xref: /freebsd/sys/netinet/tcp_syncache.c (revision aa79fe245de7616cda41b69a296a5ce209c95c45)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/md5.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 #include <sys/vimage.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_options.h>
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/in6_pcb.h>
76 #endif
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/tcp_syncache.h>
83 #include <netinet/tcp_offload.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/vinet.h>
88 
89 #ifdef IPSEC
90 #include <netipsec/ipsec.h>
91 #ifdef INET6
92 #include <netipsec/ipsec6.h>
93 #endif
94 #include <netipsec/key.h>
95 #endif /*IPSEC*/
96 
97 #include <machine/in_cksum.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #ifdef VIMAGE_GLOBALS
102 static struct tcp_syncache tcp_syncache;
103 static int tcp_syncookies;
104 static int tcp_syncookiesonly;
105 int tcp_sc_rst_sock_fail;
106 #endif
107 
108 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies,
109     CTLFLAG_RW, tcp_syncookies, 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies_only,
113     CTLFLAG_RW, tcp_syncookiesonly, 0,
114     "Use only TCP SYN cookies");
115 
116 #ifdef TCP_OFFLOAD_DISABLE
117 #define TOEPCB_ISSET(sc) (0)
118 #else
119 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
120 #endif
121 
122 static void	 syncache_drop(struct syncache *, struct syncache_head *);
123 static void	 syncache_free(struct syncache *);
124 static void	 syncache_insert(struct syncache *, struct syncache_head *);
125 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
126 static int	 syncache_respond(struct syncache *);
127 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
128 		    struct mbuf *m);
129 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
130 		    int docallout);
131 static void	 syncache_timer(void *);
132 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
133 		    u_int32_t *);
134 static struct syncache
135 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
136 		    struct syncache *, struct tcpopt *, struct tcphdr *,
137 		    struct socket *);
138 
139 /*
140  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
141  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
142  * the odds are that the user has given up attempting to connect by then.
143  */
144 #define SYNCACHE_MAXREXMTS		3
145 
146 /* Arbitrary values */
147 #define TCP_SYNCACHE_HASHSIZE		512
148 #define TCP_SYNCACHE_BUCKETLIMIT	30
149 
150 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
151 
152 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
153     bucketlimit, CTLFLAG_RDTUN,
154     tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
155 
156 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
157     cachelimit, CTLFLAG_RDTUN,
158     tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
159 
160 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
161     count, CTLFLAG_RD,
162     tcp_syncache.cache_count, 0, "Current number of entries in syncache");
163 
164 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
165     hashsize, CTLFLAG_RDTUN,
166     tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
167 
168 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
169     rexmtlimit, CTLFLAG_RW,
170     tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
171 
172 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
173      rst_on_sock_fail, CTLFLAG_RW,
174      tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
175 
176 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
177 
178 #define SYNCACHE_HASH(inc, mask)					\
179 	((V_tcp_syncache.hash_secret ^					\
180 	  (inc)->inc_faddr.s_addr ^					\
181 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
182 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
183 
184 #define SYNCACHE_HASH6(inc, mask)					\
185 	((V_tcp_syncache.hash_secret ^					\
186 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
187 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
188 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
189 
190 #define ENDPTS_EQ(a, b) (						\
191 	(a)->ie_fport == (b)->ie_fport &&				\
192 	(a)->ie_lport == (b)->ie_lport &&				\
193 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
194 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
195 )
196 
197 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
198 
199 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
200 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
201 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
202 
203 /*
204  * Requires the syncache entry to be already removed from the bucket list.
205  */
206 static void
207 syncache_free(struct syncache *sc)
208 {
209 	INIT_VNET_INET(curvnet);
210 
211 	if (sc->sc_ipopts)
212 		(void) m_free(sc->sc_ipopts);
213 	if (sc->sc_cred)
214 		crfree(sc->sc_cred);
215 #ifdef MAC
216 	mac_syncache_destroy(&sc->sc_label);
217 #endif
218 
219 	uma_zfree(V_tcp_syncache.zone, sc);
220 }
221 
222 void
223 syncache_init(void)
224 {
225 	INIT_VNET_INET(curvnet);
226 	int i;
227 
228 	V_tcp_syncookies = 1;
229 	V_tcp_syncookiesonly = 0;
230 	V_tcp_sc_rst_sock_fail = 1;
231 
232 	V_tcp_syncache.cache_count = 0;
233 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
234 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
235 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
236 	V_tcp_syncache.hash_secret = arc4random();
237 
238 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
239 	    &V_tcp_syncache.hashsize);
240 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
241 	    &V_tcp_syncache.bucket_limit);
242 	if (!powerof2(V_tcp_syncache.hashsize) ||
243 	    V_tcp_syncache.hashsize == 0) {
244 		printf("WARNING: syncache hash size is not a power of 2.\n");
245 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
246 	}
247 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
248 
249 	/* Set limits. */
250 	V_tcp_syncache.cache_limit =
251 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
252 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
253 	    &V_tcp_syncache.cache_limit);
254 
255 	/* Allocate the hash table. */
256 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
257 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
258 
259 	/* Initialize the hash buckets. */
260 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
261 #ifdef VIMAGE
262 		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
263 #endif
264 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
265 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
266 			 NULL, MTX_DEF);
267 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
268 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
269 		V_tcp_syncache.hashbase[i].sch_length = 0;
270 	}
271 
272 	/* Create the syncache entry zone. */
273 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
274 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
275 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
276 }
277 
278 #ifdef VIMAGE
279 void
280 syncache_destroy(void)
281 {
282 	INIT_VNET_INET(curvnet);
283 
284 	/* XXX walk the cache, free remaining objects, stop timers */
285 
286 	uma_zdestroy(V_tcp_syncache.zone);
287 	FREE(V_tcp_syncache.hashbase, M_SYNCACHE);
288 }
289 #endif
290 
291 /*
292  * Inserts a syncache entry into the specified bucket row.
293  * Locks and unlocks the syncache_head autonomously.
294  */
295 static void
296 syncache_insert(struct syncache *sc, struct syncache_head *sch)
297 {
298 	INIT_VNET_INET(sch->sch_vnet);
299 	struct syncache *sc2;
300 
301 	SCH_LOCK(sch);
302 
303 	/*
304 	 * Make sure that we don't overflow the per-bucket limit.
305 	 * If the bucket is full, toss the oldest element.
306 	 */
307 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
308 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
309 			("sch->sch_length incorrect"));
310 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
311 		syncache_drop(sc2, sch);
312 		TCPSTAT_INC(tcps_sc_bucketoverflow);
313 	}
314 
315 	/* Put it into the bucket. */
316 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
317 	sch->sch_length++;
318 
319 	/* Reinitialize the bucket row's timer. */
320 	if (sch->sch_length == 1)
321 		sch->sch_nextc = ticks + INT_MAX;
322 	syncache_timeout(sc, sch, 1);
323 
324 	SCH_UNLOCK(sch);
325 
326 	V_tcp_syncache.cache_count++;
327 	TCPSTAT_INC(tcps_sc_added);
328 }
329 
330 /*
331  * Remove and free entry from syncache bucket row.
332  * Expects locked syncache head.
333  */
334 static void
335 syncache_drop(struct syncache *sc, struct syncache_head *sch)
336 {
337 	INIT_VNET_INET(sch->sch_vnet);
338 
339 	SCH_LOCK_ASSERT(sch);
340 
341 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
342 	sch->sch_length--;
343 
344 #ifndef TCP_OFFLOAD_DISABLE
345 	if (sc->sc_tu)
346 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
347 #endif
348 	syncache_free(sc);
349 	V_tcp_syncache.cache_count--;
350 }
351 
352 /*
353  * Engage/reengage time on bucket row.
354  */
355 static void
356 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
357 {
358 	sc->sc_rxttime = ticks +
359 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
360 	sc->sc_rxmits++;
361 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
362 		sch->sch_nextc = sc->sc_rxttime;
363 		if (docallout)
364 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
365 			    syncache_timer, (void *)sch);
366 	}
367 }
368 
369 /*
370  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
371  * If we have retransmitted an entry the maximum number of times, expire it.
372  * One separate timer for each bucket row.
373  */
374 static void
375 syncache_timer(void *xsch)
376 {
377 	struct syncache_head *sch = (struct syncache_head *)xsch;
378 	struct syncache *sc, *nsc;
379 	int tick = ticks;
380 	char *s;
381 
382 	CURVNET_SET(sch->sch_vnet);
383 	INIT_VNET_INET(sch->sch_vnet);
384 
385 	/* NB: syncache_head has already been locked by the callout. */
386 	SCH_LOCK_ASSERT(sch);
387 
388 	/*
389 	 * In the following cycle we may remove some entries and/or
390 	 * advance some timeouts, so re-initialize the bucket timer.
391 	 */
392 	sch->sch_nextc = tick + INT_MAX;
393 
394 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
395 		/*
396 		 * We do not check if the listen socket still exists
397 		 * and accept the case where the listen socket may be
398 		 * gone by the time we resend the SYN/ACK.  We do
399 		 * not expect this to happens often. If it does,
400 		 * then the RST will be sent by the time the remote
401 		 * host does the SYN/ACK->ACK.
402 		 */
403 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
404 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
405 				sch->sch_nextc = sc->sc_rxttime;
406 			continue;
407 		}
408 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
409 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
410 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
411 				    "giving up and removing syncache entry\n",
412 				    s, __func__);
413 				free(s, M_TCPLOG);
414 			}
415 			syncache_drop(sc, sch);
416 			TCPSTAT_INC(tcps_sc_stale);
417 			continue;
418 		}
419 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
420 			log(LOG_DEBUG, "%s; %s: Response timeout, "
421 			    "retransmitting (%u) SYN|ACK\n",
422 			    s, __func__, sc->sc_rxmits);
423 			free(s, M_TCPLOG);
424 		}
425 
426 		(void) syncache_respond(sc);
427 		TCPSTAT_INC(tcps_sc_retransmitted);
428 		syncache_timeout(sc, sch, 0);
429 	}
430 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
431 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
432 			syncache_timer, (void *)(sch));
433 	CURVNET_RESTORE();
434 }
435 
436 /*
437  * Find an entry in the syncache.
438  * Returns always with locked syncache_head plus a matching entry or NULL.
439  */
440 struct syncache *
441 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
442 {
443 	INIT_VNET_INET(curvnet);
444 	struct syncache *sc;
445 	struct syncache_head *sch;
446 
447 #ifdef INET6
448 	if (inc->inc_flags & INC_ISIPV6) {
449 		sch = &V_tcp_syncache.hashbase[
450 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
451 		*schp = sch;
452 
453 		SCH_LOCK(sch);
454 
455 		/* Circle through bucket row to find matching entry. */
456 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
457 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
458 				return (sc);
459 		}
460 	} else
461 #endif
462 	{
463 		sch = &V_tcp_syncache.hashbase[
464 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
465 		*schp = sch;
466 
467 		SCH_LOCK(sch);
468 
469 		/* Circle through bucket row to find matching entry. */
470 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
471 #ifdef INET6
472 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
473 				continue;
474 #endif
475 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
476 				return (sc);
477 		}
478 	}
479 	SCH_LOCK_ASSERT(*schp);
480 	return (NULL);			/* always returns with locked sch */
481 }
482 
483 /*
484  * This function is called when we get a RST for a
485  * non-existent connection, so that we can see if the
486  * connection is in the syn cache.  If it is, zap it.
487  */
488 void
489 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
490 {
491 	INIT_VNET_INET(curvnet);
492 	struct syncache *sc;
493 	struct syncache_head *sch;
494 	char *s = NULL;
495 
496 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
497 	SCH_LOCK_ASSERT(sch);
498 
499 	/*
500 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
501 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
502 	 */
503 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
504 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
505 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
506 			    "FIN flag set, segment ignored\n", s, __func__);
507 		TCPSTAT_INC(tcps_badrst);
508 		goto done;
509 	}
510 
511 	/*
512 	 * No corresponding connection was found in syncache.
513 	 * If syncookies are enabled and possibly exclusively
514 	 * used, or we are under memory pressure, a valid RST
515 	 * may not find a syncache entry.  In that case we're
516 	 * done and no SYN|ACK retransmissions will happen.
517 	 * Otherwise the the RST was misdirected or spoofed.
518 	 */
519 	if (sc == NULL) {
520 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
521 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
522 			    "syncache entry (possibly syncookie only), "
523 			    "segment ignored\n", s, __func__);
524 		TCPSTAT_INC(tcps_badrst);
525 		goto done;
526 	}
527 
528 	/*
529 	 * If the RST bit is set, check the sequence number to see
530 	 * if this is a valid reset segment.
531 	 * RFC 793 page 37:
532 	 *   In all states except SYN-SENT, all reset (RST) segments
533 	 *   are validated by checking their SEQ-fields.  A reset is
534 	 *   valid if its sequence number is in the window.
535 	 *
536 	 *   The sequence number in the reset segment is normally an
537 	 *   echo of our outgoing acknowlegement numbers, but some hosts
538 	 *   send a reset with the sequence number at the rightmost edge
539 	 *   of our receive window, and we have to handle this case.
540 	 */
541 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
542 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
543 		syncache_drop(sc, sch);
544 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
545 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
546 			    "connection attempt aborted by remote endpoint\n",
547 			    s, __func__);
548 		TCPSTAT_INC(tcps_sc_reset);
549 	} else {
550 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
551 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
552 			    "IRS %u (+WND %u), segment ignored\n",
553 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
554 		TCPSTAT_INC(tcps_badrst);
555 	}
556 
557 done:
558 	if (s != NULL)
559 		free(s, M_TCPLOG);
560 	SCH_UNLOCK(sch);
561 }
562 
563 void
564 syncache_badack(struct in_conninfo *inc)
565 {
566 	INIT_VNET_INET(curvnet);
567 	struct syncache *sc;
568 	struct syncache_head *sch;
569 
570 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
571 	SCH_LOCK_ASSERT(sch);
572 	if (sc != NULL) {
573 		syncache_drop(sc, sch);
574 		TCPSTAT_INC(tcps_sc_badack);
575 	}
576 	SCH_UNLOCK(sch);
577 }
578 
579 void
580 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
581 {
582 	INIT_VNET_INET(curvnet);
583 	struct syncache *sc;
584 	struct syncache_head *sch;
585 
586 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
587 	SCH_LOCK_ASSERT(sch);
588 	if (sc == NULL)
589 		goto done;
590 
591 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
592 	if (ntohl(th->th_seq) != sc->sc_iss)
593 		goto done;
594 
595 	/*
596 	 * If we've rertransmitted 3 times and this is our second error,
597 	 * we remove the entry.  Otherwise, we allow it to continue on.
598 	 * This prevents us from incorrectly nuking an entry during a
599 	 * spurious network outage.
600 	 *
601 	 * See tcp_notify().
602 	 */
603 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
604 		sc->sc_flags |= SCF_UNREACH;
605 		goto done;
606 	}
607 	syncache_drop(sc, sch);
608 	TCPSTAT_INC(tcps_sc_unreach);
609 done:
610 	SCH_UNLOCK(sch);
611 }
612 
613 /*
614  * Build a new TCP socket structure from a syncache entry.
615  */
616 static struct socket *
617 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
618 {
619 	INIT_VNET_INET(lso->so_vnet);
620 	struct inpcb *inp = NULL;
621 	struct socket *so;
622 	struct tcpcb *tp;
623 	char *s;
624 
625 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
626 
627 	/*
628 	 * Ok, create the full blown connection, and set things up
629 	 * as they would have been set up if we had created the
630 	 * connection when the SYN arrived.  If we can't create
631 	 * the connection, abort it.
632 	 */
633 	so = sonewconn(lso, SS_ISCONNECTED);
634 	if (so == NULL) {
635 		/*
636 		 * Drop the connection; we will either send a RST or
637 		 * have the peer retransmit its SYN again after its
638 		 * RTO and try again.
639 		 */
640 		TCPSTAT_INC(tcps_listendrop);
641 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
642 			log(LOG_DEBUG, "%s; %s: Socket create failed "
643 			    "due to limits or memory shortage\n",
644 			    s, __func__);
645 			free(s, M_TCPLOG);
646 		}
647 		goto abort2;
648 	}
649 #ifdef MAC
650 	mac_socketpeer_set_from_mbuf(m, so);
651 #endif
652 
653 	inp = sotoinpcb(so);
654 	inp->inp_inc.inc_fibnum = sc->sc_inc.inc_fibnum;
655 	so->so_fibnum = sc->sc_inc.inc_fibnum;
656 	INP_WLOCK(inp);
657 
658 	/* Insert new socket into PCB hash list. */
659 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
660 #ifdef INET6
661 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
662 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
663 	} else {
664 		inp->inp_vflag &= ~INP_IPV6;
665 		inp->inp_vflag |= INP_IPV4;
666 #endif
667 		inp->inp_laddr = sc->sc_inc.inc_laddr;
668 #ifdef INET6
669 	}
670 #endif
671 	inp->inp_lport = sc->sc_inc.inc_lport;
672 	if (in_pcbinshash(inp) != 0) {
673 		/*
674 		 * Undo the assignments above if we failed to
675 		 * put the PCB on the hash lists.
676 		 */
677 #ifdef INET6
678 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
679 			inp->in6p_laddr = in6addr_any;
680 		else
681 #endif
682 			inp->inp_laddr.s_addr = INADDR_ANY;
683 		inp->inp_lport = 0;
684 		goto abort;
685 	}
686 #ifdef IPSEC
687 	/* Copy old policy into new socket's. */
688 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
689 		printf("syncache_socket: could not copy policy\n");
690 #endif
691 #ifdef INET6
692 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
693 		struct inpcb *oinp = sotoinpcb(lso);
694 		struct in6_addr laddr6;
695 		struct sockaddr_in6 sin6;
696 		/*
697 		 * Inherit socket options from the listening socket.
698 		 * Note that in6p_inputopts are not (and should not be)
699 		 * copied, since it stores previously received options and is
700 		 * used to detect if each new option is different than the
701 		 * previous one and hence should be passed to a user.
702 		 * If we copied in6p_inputopts, a user would not be able to
703 		 * receive options just after calling the accept system call.
704 		 */
705 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
706 		if (oinp->in6p_outputopts)
707 			inp->in6p_outputopts =
708 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
709 
710 		sin6.sin6_family = AF_INET6;
711 		sin6.sin6_len = sizeof(sin6);
712 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
713 		sin6.sin6_port = sc->sc_inc.inc_fport;
714 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
715 		laddr6 = inp->in6p_laddr;
716 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
717 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
718 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
719 		    thread0.td_ucred)) {
720 			inp->in6p_laddr = laddr6;
721 			goto abort;
722 		}
723 		/* Override flowlabel from in6_pcbconnect. */
724 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
725 		inp->inp_flow |= sc->sc_flowlabel;
726 	} else
727 #endif
728 	{
729 		struct in_addr laddr;
730 		struct sockaddr_in sin;
731 
732 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
733 
734 		if (inp->inp_options == NULL) {
735 			inp->inp_options = sc->sc_ipopts;
736 			sc->sc_ipopts = NULL;
737 		}
738 
739 		sin.sin_family = AF_INET;
740 		sin.sin_len = sizeof(sin);
741 		sin.sin_addr = sc->sc_inc.inc_faddr;
742 		sin.sin_port = sc->sc_inc.inc_fport;
743 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
744 		laddr = inp->inp_laddr;
745 		if (inp->inp_laddr.s_addr == INADDR_ANY)
746 			inp->inp_laddr = sc->sc_inc.inc_laddr;
747 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
748 		    thread0.td_ucred)) {
749 			inp->inp_laddr = laddr;
750 			goto abort;
751 		}
752 	}
753 	tp = intotcpcb(inp);
754 	tp->t_state = TCPS_SYN_RECEIVED;
755 	tp->iss = sc->sc_iss;
756 	tp->irs = sc->sc_irs;
757 	tcp_rcvseqinit(tp);
758 	tcp_sendseqinit(tp);
759 	tp->snd_wl1 = sc->sc_irs;
760 	tp->snd_max = tp->iss + 1;
761 	tp->snd_nxt = tp->iss + 1;
762 	tp->rcv_up = sc->sc_irs + 1;
763 	tp->rcv_wnd = sc->sc_wnd;
764 	tp->rcv_adv += tp->rcv_wnd;
765 	tp->last_ack_sent = tp->rcv_nxt;
766 
767 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
768 	if (sc->sc_flags & SCF_NOOPT)
769 		tp->t_flags |= TF_NOOPT;
770 	else {
771 		if (sc->sc_flags & SCF_WINSCALE) {
772 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
773 			tp->snd_scale = sc->sc_requested_s_scale;
774 			tp->request_r_scale = sc->sc_requested_r_scale;
775 		}
776 		if (sc->sc_flags & SCF_TIMESTAMP) {
777 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
778 			tp->ts_recent = sc->sc_tsreflect;
779 			tp->ts_recent_age = ticks;
780 			tp->ts_offset = sc->sc_tsoff;
781 		}
782 #ifdef TCP_SIGNATURE
783 		if (sc->sc_flags & SCF_SIGNATURE)
784 			tp->t_flags |= TF_SIGNATURE;
785 #endif
786 		if (sc->sc_flags & SCF_SACK)
787 			tp->t_flags |= TF_SACK_PERMIT;
788 	}
789 
790 	if (sc->sc_flags & SCF_ECN)
791 		tp->t_flags |= TF_ECN_PERMIT;
792 
793 	/*
794 	 * Set up MSS and get cached values from tcp_hostcache.
795 	 * This might overwrite some of the defaults we just set.
796 	 */
797 	tcp_mss(tp, sc->sc_peer_mss);
798 
799 	/*
800 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
801 	 */
802 	if (sc->sc_rxmits)
803 		tp->snd_cwnd = tp->t_maxseg;
804 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
805 
806 	INP_WUNLOCK(inp);
807 
808 	TCPSTAT_INC(tcps_accepts);
809 	return (so);
810 
811 abort:
812 	INP_WUNLOCK(inp);
813 abort2:
814 	if (so != NULL)
815 		soabort(so);
816 	return (NULL);
817 }
818 
819 /*
820  * This function gets called when we receive an ACK for a
821  * socket in the LISTEN state.  We look up the connection
822  * in the syncache, and if its there, we pull it out of
823  * the cache and turn it into a full-blown connection in
824  * the SYN-RECEIVED state.
825  */
826 int
827 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
828     struct socket **lsop, struct mbuf *m)
829 {
830 	INIT_VNET_INET(curvnet);
831 	struct syncache *sc;
832 	struct syncache_head *sch;
833 	struct syncache scs;
834 	char *s;
835 
836 	/*
837 	 * Global TCP locks are held because we manipulate the PCB lists
838 	 * and create a new socket.
839 	 */
840 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
841 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
842 	    ("%s: can handle only ACK", __func__));
843 
844 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
845 	SCH_LOCK_ASSERT(sch);
846 	if (sc == NULL) {
847 		/*
848 		 * There is no syncache entry, so see if this ACK is
849 		 * a returning syncookie.  To do this, first:
850 		 *  A. See if this socket has had a syncache entry dropped in
851 		 *     the past.  We don't want to accept a bogus syncookie
852 		 *     if we've never received a SYN.
853 		 *  B. check that the syncookie is valid.  If it is, then
854 		 *     cobble up a fake syncache entry, and return.
855 		 */
856 		if (!V_tcp_syncookies) {
857 			SCH_UNLOCK(sch);
858 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
859 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
860 				    "segment rejected (syncookies disabled)\n",
861 				    s, __func__);
862 			goto failed;
863 		}
864 		bzero(&scs, sizeof(scs));
865 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
866 		SCH_UNLOCK(sch);
867 		if (sc == NULL) {
868 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
869 				log(LOG_DEBUG, "%s; %s: Segment failed "
870 				    "SYNCOOKIE authentication, segment rejected "
871 				    "(probably spoofed)\n", s, __func__);
872 			goto failed;
873 		}
874 	} else {
875 		/* Pull out the entry to unlock the bucket row. */
876 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
877 		sch->sch_length--;
878 		V_tcp_syncache.cache_count--;
879 		SCH_UNLOCK(sch);
880 	}
881 
882 	/*
883 	 * Segment validation:
884 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
885 	 */
886 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
887 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
888 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
889 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
890 		goto failed;
891 	}
892 
893 	/*
894 	 * The SEQ must fall in the window starting at the received
895 	 * initial receive sequence number + 1 (the SYN).
896 	 */
897 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
898 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
899 	    !TOEPCB_ISSET(sc)) {
900 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
901 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
902 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
903 		goto failed;
904 	}
905 
906 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
907 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
908 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
909 			    "segment rejected\n", s, __func__);
910 		goto failed;
911 	}
912 	/*
913 	 * If timestamps were negotiated the reflected timestamp
914 	 * must be equal to what we actually sent in the SYN|ACK.
915 	 */
916 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
917 	    !TOEPCB_ISSET(sc)) {
918 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
919 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
920 			    "segment rejected\n",
921 			    s, __func__, to->to_tsecr, sc->sc_ts);
922 		goto failed;
923 	}
924 
925 	*lsop = syncache_socket(sc, *lsop, m);
926 
927 	if (*lsop == NULL)
928 		TCPSTAT_INC(tcps_sc_aborted);
929 	else
930 		TCPSTAT_INC(tcps_sc_completed);
931 
932 /* how do we find the inp for the new socket? */
933 	if (sc != &scs)
934 		syncache_free(sc);
935 	return (1);
936 failed:
937 	if (sc != NULL && sc != &scs)
938 		syncache_free(sc);
939 	if (s != NULL)
940 		free(s, M_TCPLOG);
941 	*lsop = NULL;
942 	return (0);
943 }
944 
945 int
946 tcp_offload_syncache_expand(struct in_conninfo *inc, struct tcpopt *to,
947     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
948 {
949 	INIT_VNET_INET(curvnet);
950 	int rc;
951 
952 	INP_INFO_WLOCK(&V_tcbinfo);
953 	rc = syncache_expand(inc, to, th, lsop, m);
954 	INP_INFO_WUNLOCK(&V_tcbinfo);
955 
956 	return (rc);
957 }
958 
959 /*
960  * Given a LISTEN socket and an inbound SYN request, add
961  * this to the syn cache, and send back a segment:
962  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
963  * to the source.
964  *
965  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
966  * Doing so would require that we hold onto the data and deliver it
967  * to the application.  However, if we are the target of a SYN-flood
968  * DoS attack, an attacker could send data which would eventually
969  * consume all available buffer space if it were ACKed.  By not ACKing
970  * the data, we avoid this DoS scenario.
971  */
972 static void
973 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
974     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
975     struct toe_usrreqs *tu, void *toepcb)
976 {
977 	INIT_VNET_INET(inp->inp_vnet);
978 	struct tcpcb *tp;
979 	struct socket *so;
980 	struct syncache *sc = NULL;
981 	struct syncache_head *sch;
982 	struct mbuf *ipopts = NULL;
983 	u_int32_t flowtmp;
984 	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
985 	char *s;
986 #ifdef INET6
987 	int autoflowlabel = 0;
988 #endif
989 #ifdef MAC
990 	struct label *maclabel;
991 #endif
992 	struct syncache scs;
993 	struct ucred *cred;
994 
995 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
996 	INP_WLOCK_ASSERT(inp);			/* listen socket */
997 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
998 	    ("%s: unexpected tcp flags", __func__));
999 
1000 	/*
1001 	 * Combine all so/tp operations very early to drop the INP lock as
1002 	 * soon as possible.
1003 	 */
1004 	so = *lsop;
1005 	tp = sototcpcb(so);
1006 	cred = crhold(so->so_cred);
1007 
1008 #ifdef INET6
1009 	if ((inc->inc_flags & INC_ISIPV6) &&
1010 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1011 		autoflowlabel = 1;
1012 #endif
1013 	ip_ttl = inp->inp_ip_ttl;
1014 	ip_tos = inp->inp_ip_tos;
1015 	win = sbspace(&so->so_rcv);
1016 	sb_hiwat = so->so_rcv.sb_hiwat;
1017 	noopt = (tp->t_flags & TF_NOOPT);
1018 
1019 	/* By the time we drop the lock these should no longer be used. */
1020 	so = NULL;
1021 	tp = NULL;
1022 
1023 #ifdef MAC
1024 	if (mac_syncache_init(&maclabel) != 0) {
1025 		INP_WUNLOCK(inp);
1026 		INP_INFO_WUNLOCK(&V_tcbinfo);
1027 		goto done;
1028 	} else
1029 		mac_syncache_create(maclabel, inp);
1030 #endif
1031 	INP_WUNLOCK(inp);
1032 	INP_INFO_WUNLOCK(&V_tcbinfo);
1033 
1034 	/*
1035 	 * Remember the IP options, if any.
1036 	 */
1037 #ifdef INET6
1038 	if (!(inc->inc_flags & INC_ISIPV6))
1039 #endif
1040 		ipopts = (m) ? ip_srcroute(m) : NULL;
1041 
1042 	/*
1043 	 * See if we already have an entry for this connection.
1044 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1045 	 *
1046 	 * XXX: should the syncache be re-initialized with the contents
1047 	 * of the new SYN here (which may have different options?)
1048 	 *
1049 	 * XXX: We do not check the sequence number to see if this is a
1050 	 * real retransmit or a new connection attempt.  The question is
1051 	 * how to handle such a case; either ignore it as spoofed, or
1052 	 * drop the current entry and create a new one?
1053 	 */
1054 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1055 	SCH_LOCK_ASSERT(sch);
1056 	if (sc != NULL) {
1057 #ifndef TCP_OFFLOAD_DISABLE
1058 		if (sc->sc_tu)
1059 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1060 			    sc->sc_toepcb);
1061 #endif
1062 		TCPSTAT_INC(tcps_sc_dupsyn);
1063 		if (ipopts) {
1064 			/*
1065 			 * If we were remembering a previous source route,
1066 			 * forget it and use the new one we've been given.
1067 			 */
1068 			if (sc->sc_ipopts)
1069 				(void) m_free(sc->sc_ipopts);
1070 			sc->sc_ipopts = ipopts;
1071 		}
1072 		/*
1073 		 * Update timestamp if present.
1074 		 */
1075 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1076 			sc->sc_tsreflect = to->to_tsval;
1077 		else
1078 			sc->sc_flags &= ~SCF_TIMESTAMP;
1079 #ifdef MAC
1080 		/*
1081 		 * Since we have already unconditionally allocated label
1082 		 * storage, free it up.  The syncache entry will already
1083 		 * have an initialized label we can use.
1084 		 */
1085 		mac_syncache_destroy(&maclabel);
1086 #endif
1087 		/* Retransmit SYN|ACK and reset retransmit count. */
1088 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1089 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1090 			    "resetting timer and retransmitting SYN|ACK\n",
1091 			    s, __func__);
1092 			free(s, M_TCPLOG);
1093 		}
1094 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1095 			sc->sc_rxmits = 0;
1096 			syncache_timeout(sc, sch, 1);
1097 			TCPSTAT_INC(tcps_sndacks);
1098 			TCPSTAT_INC(tcps_sndtotal);
1099 		}
1100 		SCH_UNLOCK(sch);
1101 		goto done;
1102 	}
1103 
1104 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1105 	if (sc == NULL) {
1106 		/*
1107 		 * The zone allocator couldn't provide more entries.
1108 		 * Treat this as if the cache was full; drop the oldest
1109 		 * entry and insert the new one.
1110 		 */
1111 		TCPSTAT_INC(tcps_sc_zonefail);
1112 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1113 			syncache_drop(sc, sch);
1114 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1115 		if (sc == NULL) {
1116 			if (V_tcp_syncookies) {
1117 				bzero(&scs, sizeof(scs));
1118 				sc = &scs;
1119 			} else {
1120 				SCH_UNLOCK(sch);
1121 				if (ipopts)
1122 					(void) m_free(ipopts);
1123 				goto done;
1124 			}
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Fill in the syncache values.
1130 	 */
1131 #ifdef MAC
1132 	sc->sc_label = maclabel;
1133 #endif
1134 	sc->sc_cred = cred;
1135 	cred = NULL;
1136 	sc->sc_ipopts = ipopts;
1137 	/* XXX-BZ this fib assignment is just useless. */
1138 	sc->sc_inc.inc_fibnum = inp->inp_inc.inc_fibnum;
1139 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1140 #ifdef INET6
1141 	if (!(inc->inc_flags & INC_ISIPV6))
1142 #endif
1143 	{
1144 		sc->sc_ip_tos = ip_tos;
1145 		sc->sc_ip_ttl = ip_ttl;
1146 	}
1147 #ifndef TCP_OFFLOAD_DISABLE
1148 	sc->sc_tu = tu;
1149 	sc->sc_toepcb = toepcb;
1150 #endif
1151 	sc->sc_irs = th->th_seq;
1152 	sc->sc_iss = arc4random();
1153 	sc->sc_flags = 0;
1154 	sc->sc_flowlabel = 0;
1155 
1156 	/*
1157 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1158 	 * win was derived from socket earlier in the function.
1159 	 */
1160 	win = imax(win, 0);
1161 	win = imin(win, TCP_MAXWIN);
1162 	sc->sc_wnd = win;
1163 
1164 	if (V_tcp_do_rfc1323) {
1165 		/*
1166 		 * A timestamp received in a SYN makes
1167 		 * it ok to send timestamp requests and replies.
1168 		 */
1169 		if (to->to_flags & TOF_TS) {
1170 			sc->sc_tsreflect = to->to_tsval;
1171 			sc->sc_ts = ticks;
1172 			sc->sc_flags |= SCF_TIMESTAMP;
1173 		}
1174 		if (to->to_flags & TOF_SCALE) {
1175 			int wscale = 0;
1176 
1177 			/*
1178 			 * Pick the smallest possible scaling factor that
1179 			 * will still allow us to scale up to sb_max, aka
1180 			 * kern.ipc.maxsockbuf.
1181 			 *
1182 			 * We do this because there are broken firewalls that
1183 			 * will corrupt the window scale option, leading to
1184 			 * the other endpoint believing that our advertised
1185 			 * window is unscaled.  At scale factors larger than
1186 			 * 5 the unscaled window will drop below 1500 bytes,
1187 			 * leading to serious problems when traversing these
1188 			 * broken firewalls.
1189 			 *
1190 			 * With the default maxsockbuf of 256K, a scale factor
1191 			 * of 3 will be chosen by this algorithm.  Those who
1192 			 * choose a larger maxsockbuf should watch out
1193 			 * for the compatiblity problems mentioned above.
1194 			 *
1195 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1196 			 * or <SYN,ACK>) segment itself is never scaled.
1197 			 */
1198 			while (wscale < TCP_MAX_WINSHIFT &&
1199 			    (TCP_MAXWIN << wscale) < sb_max)
1200 				wscale++;
1201 			sc->sc_requested_r_scale = wscale;
1202 			sc->sc_requested_s_scale = to->to_wscale;
1203 			sc->sc_flags |= SCF_WINSCALE;
1204 		}
1205 	}
1206 #ifdef TCP_SIGNATURE
1207 	/*
1208 	 * If listening socket requested TCP digests, and received SYN
1209 	 * contains the option, flag this in the syncache so that
1210 	 * syncache_respond() will do the right thing with the SYN+ACK.
1211 	 * XXX: Currently we always record the option by default and will
1212 	 * attempt to use it in syncache_respond().
1213 	 */
1214 	if (to->to_flags & TOF_SIGNATURE)
1215 		sc->sc_flags |= SCF_SIGNATURE;
1216 #endif
1217 	if (to->to_flags & TOF_SACKPERM)
1218 		sc->sc_flags |= SCF_SACK;
1219 	if (to->to_flags & TOF_MSS)
1220 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1221 	if (noopt)
1222 		sc->sc_flags |= SCF_NOOPT;
1223 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1224 		sc->sc_flags |= SCF_ECN;
1225 
1226 	if (V_tcp_syncookies) {
1227 		syncookie_generate(sch, sc, &flowtmp);
1228 #ifdef INET6
1229 		if (autoflowlabel)
1230 			sc->sc_flowlabel = flowtmp;
1231 #endif
1232 	} else {
1233 #ifdef INET6
1234 		if (autoflowlabel)
1235 			sc->sc_flowlabel =
1236 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1237 #endif
1238 	}
1239 	SCH_UNLOCK(sch);
1240 
1241 	/*
1242 	 * Do a standard 3-way handshake.
1243 	 */
1244 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1245 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1246 			syncache_free(sc);
1247 		else if (sc != &scs)
1248 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1249 		TCPSTAT_INC(tcps_sndacks);
1250 		TCPSTAT_INC(tcps_sndtotal);
1251 	} else {
1252 		if (sc != &scs)
1253 			syncache_free(sc);
1254 		TCPSTAT_INC(tcps_sc_dropped);
1255 	}
1256 
1257 done:
1258 	if (cred != NULL)
1259 		crfree(cred);
1260 #ifdef MAC
1261 	if (sc == &scs)
1262 		mac_syncache_destroy(&maclabel);
1263 #endif
1264 	if (m) {
1265 
1266 		*lsop = NULL;
1267 		m_freem(m);
1268 	}
1269 }
1270 
1271 static int
1272 syncache_respond(struct syncache *sc)
1273 {
1274 	INIT_VNET_INET(curvnet);
1275 	struct ip *ip = NULL;
1276 	struct mbuf *m;
1277 	struct tcphdr *th;
1278 	int optlen, error;
1279 	u_int16_t hlen, tlen, mssopt;
1280 	struct tcpopt to;
1281 #ifdef INET6
1282 	struct ip6_hdr *ip6 = NULL;
1283 #endif
1284 
1285 	hlen =
1286 #ifdef INET6
1287 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1288 #endif
1289 		sizeof(struct ip);
1290 	tlen = hlen + sizeof(struct tcphdr);
1291 
1292 	/* Determine MSS we advertize to other end of connection. */
1293 	mssopt = tcp_mssopt(&sc->sc_inc);
1294 	if (sc->sc_peer_mss)
1295 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1296 
1297 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1298 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1299 	    ("syncache: mbuf too small"));
1300 
1301 	/* Create the IP+TCP header from scratch. */
1302 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1303 	if (m == NULL)
1304 		return (ENOBUFS);
1305 #ifdef MAC
1306 	mac_syncache_create_mbuf(sc->sc_label, m);
1307 #endif
1308 	m->m_data += max_linkhdr;
1309 	m->m_len = tlen;
1310 	m->m_pkthdr.len = tlen;
1311 	m->m_pkthdr.rcvif = NULL;
1312 
1313 #ifdef INET6
1314 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1315 		ip6 = mtod(m, struct ip6_hdr *);
1316 		ip6->ip6_vfc = IPV6_VERSION;
1317 		ip6->ip6_nxt = IPPROTO_TCP;
1318 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1319 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1320 		ip6->ip6_plen = htons(tlen - hlen);
1321 		/* ip6_hlim is set after checksum */
1322 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1323 		ip6->ip6_flow |= sc->sc_flowlabel;
1324 
1325 		th = (struct tcphdr *)(ip6 + 1);
1326 	} else
1327 #endif
1328 	{
1329 		ip = mtod(m, struct ip *);
1330 		ip->ip_v = IPVERSION;
1331 		ip->ip_hl = sizeof(struct ip) >> 2;
1332 		ip->ip_len = tlen;
1333 		ip->ip_id = 0;
1334 		ip->ip_off = 0;
1335 		ip->ip_sum = 0;
1336 		ip->ip_p = IPPROTO_TCP;
1337 		ip->ip_src = sc->sc_inc.inc_laddr;
1338 		ip->ip_dst = sc->sc_inc.inc_faddr;
1339 		ip->ip_ttl = sc->sc_ip_ttl;
1340 		ip->ip_tos = sc->sc_ip_tos;
1341 
1342 		/*
1343 		 * See if we should do MTU discovery.  Route lookups are
1344 		 * expensive, so we will only unset the DF bit if:
1345 		 *
1346 		 *	1) path_mtu_discovery is disabled
1347 		 *	2) the SCF_UNREACH flag has been set
1348 		 */
1349 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1350 		       ip->ip_off |= IP_DF;
1351 
1352 		th = (struct tcphdr *)(ip + 1);
1353 	}
1354 	th->th_sport = sc->sc_inc.inc_lport;
1355 	th->th_dport = sc->sc_inc.inc_fport;
1356 
1357 	th->th_seq = htonl(sc->sc_iss);
1358 	th->th_ack = htonl(sc->sc_irs + 1);
1359 	th->th_off = sizeof(struct tcphdr) >> 2;
1360 	th->th_x2 = 0;
1361 	th->th_flags = TH_SYN|TH_ACK;
1362 	th->th_win = htons(sc->sc_wnd);
1363 	th->th_urp = 0;
1364 
1365 	if (sc->sc_flags & SCF_ECN) {
1366 		th->th_flags |= TH_ECE;
1367 		TCPSTAT_INC(tcps_ecn_shs);
1368 	}
1369 
1370 	/* Tack on the TCP options. */
1371 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1372 		to.to_flags = 0;
1373 
1374 		to.to_mss = mssopt;
1375 		to.to_flags = TOF_MSS;
1376 		if (sc->sc_flags & SCF_WINSCALE) {
1377 			to.to_wscale = sc->sc_requested_r_scale;
1378 			to.to_flags |= TOF_SCALE;
1379 		}
1380 		if (sc->sc_flags & SCF_TIMESTAMP) {
1381 			/* Virgin timestamp or TCP cookie enhanced one. */
1382 			to.to_tsval = sc->sc_ts;
1383 			to.to_tsecr = sc->sc_tsreflect;
1384 			to.to_flags |= TOF_TS;
1385 		}
1386 		if (sc->sc_flags & SCF_SACK)
1387 			to.to_flags |= TOF_SACKPERM;
1388 #ifdef TCP_SIGNATURE
1389 		if (sc->sc_flags & SCF_SIGNATURE)
1390 			to.to_flags |= TOF_SIGNATURE;
1391 #endif
1392 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1393 
1394 		/* Adjust headers by option size. */
1395 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1396 		m->m_len += optlen;
1397 		m->m_pkthdr.len += optlen;
1398 
1399 #ifdef TCP_SIGNATURE
1400 		if (sc->sc_flags & SCF_SIGNATURE)
1401 			tcp_signature_compute(m, 0, 0, optlen,
1402 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1403 #endif
1404 #ifdef INET6
1405 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1406 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1407 		else
1408 #endif
1409 			ip->ip_len += optlen;
1410 	} else
1411 		optlen = 0;
1412 
1413 #ifdef INET6
1414 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1415 		th->th_sum = 0;
1416 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1417 				       tlen + optlen - hlen);
1418 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1419 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1420 	} else
1421 #endif
1422 	{
1423 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1424 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1425 		m->m_pkthdr.csum_flags = CSUM_TCP;
1426 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1427 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1428 	}
1429 	return (error);
1430 }
1431 
1432 void
1433 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1434     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1435 {
1436 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1437 }
1438 
1439 void
1440 tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to,
1441     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1442     struct toe_usrreqs *tu, void *toepcb)
1443 {
1444 	INIT_VNET_INET(curvnet);
1445 
1446 	INP_INFO_WLOCK(&V_tcbinfo);
1447 	INP_WLOCK(inp);
1448 	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1449 }
1450 
1451 /*
1452  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1453  * receive and to be able to handle SYN floods from bogus source addresses
1454  * (where we will never receive any reply).  SYN floods try to exhaust all
1455  * our memory and available slots in the SYN cache table to cause a denial
1456  * of service to legitimate users of the local host.
1457  *
1458  * The idea of SYN cookies is to encode and include all necessary information
1459  * about the connection setup state within the SYN-ACK we send back and thus
1460  * to get along without keeping any local state until the ACK to the SYN-ACK
1461  * arrives (if ever).  Everything we need to know should be available from
1462  * the information we encoded in the SYN-ACK.
1463  *
1464  * More information about the theory behind SYN cookies and its first
1465  * discussion and specification can be found at:
1466  *  http://cr.yp.to/syncookies.html    (overview)
1467  *  http://cr.yp.to/syncookies/archive (gory details)
1468  *
1469  * This implementation extends the orginal idea and first implementation
1470  * of FreeBSD by using not only the initial sequence number field to store
1471  * information but also the timestamp field if present.  This way we can
1472  * keep track of the entire state we need to know to recreate the session in
1473  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1474  * these days.  For those that do not we still have to live with the known
1475  * shortcomings of the ISN only SYN cookies.
1476  *
1477  * Cookie layers:
1478  *
1479  * Initial sequence number we send:
1480  * 31|................................|0
1481  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1482  *    D = MD5 Digest (first dword)
1483  *    M = MSS index
1484  *    R = Rotation of secret
1485  *    P = Odd or Even secret
1486  *
1487  * The MD5 Digest is computed with over following parameters:
1488  *  a) randomly rotated secret
1489  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1490  *  c) the received initial sequence number from remote host
1491  *  d) the rotation offset and odd/even bit
1492  *
1493  * Timestamp we send:
1494  * 31|................................|0
1495  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1496  *    D = MD5 Digest (third dword) (only as filler)
1497  *    S = Requested send window scale
1498  *    R = Requested receive window scale
1499  *    A = SACK allowed
1500  *    5 = TCP-MD5 enabled (not implemented yet)
1501  *    XORed with MD5 Digest (forth dword)
1502  *
1503  * The timestamp isn't cryptographically secure and doesn't need to be.
1504  * The double use of the MD5 digest dwords ties it to a specific remote/
1505  * local host/port, remote initial sequence number and our local time
1506  * limited secret.  A received timestamp is reverted (XORed) and then
1507  * the contained MD5 dword is compared to the computed one to ensure the
1508  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1509  * have been tampered with but this isn't different from supplying bogus
1510  * values in the SYN in the first place.
1511  *
1512  * Some problems with SYN cookies remain however:
1513  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1514  * original SYN was accepted, the connection is established.  The second
1515  * SYN is inflight, and if it arrives with an ISN that falls within the
1516  * receive window, the connection is killed.
1517  *
1518  * Notes:
1519  * A heuristic to determine when to accept syn cookies is not necessary.
1520  * An ACK flood would cause the syncookie verification to be attempted,
1521  * but a SYN flood causes syncookies to be generated.  Both are of equal
1522  * cost, so there's no point in trying to optimize the ACK flood case.
1523  * Also, if you don't process certain ACKs for some reason, then all someone
1524  * would have to do is launch a SYN and ACK flood at the same time, which
1525  * would stop cookie verification and defeat the entire purpose of syncookies.
1526  */
1527 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1528 
1529 static void
1530 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1531     u_int32_t *flowlabel)
1532 {
1533 	INIT_VNET_INET(curvnet);
1534 	MD5_CTX ctx;
1535 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1536 	u_int32_t data;
1537 	u_int32_t *secbits;
1538 	u_int off, pmss, mss;
1539 	int i;
1540 
1541 	SCH_LOCK_ASSERT(sch);
1542 
1543 	/* Which of the two secrets to use. */
1544 	secbits = sch->sch_oddeven ?
1545 			sch->sch_secbits_odd : sch->sch_secbits_even;
1546 
1547 	/* Reseed secret if too old. */
1548 	if (sch->sch_reseed < time_uptime) {
1549 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1550 		secbits = sch->sch_oddeven ?
1551 				sch->sch_secbits_odd : sch->sch_secbits_even;
1552 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1553 			secbits[i] = arc4random();
1554 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1555 	}
1556 
1557 	/* Secret rotation offset. */
1558 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1559 
1560 	/* Maximum segment size calculation. */
1561 	pmss =
1562 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1563 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1564 		if (tcp_sc_msstab[mss] <= pmss)
1565 			break;
1566 
1567 	/* Fold parameters and MD5 digest into the ISN we will send. */
1568 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1569 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1570 	data |= mss << 4;	/* mss, 3 bits */
1571 
1572 	MD5Init(&ctx);
1573 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1574 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1575 	MD5Update(&ctx, secbits, off);
1576 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1577 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1578 	MD5Update(&ctx, &data, sizeof(data));
1579 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1580 
1581 	data |= (md5_buffer[0] << 7);
1582 	sc->sc_iss = data;
1583 
1584 #ifdef INET6
1585 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1586 #endif
1587 
1588 	/* Additional parameters are stored in the timestamp if present. */
1589 	if (sc->sc_flags & SCF_TIMESTAMP) {
1590 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1591 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1592 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1593 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1594 		data |= md5_buffer[2] << 10;		/* more digest bits */
1595 		data ^= md5_buffer[3];
1596 		sc->sc_ts = data;
1597 		sc->sc_tsoff = data - ticks;		/* after XOR */
1598 	}
1599 
1600 	TCPSTAT_INC(tcps_sc_sendcookie);
1601 }
1602 
1603 static struct syncache *
1604 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1605     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1606     struct socket *so)
1607 {
1608 	INIT_VNET_INET(curvnet);
1609 	MD5_CTX ctx;
1610 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1611 	u_int32_t data = 0;
1612 	u_int32_t *secbits;
1613 	tcp_seq ack, seq;
1614 	int off, mss, wnd, flags;
1615 
1616 	SCH_LOCK_ASSERT(sch);
1617 
1618 	/*
1619 	 * Pull information out of SYN-ACK/ACK and
1620 	 * revert sequence number advances.
1621 	 */
1622 	ack = th->th_ack - 1;
1623 	seq = th->th_seq - 1;
1624 	off = (ack >> 1) & 0x7;
1625 	mss = (ack >> 4) & 0x7;
1626 	flags = ack & 0x7f;
1627 
1628 	/* Which of the two secrets to use. */
1629 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1630 
1631 	/*
1632 	 * The secret wasn't updated for the lifetime of a syncookie,
1633 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1634 	 */
1635 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1636 		return (NULL);
1637 	}
1638 
1639 	/* Recompute the digest so we can compare it. */
1640 	MD5Init(&ctx);
1641 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1642 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1643 	MD5Update(&ctx, secbits, off);
1644 	MD5Update(&ctx, inc, sizeof(*inc));
1645 	MD5Update(&ctx, &seq, sizeof(seq));
1646 	MD5Update(&ctx, &flags, sizeof(flags));
1647 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1648 
1649 	/* Does the digest part of or ACK'ed ISS match? */
1650 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1651 		return (NULL);
1652 
1653 	/* Does the digest part of our reflected timestamp match? */
1654 	if (to->to_flags & TOF_TS) {
1655 		data = md5_buffer[3] ^ to->to_tsecr;
1656 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1657 			return (NULL);
1658 	}
1659 
1660 	/* Fill in the syncache values. */
1661 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1662 	sc->sc_ipopts = NULL;
1663 
1664 	sc->sc_irs = seq;
1665 	sc->sc_iss = ack;
1666 
1667 #ifdef INET6
1668 	if (inc->inc_flags & INC_ISIPV6) {
1669 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1670 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1671 	} else
1672 #endif
1673 	{
1674 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1675 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1676 	}
1677 
1678 	/* Additional parameters that were encoded in the timestamp. */
1679 	if (data) {
1680 		sc->sc_flags |= SCF_TIMESTAMP;
1681 		sc->sc_tsreflect = to->to_tsval;
1682 		sc->sc_ts = to->to_tsecr;
1683 		sc->sc_tsoff = to->to_tsecr - ticks;
1684 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1685 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1686 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1687 		    TCP_MAX_WINSHIFT);
1688 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1689 		    TCP_MAX_WINSHIFT);
1690 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1691 			sc->sc_flags |= SCF_WINSCALE;
1692 	} else
1693 		sc->sc_flags |= SCF_NOOPT;
1694 
1695 	wnd = sbspace(&so->so_rcv);
1696 	wnd = imax(wnd, 0);
1697 	wnd = imin(wnd, TCP_MAXWIN);
1698 	sc->sc_wnd = wnd;
1699 
1700 	sc->sc_rxmits = 0;
1701 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1702 
1703 	TCPSTAT_INC(tcps_sc_recvcookie);
1704 	return (sc);
1705 }
1706 
1707 /*
1708  * Returns the current number of syncache entries.  This number
1709  * will probably change before you get around to calling
1710  * syncache_pcblist.
1711  */
1712 
1713 int
1714 syncache_pcbcount(void)
1715 {
1716 	INIT_VNET_INET(curvnet);
1717 	struct syncache_head *sch;
1718 	int count, i;
1719 
1720 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1721 		/* No need to lock for a read. */
1722 		sch = &V_tcp_syncache.hashbase[i];
1723 		count += sch->sch_length;
1724 	}
1725 	return count;
1726 }
1727 
1728 /*
1729  * Exports the syncache entries to userland so that netstat can display
1730  * them alongside the other sockets.  This function is intended to be
1731  * called only from tcp_pcblist.
1732  *
1733  * Due to concurrency on an active system, the number of pcbs exported
1734  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1735  * amount of space the caller allocated for this function to use.
1736  */
1737 int
1738 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1739 {
1740 	INIT_VNET_INET(curvnet);
1741 	struct xtcpcb xt;
1742 	struct syncache *sc;
1743 	struct syncache_head *sch;
1744 	int count, error, i;
1745 
1746 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1747 		sch = &V_tcp_syncache.hashbase[i];
1748 		SCH_LOCK(sch);
1749 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1750 			if (count >= max_pcbs) {
1751 				SCH_UNLOCK(sch);
1752 				goto exit;
1753 			}
1754 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1755 				continue;
1756 			bzero(&xt, sizeof(xt));
1757 			xt.xt_len = sizeof(xt);
1758 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1759 				xt.xt_inp.inp_vflag = INP_IPV6;
1760 			else
1761 				xt.xt_inp.inp_vflag = INP_IPV4;
1762 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1763 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1764 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1765 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1766 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1767 			xt.xt_socket.so_type = SOCK_STREAM;
1768 			xt.xt_socket.so_state = SS_ISCONNECTING;
1769 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1770 			if (error) {
1771 				SCH_UNLOCK(sch);
1772 				goto exit;
1773 			}
1774 			count++;
1775 		}
1776 		SCH_UNLOCK(sch);
1777 	}
1778 exit:
1779 	*pcbs_exported = count;
1780 	return error;
1781 }
1782