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
891 		goto failed;
892 	}
893 
894 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
895 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
896 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
897 			    "segment rejected\n", s, __func__);
898 		goto failed;
899 	}
900 	/*
901 	 * If timestamps were negotiated the reflected timestamp
902 	 * must be equal to what we actually sent in the SYN|ACK.
903 	 */
904 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
905 	    !TOEPCB_ISSET(sc)) {
906 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
907 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
908 			    "segment rejected\n",
909 			    s, __func__, to->to_tsecr, sc->sc_ts);
910 		goto failed;
911 	}
912 
913 	*lsop = syncache_socket(sc, *lsop, m);
914 
915 	if (*lsop == NULL)
916 		TCPSTAT_INC(tcps_sc_aborted);
917 	else
918 		TCPSTAT_INC(tcps_sc_completed);
919 
920 /* how do we find the inp for the new socket? */
921 	if (sc != &scs)
922 		syncache_free(sc);
923 	return (1);
924 failed:
925 	if (sc != NULL && sc != &scs)
926 		syncache_free(sc);
927 	if (s != NULL)
928 		free(s, M_TCPLOG);
929 	*lsop = NULL;
930 	return (0);
931 }
932 
933 int
934 tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
935     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
936 {
937 	struct tcpopt to;
938 	int rc;
939 
940 	bzero(&to, sizeof(struct tcpopt));
941 	to.to_mss = toeo->to_mss;
942 	to.to_wscale = toeo->to_wscale;
943 	to.to_flags = toeo->to_flags;
944 
945 	INP_INFO_WLOCK(&V_tcbinfo);
946 	rc = syncache_expand(inc, &to, th, lsop, m);
947 	INP_INFO_WUNLOCK(&V_tcbinfo);
948 
949 	return (rc);
950 }
951 
952 /*
953  * Given a LISTEN socket and an inbound SYN request, add
954  * this to the syn cache, and send back a segment:
955  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
956  * to the source.
957  *
958  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
959  * Doing so would require that we hold onto the data and deliver it
960  * to the application.  However, if we are the target of a SYN-flood
961  * DoS attack, an attacker could send data which would eventually
962  * consume all available buffer space if it were ACKed.  By not ACKing
963  * the data, we avoid this DoS scenario.
964  */
965 static void
966 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
967     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
968     struct toe_usrreqs *tu, void *toepcb)
969 {
970 	struct tcpcb *tp;
971 	struct socket *so;
972 	struct syncache *sc = NULL;
973 	struct syncache_head *sch;
974 	struct mbuf *ipopts = NULL;
975 	u_int32_t flowtmp;
976 	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
977 	char *s;
978 #ifdef INET6
979 	int autoflowlabel = 0;
980 #endif
981 #ifdef MAC
982 	struct label *maclabel;
983 #endif
984 	struct syncache scs;
985 	struct ucred *cred;
986 
987 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
988 	INP_WLOCK_ASSERT(inp);			/* listen socket */
989 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
990 	    ("%s: unexpected tcp flags", __func__));
991 
992 	/*
993 	 * Combine all so/tp operations very early to drop the INP lock as
994 	 * soon as possible.
995 	 */
996 	so = *lsop;
997 	tp = sototcpcb(so);
998 	cred = crhold(so->so_cred);
999 
1000 #ifdef INET6
1001 	if ((inc->inc_flags & INC_ISIPV6) &&
1002 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1003 		autoflowlabel = 1;
1004 #endif
1005 	ip_ttl = inp->inp_ip_ttl;
1006 	ip_tos = inp->inp_ip_tos;
1007 	win = sbspace(&so->so_rcv);
1008 	sb_hiwat = so->so_rcv.sb_hiwat;
1009 	noopt = (tp->t_flags & TF_NOOPT);
1010 
1011 	/* By the time we drop the lock these should no longer be used. */
1012 	so = NULL;
1013 	tp = NULL;
1014 
1015 #ifdef MAC
1016 	if (mac_syncache_init(&maclabel) != 0) {
1017 		INP_WUNLOCK(inp);
1018 		INP_INFO_WUNLOCK(&V_tcbinfo);
1019 		goto done;
1020 	} else
1021 		mac_syncache_create(maclabel, inp);
1022 #endif
1023 	INP_WUNLOCK(inp);
1024 	INP_INFO_WUNLOCK(&V_tcbinfo);
1025 
1026 	/*
1027 	 * Remember the IP options, if any.
1028 	 */
1029 #ifdef INET6
1030 	if (!(inc->inc_flags & INC_ISIPV6))
1031 #endif
1032 		ipopts = (m) ? ip_srcroute(m) : NULL;
1033 
1034 	/*
1035 	 * See if we already have an entry for this connection.
1036 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1037 	 *
1038 	 * XXX: should the syncache be re-initialized with the contents
1039 	 * of the new SYN here (which may have different options?)
1040 	 *
1041 	 * XXX: We do not check the sequence number to see if this is a
1042 	 * real retransmit or a new connection attempt.  The question is
1043 	 * how to handle such a case; either ignore it as spoofed, or
1044 	 * drop the current entry and create a new one?
1045 	 */
1046 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1047 	SCH_LOCK_ASSERT(sch);
1048 	if (sc != NULL) {
1049 #ifndef TCP_OFFLOAD_DISABLE
1050 		if (sc->sc_tu)
1051 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1052 			    sc->sc_toepcb);
1053 #endif
1054 		TCPSTAT_INC(tcps_sc_dupsyn);
1055 		if (ipopts) {
1056 			/*
1057 			 * If we were remembering a previous source route,
1058 			 * forget it and use the new one we've been given.
1059 			 */
1060 			if (sc->sc_ipopts)
1061 				(void) m_free(sc->sc_ipopts);
1062 			sc->sc_ipopts = ipopts;
1063 		}
1064 		/*
1065 		 * Update timestamp if present.
1066 		 */
1067 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1068 			sc->sc_tsreflect = to->to_tsval;
1069 		else
1070 			sc->sc_flags &= ~SCF_TIMESTAMP;
1071 #ifdef MAC
1072 		/*
1073 		 * Since we have already unconditionally allocated label
1074 		 * storage, free it up.  The syncache entry will already
1075 		 * have an initialized label we can use.
1076 		 */
1077 		mac_syncache_destroy(&maclabel);
1078 #endif
1079 		/* Retransmit SYN|ACK and reset retransmit count. */
1080 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1081 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1082 			    "resetting timer and retransmitting SYN|ACK\n",
1083 			    s, __func__);
1084 			free(s, M_TCPLOG);
1085 		}
1086 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1087 			sc->sc_rxmits = 0;
1088 			syncache_timeout(sc, sch, 1);
1089 			TCPSTAT_INC(tcps_sndacks);
1090 			TCPSTAT_INC(tcps_sndtotal);
1091 		}
1092 		SCH_UNLOCK(sch);
1093 		goto done;
1094 	}
1095 
1096 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1097 	if (sc == NULL) {
1098 		/*
1099 		 * The zone allocator couldn't provide more entries.
1100 		 * Treat this as if the cache was full; drop the oldest
1101 		 * entry and insert the new one.
1102 		 */
1103 		TCPSTAT_INC(tcps_sc_zonefail);
1104 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1105 			syncache_drop(sc, sch);
1106 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1107 		if (sc == NULL) {
1108 			if (V_tcp_syncookies) {
1109 				bzero(&scs, sizeof(scs));
1110 				sc = &scs;
1111 			} else {
1112 				SCH_UNLOCK(sch);
1113 				if (ipopts)
1114 					(void) m_free(ipopts);
1115 				goto done;
1116 			}
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Fill in the syncache values.
1122 	 */
1123 #ifdef MAC
1124 	sc->sc_label = maclabel;
1125 #endif
1126 	sc->sc_cred = cred;
1127 	cred = NULL;
1128 	sc->sc_ipopts = ipopts;
1129 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1130 #ifdef INET6
1131 	if (!(inc->inc_flags & INC_ISIPV6))
1132 #endif
1133 	{
1134 		sc->sc_ip_tos = ip_tos;
1135 		sc->sc_ip_ttl = ip_ttl;
1136 	}
1137 #ifndef TCP_OFFLOAD_DISABLE
1138 	sc->sc_tu = tu;
1139 	sc->sc_toepcb = toepcb;
1140 #endif
1141 	sc->sc_irs = th->th_seq;
1142 	sc->sc_iss = arc4random();
1143 	sc->sc_flags = 0;
1144 	sc->sc_flowlabel = 0;
1145 
1146 	/*
1147 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1148 	 * win was derived from socket earlier in the function.
1149 	 */
1150 	win = imax(win, 0);
1151 	win = imin(win, TCP_MAXWIN);
1152 	sc->sc_wnd = win;
1153 
1154 	if (V_tcp_do_rfc1323) {
1155 		/*
1156 		 * A timestamp received in a SYN makes
1157 		 * it ok to send timestamp requests and replies.
1158 		 */
1159 		if (to->to_flags & TOF_TS) {
1160 			sc->sc_tsreflect = to->to_tsval;
1161 			sc->sc_ts = ticks;
1162 			sc->sc_flags |= SCF_TIMESTAMP;
1163 		}
1164 		if (to->to_flags & TOF_SCALE) {
1165 			int wscale = 0;
1166 
1167 			/*
1168 			 * Pick the smallest possible scaling factor that
1169 			 * will still allow us to scale up to sb_max, aka
1170 			 * kern.ipc.maxsockbuf.
1171 			 *
1172 			 * We do this because there are broken firewalls that
1173 			 * will corrupt the window scale option, leading to
1174 			 * the other endpoint believing that our advertised
1175 			 * window is unscaled.  At scale factors larger than
1176 			 * 5 the unscaled window will drop below 1500 bytes,
1177 			 * leading to serious problems when traversing these
1178 			 * broken firewalls.
1179 			 *
1180 			 * With the default maxsockbuf of 256K, a scale factor
1181 			 * of 3 will be chosen by this algorithm.  Those who
1182 			 * choose a larger maxsockbuf should watch out
1183 			 * for the compatiblity problems mentioned above.
1184 			 *
1185 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1186 			 * or <SYN,ACK>) segment itself is never scaled.
1187 			 */
1188 			while (wscale < TCP_MAX_WINSHIFT &&
1189 			    (TCP_MAXWIN << wscale) < sb_max)
1190 				wscale++;
1191 			sc->sc_requested_r_scale = wscale;
1192 			sc->sc_requested_s_scale = to->to_wscale;
1193 			sc->sc_flags |= SCF_WINSCALE;
1194 		}
1195 	}
1196 #ifdef TCP_SIGNATURE
1197 	/*
1198 	 * If listening socket requested TCP digests, and received SYN
1199 	 * contains the option, flag this in the syncache so that
1200 	 * syncache_respond() will do the right thing with the SYN+ACK.
1201 	 * XXX: Currently we always record the option by default and will
1202 	 * attempt to use it in syncache_respond().
1203 	 */
1204 	if (to->to_flags & TOF_SIGNATURE)
1205 		sc->sc_flags |= SCF_SIGNATURE;
1206 #endif
1207 	if (to->to_flags & TOF_SACKPERM)
1208 		sc->sc_flags |= SCF_SACK;
1209 	if (to->to_flags & TOF_MSS)
1210 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1211 	if (noopt)
1212 		sc->sc_flags |= SCF_NOOPT;
1213 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1214 		sc->sc_flags |= SCF_ECN;
1215 
1216 	if (V_tcp_syncookies) {
1217 		syncookie_generate(sch, sc, &flowtmp);
1218 #ifdef INET6
1219 		if (autoflowlabel)
1220 			sc->sc_flowlabel = flowtmp;
1221 #endif
1222 	} else {
1223 #ifdef INET6
1224 		if (autoflowlabel)
1225 			sc->sc_flowlabel =
1226 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1227 #endif
1228 	}
1229 	SCH_UNLOCK(sch);
1230 
1231 	/*
1232 	 * Do a standard 3-way handshake.
1233 	 */
1234 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1235 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1236 			syncache_free(sc);
1237 		else if (sc != &scs)
1238 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1239 		TCPSTAT_INC(tcps_sndacks);
1240 		TCPSTAT_INC(tcps_sndtotal);
1241 	} else {
1242 		if (sc != &scs)
1243 			syncache_free(sc);
1244 		TCPSTAT_INC(tcps_sc_dropped);
1245 	}
1246 
1247 done:
1248 	if (cred != NULL)
1249 		crfree(cred);
1250 #ifdef MAC
1251 	if (sc == &scs)
1252 		mac_syncache_destroy(&maclabel);
1253 #endif
1254 	if (m) {
1255 
1256 		*lsop = NULL;
1257 		m_freem(m);
1258 	}
1259 }
1260 
1261 static int
1262 syncache_respond(struct syncache *sc)
1263 {
1264 	struct ip *ip = NULL;
1265 	struct mbuf *m;
1266 	struct tcphdr *th;
1267 	int optlen, error;
1268 	u_int16_t hlen, tlen, mssopt;
1269 	struct tcpopt to;
1270 #ifdef INET6
1271 	struct ip6_hdr *ip6 = NULL;
1272 #endif
1273 
1274 	hlen =
1275 #ifdef INET6
1276 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1277 #endif
1278 		sizeof(struct ip);
1279 	tlen = hlen + sizeof(struct tcphdr);
1280 
1281 	/* Determine MSS we advertize to other end of connection. */
1282 	mssopt = tcp_mssopt(&sc->sc_inc);
1283 	if (sc->sc_peer_mss)
1284 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1285 
1286 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1287 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1288 	    ("syncache: mbuf too small"));
1289 
1290 	/* Create the IP+TCP header from scratch. */
1291 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1292 	if (m == NULL)
1293 		return (ENOBUFS);
1294 #ifdef MAC
1295 	mac_syncache_create_mbuf(sc->sc_label, m);
1296 #endif
1297 	m->m_data += max_linkhdr;
1298 	m->m_len = tlen;
1299 	m->m_pkthdr.len = tlen;
1300 	m->m_pkthdr.rcvif = NULL;
1301 
1302 #ifdef INET6
1303 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1304 		ip6 = mtod(m, struct ip6_hdr *);
1305 		ip6->ip6_vfc = IPV6_VERSION;
1306 		ip6->ip6_nxt = IPPROTO_TCP;
1307 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1308 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1309 		ip6->ip6_plen = htons(tlen - hlen);
1310 		/* ip6_hlim is set after checksum */
1311 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1312 		ip6->ip6_flow |= sc->sc_flowlabel;
1313 
1314 		th = (struct tcphdr *)(ip6 + 1);
1315 	} else
1316 #endif
1317 	{
1318 		ip = mtod(m, struct ip *);
1319 		ip->ip_v = IPVERSION;
1320 		ip->ip_hl = sizeof(struct ip) >> 2;
1321 		ip->ip_len = tlen;
1322 		ip->ip_id = 0;
1323 		ip->ip_off = 0;
1324 		ip->ip_sum = 0;
1325 		ip->ip_p = IPPROTO_TCP;
1326 		ip->ip_src = sc->sc_inc.inc_laddr;
1327 		ip->ip_dst = sc->sc_inc.inc_faddr;
1328 		ip->ip_ttl = sc->sc_ip_ttl;
1329 		ip->ip_tos = sc->sc_ip_tos;
1330 
1331 		/*
1332 		 * See if we should do MTU discovery.  Route lookups are
1333 		 * expensive, so we will only unset the DF bit if:
1334 		 *
1335 		 *	1) path_mtu_discovery is disabled
1336 		 *	2) the SCF_UNREACH flag has been set
1337 		 */
1338 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1339 		       ip->ip_off |= IP_DF;
1340 
1341 		th = (struct tcphdr *)(ip + 1);
1342 	}
1343 	th->th_sport = sc->sc_inc.inc_lport;
1344 	th->th_dport = sc->sc_inc.inc_fport;
1345 
1346 	th->th_seq = htonl(sc->sc_iss);
1347 	th->th_ack = htonl(sc->sc_irs + 1);
1348 	th->th_off = sizeof(struct tcphdr) >> 2;
1349 	th->th_x2 = 0;
1350 	th->th_flags = TH_SYN|TH_ACK;
1351 	th->th_win = htons(sc->sc_wnd);
1352 	th->th_urp = 0;
1353 
1354 	if (sc->sc_flags & SCF_ECN) {
1355 		th->th_flags |= TH_ECE;
1356 		TCPSTAT_INC(tcps_ecn_shs);
1357 	}
1358 
1359 	/* Tack on the TCP options. */
1360 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1361 		to.to_flags = 0;
1362 
1363 		to.to_mss = mssopt;
1364 		to.to_flags = TOF_MSS;
1365 		if (sc->sc_flags & SCF_WINSCALE) {
1366 			to.to_wscale = sc->sc_requested_r_scale;
1367 			to.to_flags |= TOF_SCALE;
1368 		}
1369 		if (sc->sc_flags & SCF_TIMESTAMP) {
1370 			/* Virgin timestamp or TCP cookie enhanced one. */
1371 			to.to_tsval = sc->sc_ts;
1372 			to.to_tsecr = sc->sc_tsreflect;
1373 			to.to_flags |= TOF_TS;
1374 		}
1375 		if (sc->sc_flags & SCF_SACK)
1376 			to.to_flags |= TOF_SACKPERM;
1377 #ifdef TCP_SIGNATURE
1378 		if (sc->sc_flags & SCF_SIGNATURE)
1379 			to.to_flags |= TOF_SIGNATURE;
1380 #endif
1381 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1382 
1383 		/* Adjust headers by option size. */
1384 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1385 		m->m_len += optlen;
1386 		m->m_pkthdr.len += optlen;
1387 
1388 #ifdef TCP_SIGNATURE
1389 		if (sc->sc_flags & SCF_SIGNATURE)
1390 			tcp_signature_compute(m, 0, 0, optlen,
1391 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1392 #endif
1393 #ifdef INET6
1394 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1395 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1396 		else
1397 #endif
1398 			ip->ip_len += optlen;
1399 	} else
1400 		optlen = 0;
1401 
1402 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1403 #ifdef INET6
1404 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1405 		th->th_sum = 0;
1406 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1407 				       tlen + optlen - hlen);
1408 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1409 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1410 	} else
1411 #endif
1412 	{
1413 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1414 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1415 		m->m_pkthdr.csum_flags = CSUM_TCP;
1416 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1417 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1418 	}
1419 	return (error);
1420 }
1421 
1422 void
1423 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1424     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1425 {
1426 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1427 }
1428 
1429 void
1430 tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1431     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1432     struct toe_usrreqs *tu, void *toepcb)
1433 {
1434 	struct tcpopt to;
1435 
1436 	bzero(&to, sizeof(struct tcpopt));
1437 	to.to_mss = toeo->to_mss;
1438 	to.to_wscale = toeo->to_wscale;
1439 	to.to_flags = toeo->to_flags;
1440 
1441 	INP_INFO_WLOCK(&V_tcbinfo);
1442 	INP_WLOCK(inp);
1443 
1444 	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1445 }
1446 
1447 /*
1448  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1449  * receive and to be able to handle SYN floods from bogus source addresses
1450  * (where we will never receive any reply).  SYN floods try to exhaust all
1451  * our memory and available slots in the SYN cache table to cause a denial
1452  * of service to legitimate users of the local host.
1453  *
1454  * The idea of SYN cookies is to encode and include all necessary information
1455  * about the connection setup state within the SYN-ACK we send back and thus
1456  * to get along without keeping any local state until the ACK to the SYN-ACK
1457  * arrives (if ever).  Everything we need to know should be available from
1458  * the information we encoded in the SYN-ACK.
1459  *
1460  * More information about the theory behind SYN cookies and its first
1461  * discussion and specification can be found at:
1462  *  http://cr.yp.to/syncookies.html    (overview)
1463  *  http://cr.yp.to/syncookies/archive (gory details)
1464  *
1465  * This implementation extends the orginal idea and first implementation
1466  * of FreeBSD by using not only the initial sequence number field to store
1467  * information but also the timestamp field if present.  This way we can
1468  * keep track of the entire state we need to know to recreate the session in
1469  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1470  * these days.  For those that do not we still have to live with the known
1471  * shortcomings of the ISN only SYN cookies.
1472  *
1473  * Cookie layers:
1474  *
1475  * Initial sequence number we send:
1476  * 31|................................|0
1477  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1478  *    D = MD5 Digest (first dword)
1479  *    M = MSS index
1480  *    R = Rotation of secret
1481  *    P = Odd or Even secret
1482  *
1483  * The MD5 Digest is computed with over following parameters:
1484  *  a) randomly rotated secret
1485  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1486  *  c) the received initial sequence number from remote host
1487  *  d) the rotation offset and odd/even bit
1488  *
1489  * Timestamp we send:
1490  * 31|................................|0
1491  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1492  *    D = MD5 Digest (third dword) (only as filler)
1493  *    S = Requested send window scale
1494  *    R = Requested receive window scale
1495  *    A = SACK allowed
1496  *    5 = TCP-MD5 enabled (not implemented yet)
1497  *    XORed with MD5 Digest (forth dword)
1498  *
1499  * The timestamp isn't cryptographically secure and doesn't need to be.
1500  * The double use of the MD5 digest dwords ties it to a specific remote/
1501  * local host/port, remote initial sequence number and our local time
1502  * limited secret.  A received timestamp is reverted (XORed) and then
1503  * the contained MD5 dword is compared to the computed one to ensure the
1504  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1505  * have been tampered with but this isn't different from supplying bogus
1506  * values in the SYN in the first place.
1507  *
1508  * Some problems with SYN cookies remain however:
1509  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1510  * original SYN was accepted, the connection is established.  The second
1511  * SYN is inflight, and if it arrives with an ISN that falls within the
1512  * receive window, the connection is killed.
1513  *
1514  * Notes:
1515  * A heuristic to determine when to accept syn cookies is not necessary.
1516  * An ACK flood would cause the syncookie verification to be attempted,
1517  * but a SYN flood causes syncookies to be generated.  Both are of equal
1518  * cost, so there's no point in trying to optimize the ACK flood case.
1519  * Also, if you don't process certain ACKs for some reason, then all someone
1520  * would have to do is launch a SYN and ACK flood at the same time, which
1521  * would stop cookie verification and defeat the entire purpose of syncookies.
1522  */
1523 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1524 
1525 static void
1526 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1527     u_int32_t *flowlabel)
1528 {
1529 	MD5_CTX ctx;
1530 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1531 	u_int32_t data;
1532 	u_int32_t *secbits;
1533 	u_int off, pmss, mss;
1534 	int i;
1535 
1536 	SCH_LOCK_ASSERT(sch);
1537 
1538 	/* Which of the two secrets to use. */
1539 	secbits = sch->sch_oddeven ?
1540 			sch->sch_secbits_odd : sch->sch_secbits_even;
1541 
1542 	/* Reseed secret if too old. */
1543 	if (sch->sch_reseed < time_uptime) {
1544 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1545 		secbits = sch->sch_oddeven ?
1546 				sch->sch_secbits_odd : sch->sch_secbits_even;
1547 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1548 			secbits[i] = arc4random();
1549 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1550 	}
1551 
1552 	/* Secret rotation offset. */
1553 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1554 
1555 	/* Maximum segment size calculation. */
1556 	pmss =
1557 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1558 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1559 		if (tcp_sc_msstab[mss] <= pmss)
1560 			break;
1561 
1562 	/* Fold parameters and MD5 digest into the ISN we will send. */
1563 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1564 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1565 	data |= mss << 4;	/* mss, 3 bits */
1566 
1567 	MD5Init(&ctx);
1568 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1569 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1570 	MD5Update(&ctx, secbits, off);
1571 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1572 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1573 	MD5Update(&ctx, &data, sizeof(data));
1574 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1575 
1576 	data |= (md5_buffer[0] << 7);
1577 	sc->sc_iss = data;
1578 
1579 #ifdef INET6
1580 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1581 #endif
1582 
1583 	/* Additional parameters are stored in the timestamp if present. */
1584 	if (sc->sc_flags & SCF_TIMESTAMP) {
1585 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1586 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1587 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1588 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1589 		data |= md5_buffer[2] << 10;		/* more digest bits */
1590 		data ^= md5_buffer[3];
1591 		sc->sc_ts = data;
1592 		sc->sc_tsoff = data - ticks;		/* after XOR */
1593 	}
1594 
1595 	TCPSTAT_INC(tcps_sc_sendcookie);
1596 }
1597 
1598 static struct syncache *
1599 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1600     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1601     struct socket *so)
1602 {
1603 	MD5_CTX ctx;
1604 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1605 	u_int32_t data = 0;
1606 	u_int32_t *secbits;
1607 	tcp_seq ack, seq;
1608 	int off, mss, wnd, flags;
1609 
1610 	SCH_LOCK_ASSERT(sch);
1611 
1612 	/*
1613 	 * Pull information out of SYN-ACK/ACK and
1614 	 * revert sequence number advances.
1615 	 */
1616 	ack = th->th_ack - 1;
1617 	seq = th->th_seq - 1;
1618 	off = (ack >> 1) & 0x7;
1619 	mss = (ack >> 4) & 0x7;
1620 	flags = ack & 0x7f;
1621 
1622 	/* Which of the two secrets to use. */
1623 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1624 
1625 	/*
1626 	 * The secret wasn't updated for the lifetime of a syncookie,
1627 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1628 	 */
1629 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1630 		return (NULL);
1631 	}
1632 
1633 	/* Recompute the digest so we can compare it. */
1634 	MD5Init(&ctx);
1635 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1636 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1637 	MD5Update(&ctx, secbits, off);
1638 	MD5Update(&ctx, inc, sizeof(*inc));
1639 	MD5Update(&ctx, &seq, sizeof(seq));
1640 	MD5Update(&ctx, &flags, sizeof(flags));
1641 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1642 
1643 	/* Does the digest part of or ACK'ed ISS match? */
1644 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1645 		return (NULL);
1646 
1647 	/* Does the digest part of our reflected timestamp match? */
1648 	if (to->to_flags & TOF_TS) {
1649 		data = md5_buffer[3] ^ to->to_tsecr;
1650 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1651 			return (NULL);
1652 	}
1653 
1654 	/* Fill in the syncache values. */
1655 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1656 	sc->sc_ipopts = NULL;
1657 
1658 	sc->sc_irs = seq;
1659 	sc->sc_iss = ack;
1660 
1661 #ifdef INET6
1662 	if (inc->inc_flags & INC_ISIPV6) {
1663 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1664 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1665 	} else
1666 #endif
1667 	{
1668 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1669 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1670 	}
1671 
1672 	/* Additional parameters that were encoded in the timestamp. */
1673 	if (data) {
1674 		sc->sc_flags |= SCF_TIMESTAMP;
1675 		sc->sc_tsreflect = to->to_tsval;
1676 		sc->sc_ts = to->to_tsecr;
1677 		sc->sc_tsoff = to->to_tsecr - ticks;
1678 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1679 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1680 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1681 		    TCP_MAX_WINSHIFT);
1682 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1683 		    TCP_MAX_WINSHIFT);
1684 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1685 			sc->sc_flags |= SCF_WINSCALE;
1686 	} else
1687 		sc->sc_flags |= SCF_NOOPT;
1688 
1689 	wnd = sbspace(&so->so_rcv);
1690 	wnd = imax(wnd, 0);
1691 	wnd = imin(wnd, TCP_MAXWIN);
1692 	sc->sc_wnd = wnd;
1693 
1694 	sc->sc_rxmits = 0;
1695 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1696 
1697 	TCPSTAT_INC(tcps_sc_recvcookie);
1698 	return (sc);
1699 }
1700 
1701 /*
1702  * Returns the current number of syncache entries.  This number
1703  * will probably change before you get around to calling
1704  * syncache_pcblist.
1705  */
1706 
1707 int
1708 syncache_pcbcount(void)
1709 {
1710 	struct syncache_head *sch;
1711 	int count, i;
1712 
1713 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1714 		/* No need to lock for a read. */
1715 		sch = &V_tcp_syncache.hashbase[i];
1716 		count += sch->sch_length;
1717 	}
1718 	return count;
1719 }
1720 
1721 /*
1722  * Exports the syncache entries to userland so that netstat can display
1723  * them alongside the other sockets.  This function is intended to be
1724  * called only from tcp_pcblist.
1725  *
1726  * Due to concurrency on an active system, the number of pcbs exported
1727  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1728  * amount of space the caller allocated for this function to use.
1729  */
1730 int
1731 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1732 {
1733 	struct xtcpcb xt;
1734 	struct syncache *sc;
1735 	struct syncache_head *sch;
1736 	int count, error, i;
1737 
1738 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1739 		sch = &V_tcp_syncache.hashbase[i];
1740 		SCH_LOCK(sch);
1741 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1742 			if (count >= max_pcbs) {
1743 				SCH_UNLOCK(sch);
1744 				goto exit;
1745 			}
1746 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1747 				continue;
1748 			bzero(&xt, sizeof(xt));
1749 			xt.xt_len = sizeof(xt);
1750 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1751 				xt.xt_inp.inp_vflag = INP_IPV6;
1752 			else
1753 				xt.xt_inp.inp_vflag = INP_IPV4;
1754 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1755 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1756 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1757 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1758 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1759 			xt.xt_socket.so_type = SOCK_STREAM;
1760 			xt.xt_socket.so_state = SS_ISCONNECTING;
1761 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1762 			if (error) {
1763 				SCH_UNLOCK(sch);
1764 				goto exit;
1765 			}
1766 			count++;
1767 		}
1768 		SCH_UNLOCK(sch);
1769 	}
1770 exit:
1771 	*pcbs_exported = count;
1772 	return error;
1773 }
1774