xref: /freebsd/sys/netinet/tcp_syncache.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 #include "opt_ipsec.h"
38 #include "opt_mac.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/md5.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syslog.h>
54 
55 #include <vm/uma.h>
56 
57 #include <net/if.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/in_var.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/ip_var.h>
66 #include <netinet/ip_options.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #include <netinet/icmp6.h>
70 #include <netinet6/nd6.h>
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/tcp.h>
75 #include <netinet/tcp_fsm.h>
76 #include <netinet/tcp_seq.h>
77 #include <netinet/tcp_timer.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/tcp_syncache.h>
80 #ifdef INET6
81 #include <netinet6/tcp6_var.h>
82 #endif
83 
84 #ifdef IPSEC
85 #include <netipsec/ipsec.h>
86 #ifdef INET6
87 #include <netipsec/ipsec6.h>
88 #endif
89 #include <netipsec/key.h>
90 #endif /*IPSEC*/
91 
92 #include <machine/in_cksum.h>
93 
94 #include <security/mac/mac_framework.h>
95 
96 static int tcp_syncookies = 1;
97 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
98     &tcp_syncookies, 0,
99     "Use TCP SYN cookies if the syncache overflows");
100 
101 static int tcp_syncookiesonly = 0;
102 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
103     &tcp_syncookiesonly, 0,
104     "Use only TCP SYN cookies");
105 
106 #define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
107 #define	SYNCOOKIE_LIFETIME	16	/* seconds */
108 
109 struct syncache {
110 	TAILQ_ENTRY(syncache)	sc_hash;
111 	struct		in_conninfo sc_inc;	/* addresses */
112 	u_long		sc_rxttime;		/* retransmit time */
113 	u_int16_t	sc_rxmits;		/* retransmit counter */
114 
115 	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
116 	u_int32_t	sc_ts;			/* our timestamp to send */
117 	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
118 	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
119 	tcp_seq		sc_irs;			/* seq from peer */
120 	tcp_seq		sc_iss;			/* our ISS */
121 	struct		mbuf *sc_ipopts;	/* source route */
122 
123 	u_int16_t	sc_peer_mss;		/* peer's MSS */
124 	u_int16_t	sc_wnd;			/* advertised window */
125 	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
126 	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
127 	u_int8_t	sc_requested_s_scale:4,
128 			sc_requested_r_scale:4;
129 	u_int8_t	sc_flags;
130 #define SCF_NOOPT	0x01			/* no TCP options */
131 #define SCF_WINSCALE	0x02			/* negotiated window scaling */
132 #define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
133 						/* MSS is implicit */
134 #define SCF_UNREACH	0x10			/* icmp unreachable received */
135 #define SCF_SIGNATURE	0x20			/* send MD5 digests */
136 #define SCF_SACK	0x80			/* send SACK option */
137 #ifdef MAC
138 	struct label	*sc_label;		/* MAC label reference */
139 #endif
140 };
141 
142 struct syncache_head {
143 	struct mtx	sch_mtx;
144 	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
145 	struct callout	sch_timer;
146 	int		sch_nextc;
147 	u_int		sch_length;
148 	u_int		sch_oddeven;
149 	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
150 	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
151 	u_int		sch_reseed;		/* time_uptime, seconds */
152 };
153 
154 static void	 syncache_drop(struct syncache *, struct syncache_head *);
155 static void	 syncache_free(struct syncache *);
156 static void	 syncache_insert(struct syncache *, struct syncache_head *);
157 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
158 static int	 syncache_respond(struct syncache *);
159 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
160 		    struct mbuf *m);
161 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
162 		    int docallout);
163 static void	 syncache_timer(void *);
164 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
165 		    u_int32_t *);
166 static struct syncache
167 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
168 		    struct syncache *, struct tcpopt *, struct tcphdr *,
169 		    struct socket *);
170 
171 /*
172  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
173  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
174  * the odds are that the user has given up attempting to connect by then.
175  */
176 #define SYNCACHE_MAXREXMTS		3
177 
178 /* Arbitrary values */
179 #define TCP_SYNCACHE_HASHSIZE		512
180 #define TCP_SYNCACHE_BUCKETLIMIT	30
181 
182 struct tcp_syncache {
183 	struct	syncache_head *hashbase;
184 	uma_zone_t zone;
185 	u_int	hashsize;
186 	u_int	hashmask;
187 	u_int	bucket_limit;
188 	u_int	cache_count;		/* XXX: unprotected */
189 	u_int	cache_limit;
190 	u_int	rexmt_limit;
191 	u_int	hash_secret;
192 };
193 static struct tcp_syncache tcp_syncache;
194 
195 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
196 
197 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
198      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
199 
200 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
201      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
202 
203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
204      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
205 
206 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
207      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
208 
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
210      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
211 
212 int	tcp_sc_rst_sock_fail = 1;
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
214      &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
215 
216 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
217 
218 #define SYNCACHE_HASH(inc, mask)					\
219 	((tcp_syncache.hash_secret ^					\
220 	  (inc)->inc_faddr.s_addr ^					\
221 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
222 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
223 
224 #define SYNCACHE_HASH6(inc, mask)					\
225 	((tcp_syncache.hash_secret ^					\
226 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
227 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
228 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
229 
230 #define ENDPTS_EQ(a, b) (						\
231 	(a)->ie_fport == (b)->ie_fport &&				\
232 	(a)->ie_lport == (b)->ie_lport &&				\
233 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
234 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
235 )
236 
237 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
238 
239 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
240 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
241 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
242 
243 /*
244  * Requires the syncache entry to be already removed from the bucket list.
245  */
246 static void
247 syncache_free(struct syncache *sc)
248 {
249 	if (sc->sc_ipopts)
250 		(void) m_free(sc->sc_ipopts);
251 #ifdef MAC
252 	mac_destroy_syncache(&sc->sc_label);
253 #endif
254 
255 	uma_zfree(tcp_syncache.zone, sc);
256 }
257 
258 void
259 syncache_init(void)
260 {
261 	int i;
262 
263 	tcp_syncache.cache_count = 0;
264 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
265 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
266 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
267 	tcp_syncache.hash_secret = arc4random();
268 
269 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
270 	    &tcp_syncache.hashsize);
271 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
272 	    &tcp_syncache.bucket_limit);
273 	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
274 		printf("WARNING: syncache hash size is not a power of 2.\n");
275 		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
276 	}
277 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
278 
279 	/* Set limits. */
280 	tcp_syncache.cache_limit =
281 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
282 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
283 	    &tcp_syncache.cache_limit);
284 
285 	/* Allocate the hash table. */
286 	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
287 	    tcp_syncache.hashsize * sizeof(struct syncache_head),
288 	    M_SYNCACHE, M_WAITOK | M_ZERO);
289 
290 	/* Initialize the hash buckets. */
291 	for (i = 0; i < tcp_syncache.hashsize; i++) {
292 		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
293 		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
294 			 NULL, MTX_DEF);
295 		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
296 			 &tcp_syncache.hashbase[i].sch_mtx, 0);
297 		tcp_syncache.hashbase[i].sch_length = 0;
298 	}
299 
300 	/* Create the syncache entry zone. */
301 	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
302 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
303 	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
304 }
305 
306 /*
307  * Inserts a syncache entry into the specified bucket row.
308  * Locks and unlocks the syncache_head autonomously.
309  */
310 static void
311 syncache_insert(struct syncache *sc, struct syncache_head *sch)
312 {
313 	struct syncache *sc2;
314 
315 	SCH_LOCK(sch);
316 
317 	/*
318 	 * Make sure that we don't overflow the per-bucket limit.
319 	 * If the bucket is full, toss the oldest element.
320 	 */
321 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
322 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
323 			("sch->sch_length incorrect"));
324 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
325 		syncache_drop(sc2, sch);
326 		tcpstat.tcps_sc_bucketoverflow++;
327 	}
328 
329 	/* Put it into the bucket. */
330 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
331 	sch->sch_length++;
332 
333 	/* Reinitialize the bucket row's timer. */
334 	syncache_timeout(sc, sch, 1);
335 
336 	SCH_UNLOCK(sch);
337 
338 	tcp_syncache.cache_count++;
339 	tcpstat.tcps_sc_added++;
340 }
341 
342 /*
343  * Remove and free entry from syncache bucket row.
344  * Expects locked syncache head.
345  */
346 static void
347 syncache_drop(struct syncache *sc, struct syncache_head *sch)
348 {
349 
350 	SCH_LOCK_ASSERT(sch);
351 
352 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
353 	sch->sch_length--;
354 
355 	syncache_free(sc);
356 	tcp_syncache.cache_count--;
357 }
358 
359 /*
360  * Engage/reengage time on bucket row.
361  */
362 static void
363 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
364 {
365 	sc->sc_rxttime = ticks +
366 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
367 	sc->sc_rxmits++;
368 	if (sch->sch_nextc > sc->sc_rxttime)
369 		sch->sch_nextc = sc->sc_rxttime;
370 	if (!TAILQ_EMPTY(&sch->sch_bucket) && docallout)
371 		callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
372 		    syncache_timer, (void *)sch);
373 }
374 
375 /*
376  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
377  * If we have retransmitted an entry the maximum number of times, expire it.
378  * One separate timer for each bucket row.
379  */
380 static void
381 syncache_timer(void *xsch)
382 {
383 	struct syncache_head *sch = (struct syncache_head *)xsch;
384 	struct syncache *sc, *nsc;
385 	int tick = ticks;
386 	char *s;
387 
388 	/* NB: syncache_head has already been locked by the callout. */
389 	SCH_LOCK_ASSERT(sch);
390 
391 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
392 		/*
393 		 * We do not check if the listen socket still exists
394 		 * and accept the case where the listen socket may be
395 		 * gone by the time we resend the SYN/ACK.  We do
396 		 * not expect this to happens often. If it does,
397 		 * then the RST will be sent by the time the remote
398 		 * host does the SYN/ACK->ACK.
399 		 */
400 		if (sc->sc_rxttime > tick) {
401 			if (sc->sc_rxttime < sch->sch_nextc)
402 				sch->sch_nextc = sc->sc_rxttime;
403 			continue;
404 		}
405 
406 		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
407 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
408 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
409 				    "giving up and removing syncache entry\n",
410 				    s, __func__);
411 				free(s, M_TCPLOG);
412 			}
413 			syncache_drop(sc, sch);
414 			tcpstat.tcps_sc_stale++;
415 			continue;
416 		}
417 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
418 			log(LOG_DEBUG, "%s; %s: Response timeout, "
419 			    "retransmitting (%u) SYN|ACK\n",
420 			    s, __func__, sc->sc_rxmits);
421 			free(s, M_TCPLOG);
422 		}
423 
424 		(void) syncache_respond(sc);
425 		tcpstat.tcps_sc_retransmitted++;
426 		syncache_timeout(sc, sch, 0);
427 	}
428 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
429 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
430 			syncache_timer, (void *)(sch));
431 }
432 
433 /*
434  * Find an entry in the syncache.
435  * Returns always with locked syncache_head plus a matching entry or NULL.
436  */
437 struct syncache *
438 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
439 {
440 	struct syncache *sc;
441 	struct syncache_head *sch;
442 
443 #ifdef INET6
444 	if (inc->inc_isipv6) {
445 		sch = &tcp_syncache.hashbase[
446 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
447 		*schp = sch;
448 
449 		SCH_LOCK(sch);
450 
451 		/* Circle through bucket row to find matching entry. */
452 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
453 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
454 				return (sc);
455 		}
456 	} else
457 #endif
458 	{
459 		sch = &tcp_syncache.hashbase[
460 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
461 		*schp = sch;
462 
463 		SCH_LOCK(sch);
464 
465 		/* Circle through bucket row to find matching entry. */
466 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
467 #ifdef INET6
468 			if (sc->sc_inc.inc_isipv6)
469 				continue;
470 #endif
471 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
472 				return (sc);
473 		}
474 	}
475 	SCH_LOCK_ASSERT(*schp);
476 	return (NULL);			/* always returns with locked sch */
477 }
478 
479 /*
480  * This function is called when we get a RST for a
481  * non-existent connection, so that we can see if the
482  * connection is in the syn cache.  If it is, zap it.
483  */
484 void
485 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
486 {
487 	struct syncache *sc;
488 	struct syncache_head *sch;
489 	char *s = NULL;
490 
491 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
492 	SCH_LOCK_ASSERT(sch);
493 
494 	/*
495 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
496 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
497 	 */
498 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
499 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
500 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
501 			    "FIN flag set, segment ignored\n", s, __func__);
502 		tcpstat.tcps_badrst++;
503 		goto done;
504 	}
505 
506 	/*
507 	 * No corresponding connection was found in syncache.
508 	 * If syncookies are enabled and possibly exclusively
509 	 * used, or we are under memory pressure, a valid RST
510 	 * may not find a syncache entry.  In that case we're
511 	 * done and no SYN|ACK retransmissions will happen.
512 	 * Otherwise the the RST was misdirected or spoofed.
513 	 */
514 	if (sc == NULL) {
515 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
516 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
517 			    "syncache entry (possibly syncookie only), "
518 			    "segment ignored\n", s, __func__);
519 		tcpstat.tcps_badrst++;
520 		goto done;
521 	}
522 
523 	/*
524 	 * If the RST bit is set, check the sequence number to see
525 	 * if this is a valid reset segment.
526 	 * RFC 793 page 37:
527 	 *   In all states except SYN-SENT, all reset (RST) segments
528 	 *   are validated by checking their SEQ-fields.  A reset is
529 	 *   valid if its sequence number is in the window.
530 	 *
531 	 *   The sequence number in the reset segment is normally an
532 	 *   echo of our outgoing acknowlegement numbers, but some hosts
533 	 *   send a reset with the sequence number at the rightmost edge
534 	 *   of our receive window, and we have to handle this case.
535 	 */
536 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
537 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
538 		syncache_drop(sc, sch);
539 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
540 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
541 			    "connection attempt aborted by remote endpoint\n",
542 			    s, __func__);
543 		tcpstat.tcps_sc_reset++;
544 	} else if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
545 		log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != IRS %u "
546 		    "(+WND %u), segment ignored\n",
547 		    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
548 		tcpstat.tcps_badrst++;
549 	}
550 
551 done:
552 	if (s != NULL)
553 		free(s, M_TCPLOG);
554 	SCH_UNLOCK(sch);
555 }
556 
557 void
558 syncache_badack(struct in_conninfo *inc)
559 {
560 	struct syncache *sc;
561 	struct syncache_head *sch;
562 
563 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
564 	SCH_LOCK_ASSERT(sch);
565 	if (sc != NULL) {
566 		syncache_drop(sc, sch);
567 		tcpstat.tcps_sc_badack++;
568 	}
569 	SCH_UNLOCK(sch);
570 }
571 
572 void
573 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
574 {
575 	struct syncache *sc;
576 	struct syncache_head *sch;
577 
578 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
579 	SCH_LOCK_ASSERT(sch);
580 	if (sc == NULL)
581 		goto done;
582 
583 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
584 	if (ntohl(th->th_seq) != sc->sc_iss)
585 		goto done;
586 
587 	/*
588 	 * If we've rertransmitted 3 times and this is our second error,
589 	 * we remove the entry.  Otherwise, we allow it to continue on.
590 	 * This prevents us from incorrectly nuking an entry during a
591 	 * spurious network outage.
592 	 *
593 	 * See tcp_notify().
594 	 */
595 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
596 		sc->sc_flags |= SCF_UNREACH;
597 		goto done;
598 	}
599 	syncache_drop(sc, sch);
600 	tcpstat.tcps_sc_unreach++;
601 done:
602 	SCH_UNLOCK(sch);
603 }
604 
605 /*
606  * Build a new TCP socket structure from a syncache entry.
607  */
608 static struct socket *
609 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
610 {
611 	struct inpcb *inp = NULL;
612 	struct socket *so;
613 	struct tcpcb *tp;
614 	char *s;
615 
616 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
617 
618 	/*
619 	 * Ok, create the full blown connection, and set things up
620 	 * as they would have been set up if we had created the
621 	 * connection when the SYN arrived.  If we can't create
622 	 * the connection, abort it.
623 	 */
624 	so = sonewconn(lso, SS_ISCONNECTED);
625 	if (so == NULL) {
626 		/*
627 		 * Drop the connection; we will either send a RST or
628 		 * have the peer retransmit its SYN again after its
629 		 * RTO and try again.
630 		 */
631 		tcpstat.tcps_listendrop++;
632 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
633 			log(LOG_DEBUG, "%s; %s: Socket create failed "
634 			    "due to limits or memory shortage\n",
635 			    s, __func__);
636 			free(s, M_TCPLOG);
637 		}
638 		goto abort2;
639 	}
640 #ifdef MAC
641 	SOCK_LOCK(so);
642 	mac_set_socket_peer_from_mbuf(m, so);
643 	SOCK_UNLOCK(so);
644 #endif
645 
646 	inp = sotoinpcb(so);
647 	INP_LOCK(inp);
648 
649 	/* Insert new socket into PCB hash list. */
650 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
651 #ifdef INET6
652 	if (sc->sc_inc.inc_isipv6) {
653 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
654 	} else {
655 		inp->inp_vflag &= ~INP_IPV6;
656 		inp->inp_vflag |= INP_IPV4;
657 #endif
658 		inp->inp_laddr = sc->sc_inc.inc_laddr;
659 #ifdef INET6
660 	}
661 #endif
662 	inp->inp_lport = sc->sc_inc.inc_lport;
663 	if (in_pcbinshash(inp) != 0) {
664 		/*
665 		 * Undo the assignments above if we failed to
666 		 * put the PCB on the hash lists.
667 		 */
668 #ifdef INET6
669 		if (sc->sc_inc.inc_isipv6)
670 			inp->in6p_laddr = in6addr_any;
671 		else
672 #endif
673 			inp->inp_laddr.s_addr = INADDR_ANY;
674 		inp->inp_lport = 0;
675 		goto abort;
676 	}
677 #ifdef IPSEC
678 	/* Copy old policy into new socket's. */
679 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
680 		printf("syncache_socket: could not copy policy\n");
681 #endif
682 #ifdef INET6
683 	if (sc->sc_inc.inc_isipv6) {
684 		struct inpcb *oinp = sotoinpcb(lso);
685 		struct in6_addr laddr6;
686 		struct sockaddr_in6 sin6;
687 		/*
688 		 * Inherit socket options from the listening socket.
689 		 * Note that in6p_inputopts are not (and should not be)
690 		 * copied, since it stores previously received options and is
691 		 * used to detect if each new option is different than the
692 		 * previous one and hence should be passed to a user.
693 		 * If we copied in6p_inputopts, a user would not be able to
694 		 * receive options just after calling the accept system call.
695 		 */
696 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
697 		if (oinp->in6p_outputopts)
698 			inp->in6p_outputopts =
699 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
700 
701 		sin6.sin6_family = AF_INET6;
702 		sin6.sin6_len = sizeof(sin6);
703 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
704 		sin6.sin6_port = sc->sc_inc.inc_fport;
705 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
706 		laddr6 = inp->in6p_laddr;
707 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
708 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
709 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
710 		    thread0.td_ucred)) {
711 			inp->in6p_laddr = laddr6;
712 			goto abort;
713 		}
714 		/* Override flowlabel from in6_pcbconnect. */
715 		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
716 		inp->in6p_flowinfo |= sc->sc_flowlabel;
717 	} else
718 #endif
719 	{
720 		struct in_addr laddr;
721 		struct sockaddr_in sin;
722 
723 		inp->inp_options = ip_srcroute(m);
724 		if (inp->inp_options == NULL) {
725 			inp->inp_options = sc->sc_ipopts;
726 			sc->sc_ipopts = NULL;
727 		}
728 
729 		sin.sin_family = AF_INET;
730 		sin.sin_len = sizeof(sin);
731 		sin.sin_addr = sc->sc_inc.inc_faddr;
732 		sin.sin_port = sc->sc_inc.inc_fport;
733 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
734 		laddr = inp->inp_laddr;
735 		if (inp->inp_laddr.s_addr == INADDR_ANY)
736 			inp->inp_laddr = sc->sc_inc.inc_laddr;
737 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
738 		    thread0.td_ucred)) {
739 			inp->inp_laddr = laddr;
740 			goto abort;
741 		}
742 	}
743 	tp = intotcpcb(inp);
744 	tp->t_state = TCPS_SYN_RECEIVED;
745 	tp->iss = sc->sc_iss;
746 	tp->irs = sc->sc_irs;
747 	tcp_rcvseqinit(tp);
748 	tcp_sendseqinit(tp);
749 	tp->snd_wl1 = sc->sc_irs;
750 	tp->snd_max = tp->iss + 1;
751 	tp->snd_nxt = tp->iss + 1;
752 	tp->rcv_up = sc->sc_irs + 1;
753 	tp->rcv_wnd = sc->sc_wnd;
754 	tp->rcv_adv += tp->rcv_wnd;
755 	tp->last_ack_sent = tp->rcv_nxt;
756 
757 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
758 	if (sc->sc_flags & SCF_NOOPT)
759 		tp->t_flags |= TF_NOOPT;
760 	else {
761 		if (sc->sc_flags & SCF_WINSCALE) {
762 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
763 			tp->snd_scale = sc->sc_requested_s_scale;
764 			tp->request_r_scale = sc->sc_requested_r_scale;
765 		}
766 		if (sc->sc_flags & SCF_TIMESTAMP) {
767 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
768 			tp->ts_recent = sc->sc_tsreflect;
769 			tp->ts_recent_age = ticks;
770 			tp->ts_offset = sc->sc_tsoff;
771 		}
772 #ifdef TCP_SIGNATURE
773 		if (sc->sc_flags & SCF_SIGNATURE)
774 			tp->t_flags |= TF_SIGNATURE;
775 #endif
776 		if (sc->sc_flags & SCF_SACK)
777 			tp->t_flags |= TF_SACK_PERMIT;
778 	}
779 
780 	/*
781 	 * Set up MSS and get cached values from tcp_hostcache.
782 	 * This might overwrite some of the defaults we just set.
783 	 */
784 	tcp_mss(tp, sc->sc_peer_mss);
785 
786 	/*
787 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
788 	 */
789 	if (sc->sc_rxmits)
790 		tp->snd_cwnd = tp->t_maxseg;
791 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
792 
793 	INP_UNLOCK(inp);
794 
795 	tcpstat.tcps_accepts++;
796 	return (so);
797 
798 abort:
799 	INP_UNLOCK(inp);
800 abort2:
801 	if (so != NULL)
802 		soabort(so);
803 	return (NULL);
804 }
805 
806 /*
807  * This function gets called when we receive an ACK for a
808  * socket in the LISTEN state.  We look up the connection
809  * in the syncache, and if its there, we pull it out of
810  * the cache and turn it into a full-blown connection in
811  * the SYN-RECEIVED state.
812  */
813 int
814 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
815     struct socket **lsop, struct mbuf *m)
816 {
817 	struct syncache *sc;
818 	struct syncache_head *sch;
819 	struct syncache scs;
820 	char *s;
821 
822 	/*
823 	 * Global TCP locks are held because we manipulate the PCB lists
824 	 * and create a new socket.
825 	 */
826 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
827 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
828 	    ("%s: can handle only ACK", __func__));
829 
830 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
831 	SCH_LOCK_ASSERT(sch);
832 	if (sc == NULL) {
833 		/*
834 		 * There is no syncache entry, so see if this ACK is
835 		 * a returning syncookie.  To do this, first:
836 		 *  A. See if this socket has had a syncache entry dropped in
837 		 *     the past.  We don't want to accept a bogus syncookie
838 		 *     if we've never received a SYN.
839 		 *  B. check that the syncookie is valid.  If it is, then
840 		 *     cobble up a fake syncache entry, and return.
841 		 */
842 		if (!tcp_syncookies) {
843 			SCH_UNLOCK(sch);
844 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
845 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
846 				    "segment rejected (syncookies disabled)\n",
847 				    s, __func__);
848 			goto failed;
849 		}
850 		bzero(&scs, sizeof(scs));
851 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
852 		SCH_UNLOCK(sch);
853 		if (sc == NULL) {
854 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
855 				log(LOG_DEBUG, "%s; %s: Segment failed "
856 				    "SYNCOOKIE authentication, segment rejected "
857 				    "(probably spoofed)\n", s, __func__);
858 			goto failed;
859 		}
860 	} else {
861 		/* Pull out the entry to unlock the bucket row. */
862 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
863 		sch->sch_length--;
864 		tcp_syncache.cache_count--;
865 		SCH_UNLOCK(sch);
866 	}
867 
868 	/*
869 	 * Segment validation:
870 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
871 	 */
872 	if (th->th_ack != sc->sc_iss + 1) {
873 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
874 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
875 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
876 		goto failed;
877 	}
878 	/*
879 	 * The SEQ must match the received initial receive sequence
880 	 * number + 1 (the SYN) because we didn't ACK any data that
881 	 * may have come with the SYN.
882 	 */
883 	if (th->th_seq != sc->sc_irs + 1) {
884 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
885 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
886 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
887 		goto failed;
888 	}
889 	/*
890 	 * If timestamps were present in the SYN and we accepted
891 	 * them in our SYN|ACK we require them to be present from
892 	 * now on.  And vice versa.
893 	 */
894 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
895 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
896 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
897 			    "segment rejected\n", s, __func__);
898 		goto failed;
899 	}
900 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
901 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
902 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
903 			    "segment rejected\n", s, __func__);
904 		goto failed;
905 	}
906 	/*
907 	 * If timestamps were negotiated the reflected timestamp
908 	 * must be equal to what we actually sent in the SYN|ACK.
909 	 */
910 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
911 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
912 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
913 			    "segment rejected\n",
914 			    s, __func__, to->to_tsecr, sc->sc_ts);
915 		goto failed;
916 	}
917 
918 	*lsop = syncache_socket(sc, *lsop, m);
919 
920 	if (*lsop == NULL)
921 		tcpstat.tcps_sc_aborted++;
922 	else
923 		tcpstat.tcps_sc_completed++;
924 
925 	if (sc != &scs)
926 		syncache_free(sc);
927 	return (1);
928 failed:
929 	if (sc != NULL && sc != &scs)
930 		syncache_free(sc);
931 	if (s != NULL)
932 		free(s, M_TCPLOG);
933 	*lsop = NULL;
934 	return (0);
935 }
936 
937 /*
938  * Given a LISTEN socket and an inbound SYN request, add
939  * this to the syn cache, and send back a segment:
940  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
941  * to the source.
942  *
943  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
944  * Doing so would require that we hold onto the data and deliver it
945  * to the application.  However, if we are the target of a SYN-flood
946  * DoS attack, an attacker could send data which would eventually
947  * consume all available buffer space if it were ACKed.  By not ACKing
948  * the data, we avoid this DoS scenario.
949  */
950 void
951 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
952     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
953 {
954 	struct tcpcb *tp;
955 	struct socket *so;
956 	struct syncache *sc = NULL;
957 	struct syncache_head *sch;
958 	struct mbuf *ipopts = NULL;
959 	u_int32_t flowtmp;
960 	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
961 	char *s;
962 #ifdef INET6
963 	int autoflowlabel = 0;
964 #endif
965 #ifdef MAC
966 	struct label *maclabel;
967 #endif
968 	struct syncache scs;
969 
970 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
971 	INP_LOCK_ASSERT(inp);			/* listen socket */
972 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
973 	    ("%s: unexpected tcp flags", __func__));
974 
975 	/*
976 	 * Combine all so/tp operations very early to drop the INP lock as
977 	 * soon as possible.
978 	 */
979 	so = *lsop;
980 	tp = sototcpcb(so);
981 
982 #ifdef INET6
983 	if (inc->inc_isipv6 &&
984 	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
985 		autoflowlabel = 1;
986 #endif
987 	ip_ttl = inp->inp_ip_ttl;
988 	ip_tos = inp->inp_ip_tos;
989 	win = sbspace(&so->so_rcv);
990 	sb_hiwat = so->so_rcv.sb_hiwat;
991 	noopt = (tp->t_flags & TF_NOOPT);
992 
993 	so = NULL;
994 	tp = NULL;
995 
996 #ifdef MAC
997 	if (mac_init_syncache(&maclabel) != 0) {
998 		INP_UNLOCK(inp);
999 		INP_INFO_WUNLOCK(&tcbinfo);
1000 		goto done;
1001 	} else
1002 		mac_init_syncache_from_inpcb(maclabel, inp);
1003 #endif
1004 	INP_UNLOCK(inp);
1005 	INP_INFO_WUNLOCK(&tcbinfo);
1006 
1007 	/*
1008 	 * Remember the IP options, if any.
1009 	 */
1010 #ifdef INET6
1011 	if (!inc->inc_isipv6)
1012 #endif
1013 		ipopts = ip_srcroute(m);
1014 
1015 	/*
1016 	 * See if we already have an entry for this connection.
1017 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1018 	 *
1019 	 * XXX: should the syncache be re-initialized with the contents
1020 	 * of the new SYN here (which may have different options?)
1021 	 *
1022 	 * XXX: We do not check the sequence number to see if this is a
1023 	 * real retransmit or a new connection attempt.  The question is
1024 	 * how to handle such a case; either ignore it as spoofed, or
1025 	 * drop the current entry and create a new one?
1026 	 */
1027 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1028 	SCH_LOCK_ASSERT(sch);
1029 	if (sc != NULL) {
1030 		tcpstat.tcps_sc_dupsyn++;
1031 		if (ipopts) {
1032 			/*
1033 			 * If we were remembering a previous source route,
1034 			 * forget it and use the new one we've been given.
1035 			 */
1036 			if (sc->sc_ipopts)
1037 				(void) m_free(sc->sc_ipopts);
1038 			sc->sc_ipopts = ipopts;
1039 		}
1040 		/*
1041 		 * Update timestamp if present.
1042 		 */
1043 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1044 			sc->sc_tsreflect = to->to_tsval;
1045 		else
1046 			sc->sc_flags &= ~SCF_TIMESTAMP;
1047 #ifdef MAC
1048 		/*
1049 		 * Since we have already unconditionally allocated label
1050 		 * storage, free it up.  The syncache entry will already
1051 		 * have an initialized label we can use.
1052 		 */
1053 		mac_destroy_syncache(&maclabel);
1054 		KASSERT(sc->sc_label != NULL,
1055 		    ("%s: label not initialized", __func__));
1056 #endif
1057 		/* Retransmit SYN|ACK and reset retransmit count. */
1058 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1059 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1060 			    "resetting timer and retransmitting SYN|ACK\n",
1061 			    s, __func__);
1062 			free(s, M_TCPLOG);
1063 		}
1064 		if (syncache_respond(sc) == 0) {
1065 			sc->sc_rxmits = 0;
1066 			syncache_timeout(sc, sch, 1);
1067 			tcpstat.tcps_sndacks++;
1068 			tcpstat.tcps_sndtotal++;
1069 		}
1070 		SCH_UNLOCK(sch);
1071 		goto done;
1072 	}
1073 
1074 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1075 	if (sc == NULL) {
1076 		/*
1077 		 * The zone allocator couldn't provide more entries.
1078 		 * Treat this as if the cache was full; drop the oldest
1079 		 * entry and insert the new one.
1080 		 */
1081 		tcpstat.tcps_sc_zonefail++;
1082 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1083 			syncache_drop(sc, sch);
1084 		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1085 		if (sc == NULL) {
1086 			if (tcp_syncookies) {
1087 				bzero(&scs, sizeof(scs));
1088 				sc = &scs;
1089 			} else {
1090 				SCH_UNLOCK(sch);
1091 				if (ipopts)
1092 					(void) m_free(ipopts);
1093 				goto done;
1094 			}
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * Fill in the syncache values.
1100 	 */
1101 #ifdef MAC
1102 	sc->sc_label = maclabel;
1103 #endif
1104 	sc->sc_ipopts = ipopts;
1105 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1106 #ifdef INET6
1107 	if (!inc->inc_isipv6)
1108 #endif
1109 	{
1110 		sc->sc_ip_tos = ip_tos;
1111 		sc->sc_ip_ttl = ip_ttl;
1112 	}
1113 
1114 	sc->sc_irs = th->th_seq;
1115 	sc->sc_iss = arc4random();
1116 	sc->sc_flags = 0;
1117 	sc->sc_flowlabel = 0;
1118 
1119 	/*
1120 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1121 	 * win was derived from socket earlier in the function.
1122 	 */
1123 	win = imax(win, 0);
1124 	win = imin(win, TCP_MAXWIN);
1125 	sc->sc_wnd = win;
1126 
1127 	if (tcp_do_rfc1323) {
1128 		/*
1129 		 * A timestamp received in a SYN makes
1130 		 * it ok to send timestamp requests and replies.
1131 		 */
1132 		if (to->to_flags & TOF_TS) {
1133 			sc->sc_tsreflect = to->to_tsval;
1134 			sc->sc_ts = ticks;
1135 			sc->sc_flags |= SCF_TIMESTAMP;
1136 		}
1137 		if (to->to_flags & TOF_SCALE) {
1138 			int wscale = 0;
1139 
1140 			/*
1141 			 * Compute proper scaling value from buffer space.
1142 			 * Leave enough room for the socket buffer to grow
1143 			 * with auto sizing.  This allows us to scale the
1144 			 * receive buffer over a wide range while not losing
1145 			 * any efficiency or fine granularity.
1146 			 *
1147 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1148 			 * or <SYN,ACK>) segment itself is never scaled.
1149 			 */
1150 			while (wscale < TCP_MAX_WINSHIFT &&
1151 			    (0x1 << wscale) < tcp_minmss)
1152 				wscale++;
1153 			sc->sc_requested_r_scale = wscale;
1154 			sc->sc_requested_s_scale = to->to_wscale;
1155 			sc->sc_flags |= SCF_WINSCALE;
1156 		}
1157 	}
1158 #ifdef TCP_SIGNATURE
1159 	/*
1160 	 * If listening socket requested TCP digests, and received SYN
1161 	 * contains the option, flag this in the syncache so that
1162 	 * syncache_respond() will do the right thing with the SYN+ACK.
1163 	 * XXX: Currently we always record the option by default and will
1164 	 * attempt to use it in syncache_respond().
1165 	 */
1166 	if (to->to_flags & TOF_SIGNATURE)
1167 		sc->sc_flags |= SCF_SIGNATURE;
1168 #endif
1169 	if (to->to_flags & TOF_SACK)
1170 		sc->sc_flags |= SCF_SACK;
1171 	if (to->to_flags & TOF_MSS)
1172 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1173 	if (noopt)
1174 		sc->sc_flags |= SCF_NOOPT;
1175 
1176 	if (tcp_syncookies) {
1177 		syncookie_generate(sch, sc, &flowtmp);
1178 #ifdef INET6
1179 		if (autoflowlabel)
1180 			sc->sc_flowlabel = flowtmp;
1181 #endif
1182 	} else {
1183 #ifdef INET6
1184 		if (autoflowlabel)
1185 			sc->sc_flowlabel =
1186 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1187 #endif
1188 	}
1189 	SCH_UNLOCK(sch);
1190 
1191 	/*
1192 	 * Do a standard 3-way handshake.
1193 	 */
1194 	if (syncache_respond(sc) == 0) {
1195 		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1196 			syncache_free(sc);
1197 		else if (sc != &scs)
1198 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1199 		tcpstat.tcps_sndacks++;
1200 		tcpstat.tcps_sndtotal++;
1201 	} else {
1202 		if (sc != &scs)
1203 			syncache_free(sc);
1204 		tcpstat.tcps_sc_dropped++;
1205 	}
1206 
1207 done:
1208 #ifdef MAC
1209 	if (sc == &scs)
1210 		mac_destroy_syncache(&maclabel);
1211 #endif
1212 	*lsop = NULL;
1213 	m_freem(m);
1214 	return;
1215 }
1216 
1217 static int
1218 syncache_respond(struct syncache *sc)
1219 {
1220 	struct ip *ip = NULL;
1221 	struct mbuf *m;
1222 	struct tcphdr *th;
1223 	int optlen, error;
1224 	u_int16_t hlen, tlen, mssopt;
1225 	struct tcpopt to;
1226 #ifdef INET6
1227 	struct ip6_hdr *ip6 = NULL;
1228 #endif
1229 
1230 	hlen =
1231 #ifdef INET6
1232 	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1233 #endif
1234 		sizeof(struct ip);
1235 	tlen = hlen + sizeof(struct tcphdr);
1236 
1237 	/* Determine MSS we advertize to other end of connection. */
1238 	mssopt = tcp_mssopt(&sc->sc_inc);
1239 	if (sc->sc_peer_mss)
1240 		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1241 
1242 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1243 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1244 	    ("syncache: mbuf too small"));
1245 
1246 	/* Create the IP+TCP header from scratch. */
1247 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1248 	if (m == NULL)
1249 		return (ENOBUFS);
1250 #ifdef MAC
1251 	mac_create_mbuf_from_syncache(sc->sc_label, m);
1252 #endif
1253 	m->m_data += max_linkhdr;
1254 	m->m_len = tlen;
1255 	m->m_pkthdr.len = tlen;
1256 	m->m_pkthdr.rcvif = NULL;
1257 
1258 #ifdef INET6
1259 	if (sc->sc_inc.inc_isipv6) {
1260 		ip6 = mtod(m, struct ip6_hdr *);
1261 		ip6->ip6_vfc = IPV6_VERSION;
1262 		ip6->ip6_nxt = IPPROTO_TCP;
1263 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1264 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1265 		ip6->ip6_plen = htons(tlen - hlen);
1266 		/* ip6_hlim is set after checksum */
1267 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1268 		ip6->ip6_flow |= sc->sc_flowlabel;
1269 
1270 		th = (struct tcphdr *)(ip6 + 1);
1271 	} else
1272 #endif
1273 	{
1274 		ip = mtod(m, struct ip *);
1275 		ip->ip_v = IPVERSION;
1276 		ip->ip_hl = sizeof(struct ip) >> 2;
1277 		ip->ip_len = tlen;
1278 		ip->ip_id = 0;
1279 		ip->ip_off = 0;
1280 		ip->ip_sum = 0;
1281 		ip->ip_p = IPPROTO_TCP;
1282 		ip->ip_src = sc->sc_inc.inc_laddr;
1283 		ip->ip_dst = sc->sc_inc.inc_faddr;
1284 		ip->ip_ttl = sc->sc_ip_ttl;
1285 		ip->ip_tos = sc->sc_ip_tos;
1286 
1287 		/*
1288 		 * See if we should do MTU discovery.  Route lookups are
1289 		 * expensive, so we will only unset the DF bit if:
1290 		 *
1291 		 *	1) path_mtu_discovery is disabled
1292 		 *	2) the SCF_UNREACH flag has been set
1293 		 */
1294 		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1295 		       ip->ip_off |= IP_DF;
1296 
1297 		th = (struct tcphdr *)(ip + 1);
1298 	}
1299 	th->th_sport = sc->sc_inc.inc_lport;
1300 	th->th_dport = sc->sc_inc.inc_fport;
1301 
1302 	th->th_seq = htonl(sc->sc_iss);
1303 	th->th_ack = htonl(sc->sc_irs + 1);
1304 	th->th_off = sizeof(struct tcphdr) >> 2;
1305 	th->th_x2 = 0;
1306 	th->th_flags = TH_SYN|TH_ACK;
1307 	th->th_win = htons(sc->sc_wnd);
1308 	th->th_urp = 0;
1309 
1310 	/* Tack on the TCP options. */
1311 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1312 		to.to_flags = 0;
1313 
1314 		to.to_mss = mssopt;
1315 		to.to_flags = TOF_MSS;
1316 		if (sc->sc_flags & SCF_WINSCALE) {
1317 			to.to_wscale = sc->sc_requested_r_scale;
1318 			to.to_flags |= TOF_SCALE;
1319 		}
1320 		if (sc->sc_flags & SCF_TIMESTAMP) {
1321 			/* Virgin timestamp or TCP cookie enhanced one. */
1322 			to.to_tsval = sc->sc_ts;
1323 			to.to_tsecr = sc->sc_tsreflect;
1324 			to.to_flags |= TOF_TS;
1325 		}
1326 		if (sc->sc_flags & SCF_SACK)
1327 			to.to_flags |= TOF_SACKPERM;
1328 #ifdef TCP_SIGNATURE
1329 		if (sc->sc_flags & SCF_SIGNATURE)
1330 			to.to_flags |= TOF_SIGNATURE;
1331 #endif
1332 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1333 
1334 #ifdef TCP_SIGNATURE
1335 		tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1336 		    to.to_signature, IPSEC_DIR_OUTBOUND);
1337 #endif
1338 
1339 		/* Adjust headers by option size. */
1340 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1341 		m->m_len += optlen;
1342 		m->m_pkthdr.len += optlen;
1343 #ifdef INET6
1344 		if (sc->sc_inc.inc_isipv6)
1345 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1346 		else
1347 #endif
1348 			ip->ip_len += optlen;
1349 	} else
1350 		optlen = 0;
1351 
1352 #ifdef INET6
1353 	if (sc->sc_inc.inc_isipv6) {
1354 		th->th_sum = 0;
1355 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1356 				       tlen + optlen - hlen);
1357 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1358 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1359 	} else
1360 #endif
1361 	{
1362 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1363 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1364 		m->m_pkthdr.csum_flags = CSUM_TCP;
1365 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1366 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1367 	}
1368 	return (error);
1369 }
1370 
1371 /*
1372  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1373  * receive and to be able to handle SYN floods from bogus source addresses
1374  * (where we will never receive any reply).  SYN floods try to exhaust all
1375  * our memory and available slots in the SYN cache table to cause a denial
1376  * of service to legitimate users of the local host.
1377  *
1378  * The idea of SYN cookies is to encode and include all necessary information
1379  * about the connection setup state within the SYN-ACK we send back and thus
1380  * to get along without keeping any local state until the ACK to the SYN-ACK
1381  * arrives (if ever).  Everything we need to know should be available from
1382  * the information we encoded in the SYN-ACK.
1383  *
1384  * More information about the theory behind SYN cookies and its first
1385  * discussion and specification can be found at:
1386  *  http://cr.yp.to/syncookies.html    (overview)
1387  *  http://cr.yp.to/syncookies/archive (gory details)
1388  *
1389  * This implementation extends the orginal idea and first implementation
1390  * of FreeBSD by using not only the initial sequence number field to store
1391  * information but also the timestamp field if present.  This way we can
1392  * keep track of the entire state we need to know to recreate the session in
1393  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1394  * these days.  For those that do not we still have to live with the known
1395  * shortcomings of the ISN only SYN cookies.
1396  *
1397  * Cookie layers:
1398  *
1399  * Initial sequence number we send:
1400  * 31|................................|0
1401  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1402  *    D = MD5 Digest (first dword)
1403  *    M = MSS index
1404  *    R = Rotation of secret
1405  *    P = Odd or Even secret
1406  *
1407  * The MD5 Digest is computed with over following parameters:
1408  *  a) randomly rotated secret
1409  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1410  *  c) the received initial sequence number from remote host
1411  *  d) the rotation offset and odd/even bit
1412  *
1413  * Timestamp we send:
1414  * 31|................................|0
1415  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1416  *    D = MD5 Digest (third dword) (only as filler)
1417  *    S = Requested send window scale
1418  *    R = Requested receive window scale
1419  *    A = SACK allowed
1420  *    5 = TCP-MD5 enabled (not implemented yet)
1421  *    XORed with MD5 Digest (forth dword)
1422  *
1423  * The timestamp isn't cryptographically secure and doesn't need to be.
1424  * The double use of the MD5 digest dwords ties it to a specific remote/
1425  * local host/port, remote initial sequence number and our local time
1426  * limited secret.  A received timestamp is reverted (XORed) and then
1427  * the contained MD5 dword is compared to the computed one to ensure the
1428  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1429  * have been tampered with but this isn't different from supplying bogus
1430  * values in the SYN in the first place.
1431  *
1432  * Some problems with SYN cookies remain however:
1433  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1434  * original SYN was accepted, the connection is established.  The second
1435  * SYN is inflight, and if it arrives with an ISN that falls within the
1436  * receive window, the connection is killed.
1437  *
1438  * Notes:
1439  * A heuristic to determine when to accept syn cookies is not necessary.
1440  * An ACK flood would cause the syncookie verification to be attempted,
1441  * but a SYN flood causes syncookies to be generated.  Both are of equal
1442  * cost, so there's no point in trying to optimize the ACK flood case.
1443  * Also, if you don't process certain ACKs for some reason, then all someone
1444  * would have to do is launch a SYN and ACK flood at the same time, which
1445  * would stop cookie verification and defeat the entire purpose of syncookies.
1446  */
1447 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1448 
1449 static void
1450 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1451     u_int32_t *flowlabel)
1452 {
1453 	MD5_CTX ctx;
1454 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1455 	u_int32_t data;
1456 	u_int32_t *secbits;
1457 	u_int off, pmss, mss;
1458 	int i;
1459 
1460 	SCH_LOCK_ASSERT(sch);
1461 
1462 	/* Which of the two secrets to use. */
1463 	secbits = sch->sch_oddeven ?
1464 			sch->sch_secbits_odd : sch->sch_secbits_even;
1465 
1466 	/* Reseed secret if too old. */
1467 	if (sch->sch_reseed < time_uptime) {
1468 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1469 		secbits = sch->sch_oddeven ?
1470 				sch->sch_secbits_odd : sch->sch_secbits_even;
1471 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1472 			secbits[i] = arc4random();
1473 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1474 	}
1475 
1476 	/* Secret rotation offset. */
1477 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1478 
1479 	/* Maximum segment size calculation. */
1480 	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1481 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1482 		if (tcp_sc_msstab[mss] <= pmss)
1483 			break;
1484 
1485 	/* Fold parameters and MD5 digest into the ISN we will send. */
1486 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1487 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1488 	data |= mss << 4;	/* mss, 3 bits */
1489 
1490 	MD5Init(&ctx);
1491 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1492 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1493 	MD5Update(&ctx, secbits, off);
1494 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1495 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1496 	MD5Update(&ctx, &data, sizeof(data));
1497 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1498 
1499 	data |= (md5_buffer[0] << 7);
1500 	sc->sc_iss = data;
1501 
1502 #ifdef INET6
1503 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1504 #endif
1505 
1506 	/* Additional parameters are stored in the timestamp if present. */
1507 	if (sc->sc_flags & SCF_TIMESTAMP) {
1508 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1509 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1510 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1511 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1512 		data |= md5_buffer[2] << 10;		/* more digest bits */
1513 		data ^= md5_buffer[3];
1514 		sc->sc_ts = data;
1515 		sc->sc_tsoff = data - ticks;		/* after XOR */
1516 	}
1517 
1518 	tcpstat.tcps_sc_sendcookie++;
1519 	return;
1520 }
1521 
1522 static struct syncache *
1523 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1524     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1525     struct socket *so)
1526 {
1527 	MD5_CTX ctx;
1528 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1529 	u_int32_t data = 0;
1530 	u_int32_t *secbits;
1531 	tcp_seq ack, seq;
1532 	int off, mss, wnd, flags;
1533 
1534 	SCH_LOCK_ASSERT(sch);
1535 
1536 	/*
1537 	 * Pull information out of SYN-ACK/ACK and
1538 	 * revert sequence number advances.
1539 	 */
1540 	ack = th->th_ack - 1;
1541 	seq = th->th_seq - 1;
1542 	off = (ack >> 1) & 0x7;
1543 	mss = (ack >> 4) & 0x7;
1544 	flags = ack & 0x7f;
1545 
1546 	/* Which of the two secrets to use. */
1547 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1548 
1549 	/*
1550 	 * The secret wasn't updated for the lifetime of a syncookie,
1551 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1552 	 */
1553 	if (sch->sch_reseed < time_uptime) {
1554 		return (NULL);
1555 	}
1556 
1557 	/* Recompute the digest so we can compare it. */
1558 	MD5Init(&ctx);
1559 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1560 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1561 	MD5Update(&ctx, secbits, off);
1562 	MD5Update(&ctx, inc, sizeof(*inc));
1563 	MD5Update(&ctx, &seq, sizeof(seq));
1564 	MD5Update(&ctx, &flags, sizeof(flags));
1565 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1566 
1567 	/* Does the digest part of or ACK'ed ISS match? */
1568 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1569 		return (NULL);
1570 
1571 	/* Does the digest part of our reflected timestamp match? */
1572 	if (to->to_flags & TOF_TS) {
1573 		data = md5_buffer[3] ^ to->to_tsecr;
1574 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1575 			return (NULL);
1576 	}
1577 
1578 	/* Fill in the syncache values. */
1579 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1580 	sc->sc_ipopts = NULL;
1581 
1582 	sc->sc_irs = seq;
1583 	sc->sc_iss = ack;
1584 
1585 #ifdef INET6
1586 	if (inc->inc_isipv6) {
1587 		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1588 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1589 	} else
1590 #endif
1591 	{
1592 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1593 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1594 	}
1595 
1596 	/* Additional parameters that were encoded in the timestamp. */
1597 	if (data) {
1598 		sc->sc_flags |= SCF_TIMESTAMP;
1599 		sc->sc_tsreflect = to->to_tsval;
1600 		sc->sc_ts = to->to_tsecr;
1601 		sc->sc_tsoff = to->to_tsecr - ticks;
1602 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1603 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1604 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1605 		    TCP_MAX_WINSHIFT);
1606 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1607 		    TCP_MAX_WINSHIFT);
1608 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1609 			sc->sc_flags |= SCF_WINSCALE;
1610 	} else
1611 		sc->sc_flags |= SCF_NOOPT;
1612 
1613 	wnd = sbspace(&so->so_rcv);
1614 	wnd = imax(wnd, 0);
1615 	wnd = imin(wnd, TCP_MAXWIN);
1616 	sc->sc_wnd = wnd;
1617 
1618 	sc->sc_rxmits = 0;
1619 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1620 
1621 	tcpstat.tcps_sc_recvcookie++;
1622 	return (sc);
1623 }
1624 
1625 /*
1626  * Returns the current number of syncache entries.  This number
1627  * will probably change before you get around to calling
1628  * syncache_pcblist.
1629  */
1630 
1631 int
1632 syncache_pcbcount(void)
1633 {
1634 	struct syncache_head *sch;
1635 	int count, i;
1636 
1637 	for (count = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1638 		/* No need to lock for a read. */
1639 		sch = &tcp_syncache.hashbase[i];
1640 		count += sch->sch_length;
1641 	}
1642 	return count;
1643 }
1644 
1645 /*
1646  * Exports the syncache entries to userland so that netstat can display
1647  * them alongside the other sockets.  This function is intended to be
1648  * called only from tcp_pcblist.
1649  *
1650  * Due to concurrency on an active system, the number of pcbs exported
1651  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1652  * amount of space the caller allocated for this function to use.
1653  */
1654 int
1655 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1656 {
1657 	struct xtcpcb xt;
1658 	struct syncache *sc;
1659 	struct syncache_head *sch;
1660 	int count, error, i;
1661 
1662 	for (count = 0, error = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1663 		sch = &tcp_syncache.hashbase[i];
1664 		SCH_LOCK(sch);
1665 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1666 			if (count >= max_pcbs) {
1667 				SCH_UNLOCK(sch);
1668 				goto exit;
1669 			}
1670 			bzero(&xt, sizeof(xt));
1671 			xt.xt_len = sizeof(xt);
1672 			if (sc->sc_inc.inc_isipv6)
1673 				xt.xt_inp.inp_vflag = INP_IPV6;
1674 			else
1675 				xt.xt_inp.inp_vflag = INP_IPV4;
1676 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1677 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1678 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1679 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1680 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1681 			xt.xt_socket.so_type = SOCK_STREAM;
1682 			xt.xt_socket.so_state = SS_ISCONNECTING;
1683 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1684 			if (error) {
1685 				SCH_UNLOCK(sch);
1686 				goto exit;
1687 			}
1688 			count++;
1689 		}
1690 		SCH_UNLOCK(sch);
1691 	}
1692 exit:
1693 	*pcbs_exported = count;
1694 	return error;
1695 }
1696 
1697