xref: /freebsd/sys/netinet/tcp_syncache.c (revision 908d1eef0b6e35421bc9bee34603c73e97d0fc7c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, struct syncache_head *,
134 		    const struct mbuf *, int);
135 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136 		    struct mbuf *m);
137 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138 		    int docallout);
139 static void	 syncache_timer(void *);
140 
141 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142 		    uint8_t *, uintptr_t);
143 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144 static struct syncache
145 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146 		    struct syncache *, struct tcphdr *, struct tcpopt *,
147 		    struct socket *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout with default values of
158  * tcp_rexmit_initial * (             1 +
159  *                       tcp_backoff[1] +
160  *                       tcp_backoff[2] +
161  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
162  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
163  * the odds are that the user has given up attempting to connect by then.
164  */
165 #define SYNCACHE_MAXREXMTS		3
166 
167 /* Arbitrary values */
168 #define TCP_SYNCACHE_HASHSIZE		512
169 #define TCP_SYNCACHE_BUCKETLIMIT	30
170 
171 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
172 #define	V_tcp_syncache			VNET(tcp_syncache)
173 
174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
175     "TCP SYN cache");
176 
177 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
178     &VNET_NAME(tcp_syncache.bucket_limit), 0,
179     "Per-bucket hash limit for syncache");
180 
181 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
182     &VNET_NAME(tcp_syncache.cache_limit), 0,
183     "Overall entry limit for syncache");
184 
185 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
186     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
187 
188 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
189     &VNET_NAME(tcp_syncache.hashsize), 0,
190     "Size of TCP syncache hashtable");
191 
192 static int
193 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
194 {
195 	int error;
196 	u_int new;
197 
198 	new = V_tcp_syncache.rexmt_limit;
199 	error = sysctl_handle_int(oidp, &new, 0, req);
200 	if ((error == 0) && (req->newptr != NULL)) {
201 		if (new > TCP_MAXRXTSHIFT)
202 			error = EINVAL;
203 		else
204 			V_tcp_syncache.rexmt_limit = new;
205 	}
206 	return (error);
207 }
208 
209 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
210     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
211     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
212     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
213     "Limit on SYN/ACK retransmissions");
214 
215 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
217     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
218     "Send reset on socket allocation failure");
219 
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 
222 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
223 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
224 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
225 
226 /*
227  * Requires the syncache entry to be already removed from the bucket list.
228  */
229 static void
230 syncache_free(struct syncache *sc)
231 {
232 
233 	if (sc->sc_ipopts)
234 		(void) m_free(sc->sc_ipopts);
235 	if (sc->sc_cred)
236 		crfree(sc->sc_cred);
237 #ifdef MAC
238 	mac_syncache_destroy(&sc->sc_label);
239 #endif
240 
241 	uma_zfree(V_tcp_syncache.zone, sc);
242 }
243 
244 void
245 syncache_init(void)
246 {
247 	int i;
248 
249 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
250 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
251 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
252 	V_tcp_syncache.hash_secret = arc4random();
253 
254 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
255 	    &V_tcp_syncache.hashsize);
256 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
257 	    &V_tcp_syncache.bucket_limit);
258 	if (!powerof2(V_tcp_syncache.hashsize) ||
259 	    V_tcp_syncache.hashsize == 0) {
260 		printf("WARNING: syncache hash size is not a power of 2.\n");
261 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
262 	}
263 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
264 
265 	/* Set limits. */
266 	V_tcp_syncache.cache_limit =
267 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
268 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
269 	    &V_tcp_syncache.cache_limit);
270 
271 	/* Allocate the hash table. */
272 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
273 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
274 
275 #ifdef VIMAGE
276 	V_tcp_syncache.vnet = curvnet;
277 #endif
278 
279 	/* Initialize the hash buckets. */
280 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
281 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
282 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
283 			 NULL, MTX_DEF);
284 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
285 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
286 		V_tcp_syncache.hashbase[i].sch_length = 0;
287 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
288 		V_tcp_syncache.hashbase[i].sch_last_overflow =
289 		    -(SYNCOOKIE_LIFETIME + 1);
290 	}
291 
292 	/* Create the syncache entry zone. */
293 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
294 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
295 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
296 	    V_tcp_syncache.cache_limit);
297 
298 	/* Start the SYN cookie reseeder callout. */
299 	callout_init(&V_tcp_syncache.secret.reseed, 1);
300 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
301 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
302 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
303 	    syncookie_reseed, &V_tcp_syncache);
304 }
305 
306 #ifdef VIMAGE
307 void
308 syncache_destroy(void)
309 {
310 	struct syncache_head *sch;
311 	struct syncache *sc, *nsc;
312 	int i;
313 
314 	/*
315 	 * Stop the re-seed timer before freeing resources.  No need to
316 	 * possibly schedule it another time.
317 	 */
318 	callout_drain(&V_tcp_syncache.secret.reseed);
319 
320 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
321 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
322 
323 		sch = &V_tcp_syncache.hashbase[i];
324 		callout_drain(&sch->sch_timer);
325 
326 		SCH_LOCK(sch);
327 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
328 			syncache_drop(sc, sch);
329 		SCH_UNLOCK(sch);
330 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
331 		    ("%s: sch->sch_bucket not empty", __func__));
332 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
333 		    __func__, sch->sch_length));
334 		mtx_destroy(&sch->sch_mtx);
335 	}
336 
337 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
338 	    ("%s: cache_count not 0", __func__));
339 
340 	/* Free the allocated global resources. */
341 	uma_zdestroy(V_tcp_syncache.zone);
342 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
343 }
344 #endif
345 
346 /*
347  * Inserts a syncache entry into the specified bucket row.
348  * Locks and unlocks the syncache_head autonomously.
349  */
350 static void
351 syncache_insert(struct syncache *sc, struct syncache_head *sch)
352 {
353 	struct syncache *sc2;
354 
355 	SCH_LOCK(sch);
356 
357 	/*
358 	 * Make sure that we don't overflow the per-bucket limit.
359 	 * If the bucket is full, toss the oldest element.
360 	 */
361 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
362 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
363 			("sch->sch_length incorrect"));
364 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
365 		sch->sch_last_overflow = time_uptime;
366 		syncache_drop(sc2, sch);
367 		TCPSTAT_INC(tcps_sc_bucketoverflow);
368 	}
369 
370 	/* Put it into the bucket. */
371 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
372 	sch->sch_length++;
373 
374 #ifdef TCP_OFFLOAD
375 	if (ADDED_BY_TOE(sc)) {
376 		struct toedev *tod = sc->sc_tod;
377 
378 		tod->tod_syncache_added(tod, sc->sc_todctx);
379 	}
380 #endif
381 
382 	/* Reinitialize the bucket row's timer. */
383 	if (sch->sch_length == 1)
384 		sch->sch_nextc = ticks + INT_MAX;
385 	syncache_timeout(sc, sch, 1);
386 
387 	SCH_UNLOCK(sch);
388 
389 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
390 	TCPSTAT_INC(tcps_sc_added);
391 }
392 
393 /*
394  * Remove and free entry from syncache bucket row.
395  * Expects locked syncache head.
396  */
397 static void
398 syncache_drop(struct syncache *sc, struct syncache_head *sch)
399 {
400 
401 	SCH_LOCK_ASSERT(sch);
402 
403 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
404 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
405 	sch->sch_length--;
406 
407 #ifdef TCP_OFFLOAD
408 	if (ADDED_BY_TOE(sc)) {
409 		struct toedev *tod = sc->sc_tod;
410 
411 		tod->tod_syncache_removed(tod, sc->sc_todctx);
412 	}
413 #endif
414 
415 	syncache_free(sc);
416 }
417 
418 /*
419  * Engage/reengage time on bucket row.
420  */
421 static void
422 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
423 {
424 	int rexmt;
425 
426 	if (sc->sc_rxmits == 0)
427 		rexmt = tcp_rexmit_initial;
428 	else
429 		TCPT_RANGESET(rexmt,
430 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
431 		    tcp_rexmit_min, TCPTV_REXMTMAX);
432 	sc->sc_rxttime = ticks + rexmt;
433 	sc->sc_rxmits++;
434 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
435 		sch->sch_nextc = sc->sc_rxttime;
436 		if (docallout)
437 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
438 			    syncache_timer, (void *)sch);
439 	}
440 }
441 
442 /*
443  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
444  * If we have retransmitted an entry the maximum number of times, expire it.
445  * One separate timer for each bucket row.
446  */
447 static void
448 syncache_timer(void *xsch)
449 {
450 	struct syncache_head *sch = (struct syncache_head *)xsch;
451 	struct syncache *sc, *nsc;
452 	int tick = ticks;
453 	char *s;
454 
455 	CURVNET_SET(sch->sch_sc->vnet);
456 
457 	/* NB: syncache_head has already been locked by the callout. */
458 	SCH_LOCK_ASSERT(sch);
459 
460 	/*
461 	 * In the following cycle we may remove some entries and/or
462 	 * advance some timeouts, so re-initialize the bucket timer.
463 	 */
464 	sch->sch_nextc = tick + INT_MAX;
465 
466 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
467 		/*
468 		 * We do not check if the listen socket still exists
469 		 * and accept the case where the listen socket may be
470 		 * gone by the time we resend the SYN/ACK.  We do
471 		 * not expect this to happens often. If it does,
472 		 * then the RST will be sent by the time the remote
473 		 * host does the SYN/ACK->ACK.
474 		 */
475 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
476 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
477 				sch->sch_nextc = sc->sc_rxttime;
478 			continue;
479 		}
480 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
481 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
482 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
483 				    "giving up and removing syncache entry\n",
484 				    s, __func__);
485 				free(s, M_TCPLOG);
486 			}
487 			syncache_drop(sc, sch);
488 			TCPSTAT_INC(tcps_sc_stale);
489 			continue;
490 		}
491 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
492 			log(LOG_DEBUG, "%s; %s: Response timeout, "
493 			    "retransmitting (%u) SYN|ACK\n",
494 			    s, __func__, sc->sc_rxmits);
495 			free(s, M_TCPLOG);
496 		}
497 
498 		syncache_respond(sc, sch, NULL, TH_SYN|TH_ACK);
499 		TCPSTAT_INC(tcps_sc_retransmitted);
500 		syncache_timeout(sc, sch, 0);
501 	}
502 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
503 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
504 			syncache_timer, (void *)(sch));
505 	CURVNET_RESTORE();
506 }
507 
508 /*
509  * Find an entry in the syncache.
510  * Returns always with locked syncache_head plus a matching entry or NULL.
511  */
512 static struct syncache *
513 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
514 {
515 	struct syncache *sc;
516 	struct syncache_head *sch;
517 	uint32_t hash;
518 
519 	/*
520 	 * The hash is built on foreign port + local port + foreign address.
521 	 * We rely on the fact that struct in_conninfo starts with 16 bits
522 	 * of foreign port, then 16 bits of local port then followed by 128
523 	 * bits of foreign address.  In case of IPv4 address, the first 3
524 	 * 32-bit words of the address always are zeroes.
525 	 */
526 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
527 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
528 
529 	sch = &V_tcp_syncache.hashbase[hash];
530 	*schp = sch;
531 	SCH_LOCK(sch);
532 
533 	/* Circle through bucket row to find matching entry. */
534 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
535 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
536 		    sizeof(struct in_endpoints)) == 0)
537 			break;
538 
539 	return (sc);	/* Always returns with locked sch. */
540 }
541 
542 /*
543  * This function is called when we get a RST for a
544  * non-existent connection, so that we can see if the
545  * connection is in the syn cache.  If it is, zap it.
546  * If required send a challenge ACK.
547  */
548 void
549 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
550 {
551 	struct syncache *sc;
552 	struct syncache_head *sch;
553 	char *s = NULL;
554 
555 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
556 	SCH_LOCK_ASSERT(sch);
557 
558 	/*
559 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
560 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
561 	 */
562 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
563 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
564 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
565 			    "FIN flag set, segment ignored\n", s, __func__);
566 		TCPSTAT_INC(tcps_badrst);
567 		goto done;
568 	}
569 
570 	/*
571 	 * No corresponding connection was found in syncache.
572 	 * If syncookies are enabled and possibly exclusively
573 	 * used, or we are under memory pressure, a valid RST
574 	 * may not find a syncache entry.  In that case we're
575 	 * done and no SYN|ACK retransmissions will happen.
576 	 * Otherwise the RST was misdirected or spoofed.
577 	 */
578 	if (sc == NULL) {
579 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
580 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
581 			    "syncache entry (possibly syncookie only), "
582 			    "segment ignored\n", s, __func__);
583 		TCPSTAT_INC(tcps_badrst);
584 		goto done;
585 	}
586 
587 	/*
588 	 * If the RST bit is set, check the sequence number to see
589 	 * if this is a valid reset segment.
590 	 *
591 	 * RFC 793 page 37:
592 	 *   In all states except SYN-SENT, all reset (RST) segments
593 	 *   are validated by checking their SEQ-fields.  A reset is
594 	 *   valid if its sequence number is in the window.
595 	 *
596 	 * RFC 793 page 69:
597 	 *   There are four cases for the acceptability test for an incoming
598 	 *   segment:
599 	 *
600 	 * Segment Receive  Test
601 	 * Length  Window
602 	 * ------- -------  -------------------------------------------
603 	 *    0       0     SEG.SEQ = RCV.NXT
604 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
605 	 *   >0       0     not acceptable
606 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
607 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
608 	 *
609 	 * Note that when receiving a SYN segment in the LISTEN state,
610 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
611 	 * described in RFC 793, page 66.
612 	 */
613 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
614 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
615 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
616 		if (V_tcp_insecure_rst ||
617 		    th->th_seq == sc->sc_irs + 1) {
618 			syncache_drop(sc, sch);
619 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
620 				log(LOG_DEBUG,
621 				    "%s; %s: Our SYN|ACK was rejected, "
622 				    "connection attempt aborted by remote "
623 				    "endpoint\n",
624 				    s, __func__);
625 			TCPSTAT_INC(tcps_sc_reset);
626 		} else {
627 			TCPSTAT_INC(tcps_badrst);
628 			/* Send challenge ACK. */
629 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
630 				log(LOG_DEBUG, "%s; %s: RST with invalid "
631 				    " SEQ %u != NXT %u (+WND %u), "
632 				    "sending challenge ACK\n",
633 				    s, __func__,
634 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
635 			syncache_respond(sc, sch, m, TH_ACK);
636 		}
637 	} else {
638 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
639 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
640 			    "NXT %u (+WND %u), segment ignored\n",
641 			    s, __func__,
642 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
643 		TCPSTAT_INC(tcps_badrst);
644 	}
645 
646 done:
647 	if (s != NULL)
648 		free(s, M_TCPLOG);
649 	SCH_UNLOCK(sch);
650 }
651 
652 void
653 syncache_badack(struct in_conninfo *inc)
654 {
655 	struct syncache *sc;
656 	struct syncache_head *sch;
657 
658 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
659 	SCH_LOCK_ASSERT(sch);
660 	if (sc != NULL) {
661 		syncache_drop(sc, sch);
662 		TCPSTAT_INC(tcps_sc_badack);
663 	}
664 	SCH_UNLOCK(sch);
665 }
666 
667 void
668 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
669 {
670 	struct syncache *sc;
671 	struct syncache_head *sch;
672 
673 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
674 	SCH_LOCK_ASSERT(sch);
675 	if (sc == NULL)
676 		goto done;
677 
678 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
679 	if (ntohl(th_seq) != sc->sc_iss)
680 		goto done;
681 
682 	/*
683 	 * If we've rertransmitted 3 times and this is our second error,
684 	 * we remove the entry.  Otherwise, we allow it to continue on.
685 	 * This prevents us from incorrectly nuking an entry during a
686 	 * spurious network outage.
687 	 *
688 	 * See tcp_notify().
689 	 */
690 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
691 		sc->sc_flags |= SCF_UNREACH;
692 		goto done;
693 	}
694 	syncache_drop(sc, sch);
695 	TCPSTAT_INC(tcps_sc_unreach);
696 done:
697 	SCH_UNLOCK(sch);
698 }
699 
700 /*
701  * Build a new TCP socket structure from a syncache entry.
702  *
703  * On success return the newly created socket with its underlying inp locked.
704  */
705 static struct socket *
706 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
707 {
708 	struct tcp_function_block *blk;
709 	struct inpcb *inp = NULL;
710 	struct socket *so;
711 	struct tcpcb *tp;
712 	int error;
713 	char *s;
714 
715 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
716 
717 	/*
718 	 * Ok, create the full blown connection, and set things up
719 	 * as they would have been set up if we had created the
720 	 * connection when the SYN arrived.  If we can't create
721 	 * the connection, abort it.
722 	 */
723 	so = sonewconn(lso, 0);
724 	if (so == NULL) {
725 		/*
726 		 * Drop the connection; we will either send a RST or
727 		 * have the peer retransmit its SYN again after its
728 		 * RTO and try again.
729 		 */
730 		TCPSTAT_INC(tcps_listendrop);
731 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
732 			log(LOG_DEBUG, "%s; %s: Socket create failed "
733 			    "due to limits or memory shortage\n",
734 			    s, __func__);
735 			free(s, M_TCPLOG);
736 		}
737 		goto abort2;
738 	}
739 #ifdef MAC
740 	mac_socketpeer_set_from_mbuf(m, so);
741 #endif
742 
743 	inp = sotoinpcb(so);
744 	inp->inp_inc.inc_fibnum = so->so_fibnum;
745 	INP_WLOCK(inp);
746 	/*
747 	 * Exclusive pcbinfo lock is not required in syncache socket case even
748 	 * if two inpcb locks can be acquired simultaneously:
749 	 *  - the inpcb in LISTEN state,
750 	 *  - the newly created inp.
751 	 *
752 	 * In this case, an inp cannot be at same time in LISTEN state and
753 	 * just created by an accept() call.
754 	 */
755 	INP_HASH_WLOCK(&V_tcbinfo);
756 
757 	/* Insert new socket into PCB hash list. */
758 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
759 #ifdef INET6
760 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
761 		inp->inp_vflag &= ~INP_IPV4;
762 		inp->inp_vflag |= INP_IPV6;
763 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
764 	} else {
765 		inp->inp_vflag &= ~INP_IPV6;
766 		inp->inp_vflag |= INP_IPV4;
767 #endif
768 		inp->inp_laddr = sc->sc_inc.inc_laddr;
769 #ifdef INET6
770 	}
771 #endif
772 
773 	/*
774 	 * If there's an mbuf and it has a flowid, then let's initialise the
775 	 * inp with that particular flowid.
776 	 */
777 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
778 		inp->inp_flowid = m->m_pkthdr.flowid;
779 		inp->inp_flowtype = M_HASHTYPE_GET(m);
780 	}
781 
782 	/*
783 	 * Install in the reservation hash table for now, but don't yet
784 	 * install a connection group since the full 4-tuple isn't yet
785 	 * configured.
786 	 */
787 	inp->inp_lport = sc->sc_inc.inc_lport;
788 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
789 		/*
790 		 * Undo the assignments above if we failed to
791 		 * put the PCB on the hash lists.
792 		 */
793 #ifdef INET6
794 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
795 			inp->in6p_laddr = in6addr_any;
796 		else
797 #endif
798 			inp->inp_laddr.s_addr = INADDR_ANY;
799 		inp->inp_lport = 0;
800 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
801 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
802 			    "with error %i\n",
803 			    s, __func__, error);
804 			free(s, M_TCPLOG);
805 		}
806 		INP_HASH_WUNLOCK(&V_tcbinfo);
807 		goto abort;
808 	}
809 #ifdef INET6
810 	if (inp->inp_vflag & INP_IPV6PROTO) {
811 		struct inpcb *oinp = sotoinpcb(lso);
812 
813 		/*
814 		 * Inherit socket options from the listening socket.
815 		 * Note that in6p_inputopts are not (and should not be)
816 		 * copied, since it stores previously received options and is
817 		 * used to detect if each new option is different than the
818 		 * previous one and hence should be passed to a user.
819 		 * If we copied in6p_inputopts, a user would not be able to
820 		 * receive options just after calling the accept system call.
821 		 */
822 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
823 		if (oinp->in6p_outputopts)
824 			inp->in6p_outputopts =
825 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
826 	}
827 
828 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
829 		struct in6_addr laddr6;
830 		struct sockaddr_in6 sin6;
831 
832 		sin6.sin6_family = AF_INET6;
833 		sin6.sin6_len = sizeof(sin6);
834 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
835 		sin6.sin6_port = sc->sc_inc.inc_fport;
836 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
837 		laddr6 = inp->in6p_laddr;
838 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
839 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
840 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
841 		    thread0.td_ucred, m)) != 0) {
842 			inp->in6p_laddr = laddr6;
843 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
844 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
845 				    "with error %i\n",
846 				    s, __func__, error);
847 				free(s, M_TCPLOG);
848 			}
849 			INP_HASH_WUNLOCK(&V_tcbinfo);
850 			goto abort;
851 		}
852 		/* Override flowlabel from in6_pcbconnect. */
853 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
854 		inp->inp_flow |= sc->sc_flowlabel;
855 	}
856 #endif /* INET6 */
857 #if defined(INET) && defined(INET6)
858 	else
859 #endif
860 #ifdef INET
861 	{
862 		struct in_addr laddr;
863 		struct sockaddr_in sin;
864 
865 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
866 
867 		if (inp->inp_options == NULL) {
868 			inp->inp_options = sc->sc_ipopts;
869 			sc->sc_ipopts = NULL;
870 		}
871 
872 		sin.sin_family = AF_INET;
873 		sin.sin_len = sizeof(sin);
874 		sin.sin_addr = sc->sc_inc.inc_faddr;
875 		sin.sin_port = sc->sc_inc.inc_fport;
876 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
877 		laddr = inp->inp_laddr;
878 		if (inp->inp_laddr.s_addr == INADDR_ANY)
879 			inp->inp_laddr = sc->sc_inc.inc_laddr;
880 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
881 		    thread0.td_ucred, m)) != 0) {
882 			inp->inp_laddr = laddr;
883 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
884 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
885 				    "with error %i\n",
886 				    s, __func__, error);
887 				free(s, M_TCPLOG);
888 			}
889 			INP_HASH_WUNLOCK(&V_tcbinfo);
890 			goto abort;
891 		}
892 	}
893 #endif /* INET */
894 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
895 	/* Copy old policy into new socket's. */
896 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
897 		printf("syncache_socket: could not copy policy\n");
898 #endif
899 	INP_HASH_WUNLOCK(&V_tcbinfo);
900 	tp = intotcpcb(inp);
901 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
902 	tp->iss = sc->sc_iss;
903 	tp->irs = sc->sc_irs;
904 	tcp_rcvseqinit(tp);
905 	tcp_sendseqinit(tp);
906 	blk = sototcpcb(lso)->t_fb;
907 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
908 		/*
909 		 * Our parents t_fb was not the default,
910 		 * we need to release our ref on tp->t_fb and
911 		 * pickup one on the new entry.
912 		 */
913 		struct tcp_function_block *rblk;
914 
915 		rblk = find_and_ref_tcp_fb(blk);
916 		KASSERT(rblk != NULL,
917 		    ("cannot find blk %p out of syncache?", blk));
918 		if (tp->t_fb->tfb_tcp_fb_fini)
919 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
920 		refcount_release(&tp->t_fb->tfb_refcnt);
921 		tp->t_fb = rblk;
922 		/*
923 		 * XXXrrs this is quite dangerous, it is possible
924 		 * for the new function to fail to init. We also
925 		 * are not asking if the handoff_is_ok though at
926 		 * the very start thats probalbly ok.
927 		 */
928 		if (tp->t_fb->tfb_tcp_fb_init) {
929 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
930 		}
931 	}
932 	tp->snd_wl1 = sc->sc_irs;
933 	tp->snd_max = tp->iss + 1;
934 	tp->snd_nxt = tp->iss + 1;
935 	tp->rcv_up = sc->sc_irs + 1;
936 	tp->rcv_wnd = sc->sc_wnd;
937 	tp->rcv_adv += tp->rcv_wnd;
938 	tp->last_ack_sent = tp->rcv_nxt;
939 
940 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
941 	if (sc->sc_flags & SCF_NOOPT)
942 		tp->t_flags |= TF_NOOPT;
943 	else {
944 		if (sc->sc_flags & SCF_WINSCALE) {
945 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
946 			tp->snd_scale = sc->sc_requested_s_scale;
947 			tp->request_r_scale = sc->sc_requested_r_scale;
948 		}
949 		if (sc->sc_flags & SCF_TIMESTAMP) {
950 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
951 			tp->ts_recent = sc->sc_tsreflect;
952 			tp->ts_recent_age = tcp_ts_getticks();
953 			tp->ts_offset = sc->sc_tsoff;
954 		}
955 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
956 		if (sc->sc_flags & SCF_SIGNATURE)
957 			tp->t_flags |= TF_SIGNATURE;
958 #endif
959 		if (sc->sc_flags & SCF_SACK)
960 			tp->t_flags |= TF_SACK_PERMIT;
961 	}
962 
963 	if (sc->sc_flags & SCF_ECN)
964 		tp->t_flags |= TF_ECN_PERMIT;
965 
966 	/*
967 	 * Set up MSS and get cached values from tcp_hostcache.
968 	 * This might overwrite some of the defaults we just set.
969 	 */
970 	tcp_mss(tp, sc->sc_peer_mss);
971 
972 	/*
973 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
974 	 * limited to one segment in cc_conn_init().
975 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
976 	 */
977 	if (sc->sc_rxmits > 1)
978 		tp->snd_cwnd = 1;
979 
980 #ifdef TCP_OFFLOAD
981 	/*
982 	 * Allow a TOE driver to install its hooks.  Note that we hold the
983 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
984 	 * new connection before the TOE driver has done its thing.
985 	 */
986 	if (ADDED_BY_TOE(sc)) {
987 		struct toedev *tod = sc->sc_tod;
988 
989 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
990 	}
991 #endif
992 	/*
993 	 * Copy and activate timers.
994 	 */
995 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
996 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
997 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
998 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
999 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1000 
1001 	TCPSTAT_INC(tcps_accepts);
1002 	return (so);
1003 
1004 abort:
1005 	INP_WUNLOCK(inp);
1006 abort2:
1007 	if (so != NULL)
1008 		soabort(so);
1009 	return (NULL);
1010 }
1011 
1012 /*
1013  * This function gets called when we receive an ACK for a
1014  * socket in the LISTEN state.  We look up the connection
1015  * in the syncache, and if its there, we pull it out of
1016  * the cache and turn it into a full-blown connection in
1017  * the SYN-RECEIVED state.
1018  *
1019  * On syncache_socket() success the newly created socket
1020  * has its underlying inp locked.
1021  */
1022 int
1023 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1024     struct socket **lsop, struct mbuf *m)
1025 {
1026 	struct syncache *sc;
1027 	struct syncache_head *sch;
1028 	struct syncache scs;
1029 	char *s;
1030 
1031 	/*
1032 	 * Global TCP locks are held because we manipulate the PCB lists
1033 	 * and create a new socket.
1034 	 */
1035 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1036 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1037 	    ("%s: can handle only ACK", __func__));
1038 
1039 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1040 	SCH_LOCK_ASSERT(sch);
1041 
1042 #ifdef INVARIANTS
1043 	/*
1044 	 * Test code for syncookies comparing the syncache stored
1045 	 * values with the reconstructed values from the cookie.
1046 	 */
1047 	if (sc != NULL)
1048 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1049 #endif
1050 
1051 	if (sc == NULL) {
1052 		/*
1053 		 * There is no syncache entry, so see if this ACK is
1054 		 * a returning syncookie.  To do this, first:
1055 		 *  A. Check if syncookies are used in case of syncache
1056 		 *     overflows
1057 		 *  B. See if this socket has had a syncache entry dropped in
1058 		 *     the recent past. We don't want to accept a bogus
1059 		 *     syncookie if we've never received a SYN or accept it
1060 		 *     twice.
1061 		 *  C. check that the syncookie is valid.  If it is, then
1062 		 *     cobble up a fake syncache entry, and return.
1063 		 */
1064 		if (!V_tcp_syncookies) {
1065 			SCH_UNLOCK(sch);
1066 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1067 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1068 				    "segment rejected (syncookies disabled)\n",
1069 				    s, __func__);
1070 			goto failed;
1071 		}
1072 		if (!V_tcp_syncookiesonly &&
1073 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1074 			SCH_UNLOCK(sch);
1075 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1076 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1077 				    "segment rejected (no syncache entry)\n",
1078 				    s, __func__);
1079 			goto failed;
1080 		}
1081 		bzero(&scs, sizeof(scs));
1082 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1083 		SCH_UNLOCK(sch);
1084 		if (sc == NULL) {
1085 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1086 				log(LOG_DEBUG, "%s; %s: Segment failed "
1087 				    "SYNCOOKIE authentication, segment rejected "
1088 				    "(probably spoofed)\n", s, __func__);
1089 			goto failed;
1090 		}
1091 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1092 		/* If received ACK has MD5 signature, check it. */
1093 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1094 		    (!TCPMD5_ENABLED() ||
1095 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1096 			/* Drop the ACK. */
1097 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1098 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1099 				    "MD5 signature doesn't match.\n",
1100 				    s, __func__);
1101 				free(s, M_TCPLOG);
1102 			}
1103 			TCPSTAT_INC(tcps_sig_err_sigopt);
1104 			return (-1); /* Do not send RST */
1105 		}
1106 #endif /* TCP_SIGNATURE */
1107 	} else {
1108 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1109 		/*
1110 		 * If listening socket requested TCP digests, check that
1111 		 * received ACK has signature and it is correct.
1112 		 * If not, drop the ACK and leave sc entry in th cache,
1113 		 * because SYN was received with correct signature.
1114 		 */
1115 		if (sc->sc_flags & SCF_SIGNATURE) {
1116 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1117 				/* No signature */
1118 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1119 				SCH_UNLOCK(sch);
1120 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1121 					log(LOG_DEBUG, "%s; %s: Segment "
1122 					    "rejected, MD5 signature wasn't "
1123 					    "provided.\n", s, __func__);
1124 					free(s, M_TCPLOG);
1125 				}
1126 				return (-1); /* Do not send RST */
1127 			}
1128 			if (!TCPMD5_ENABLED() ||
1129 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1130 				/* Doesn't match or no SA */
1131 				SCH_UNLOCK(sch);
1132 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1133 					log(LOG_DEBUG, "%s; %s: Segment "
1134 					    "rejected, MD5 signature doesn't "
1135 					    "match.\n", s, __func__);
1136 					free(s, M_TCPLOG);
1137 				}
1138 				return (-1); /* Do not send RST */
1139 			}
1140 		}
1141 #endif /* TCP_SIGNATURE */
1142 		/*
1143 		 * Pull out the entry to unlock the bucket row.
1144 		 *
1145 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1146 		 * tcp_state_change().  The tcpcb is not existent at this
1147 		 * moment.  A new one will be allocated via syncache_socket->
1148 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1149 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1150 		 */
1151 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1152 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1153 		sch->sch_length--;
1154 #ifdef TCP_OFFLOAD
1155 		if (ADDED_BY_TOE(sc)) {
1156 			struct toedev *tod = sc->sc_tod;
1157 
1158 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1159 		}
1160 #endif
1161 		SCH_UNLOCK(sch);
1162 	}
1163 
1164 	/*
1165 	 * Segment validation:
1166 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1167 	 */
1168 	if (th->th_ack != sc->sc_iss + 1) {
1169 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1170 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1171 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1172 		goto failed;
1173 	}
1174 
1175 	/*
1176 	 * The SEQ must fall in the window starting at the received
1177 	 * initial receive sequence number + 1 (the SYN).
1178 	 */
1179 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1180 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1181 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1182 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1183 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1184 		goto failed;
1185 	}
1186 
1187 	/*
1188 	 * If timestamps were not negotiated during SYN/ACK they
1189 	 * must not appear on any segment during this session.
1190 	 */
1191 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1192 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1193 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1194 			    "segment rejected\n", s, __func__);
1195 		goto failed;
1196 	}
1197 
1198 	/*
1199 	 * If timestamps were negotiated during SYN/ACK they should
1200 	 * appear on every segment during this session.
1201 	 * XXXAO: This is only informal as there have been unverified
1202 	 * reports of non-compliants stacks.
1203 	 */
1204 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1205 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1206 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1207 			    "no action\n", s, __func__);
1208 			free(s, M_TCPLOG);
1209 			s = NULL;
1210 		}
1211 	}
1212 
1213 	*lsop = syncache_socket(sc, *lsop, m);
1214 
1215 	if (*lsop == NULL)
1216 		TCPSTAT_INC(tcps_sc_aborted);
1217 	else
1218 		TCPSTAT_INC(tcps_sc_completed);
1219 
1220 /* how do we find the inp for the new socket? */
1221 	if (sc != &scs)
1222 		syncache_free(sc);
1223 	return (1);
1224 failed:
1225 	if (sc != NULL && sc != &scs)
1226 		syncache_free(sc);
1227 	if (s != NULL)
1228 		free(s, M_TCPLOG);
1229 	*lsop = NULL;
1230 	return (0);
1231 }
1232 
1233 static void
1234 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1235     uint64_t response_cookie)
1236 {
1237 	struct inpcb *inp;
1238 	struct tcpcb *tp;
1239 	unsigned int *pending_counter;
1240 
1241 	/*
1242 	 * Global TCP locks are held because we manipulate the PCB lists
1243 	 * and create a new socket.
1244 	 */
1245 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1246 
1247 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1248 	*lsop = syncache_socket(sc, *lsop, m);
1249 	if (*lsop == NULL) {
1250 		TCPSTAT_INC(tcps_sc_aborted);
1251 		atomic_subtract_int(pending_counter, 1);
1252 	} else {
1253 		soisconnected(*lsop);
1254 		inp = sotoinpcb(*lsop);
1255 		tp = intotcpcb(inp);
1256 		tp->t_flags |= TF_FASTOPEN;
1257 		tp->t_tfo_cookie.server = response_cookie;
1258 		tp->snd_max = tp->iss;
1259 		tp->snd_nxt = tp->iss;
1260 		tp->t_tfo_pending = pending_counter;
1261 		TCPSTAT_INC(tcps_sc_completed);
1262 	}
1263 }
1264 
1265 /*
1266  * Given a LISTEN socket and an inbound SYN request, add
1267  * this to the syn cache, and send back a segment:
1268  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1269  * to the source.
1270  *
1271  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1272  * Doing so would require that we hold onto the data and deliver it
1273  * to the application.  However, if we are the target of a SYN-flood
1274  * DoS attack, an attacker could send data which would eventually
1275  * consume all available buffer space if it were ACKed.  By not ACKing
1276  * the data, we avoid this DoS scenario.
1277  *
1278  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1279  * cookie is processed and a new socket is created.  In this case, any data
1280  * accompanying the SYN will be queued to the socket by tcp_input() and will
1281  * be ACKed either when the application sends response data or the delayed
1282  * ACK timer expires, whichever comes first.
1283  */
1284 int
1285 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1286     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1287     void *todctx)
1288 {
1289 	struct tcpcb *tp;
1290 	struct socket *so;
1291 	struct syncache *sc = NULL;
1292 	struct syncache_head *sch;
1293 	struct mbuf *ipopts = NULL;
1294 	u_int ltflags;
1295 	int win, ip_ttl, ip_tos;
1296 	char *s;
1297 	int rv = 0;
1298 #ifdef INET6
1299 	int autoflowlabel = 0;
1300 #endif
1301 #ifdef MAC
1302 	struct label *maclabel;
1303 #endif
1304 	struct syncache scs;
1305 	struct ucred *cred;
1306 	uint64_t tfo_response_cookie;
1307 	unsigned int *tfo_pending = NULL;
1308 	int tfo_cookie_valid = 0;
1309 	int tfo_response_cookie_valid = 0;
1310 
1311 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1312 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1313 	    ("%s: unexpected tcp flags", __func__));
1314 
1315 	/*
1316 	 * Combine all so/tp operations very early to drop the INP lock as
1317 	 * soon as possible.
1318 	 */
1319 	so = *lsop;
1320 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1321 	tp = sototcpcb(so);
1322 	cred = crhold(so->so_cred);
1323 
1324 #ifdef INET6
1325 	if ((inc->inc_flags & INC_ISIPV6) &&
1326 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1327 		autoflowlabel = 1;
1328 #endif
1329 	ip_ttl = inp->inp_ip_ttl;
1330 	ip_tos = inp->inp_ip_tos;
1331 	win = so->sol_sbrcv_hiwat;
1332 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1333 
1334 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1335 	    (tp->t_tfo_pending != NULL) &&
1336 	    (to->to_flags & TOF_FASTOPEN)) {
1337 		/*
1338 		 * Limit the number of pending TFO connections to
1339 		 * approximately half of the queue limit.  This prevents TFO
1340 		 * SYN floods from starving the service by filling the
1341 		 * listen queue with bogus TFO connections.
1342 		 */
1343 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1344 		    (so->sol_qlimit / 2)) {
1345 			int result;
1346 
1347 			result = tcp_fastopen_check_cookie(inc,
1348 			    to->to_tfo_cookie, to->to_tfo_len,
1349 			    &tfo_response_cookie);
1350 			tfo_cookie_valid = (result > 0);
1351 			tfo_response_cookie_valid = (result >= 0);
1352 		}
1353 
1354 		/*
1355 		 * Remember the TFO pending counter as it will have to be
1356 		 * decremented below if we don't make it to syncache_tfo_expand().
1357 		 */
1358 		tfo_pending = tp->t_tfo_pending;
1359 	}
1360 
1361 	/* By the time we drop the lock these should no longer be used. */
1362 	so = NULL;
1363 	tp = NULL;
1364 
1365 #ifdef MAC
1366 	if (mac_syncache_init(&maclabel) != 0) {
1367 		INP_WUNLOCK(inp);
1368 		goto done;
1369 	} else
1370 		mac_syncache_create(maclabel, inp);
1371 #endif
1372 	if (!tfo_cookie_valid)
1373 		INP_WUNLOCK(inp);
1374 
1375 	/*
1376 	 * Remember the IP options, if any.
1377 	 */
1378 #ifdef INET6
1379 	if (!(inc->inc_flags & INC_ISIPV6))
1380 #endif
1381 #ifdef INET
1382 		ipopts = (m) ? ip_srcroute(m) : NULL;
1383 #else
1384 		ipopts = NULL;
1385 #endif
1386 
1387 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1388 	/*
1389 	 * If listening socket requested TCP digests, check that received
1390 	 * SYN has signature and it is correct. If signature doesn't match
1391 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1392 	 */
1393 	if (ltflags & TF_SIGNATURE) {
1394 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1395 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1396 			goto done;
1397 		}
1398 		if (!TCPMD5_ENABLED() ||
1399 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1400 			goto done;
1401 	}
1402 #endif	/* TCP_SIGNATURE */
1403 	/*
1404 	 * See if we already have an entry for this connection.
1405 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1406 	 *
1407 	 * XXX: should the syncache be re-initialized with the contents
1408 	 * of the new SYN here (which may have different options?)
1409 	 *
1410 	 * XXX: We do not check the sequence number to see if this is a
1411 	 * real retransmit or a new connection attempt.  The question is
1412 	 * how to handle such a case; either ignore it as spoofed, or
1413 	 * drop the current entry and create a new one?
1414 	 */
1415 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1416 	SCH_LOCK_ASSERT(sch);
1417 	if (sc != NULL) {
1418 		if (tfo_cookie_valid)
1419 			INP_WUNLOCK(inp);
1420 		TCPSTAT_INC(tcps_sc_dupsyn);
1421 		if (ipopts) {
1422 			/*
1423 			 * If we were remembering a previous source route,
1424 			 * forget it and use the new one we've been given.
1425 			 */
1426 			if (sc->sc_ipopts)
1427 				(void) m_free(sc->sc_ipopts);
1428 			sc->sc_ipopts = ipopts;
1429 		}
1430 		/*
1431 		 * Update timestamp if present.
1432 		 */
1433 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1434 			sc->sc_tsreflect = to->to_tsval;
1435 		else
1436 			sc->sc_flags &= ~SCF_TIMESTAMP;
1437 #ifdef MAC
1438 		/*
1439 		 * Since we have already unconditionally allocated label
1440 		 * storage, free it up.  The syncache entry will already
1441 		 * have an initialized label we can use.
1442 		 */
1443 		mac_syncache_destroy(&maclabel);
1444 #endif
1445 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1446 		/* Retransmit SYN|ACK and reset retransmit count. */
1447 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1448 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1449 			    "resetting timer and retransmitting SYN|ACK\n",
1450 			    s, __func__);
1451 			free(s, M_TCPLOG);
1452 		}
1453 		if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1454 			sc->sc_rxmits = 0;
1455 			syncache_timeout(sc, sch, 1);
1456 			TCPSTAT_INC(tcps_sndacks);
1457 			TCPSTAT_INC(tcps_sndtotal);
1458 		}
1459 		SCH_UNLOCK(sch);
1460 		goto donenoprobe;
1461 	}
1462 
1463 	if (tfo_cookie_valid) {
1464 		bzero(&scs, sizeof(scs));
1465 		sc = &scs;
1466 		goto skip_alloc;
1467 	}
1468 
1469 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1470 	if (sc == NULL) {
1471 		/*
1472 		 * The zone allocator couldn't provide more entries.
1473 		 * Treat this as if the cache was full; drop the oldest
1474 		 * entry and insert the new one.
1475 		 */
1476 		TCPSTAT_INC(tcps_sc_zonefail);
1477 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1478 			sch->sch_last_overflow = time_uptime;
1479 			syncache_drop(sc, sch);
1480 		}
1481 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1482 		if (sc == NULL) {
1483 			if (V_tcp_syncookies) {
1484 				bzero(&scs, sizeof(scs));
1485 				sc = &scs;
1486 			} else {
1487 				SCH_UNLOCK(sch);
1488 				if (ipopts)
1489 					(void) m_free(ipopts);
1490 				goto done;
1491 			}
1492 		}
1493 	}
1494 
1495 skip_alloc:
1496 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1497 		sc->sc_tfo_cookie = &tfo_response_cookie;
1498 
1499 	/*
1500 	 * Fill in the syncache values.
1501 	 */
1502 #ifdef MAC
1503 	sc->sc_label = maclabel;
1504 #endif
1505 	sc->sc_cred = cred;
1506 	cred = NULL;
1507 	sc->sc_ipopts = ipopts;
1508 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1509 #ifdef INET6
1510 	if (!(inc->inc_flags & INC_ISIPV6))
1511 #endif
1512 	{
1513 		sc->sc_ip_tos = ip_tos;
1514 		sc->sc_ip_ttl = ip_ttl;
1515 	}
1516 #ifdef TCP_OFFLOAD
1517 	sc->sc_tod = tod;
1518 	sc->sc_todctx = todctx;
1519 #endif
1520 	sc->sc_irs = th->th_seq;
1521 	sc->sc_iss = arc4random();
1522 	sc->sc_flags = 0;
1523 	sc->sc_flowlabel = 0;
1524 
1525 	/*
1526 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1527 	 * win was derived from socket earlier in the function.
1528 	 */
1529 	win = imax(win, 0);
1530 	win = imin(win, TCP_MAXWIN);
1531 	sc->sc_wnd = win;
1532 
1533 	if (V_tcp_do_rfc1323) {
1534 		/*
1535 		 * A timestamp received in a SYN makes
1536 		 * it ok to send timestamp requests and replies.
1537 		 */
1538 		if (to->to_flags & TOF_TS) {
1539 			sc->sc_tsreflect = to->to_tsval;
1540 			sc->sc_flags |= SCF_TIMESTAMP;
1541 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1542 		}
1543 		if (to->to_flags & TOF_SCALE) {
1544 			int wscale = 0;
1545 
1546 			/*
1547 			 * Pick the smallest possible scaling factor that
1548 			 * will still allow us to scale up to sb_max, aka
1549 			 * kern.ipc.maxsockbuf.
1550 			 *
1551 			 * We do this because there are broken firewalls that
1552 			 * will corrupt the window scale option, leading to
1553 			 * the other endpoint believing that our advertised
1554 			 * window is unscaled.  At scale factors larger than
1555 			 * 5 the unscaled window will drop below 1500 bytes,
1556 			 * leading to serious problems when traversing these
1557 			 * broken firewalls.
1558 			 *
1559 			 * With the default maxsockbuf of 256K, a scale factor
1560 			 * of 3 will be chosen by this algorithm.  Those who
1561 			 * choose a larger maxsockbuf should watch out
1562 			 * for the compatibility problems mentioned above.
1563 			 *
1564 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1565 			 * or <SYN,ACK>) segment itself is never scaled.
1566 			 */
1567 			while (wscale < TCP_MAX_WINSHIFT &&
1568 			    (TCP_MAXWIN << wscale) < sb_max)
1569 				wscale++;
1570 			sc->sc_requested_r_scale = wscale;
1571 			sc->sc_requested_s_scale = to->to_wscale;
1572 			sc->sc_flags |= SCF_WINSCALE;
1573 		}
1574 	}
1575 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1576 	/*
1577 	 * If listening socket requested TCP digests, flag this in the
1578 	 * syncache so that syncache_respond() will do the right thing
1579 	 * with the SYN+ACK.
1580 	 */
1581 	if (ltflags & TF_SIGNATURE)
1582 		sc->sc_flags |= SCF_SIGNATURE;
1583 #endif	/* TCP_SIGNATURE */
1584 	if (to->to_flags & TOF_SACKPERM)
1585 		sc->sc_flags |= SCF_SACK;
1586 	if (to->to_flags & TOF_MSS)
1587 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1588 	if (ltflags & TF_NOOPT)
1589 		sc->sc_flags |= SCF_NOOPT;
1590 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1591 		sc->sc_flags |= SCF_ECN;
1592 
1593 	if (V_tcp_syncookies)
1594 		sc->sc_iss = syncookie_generate(sch, sc);
1595 #ifdef INET6
1596 	if (autoflowlabel) {
1597 		if (V_tcp_syncookies)
1598 			sc->sc_flowlabel = sc->sc_iss;
1599 		else
1600 			sc->sc_flowlabel = ip6_randomflowlabel();
1601 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1602 	}
1603 #endif
1604 	SCH_UNLOCK(sch);
1605 
1606 	if (tfo_cookie_valid) {
1607 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1608 		/* INP_WUNLOCK(inp) will be performed by the caller */
1609 		rv = 1;
1610 		goto tfo_expanded;
1611 	}
1612 
1613 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1614 	/*
1615 	 * Do a standard 3-way handshake.
1616 	 */
1617 	if (syncache_respond(sc, sch, m, TH_SYN|TH_ACK) == 0) {
1618 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1619 			syncache_free(sc);
1620 		else if (sc != &scs)
1621 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1622 		TCPSTAT_INC(tcps_sndacks);
1623 		TCPSTAT_INC(tcps_sndtotal);
1624 	} else {
1625 		if (sc != &scs)
1626 			syncache_free(sc);
1627 		TCPSTAT_INC(tcps_sc_dropped);
1628 	}
1629 	goto donenoprobe;
1630 
1631 done:
1632 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1633 donenoprobe:
1634 	if (m) {
1635 		*lsop = NULL;
1636 		m_freem(m);
1637 	}
1638 	/*
1639 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1640 	 * result in a new socket was processed and the associated pending
1641 	 * counter has not yet been decremented.  All such TFO processing paths
1642 	 * transit this point.
1643 	 */
1644 	if (tfo_pending != NULL)
1645 		tcp_fastopen_decrement_counter(tfo_pending);
1646 
1647 tfo_expanded:
1648 	if (cred != NULL)
1649 		crfree(cred);
1650 #ifdef MAC
1651 	if (sc == &scs)
1652 		mac_syncache_destroy(&maclabel);
1653 #endif
1654 	return (rv);
1655 }
1656 
1657 /*
1658  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1659  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1660  */
1661 static int
1662 syncache_respond(struct syncache *sc, struct syncache_head *sch,
1663     const struct mbuf *m0, int flags)
1664 {
1665 	struct ip *ip = NULL;
1666 	struct mbuf *m;
1667 	struct tcphdr *th = NULL;
1668 	int optlen, error = 0;	/* Make compiler happy */
1669 	u_int16_t hlen, tlen, mssopt;
1670 	struct tcpopt to;
1671 #ifdef INET6
1672 	struct ip6_hdr *ip6 = NULL;
1673 #endif
1674 	hlen =
1675 #ifdef INET6
1676 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1677 #endif
1678 		sizeof(struct ip);
1679 	tlen = hlen + sizeof(struct tcphdr);
1680 
1681 	/* Determine MSS we advertize to other end of connection. */
1682 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1683 
1684 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1685 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1686 	    ("syncache: mbuf too small"));
1687 
1688 	/* Create the IP+TCP header from scratch. */
1689 	m = m_gethdr(M_NOWAIT, MT_DATA);
1690 	if (m == NULL)
1691 		return (ENOBUFS);
1692 #ifdef MAC
1693 	mac_syncache_create_mbuf(sc->sc_label, m);
1694 #endif
1695 	m->m_data += max_linkhdr;
1696 	m->m_len = tlen;
1697 	m->m_pkthdr.len = tlen;
1698 	m->m_pkthdr.rcvif = NULL;
1699 
1700 #ifdef INET6
1701 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1702 		ip6 = mtod(m, struct ip6_hdr *);
1703 		ip6->ip6_vfc = IPV6_VERSION;
1704 		ip6->ip6_nxt = IPPROTO_TCP;
1705 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1706 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1707 		ip6->ip6_plen = htons(tlen - hlen);
1708 		/* ip6_hlim is set after checksum */
1709 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1710 		ip6->ip6_flow |= sc->sc_flowlabel;
1711 
1712 		th = (struct tcphdr *)(ip6 + 1);
1713 	}
1714 #endif
1715 #if defined(INET6) && defined(INET)
1716 	else
1717 #endif
1718 #ifdef INET
1719 	{
1720 		ip = mtod(m, struct ip *);
1721 		ip->ip_v = IPVERSION;
1722 		ip->ip_hl = sizeof(struct ip) >> 2;
1723 		ip->ip_len = htons(tlen);
1724 		ip->ip_id = 0;
1725 		ip->ip_off = 0;
1726 		ip->ip_sum = 0;
1727 		ip->ip_p = IPPROTO_TCP;
1728 		ip->ip_src = sc->sc_inc.inc_laddr;
1729 		ip->ip_dst = sc->sc_inc.inc_faddr;
1730 		ip->ip_ttl = sc->sc_ip_ttl;
1731 		ip->ip_tos = sc->sc_ip_tos;
1732 
1733 		/*
1734 		 * See if we should do MTU discovery.  Route lookups are
1735 		 * expensive, so we will only unset the DF bit if:
1736 		 *
1737 		 *	1) path_mtu_discovery is disabled
1738 		 *	2) the SCF_UNREACH flag has been set
1739 		 */
1740 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1741 		       ip->ip_off |= htons(IP_DF);
1742 
1743 		th = (struct tcphdr *)(ip + 1);
1744 	}
1745 #endif /* INET */
1746 	th->th_sport = sc->sc_inc.inc_lport;
1747 	th->th_dport = sc->sc_inc.inc_fport;
1748 
1749 	if (flags & TH_SYN)
1750 		th->th_seq = htonl(sc->sc_iss);
1751 	else
1752 		th->th_seq = htonl(sc->sc_iss + 1);
1753 	th->th_ack = htonl(sc->sc_irs + 1);
1754 	th->th_off = sizeof(struct tcphdr) >> 2;
1755 	th->th_x2 = 0;
1756 	th->th_flags = flags;
1757 	th->th_win = htons(sc->sc_wnd);
1758 	th->th_urp = 0;
1759 
1760 	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1761 		th->th_flags |= TH_ECE;
1762 		TCPSTAT_INC(tcps_ecn_shs);
1763 	}
1764 
1765 	/* Tack on the TCP options. */
1766 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1767 		to.to_flags = 0;
1768 
1769 		if (flags & TH_SYN) {
1770 			to.to_mss = mssopt;
1771 			to.to_flags = TOF_MSS;
1772 			if (sc->sc_flags & SCF_WINSCALE) {
1773 				to.to_wscale = sc->sc_requested_r_scale;
1774 				to.to_flags |= TOF_SCALE;
1775 			}
1776 			if (sc->sc_flags & SCF_SACK)
1777 				to.to_flags |= TOF_SACKPERM;
1778 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1779 			if (sc->sc_flags & SCF_SIGNATURE)
1780 				to.to_flags |= TOF_SIGNATURE;
1781 #endif
1782 			if (sc->sc_tfo_cookie) {
1783 				to.to_flags |= TOF_FASTOPEN;
1784 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1785 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1786 				/* don't send cookie again when retransmitting response */
1787 				sc->sc_tfo_cookie = NULL;
1788 			}
1789 		}
1790 		if (sc->sc_flags & SCF_TIMESTAMP) {
1791 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1792 			to.to_tsecr = sc->sc_tsreflect;
1793 			to.to_flags |= TOF_TS;
1794 		}
1795 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1796 
1797 		/* Adjust headers by option size. */
1798 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1799 		m->m_len += optlen;
1800 		m->m_pkthdr.len += optlen;
1801 #ifdef INET6
1802 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1803 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1804 		else
1805 #endif
1806 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1807 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1808 		if (sc->sc_flags & SCF_SIGNATURE) {
1809 			KASSERT(to.to_flags & TOF_SIGNATURE,
1810 			    ("tcp_addoptions() didn't set tcp_signature"));
1811 
1812 			/* NOTE: to.to_signature is inside of mbuf */
1813 			if (!TCPMD5_ENABLED() ||
1814 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1815 				m_freem(m);
1816 				return (EACCES);
1817 			}
1818 		}
1819 #endif
1820 	} else
1821 		optlen = 0;
1822 
1823 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1824 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1825 	/*
1826 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1827 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1828 	 * to SYN|ACK due to lack of inp here.
1829 	 */
1830 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1831 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1832 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1833 	}
1834 #ifdef INET6
1835 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1836 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1837 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1838 		    IPPROTO_TCP, 0);
1839 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1840 #ifdef TCP_OFFLOAD
1841 		if (ADDED_BY_TOE(sc)) {
1842 			struct toedev *tod = sc->sc_tod;
1843 
1844 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1845 
1846 			return (error);
1847 		}
1848 #endif
1849 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1850 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1851 	}
1852 #endif
1853 #if defined(INET6) && defined(INET)
1854 	else
1855 #endif
1856 #ifdef INET
1857 	{
1858 		m->m_pkthdr.csum_flags = CSUM_TCP;
1859 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1860 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1861 #ifdef TCP_OFFLOAD
1862 		if (ADDED_BY_TOE(sc)) {
1863 			struct toedev *tod = sc->sc_tod;
1864 
1865 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1866 
1867 			return (error);
1868 		}
1869 #endif
1870 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1871 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1872 	}
1873 #endif
1874 	return (error);
1875 }
1876 
1877 /*
1878  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1879  * that exceed the capacity of the syncache by avoiding the storage of any
1880  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1881  * attacks where the attacker does not have access to our responses.
1882  *
1883  * Syncookies encode and include all necessary information about the
1884  * connection setup within the SYN|ACK that we send back.  That way we
1885  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1886  * (if ever).  Normally the syncache and syncookies are running in parallel
1887  * with the latter taking over when the former is exhausted.  When matching
1888  * syncache entry is found the syncookie is ignored.
1889  *
1890  * The only reliable information persisting the 3WHS is our initial sequence
1891  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1892  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1893  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1894  * returns and signifies a legitimate connection if it matches the ACK.
1895  *
1896  * The available space of 32 bits to store the hash and to encode the SYN
1897  * option information is very tight and we should have at least 24 bits for
1898  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1899  *
1900  * SYN option information we have to encode to fully restore a connection:
1901  * MSS: is imporant to chose an optimal segment size to avoid IP level
1902  *   fragmentation along the path.  The common MSS values can be encoded
1903  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1904  *   in the table leading to a slight increase in packetization overhead.
1905  * WSCALE: is necessary to allow large windows to be used for high delay-
1906  *   bandwidth product links.  Not scaling the window when it was initially
1907  *   negotiated is bad for performance as lack of scaling further decreases
1908  *   the apparent available send window.  We only need to encode the WSCALE
1909  *   we received from the remote end.  Our end can be recalculated at any
1910  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1911  *   Uncommon values are captured by the next lower value in the table
1912  *   making us under-estimate the available window size halving our
1913  *   theoretically possible maximum throughput for that connection.
1914  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1915  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1916  *   that are included in all segments on a connection.  We enable them when
1917  *   the ACK has them.
1918  *
1919  * Security of syncookies and attack vectors:
1920  *
1921  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1922  * together with the gloabl secret to make it unique per connection attempt.
1923  * Thus any change of any of those parameters results in a different MAC output
1924  * in an unpredictable way unless a collision is encountered.  24 bits of the
1925  * MAC are embedded into the ISS.
1926  *
1927  * To prevent replay attacks two rotating global secrets are updated with a
1928  * new random value every 15 seconds.  The life-time of a syncookie is thus
1929  * 15-30 seconds.
1930  *
1931  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1932  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1933  * text attack by varying and testing the all parameters under his control.
1934  * The strength depends on the size and randomness of the secret, and the
1935  * cryptographic security of the MAC function.  Due to the constant updating
1936  * of the secret the attacker has at most 29.999 seconds to find the secret
1937  * and launch spoofed connections.  After that he has to start all over again.
1938  *
1939  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1940  * size an average of 4,823 attempts are required for a 50% chance of success
1941  * to spoof a single syncookie (birthday collision paradox).  However the
1942  * attacker is blind and doesn't know if one of his attempts succeeded unless
1943  * he has a side channel to interfere success from.  A single connection setup
1944  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1945  * This many attempts are required for each one blind spoofed connection.  For
1946  * every additional spoofed connection he has to launch another N attempts.
1947  * Thus for a sustained rate 100 spoofed connections per second approximately
1948  * 1,800,000 packets per second would have to be sent.
1949  *
1950  * NB: The MAC function should be fast so that it doesn't become a CPU
1951  * exhaustion attack vector itself.
1952  *
1953  * References:
1954  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1955  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1956  *   http://cr.yp.to/syncookies.html    (overview)
1957  *   http://cr.yp.to/syncookies/archive (details)
1958  *
1959  *
1960  * Schematic construction of a syncookie enabled Initial Sequence Number:
1961  *  0        1         2         3
1962  *  12345678901234567890123456789012
1963  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1964  *
1965  *  x 24 MAC (truncated)
1966  *  W  3 Send Window Scale index
1967  *  M  3 MSS index
1968  *  S  1 SACK permitted
1969  *  P  1 Odd/even secret
1970  */
1971 
1972 /*
1973  * Distribution and probability of certain MSS values.  Those in between are
1974  * rounded down to the next lower one.
1975  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1976  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1977  */
1978 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1979 
1980 /*
1981  * Distribution and probability of certain WSCALE values.  We have to map the
1982  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1983  * bits based on prevalence of certain values.  Where we don't have an exact
1984  * match for are rounded down to the next lower one letting us under-estimate
1985  * the true available window.  At the moment this would happen only for the
1986  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1987  * and window size).  The absence of the WSCALE option (no scaling in either
1988  * direction) is encoded with index zero.
1989  * [WSCALE values histograms, Allman, 2012]
1990  *                            X 10 10 35  5  6 14 10%   by host
1991  *                            X 11  4  5  5 18 49  3%   by connections
1992  */
1993 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1994 
1995 /*
1996  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1997  * and good cryptographic properties.
1998  */
1999 static uint32_t
2000 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2001     uint8_t *secbits, uintptr_t secmod)
2002 {
2003 	SIPHASH_CTX ctx;
2004 	uint32_t siphash[2];
2005 
2006 	SipHash24_Init(&ctx);
2007 	SipHash_SetKey(&ctx, secbits);
2008 	switch (inc->inc_flags & INC_ISIPV6) {
2009 #ifdef INET
2010 	case 0:
2011 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2012 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2013 		break;
2014 #endif
2015 #ifdef INET6
2016 	case INC_ISIPV6:
2017 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2018 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2019 		break;
2020 #endif
2021 	}
2022 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2023 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2024 	SipHash_Update(&ctx, &irs, sizeof(irs));
2025 	SipHash_Update(&ctx, &flags, sizeof(flags));
2026 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2027 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2028 
2029 	return (siphash[0] ^ siphash[1]);
2030 }
2031 
2032 static tcp_seq
2033 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2034 {
2035 	u_int i, secbit, wscale;
2036 	uint32_t iss, hash;
2037 	uint8_t *secbits;
2038 	union syncookie cookie;
2039 
2040 	SCH_LOCK_ASSERT(sch);
2041 
2042 	cookie.cookie = 0;
2043 
2044 	/* Map our computed MSS into the 3-bit index. */
2045 	for (i = nitems(tcp_sc_msstab) - 1;
2046 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2047 	     i--)
2048 		;
2049 	cookie.flags.mss_idx = i;
2050 
2051 	/*
2052 	 * Map the send window scale into the 3-bit index but only if
2053 	 * the wscale option was received.
2054 	 */
2055 	if (sc->sc_flags & SCF_WINSCALE) {
2056 		wscale = sc->sc_requested_s_scale;
2057 		for (i = nitems(tcp_sc_wstab) - 1;
2058 		    tcp_sc_wstab[i] > wscale && i > 0;
2059 		     i--)
2060 			;
2061 		cookie.flags.wscale_idx = i;
2062 	}
2063 
2064 	/* Can we do SACK? */
2065 	if (sc->sc_flags & SCF_SACK)
2066 		cookie.flags.sack_ok = 1;
2067 
2068 	/* Which of the two secrets to use. */
2069 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2070 	cookie.flags.odd_even = secbit;
2071 
2072 	secbits = sch->sch_sc->secret.key[secbit];
2073 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2074 	    (uintptr_t)sch);
2075 
2076 	/*
2077 	 * Put the flags into the hash and XOR them to get better ISS number
2078 	 * variance.  This doesn't enhance the cryptographic strength and is
2079 	 * done to prevent the 8 cookie bits from showing up directly on the
2080 	 * wire.
2081 	 */
2082 	iss = hash & ~0xff;
2083 	iss |= cookie.cookie ^ (hash >> 24);
2084 
2085 	TCPSTAT_INC(tcps_sc_sendcookie);
2086 	return (iss);
2087 }
2088 
2089 static struct syncache *
2090 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2091     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2092     struct socket *lso)
2093 {
2094 	uint32_t hash;
2095 	uint8_t *secbits;
2096 	tcp_seq ack, seq;
2097 	int wnd, wscale = 0;
2098 	union syncookie cookie;
2099 
2100 	SCH_LOCK_ASSERT(sch);
2101 
2102 	/*
2103 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2104 	 * advances.
2105 	 */
2106 	ack = th->th_ack - 1;
2107 	seq = th->th_seq - 1;
2108 
2109 	/*
2110 	 * Unpack the flags containing enough information to restore the
2111 	 * connection.
2112 	 */
2113 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2114 
2115 	/* Which of the two secrets to use. */
2116 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2117 
2118 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2119 
2120 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2121 	if ((ack & ~0xff) != (hash & ~0xff))
2122 		return (NULL);
2123 
2124 	/* Fill in the syncache values. */
2125 	sc->sc_flags = 0;
2126 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2127 	sc->sc_ipopts = NULL;
2128 
2129 	sc->sc_irs = seq;
2130 	sc->sc_iss = ack;
2131 
2132 	switch (inc->inc_flags & INC_ISIPV6) {
2133 #ifdef INET
2134 	case 0:
2135 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2136 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2137 		break;
2138 #endif
2139 #ifdef INET6
2140 	case INC_ISIPV6:
2141 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2142 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2143 		break;
2144 #endif
2145 	}
2146 
2147 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2148 
2149 	/* We can simply recompute receive window scale we sent earlier. */
2150 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2151 		wscale++;
2152 
2153 	/* Only use wscale if it was enabled in the orignal SYN. */
2154 	if (cookie.flags.wscale_idx > 0) {
2155 		sc->sc_requested_r_scale = wscale;
2156 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2157 		sc->sc_flags |= SCF_WINSCALE;
2158 	}
2159 
2160 	wnd = lso->sol_sbrcv_hiwat;
2161 	wnd = imax(wnd, 0);
2162 	wnd = imin(wnd, TCP_MAXWIN);
2163 	sc->sc_wnd = wnd;
2164 
2165 	if (cookie.flags.sack_ok)
2166 		sc->sc_flags |= SCF_SACK;
2167 
2168 	if (to->to_flags & TOF_TS) {
2169 		sc->sc_flags |= SCF_TIMESTAMP;
2170 		sc->sc_tsreflect = to->to_tsval;
2171 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2172 	}
2173 
2174 	if (to->to_flags & TOF_SIGNATURE)
2175 		sc->sc_flags |= SCF_SIGNATURE;
2176 
2177 	sc->sc_rxmits = 0;
2178 
2179 	TCPSTAT_INC(tcps_sc_recvcookie);
2180 	return (sc);
2181 }
2182 
2183 #ifdef INVARIANTS
2184 static int
2185 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2186     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2187     struct socket *lso)
2188 {
2189 	struct syncache scs, *scx;
2190 	char *s;
2191 
2192 	bzero(&scs, sizeof(scs));
2193 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2194 
2195 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2196 		return (0);
2197 
2198 	if (scx != NULL) {
2199 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2200 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2201 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2202 
2203 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2204 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2205 			    s, __func__, sc->sc_requested_r_scale,
2206 			    scx->sc_requested_r_scale);
2207 
2208 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2209 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2210 			    s, __func__, sc->sc_requested_s_scale,
2211 			    scx->sc_requested_s_scale);
2212 
2213 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2214 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2215 	}
2216 
2217 	if (s != NULL)
2218 		free(s, M_TCPLOG);
2219 	return (0);
2220 }
2221 #endif /* INVARIANTS */
2222 
2223 static void
2224 syncookie_reseed(void *arg)
2225 {
2226 	struct tcp_syncache *sc = arg;
2227 	uint8_t *secbits;
2228 	int secbit;
2229 
2230 	/*
2231 	 * Reseeding the secret doesn't have to be protected by a lock.
2232 	 * It only must be ensured that the new random values are visible
2233 	 * to all CPUs in a SMP environment.  The atomic with release
2234 	 * semantics ensures that.
2235 	 */
2236 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2237 	secbits = sc->secret.key[secbit];
2238 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2239 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2240 
2241 	/* Reschedule ourself. */
2242 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2243 }
2244 
2245 /*
2246  * Exports the syncache entries to userland so that netstat can display
2247  * them alongside the other sockets.  This function is intended to be
2248  * called only from tcp_pcblist.
2249  *
2250  * Due to concurrency on an active system, the number of pcbs exported
2251  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2252  * amount of space the caller allocated for this function to use.
2253  */
2254 int
2255 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2256 {
2257 	struct xtcpcb xt;
2258 	struct syncache *sc;
2259 	struct syncache_head *sch;
2260 	int count, error, i;
2261 
2262 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2263 		sch = &V_tcp_syncache.hashbase[i];
2264 		SCH_LOCK(sch);
2265 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2266 			if (count >= max_pcbs) {
2267 				SCH_UNLOCK(sch);
2268 				goto exit;
2269 			}
2270 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2271 				continue;
2272 			bzero(&xt, sizeof(xt));
2273 			xt.xt_len = sizeof(xt);
2274 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2275 				xt.xt_inp.inp_vflag = INP_IPV6;
2276 			else
2277 				xt.xt_inp.inp_vflag = INP_IPV4;
2278 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2279 			    sizeof (struct in_conninfo));
2280 			xt.t_state = TCPS_SYN_RECEIVED;
2281 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2282 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2283 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2284 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2285 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2286 			if (error) {
2287 				SCH_UNLOCK(sch);
2288 				goto exit;
2289 			}
2290 			count++;
2291 		}
2292 		SCH_UNLOCK(sch);
2293 	}
2294 exit:
2295 	*pcbs_exported = count;
2296 	return error;
2297 }
2298