xref: /freebsd/sys/netinet/tcp_syncache.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/md5.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_options.h>
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/in6_pcb.h>
76 #endif
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/tcp_syncache.h>
83 #include <netinet/tcp_offload.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 
88 #ifdef IPSEC
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 #include <netipsec/key.h>
94 #endif /*IPSEC*/
95 
96 #include <machine/in_cksum.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 static VNET_DEFINE(int, tcp_syncookies) = 1;
101 #define	V_tcp_syncookies		VNET(tcp_syncookies)
102 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
103     &VNET_NAME(tcp_syncookies), 0,
104     "Use TCP SYN cookies if the syncache overflows");
105 
106 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
107 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
108 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookiesonly), 0,
110     "Use only TCP SYN cookies");
111 
112 #ifdef TCP_OFFLOAD_DISABLE
113 #define TOEPCB_ISSET(sc) (0)
114 #else
115 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
116 #endif
117 
118 static void	 syncache_drop(struct syncache *, struct syncache_head *);
119 static void	 syncache_free(struct syncache *);
120 static void	 syncache_insert(struct syncache *, struct syncache_head *);
121 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
122 static int	 syncache_respond(struct syncache *);
123 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
124 		    struct mbuf *m);
125 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
126 		    int docallout);
127 static void	 syncache_timer(void *);
128 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
129 		    u_int32_t *);
130 static struct syncache
131 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
132 		    struct syncache *, struct tcpopt *, struct tcphdr *,
133 		    struct socket *);
134 
135 /*
136  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
137  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
138  * the odds are that the user has given up attempting to connect by then.
139  */
140 #define SYNCACHE_MAXREXMTS		3
141 
142 /* Arbitrary values */
143 #define TCP_SYNCACHE_HASHSIZE		512
144 #define TCP_SYNCACHE_BUCKETLIMIT	30
145 
146 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
147 #define	V_tcp_syncache			VNET(tcp_syncache)
148 
149 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
150 
151 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
152     &VNET_NAME(tcp_syncache.bucket_limit), 0,
153     "Per-bucket hash limit for syncache");
154 
155 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
156     &VNET_NAME(tcp_syncache.cache_limit), 0,
157     "Overall entry limit for syncache");
158 
159 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160     &VNET_NAME(tcp_syncache.cache_count), 0,
161     "Current number of entries in syncache");
162 
163 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
164     &VNET_NAME(tcp_syncache.hashsize), 0,
165     "Size of TCP syncache hashtable");
166 
167 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
168     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
169     "Limit on SYN/ACK retransmissions");
170 
171 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
172 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
173     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
174     "Send reset on socket allocation failure");
175 
176 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
177 
178 #define SYNCACHE_HASH(inc, mask)					\
179 	((V_tcp_syncache.hash_secret ^					\
180 	  (inc)->inc_faddr.s_addr ^					\
181 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
182 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
183 
184 #define SYNCACHE_HASH6(inc, mask)					\
185 	((V_tcp_syncache.hash_secret ^					\
186 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
187 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
188 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
189 
190 #define ENDPTS_EQ(a, b) (						\
191 	(a)->ie_fport == (b)->ie_fport &&				\
192 	(a)->ie_lport == (b)->ie_lport &&				\
193 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
194 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
195 )
196 
197 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
198 
199 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
200 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
201 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
202 
203 /*
204  * Requires the syncache entry to be already removed from the bucket list.
205  */
206 static void
207 syncache_free(struct syncache *sc)
208 {
209 
210 	if (sc->sc_ipopts)
211 		(void) m_free(sc->sc_ipopts);
212 	if (sc->sc_cred)
213 		crfree(sc->sc_cred);
214 #ifdef MAC
215 	mac_syncache_destroy(&sc->sc_label);
216 #endif
217 
218 	uma_zfree(V_tcp_syncache.zone, sc);
219 }
220 
221 void
222 syncache_init(void)
223 {
224 	int i;
225 
226 	V_tcp_syncache.cache_count = 0;
227 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
230 	V_tcp_syncache.hash_secret = arc4random();
231 
232 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
233 	    &V_tcp_syncache.hashsize);
234 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
235 	    &V_tcp_syncache.bucket_limit);
236 	if (!powerof2(V_tcp_syncache.hashsize) ||
237 	    V_tcp_syncache.hashsize == 0) {
238 		printf("WARNING: syncache hash size is not a power of 2.\n");
239 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240 	}
241 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
242 
243 	/* Set limits. */
244 	V_tcp_syncache.cache_limit =
245 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
246 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
247 	    &V_tcp_syncache.cache_limit);
248 
249 	/* Allocate the hash table. */
250 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
251 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
252 
253 	/* Initialize the hash buckets. */
254 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
255 #ifdef VIMAGE
256 		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
257 #endif
258 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
259 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
260 			 NULL, MTX_DEF);
261 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
262 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
263 		V_tcp_syncache.hashbase[i].sch_length = 0;
264 	}
265 
266 	/* Create the syncache entry zone. */
267 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
269 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
270 }
271 
272 #ifdef VIMAGE
273 void
274 syncache_destroy(void)
275 {
276 	struct syncache_head *sch;
277 	struct syncache *sc, *nsc;
278 	int i;
279 
280 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
281 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
282 
283 		sch = &V_tcp_syncache.hashbase[i];
284 		callout_drain(&sch->sch_timer);
285 
286 		SCH_LOCK(sch);
287 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
288 			syncache_drop(sc, sch);
289 		SCH_UNLOCK(sch);
290 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
291 		    ("%s: sch->sch_bucket not empty", __func__));
292 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
293 		    __func__, sch->sch_length));
294 		mtx_destroy(&sch->sch_mtx);
295 	}
296 
297 	KASSERT(V_tcp_syncache.cache_count == 0, ("%s: cache_count %d not 0",
298 	    __func__, V_tcp_syncache.cache_count));
299 
300 	/* Free the allocated global resources. */
301 	uma_zdestroy(V_tcp_syncache.zone);
302 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
303 }
304 #endif
305 
306 /*
307  * Inserts a syncache entry into the specified bucket row.
308  * Locks and unlocks the syncache_head autonomously.
309  */
310 static void
311 syncache_insert(struct syncache *sc, struct syncache_head *sch)
312 {
313 	struct syncache *sc2;
314 
315 	SCH_LOCK(sch);
316 
317 	/*
318 	 * Make sure that we don't overflow the per-bucket limit.
319 	 * If the bucket is full, toss the oldest element.
320 	 */
321 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
322 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
323 			("sch->sch_length incorrect"));
324 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
325 		syncache_drop(sc2, sch);
326 		TCPSTAT_INC(tcps_sc_bucketoverflow);
327 	}
328 
329 	/* Put it into the bucket. */
330 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
331 	sch->sch_length++;
332 
333 	/* Reinitialize the bucket row's timer. */
334 	if (sch->sch_length == 1)
335 		sch->sch_nextc = ticks + INT_MAX;
336 	syncache_timeout(sc, sch, 1);
337 
338 	SCH_UNLOCK(sch);
339 
340 	V_tcp_syncache.cache_count++;
341 	TCPSTAT_INC(tcps_sc_added);
342 }
343 
344 /*
345  * Remove and free entry from syncache bucket row.
346  * Expects locked syncache head.
347  */
348 static void
349 syncache_drop(struct syncache *sc, struct syncache_head *sch)
350 {
351 
352 	SCH_LOCK_ASSERT(sch);
353 
354 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
355 	sch->sch_length--;
356 
357 #ifndef TCP_OFFLOAD_DISABLE
358 	if (sc->sc_tu)
359 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
360 #endif
361 	syncache_free(sc);
362 	V_tcp_syncache.cache_count--;
363 }
364 
365 /*
366  * Engage/reengage time on bucket row.
367  */
368 static void
369 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
370 {
371 	sc->sc_rxttime = ticks +
372 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
373 	sc->sc_rxmits++;
374 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
375 		sch->sch_nextc = sc->sc_rxttime;
376 		if (docallout)
377 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
378 			    syncache_timer, (void *)sch);
379 	}
380 }
381 
382 /*
383  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
384  * If we have retransmitted an entry the maximum number of times, expire it.
385  * One separate timer for each bucket row.
386  */
387 static void
388 syncache_timer(void *xsch)
389 {
390 	struct syncache_head *sch = (struct syncache_head *)xsch;
391 	struct syncache *sc, *nsc;
392 	int tick = ticks;
393 	char *s;
394 
395 	CURVNET_SET(sch->sch_vnet);
396 
397 	/* NB: syncache_head has already been locked by the callout. */
398 	SCH_LOCK_ASSERT(sch);
399 
400 	/*
401 	 * In the following cycle we may remove some entries and/or
402 	 * advance some timeouts, so re-initialize the bucket timer.
403 	 */
404 	sch->sch_nextc = tick + INT_MAX;
405 
406 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
407 		/*
408 		 * We do not check if the listen socket still exists
409 		 * and accept the case where the listen socket may be
410 		 * gone by the time we resend the SYN/ACK.  We do
411 		 * not expect this to happens often. If it does,
412 		 * then the RST will be sent by the time the remote
413 		 * host does the SYN/ACK->ACK.
414 		 */
415 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
416 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
417 				sch->sch_nextc = sc->sc_rxttime;
418 			continue;
419 		}
420 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
421 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
422 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
423 				    "giving up and removing syncache entry\n",
424 				    s, __func__);
425 				free(s, M_TCPLOG);
426 			}
427 			syncache_drop(sc, sch);
428 			TCPSTAT_INC(tcps_sc_stale);
429 			continue;
430 		}
431 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
432 			log(LOG_DEBUG, "%s; %s: Response timeout, "
433 			    "retransmitting (%u) SYN|ACK\n",
434 			    s, __func__, sc->sc_rxmits);
435 			free(s, M_TCPLOG);
436 		}
437 
438 		(void) syncache_respond(sc);
439 		TCPSTAT_INC(tcps_sc_retransmitted);
440 		syncache_timeout(sc, sch, 0);
441 	}
442 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
443 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
444 			syncache_timer, (void *)(sch));
445 	CURVNET_RESTORE();
446 }
447 
448 /*
449  * Find an entry in the syncache.
450  * Returns always with locked syncache_head plus a matching entry or NULL.
451  */
452 struct syncache *
453 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
454 {
455 	struct syncache *sc;
456 	struct syncache_head *sch;
457 
458 #ifdef INET6
459 	if (inc->inc_flags & INC_ISIPV6) {
460 		sch = &V_tcp_syncache.hashbase[
461 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
462 		*schp = sch;
463 
464 		SCH_LOCK(sch);
465 
466 		/* Circle through bucket row to find matching entry. */
467 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
468 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
469 				return (sc);
470 		}
471 	} else
472 #endif
473 	{
474 		sch = &V_tcp_syncache.hashbase[
475 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
476 		*schp = sch;
477 
478 		SCH_LOCK(sch);
479 
480 		/* Circle through bucket row to find matching entry. */
481 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
482 #ifdef INET6
483 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
484 				continue;
485 #endif
486 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
487 				return (sc);
488 		}
489 	}
490 	SCH_LOCK_ASSERT(*schp);
491 	return (NULL);			/* always returns with locked sch */
492 }
493 
494 /*
495  * This function is called when we get a RST for a
496  * non-existent connection, so that we can see if the
497  * connection is in the syn cache.  If it is, zap it.
498  */
499 void
500 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
501 {
502 	struct syncache *sc;
503 	struct syncache_head *sch;
504 	char *s = NULL;
505 
506 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
507 	SCH_LOCK_ASSERT(sch);
508 
509 	/*
510 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
511 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
512 	 */
513 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
514 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
515 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
516 			    "FIN flag set, segment ignored\n", s, __func__);
517 		TCPSTAT_INC(tcps_badrst);
518 		goto done;
519 	}
520 
521 	/*
522 	 * No corresponding connection was found in syncache.
523 	 * If syncookies are enabled and possibly exclusively
524 	 * used, or we are under memory pressure, a valid RST
525 	 * may not find a syncache entry.  In that case we're
526 	 * done and no SYN|ACK retransmissions will happen.
527 	 * Otherwise the RST was misdirected or spoofed.
528 	 */
529 	if (sc == NULL) {
530 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
531 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
532 			    "syncache entry (possibly syncookie only), "
533 			    "segment ignored\n", s, __func__);
534 		TCPSTAT_INC(tcps_badrst);
535 		goto done;
536 	}
537 
538 	/*
539 	 * If the RST bit is set, check the sequence number to see
540 	 * if this is a valid reset segment.
541 	 * RFC 793 page 37:
542 	 *   In all states except SYN-SENT, all reset (RST) segments
543 	 *   are validated by checking their SEQ-fields.  A reset is
544 	 *   valid if its sequence number is in the window.
545 	 *
546 	 *   The sequence number in the reset segment is normally an
547 	 *   echo of our outgoing acknowlegement numbers, but some hosts
548 	 *   send a reset with the sequence number at the rightmost edge
549 	 *   of our receive window, and we have to handle this case.
550 	 */
551 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
552 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
553 		syncache_drop(sc, sch);
554 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
555 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
556 			    "connection attempt aborted by remote endpoint\n",
557 			    s, __func__);
558 		TCPSTAT_INC(tcps_sc_reset);
559 	} else {
560 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
561 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
562 			    "IRS %u (+WND %u), segment ignored\n",
563 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
564 		TCPSTAT_INC(tcps_badrst);
565 	}
566 
567 done:
568 	if (s != NULL)
569 		free(s, M_TCPLOG);
570 	SCH_UNLOCK(sch);
571 }
572 
573 void
574 syncache_badack(struct in_conninfo *inc)
575 {
576 	struct syncache *sc;
577 	struct syncache_head *sch;
578 
579 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
580 	SCH_LOCK_ASSERT(sch);
581 	if (sc != NULL) {
582 		syncache_drop(sc, sch);
583 		TCPSTAT_INC(tcps_sc_badack);
584 	}
585 	SCH_UNLOCK(sch);
586 }
587 
588 void
589 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
590 {
591 	struct syncache *sc;
592 	struct syncache_head *sch;
593 
594 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
595 	SCH_LOCK_ASSERT(sch);
596 	if (sc == NULL)
597 		goto done;
598 
599 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
600 	if (ntohl(th->th_seq) != sc->sc_iss)
601 		goto done;
602 
603 	/*
604 	 * If we've rertransmitted 3 times and this is our second error,
605 	 * we remove the entry.  Otherwise, we allow it to continue on.
606 	 * This prevents us from incorrectly nuking an entry during a
607 	 * spurious network outage.
608 	 *
609 	 * See tcp_notify().
610 	 */
611 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
612 		sc->sc_flags |= SCF_UNREACH;
613 		goto done;
614 	}
615 	syncache_drop(sc, sch);
616 	TCPSTAT_INC(tcps_sc_unreach);
617 done:
618 	SCH_UNLOCK(sch);
619 }
620 
621 /*
622  * Build a new TCP socket structure from a syncache entry.
623  */
624 static struct socket *
625 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
626 {
627 	struct inpcb *inp = NULL;
628 	struct socket *so;
629 	struct tcpcb *tp;
630 	int error;
631 	char *s;
632 
633 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
634 
635 	/*
636 	 * Ok, create the full blown connection, and set things up
637 	 * as they would have been set up if we had created the
638 	 * connection when the SYN arrived.  If we can't create
639 	 * the connection, abort it.
640 	 */
641 	so = sonewconn(lso, SS_ISCONNECTED);
642 	if (so == NULL) {
643 		/*
644 		 * Drop the connection; we will either send a RST or
645 		 * have the peer retransmit its SYN again after its
646 		 * RTO and try again.
647 		 */
648 		TCPSTAT_INC(tcps_listendrop);
649 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
650 			log(LOG_DEBUG, "%s; %s: Socket create failed "
651 			    "due to limits or memory shortage\n",
652 			    s, __func__);
653 			free(s, M_TCPLOG);
654 		}
655 		goto abort2;
656 	}
657 #ifdef MAC
658 	mac_socketpeer_set_from_mbuf(m, so);
659 #endif
660 
661 	inp = sotoinpcb(so);
662 	inp->inp_inc.inc_fibnum = so->so_fibnum;
663 	INP_WLOCK(inp);
664 	INP_HASH_WLOCK(&V_tcbinfo);
665 
666 	/* Insert new socket into PCB hash list. */
667 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
668 #ifdef INET6
669 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
670 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
671 	} else {
672 		inp->inp_vflag &= ~INP_IPV6;
673 		inp->inp_vflag |= INP_IPV4;
674 #endif
675 		inp->inp_laddr = sc->sc_inc.inc_laddr;
676 #ifdef INET6
677 	}
678 #endif
679 	inp->inp_lport = sc->sc_inc.inc_lport;
680 	if ((error = in_pcbinshash(inp)) != 0) {
681 		/*
682 		 * Undo the assignments above if we failed to
683 		 * put the PCB on the hash lists.
684 		 */
685 #ifdef INET6
686 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
687 			inp->in6p_laddr = in6addr_any;
688 		else
689 #endif
690 			inp->inp_laddr.s_addr = INADDR_ANY;
691 		inp->inp_lport = 0;
692 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
693 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
694 			    "with error %i\n",
695 			    s, __func__, error);
696 			free(s, M_TCPLOG);
697 		}
698 		INP_HASH_WUNLOCK(&V_tcbinfo);
699 		goto abort;
700 	}
701 #ifdef IPSEC
702 	/* Copy old policy into new socket's. */
703 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
704 		printf("syncache_socket: could not copy policy\n");
705 #endif
706 #ifdef INET6
707 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
708 		struct inpcb *oinp = sotoinpcb(lso);
709 		struct in6_addr laddr6;
710 		struct sockaddr_in6 sin6;
711 		/*
712 		 * Inherit socket options from the listening socket.
713 		 * Note that in6p_inputopts are not (and should not be)
714 		 * copied, since it stores previously received options and is
715 		 * used to detect if each new option is different than the
716 		 * previous one and hence should be passed to a user.
717 		 * If we copied in6p_inputopts, a user would not be able to
718 		 * receive options just after calling the accept system call.
719 		 */
720 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
721 		if (oinp->in6p_outputopts)
722 			inp->in6p_outputopts =
723 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
724 
725 		sin6.sin6_family = AF_INET6;
726 		sin6.sin6_len = sizeof(sin6);
727 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
728 		sin6.sin6_port = sc->sc_inc.inc_fport;
729 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
730 		laddr6 = inp->in6p_laddr;
731 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
732 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
733 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
734 		    thread0.td_ucred, m)) != 0) {
735 			inp->in6p_laddr = laddr6;
736 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
737 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
738 				    "with error %i\n",
739 				    s, __func__, error);
740 				free(s, M_TCPLOG);
741 			}
742 			INP_HASH_WUNLOCK(&V_tcbinfo);
743 			goto abort;
744 		}
745 		/* Override flowlabel from in6_pcbconnect. */
746 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
747 		inp->inp_flow |= sc->sc_flowlabel;
748 	}
749 #endif /* INET6 */
750 #if defined(INET) && defined(INET6)
751 	else
752 #endif
753 #ifdef INET
754 	{
755 		struct in_addr laddr;
756 		struct sockaddr_in sin;
757 
758 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
759 
760 		if (inp->inp_options == NULL) {
761 			inp->inp_options = sc->sc_ipopts;
762 			sc->sc_ipopts = NULL;
763 		}
764 
765 		sin.sin_family = AF_INET;
766 		sin.sin_len = sizeof(sin);
767 		sin.sin_addr = sc->sc_inc.inc_faddr;
768 		sin.sin_port = sc->sc_inc.inc_fport;
769 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
770 		laddr = inp->inp_laddr;
771 		if (inp->inp_laddr.s_addr == INADDR_ANY)
772 			inp->inp_laddr = sc->sc_inc.inc_laddr;
773 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
774 		    thread0.td_ucred, m)) != 0) {
775 			inp->inp_laddr = laddr;
776 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
777 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
778 				    "with error %i\n",
779 				    s, __func__, error);
780 				free(s, M_TCPLOG);
781 			}
782 			INP_HASH_WUNLOCK(&V_tcbinfo);
783 			goto abort;
784 		}
785 	}
786 #endif /* INET */
787 	INP_HASH_WUNLOCK(&V_tcbinfo);
788 	tp = intotcpcb(inp);
789 	tp->t_state = TCPS_SYN_RECEIVED;
790 	tp->iss = sc->sc_iss;
791 	tp->irs = sc->sc_irs;
792 	tcp_rcvseqinit(tp);
793 	tcp_sendseqinit(tp);
794 	tp->snd_wl1 = sc->sc_irs;
795 	tp->snd_max = tp->iss + 1;
796 	tp->snd_nxt = tp->iss + 1;
797 	tp->rcv_up = sc->sc_irs + 1;
798 	tp->rcv_wnd = sc->sc_wnd;
799 	tp->rcv_adv += tp->rcv_wnd;
800 	tp->last_ack_sent = tp->rcv_nxt;
801 
802 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
803 	if (sc->sc_flags & SCF_NOOPT)
804 		tp->t_flags |= TF_NOOPT;
805 	else {
806 		if (sc->sc_flags & SCF_WINSCALE) {
807 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
808 			tp->snd_scale = sc->sc_requested_s_scale;
809 			tp->request_r_scale = sc->sc_requested_r_scale;
810 		}
811 		if (sc->sc_flags & SCF_TIMESTAMP) {
812 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
813 			tp->ts_recent = sc->sc_tsreflect;
814 			tp->ts_recent_age = ticks;
815 			tp->ts_offset = sc->sc_tsoff;
816 		}
817 #ifdef TCP_SIGNATURE
818 		if (sc->sc_flags & SCF_SIGNATURE)
819 			tp->t_flags |= TF_SIGNATURE;
820 #endif
821 		if (sc->sc_flags & SCF_SACK)
822 			tp->t_flags |= TF_SACK_PERMIT;
823 	}
824 
825 	if (sc->sc_flags & SCF_ECN)
826 		tp->t_flags |= TF_ECN_PERMIT;
827 
828 	/*
829 	 * Set up MSS and get cached values from tcp_hostcache.
830 	 * This might overwrite some of the defaults we just set.
831 	 */
832 	tcp_mss(tp, sc->sc_peer_mss);
833 
834 	/*
835 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
836 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
837 	 */
838 	if (sc->sc_rxmits > 1)
839 		tp->snd_cwnd = tp->t_maxseg;
840 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
841 
842 	INP_WUNLOCK(inp);
843 
844 	TCPSTAT_INC(tcps_accepts);
845 	return (so);
846 
847 abort:
848 	INP_WUNLOCK(inp);
849 abort2:
850 	if (so != NULL)
851 		soabort(so);
852 	return (NULL);
853 }
854 
855 /*
856  * This function gets called when we receive an ACK for a
857  * socket in the LISTEN state.  We look up the connection
858  * in the syncache, and if its there, we pull it out of
859  * the cache and turn it into a full-blown connection in
860  * the SYN-RECEIVED state.
861  */
862 int
863 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
864     struct socket **lsop, struct mbuf *m)
865 {
866 	struct syncache *sc;
867 	struct syncache_head *sch;
868 	struct syncache scs;
869 	char *s;
870 
871 	/*
872 	 * Global TCP locks are held because we manipulate the PCB lists
873 	 * and create a new socket.
874 	 */
875 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
876 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
877 	    ("%s: can handle only ACK", __func__));
878 
879 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
880 	SCH_LOCK_ASSERT(sch);
881 	if (sc == NULL) {
882 		/*
883 		 * There is no syncache entry, so see if this ACK is
884 		 * a returning syncookie.  To do this, first:
885 		 *  A. See if this socket has had a syncache entry dropped in
886 		 *     the past.  We don't want to accept a bogus syncookie
887 		 *     if we've never received a SYN.
888 		 *  B. check that the syncookie is valid.  If it is, then
889 		 *     cobble up a fake syncache entry, and return.
890 		 */
891 		if (!V_tcp_syncookies) {
892 			SCH_UNLOCK(sch);
893 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
894 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
895 				    "segment rejected (syncookies disabled)\n",
896 				    s, __func__);
897 			goto failed;
898 		}
899 		bzero(&scs, sizeof(scs));
900 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
901 		SCH_UNLOCK(sch);
902 		if (sc == NULL) {
903 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
904 				log(LOG_DEBUG, "%s; %s: Segment failed "
905 				    "SYNCOOKIE authentication, segment rejected "
906 				    "(probably spoofed)\n", s, __func__);
907 			goto failed;
908 		}
909 	} else {
910 		/* Pull out the entry to unlock the bucket row. */
911 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
912 		sch->sch_length--;
913 		V_tcp_syncache.cache_count--;
914 		SCH_UNLOCK(sch);
915 	}
916 
917 	/*
918 	 * Segment validation:
919 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
920 	 */
921 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
922 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
923 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
924 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
925 		goto failed;
926 	}
927 
928 	/*
929 	 * The SEQ must fall in the window starting at the received
930 	 * initial receive sequence number + 1 (the SYN).
931 	 */
932 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
933 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
934 	    !TOEPCB_ISSET(sc)) {
935 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
936 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
937 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
938 		goto failed;
939 	}
940 
941 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
942 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
943 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
944 			    "segment rejected\n", s, __func__);
945 		goto failed;
946 	}
947 	/*
948 	 * If timestamps were negotiated the reflected timestamp
949 	 * must be equal to what we actually sent in the SYN|ACK.
950 	 */
951 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
952 	    !TOEPCB_ISSET(sc)) {
953 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
954 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
955 			    "segment rejected\n",
956 			    s, __func__, to->to_tsecr, sc->sc_ts);
957 		goto failed;
958 	}
959 
960 	*lsop = syncache_socket(sc, *lsop, m);
961 
962 	if (*lsop == NULL)
963 		TCPSTAT_INC(tcps_sc_aborted);
964 	else
965 		TCPSTAT_INC(tcps_sc_completed);
966 
967 /* how do we find the inp for the new socket? */
968 	if (sc != &scs)
969 		syncache_free(sc);
970 	return (1);
971 failed:
972 	if (sc != NULL && sc != &scs)
973 		syncache_free(sc);
974 	if (s != NULL)
975 		free(s, M_TCPLOG);
976 	*lsop = NULL;
977 	return (0);
978 }
979 
980 int
981 tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
982     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
983 {
984 	struct tcpopt to;
985 	int rc;
986 
987 	bzero(&to, sizeof(struct tcpopt));
988 	to.to_mss = toeo->to_mss;
989 	to.to_wscale = toeo->to_wscale;
990 	to.to_flags = toeo->to_flags;
991 
992 	INP_INFO_WLOCK(&V_tcbinfo);
993 	rc = syncache_expand(inc, &to, th, lsop, m);
994 	INP_INFO_WUNLOCK(&V_tcbinfo);
995 
996 	return (rc);
997 }
998 
999 /*
1000  * Given a LISTEN socket and an inbound SYN request, add
1001  * this to the syn cache, and send back a segment:
1002  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1003  * to the source.
1004  *
1005  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1006  * Doing so would require that we hold onto the data and deliver it
1007  * to the application.  However, if we are the target of a SYN-flood
1008  * DoS attack, an attacker could send data which would eventually
1009  * consume all available buffer space if it were ACKed.  By not ACKing
1010  * the data, we avoid this DoS scenario.
1011  */
1012 static void
1013 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1014     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
1015     struct toe_usrreqs *tu, void *toepcb)
1016 {
1017 	struct tcpcb *tp;
1018 	struct socket *so;
1019 	struct syncache *sc = NULL;
1020 	struct syncache_head *sch;
1021 	struct mbuf *ipopts = NULL;
1022 	u_int32_t flowtmp;
1023 	u_int ltflags;
1024 	int win, sb_hiwat, ip_ttl, ip_tos;
1025 	char *s;
1026 #ifdef INET6
1027 	int autoflowlabel = 0;
1028 #endif
1029 #ifdef MAC
1030 	struct label *maclabel;
1031 #endif
1032 	struct syncache scs;
1033 	struct ucred *cred;
1034 
1035 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1036 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1037 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1038 	    ("%s: unexpected tcp flags", __func__));
1039 
1040 	/*
1041 	 * Combine all so/tp operations very early to drop the INP lock as
1042 	 * soon as possible.
1043 	 */
1044 	so = *lsop;
1045 	tp = sototcpcb(so);
1046 	cred = crhold(so->so_cred);
1047 
1048 #ifdef INET6
1049 	if ((inc->inc_flags & INC_ISIPV6) &&
1050 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1051 		autoflowlabel = 1;
1052 #endif
1053 	ip_ttl = inp->inp_ip_ttl;
1054 	ip_tos = inp->inp_ip_tos;
1055 	win = sbspace(&so->so_rcv);
1056 	sb_hiwat = so->so_rcv.sb_hiwat;
1057 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1058 
1059 	/* By the time we drop the lock these should no longer be used. */
1060 	so = NULL;
1061 	tp = NULL;
1062 
1063 #ifdef MAC
1064 	if (mac_syncache_init(&maclabel) != 0) {
1065 		INP_WUNLOCK(inp);
1066 		INP_INFO_WUNLOCK(&V_tcbinfo);
1067 		goto done;
1068 	} else
1069 		mac_syncache_create(maclabel, inp);
1070 #endif
1071 	INP_WUNLOCK(inp);
1072 	INP_INFO_WUNLOCK(&V_tcbinfo);
1073 
1074 	/*
1075 	 * Remember the IP options, if any.
1076 	 */
1077 #ifdef INET6
1078 	if (!(inc->inc_flags & INC_ISIPV6))
1079 #endif
1080 #ifdef INET
1081 		ipopts = (m) ? ip_srcroute(m) : NULL;
1082 #else
1083 		ipopts = NULL;
1084 #endif
1085 
1086 	/*
1087 	 * See if we already have an entry for this connection.
1088 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1089 	 *
1090 	 * XXX: should the syncache be re-initialized with the contents
1091 	 * of the new SYN here (which may have different options?)
1092 	 *
1093 	 * XXX: We do not check the sequence number to see if this is a
1094 	 * real retransmit or a new connection attempt.  The question is
1095 	 * how to handle such a case; either ignore it as spoofed, or
1096 	 * drop the current entry and create a new one?
1097 	 */
1098 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1099 	SCH_LOCK_ASSERT(sch);
1100 	if (sc != NULL) {
1101 #ifndef TCP_OFFLOAD_DISABLE
1102 		if (sc->sc_tu)
1103 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1104 			    sc->sc_toepcb);
1105 #endif
1106 		TCPSTAT_INC(tcps_sc_dupsyn);
1107 		if (ipopts) {
1108 			/*
1109 			 * If we were remembering a previous source route,
1110 			 * forget it and use the new one we've been given.
1111 			 */
1112 			if (sc->sc_ipopts)
1113 				(void) m_free(sc->sc_ipopts);
1114 			sc->sc_ipopts = ipopts;
1115 		}
1116 		/*
1117 		 * Update timestamp if present.
1118 		 */
1119 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1120 			sc->sc_tsreflect = to->to_tsval;
1121 		else
1122 			sc->sc_flags &= ~SCF_TIMESTAMP;
1123 #ifdef MAC
1124 		/*
1125 		 * Since we have already unconditionally allocated label
1126 		 * storage, free it up.  The syncache entry will already
1127 		 * have an initialized label we can use.
1128 		 */
1129 		mac_syncache_destroy(&maclabel);
1130 #endif
1131 		/* Retransmit SYN|ACK and reset retransmit count. */
1132 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1133 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1134 			    "resetting timer and retransmitting SYN|ACK\n",
1135 			    s, __func__);
1136 			free(s, M_TCPLOG);
1137 		}
1138 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1139 			sc->sc_rxmits = 0;
1140 			syncache_timeout(sc, sch, 1);
1141 			TCPSTAT_INC(tcps_sndacks);
1142 			TCPSTAT_INC(tcps_sndtotal);
1143 		}
1144 		SCH_UNLOCK(sch);
1145 		goto done;
1146 	}
1147 
1148 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1149 	if (sc == NULL) {
1150 		/*
1151 		 * The zone allocator couldn't provide more entries.
1152 		 * Treat this as if the cache was full; drop the oldest
1153 		 * entry and insert the new one.
1154 		 */
1155 		TCPSTAT_INC(tcps_sc_zonefail);
1156 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1157 			syncache_drop(sc, sch);
1158 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1159 		if (sc == NULL) {
1160 			if (V_tcp_syncookies) {
1161 				bzero(&scs, sizeof(scs));
1162 				sc = &scs;
1163 			} else {
1164 				SCH_UNLOCK(sch);
1165 				if (ipopts)
1166 					(void) m_free(ipopts);
1167 				goto done;
1168 			}
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * Fill in the syncache values.
1174 	 */
1175 #ifdef MAC
1176 	sc->sc_label = maclabel;
1177 #endif
1178 	sc->sc_cred = cred;
1179 	cred = NULL;
1180 	sc->sc_ipopts = ipopts;
1181 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1182 #ifdef INET6
1183 	if (!(inc->inc_flags & INC_ISIPV6))
1184 #endif
1185 	{
1186 		sc->sc_ip_tos = ip_tos;
1187 		sc->sc_ip_ttl = ip_ttl;
1188 	}
1189 #ifndef TCP_OFFLOAD_DISABLE
1190 	sc->sc_tu = tu;
1191 	sc->sc_toepcb = toepcb;
1192 #endif
1193 	sc->sc_irs = th->th_seq;
1194 	sc->sc_iss = arc4random();
1195 	sc->sc_flags = 0;
1196 	sc->sc_flowlabel = 0;
1197 
1198 	/*
1199 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1200 	 * win was derived from socket earlier in the function.
1201 	 */
1202 	win = imax(win, 0);
1203 	win = imin(win, TCP_MAXWIN);
1204 	sc->sc_wnd = win;
1205 
1206 	if (V_tcp_do_rfc1323) {
1207 		/*
1208 		 * A timestamp received in a SYN makes
1209 		 * it ok to send timestamp requests and replies.
1210 		 */
1211 		if (to->to_flags & TOF_TS) {
1212 			sc->sc_tsreflect = to->to_tsval;
1213 			sc->sc_ts = ticks;
1214 			sc->sc_flags |= SCF_TIMESTAMP;
1215 		}
1216 		if (to->to_flags & TOF_SCALE) {
1217 			int wscale = 0;
1218 
1219 			/*
1220 			 * Pick the smallest possible scaling factor that
1221 			 * will still allow us to scale up to sb_max, aka
1222 			 * kern.ipc.maxsockbuf.
1223 			 *
1224 			 * We do this because there are broken firewalls that
1225 			 * will corrupt the window scale option, leading to
1226 			 * the other endpoint believing that our advertised
1227 			 * window is unscaled.  At scale factors larger than
1228 			 * 5 the unscaled window will drop below 1500 bytes,
1229 			 * leading to serious problems when traversing these
1230 			 * broken firewalls.
1231 			 *
1232 			 * With the default maxsockbuf of 256K, a scale factor
1233 			 * of 3 will be chosen by this algorithm.  Those who
1234 			 * choose a larger maxsockbuf should watch out
1235 			 * for the compatiblity problems mentioned above.
1236 			 *
1237 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1238 			 * or <SYN,ACK>) segment itself is never scaled.
1239 			 */
1240 			while (wscale < TCP_MAX_WINSHIFT &&
1241 			    (TCP_MAXWIN << wscale) < sb_max)
1242 				wscale++;
1243 			sc->sc_requested_r_scale = wscale;
1244 			sc->sc_requested_s_scale = to->to_wscale;
1245 			sc->sc_flags |= SCF_WINSCALE;
1246 		}
1247 	}
1248 #ifdef TCP_SIGNATURE
1249 	/*
1250 	 * If listening socket requested TCP digests, and received SYN
1251 	 * contains the option, flag this in the syncache so that
1252 	 * syncache_respond() will do the right thing with the SYN+ACK.
1253 	 * XXX: Currently we always record the option by default and will
1254 	 * attempt to use it in syncache_respond().
1255 	 */
1256 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1257 		sc->sc_flags |= SCF_SIGNATURE;
1258 #endif
1259 	if (to->to_flags & TOF_SACKPERM)
1260 		sc->sc_flags |= SCF_SACK;
1261 	if (to->to_flags & TOF_MSS)
1262 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1263 	if (ltflags & TF_NOOPT)
1264 		sc->sc_flags |= SCF_NOOPT;
1265 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1266 		sc->sc_flags |= SCF_ECN;
1267 
1268 	if (V_tcp_syncookies) {
1269 		syncookie_generate(sch, sc, &flowtmp);
1270 #ifdef INET6
1271 		if (autoflowlabel)
1272 			sc->sc_flowlabel = flowtmp;
1273 #endif
1274 	} else {
1275 #ifdef INET6
1276 		if (autoflowlabel)
1277 			sc->sc_flowlabel =
1278 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1279 #endif
1280 	}
1281 	SCH_UNLOCK(sch);
1282 
1283 	/*
1284 	 * Do a standard 3-way handshake.
1285 	 */
1286 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1287 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1288 			syncache_free(sc);
1289 		else if (sc != &scs)
1290 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1291 		TCPSTAT_INC(tcps_sndacks);
1292 		TCPSTAT_INC(tcps_sndtotal);
1293 	} else {
1294 		if (sc != &scs)
1295 			syncache_free(sc);
1296 		TCPSTAT_INC(tcps_sc_dropped);
1297 	}
1298 
1299 done:
1300 	if (cred != NULL)
1301 		crfree(cred);
1302 #ifdef MAC
1303 	if (sc == &scs)
1304 		mac_syncache_destroy(&maclabel);
1305 #endif
1306 	if (m) {
1307 
1308 		*lsop = NULL;
1309 		m_freem(m);
1310 	}
1311 }
1312 
1313 static int
1314 syncache_respond(struct syncache *sc)
1315 {
1316 	struct ip *ip = NULL;
1317 	struct mbuf *m;
1318 	struct tcphdr *th = NULL;
1319 	int optlen, error = 0;	/* Make compiler happy */
1320 	u_int16_t hlen, tlen, mssopt;
1321 	struct tcpopt to;
1322 #ifdef INET6
1323 	struct ip6_hdr *ip6 = NULL;
1324 #endif
1325 
1326 	hlen =
1327 #ifdef INET6
1328 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1329 #endif
1330 		sizeof(struct ip);
1331 	tlen = hlen + sizeof(struct tcphdr);
1332 
1333 	/* Determine MSS we advertize to other end of connection. */
1334 	mssopt = tcp_mssopt(&sc->sc_inc);
1335 	if (sc->sc_peer_mss)
1336 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1337 
1338 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1339 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1340 	    ("syncache: mbuf too small"));
1341 
1342 	/* Create the IP+TCP header from scratch. */
1343 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1344 	if (m == NULL)
1345 		return (ENOBUFS);
1346 #ifdef MAC
1347 	mac_syncache_create_mbuf(sc->sc_label, m);
1348 #endif
1349 	m->m_data += max_linkhdr;
1350 	m->m_len = tlen;
1351 	m->m_pkthdr.len = tlen;
1352 	m->m_pkthdr.rcvif = NULL;
1353 
1354 #ifdef INET6
1355 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1356 		ip6 = mtod(m, struct ip6_hdr *);
1357 		ip6->ip6_vfc = IPV6_VERSION;
1358 		ip6->ip6_nxt = IPPROTO_TCP;
1359 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1360 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1361 		ip6->ip6_plen = htons(tlen - hlen);
1362 		/* ip6_hlim is set after checksum */
1363 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1364 		ip6->ip6_flow |= sc->sc_flowlabel;
1365 
1366 		th = (struct tcphdr *)(ip6 + 1);
1367 	}
1368 #endif
1369 #if defined(INET6) && defined(INET)
1370 	else
1371 #endif
1372 #ifdef INET
1373 	{
1374 		ip = mtod(m, struct ip *);
1375 		ip->ip_v = IPVERSION;
1376 		ip->ip_hl = sizeof(struct ip) >> 2;
1377 		ip->ip_len = tlen;
1378 		ip->ip_id = 0;
1379 		ip->ip_off = 0;
1380 		ip->ip_sum = 0;
1381 		ip->ip_p = IPPROTO_TCP;
1382 		ip->ip_src = sc->sc_inc.inc_laddr;
1383 		ip->ip_dst = sc->sc_inc.inc_faddr;
1384 		ip->ip_ttl = sc->sc_ip_ttl;
1385 		ip->ip_tos = sc->sc_ip_tos;
1386 
1387 		/*
1388 		 * See if we should do MTU discovery.  Route lookups are
1389 		 * expensive, so we will only unset the DF bit if:
1390 		 *
1391 		 *	1) path_mtu_discovery is disabled
1392 		 *	2) the SCF_UNREACH flag has been set
1393 		 */
1394 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1395 		       ip->ip_off |= IP_DF;
1396 
1397 		th = (struct tcphdr *)(ip + 1);
1398 	}
1399 #endif /* INET */
1400 	th->th_sport = sc->sc_inc.inc_lport;
1401 	th->th_dport = sc->sc_inc.inc_fport;
1402 
1403 	th->th_seq = htonl(sc->sc_iss);
1404 	th->th_ack = htonl(sc->sc_irs + 1);
1405 	th->th_off = sizeof(struct tcphdr) >> 2;
1406 	th->th_x2 = 0;
1407 	th->th_flags = TH_SYN|TH_ACK;
1408 	th->th_win = htons(sc->sc_wnd);
1409 	th->th_urp = 0;
1410 
1411 	if (sc->sc_flags & SCF_ECN) {
1412 		th->th_flags |= TH_ECE;
1413 		TCPSTAT_INC(tcps_ecn_shs);
1414 	}
1415 
1416 	/* Tack on the TCP options. */
1417 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1418 		to.to_flags = 0;
1419 
1420 		to.to_mss = mssopt;
1421 		to.to_flags = TOF_MSS;
1422 		if (sc->sc_flags & SCF_WINSCALE) {
1423 			to.to_wscale = sc->sc_requested_r_scale;
1424 			to.to_flags |= TOF_SCALE;
1425 		}
1426 		if (sc->sc_flags & SCF_TIMESTAMP) {
1427 			/* Virgin timestamp or TCP cookie enhanced one. */
1428 			to.to_tsval = sc->sc_ts;
1429 			to.to_tsecr = sc->sc_tsreflect;
1430 			to.to_flags |= TOF_TS;
1431 		}
1432 		if (sc->sc_flags & SCF_SACK)
1433 			to.to_flags |= TOF_SACKPERM;
1434 #ifdef TCP_SIGNATURE
1435 		if (sc->sc_flags & SCF_SIGNATURE)
1436 			to.to_flags |= TOF_SIGNATURE;
1437 #endif
1438 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1439 
1440 		/* Adjust headers by option size. */
1441 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1442 		m->m_len += optlen;
1443 		m->m_pkthdr.len += optlen;
1444 
1445 #ifdef TCP_SIGNATURE
1446 		if (sc->sc_flags & SCF_SIGNATURE)
1447 			tcp_signature_compute(m, 0, 0, optlen,
1448 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1449 #endif
1450 #ifdef INET6
1451 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1452 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1453 		else
1454 #endif
1455 			ip->ip_len += optlen;
1456 	} else
1457 		optlen = 0;
1458 
1459 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1460 #ifdef INET6
1461 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1462 		th->th_sum = 0;
1463 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1464 				       tlen + optlen - hlen);
1465 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1466 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1467 	}
1468 #endif
1469 #if defined(INET6) && defined(INET)
1470 	else
1471 #endif
1472 #ifdef INET
1473 	{
1474 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1475 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1476 		m->m_pkthdr.csum_flags = CSUM_TCP;
1477 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1478 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1479 	}
1480 #endif
1481 	return (error);
1482 }
1483 
1484 void
1485 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1486     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1487 {
1488 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1489 }
1490 
1491 void
1492 tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1493     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1494     struct toe_usrreqs *tu, void *toepcb)
1495 {
1496 	struct tcpopt to;
1497 
1498 	bzero(&to, sizeof(struct tcpopt));
1499 	to.to_mss = toeo->to_mss;
1500 	to.to_wscale = toeo->to_wscale;
1501 	to.to_flags = toeo->to_flags;
1502 
1503 	INP_INFO_WLOCK(&V_tcbinfo);
1504 	INP_WLOCK(inp);
1505 
1506 	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1507 }
1508 
1509 /*
1510  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1511  * receive and to be able to handle SYN floods from bogus source addresses
1512  * (where we will never receive any reply).  SYN floods try to exhaust all
1513  * our memory and available slots in the SYN cache table to cause a denial
1514  * of service to legitimate users of the local host.
1515  *
1516  * The idea of SYN cookies is to encode and include all necessary information
1517  * about the connection setup state within the SYN-ACK we send back and thus
1518  * to get along without keeping any local state until the ACK to the SYN-ACK
1519  * arrives (if ever).  Everything we need to know should be available from
1520  * the information we encoded in the SYN-ACK.
1521  *
1522  * More information about the theory behind SYN cookies and its first
1523  * discussion and specification can be found at:
1524  *  http://cr.yp.to/syncookies.html    (overview)
1525  *  http://cr.yp.to/syncookies/archive (gory details)
1526  *
1527  * This implementation extends the orginal idea and first implementation
1528  * of FreeBSD by using not only the initial sequence number field to store
1529  * information but also the timestamp field if present.  This way we can
1530  * keep track of the entire state we need to know to recreate the session in
1531  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1532  * these days.  For those that do not we still have to live with the known
1533  * shortcomings of the ISN only SYN cookies.
1534  *
1535  * Cookie layers:
1536  *
1537  * Initial sequence number we send:
1538  * 31|................................|0
1539  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1540  *    D = MD5 Digest (first dword)
1541  *    M = MSS index
1542  *    R = Rotation of secret
1543  *    P = Odd or Even secret
1544  *
1545  * The MD5 Digest is computed with over following parameters:
1546  *  a) randomly rotated secret
1547  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1548  *  c) the received initial sequence number from remote host
1549  *  d) the rotation offset and odd/even bit
1550  *
1551  * Timestamp we send:
1552  * 31|................................|0
1553  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1554  *    D = MD5 Digest (third dword) (only as filler)
1555  *    S = Requested send window scale
1556  *    R = Requested receive window scale
1557  *    A = SACK allowed
1558  *    5 = TCP-MD5 enabled (not implemented yet)
1559  *    XORed with MD5 Digest (forth dword)
1560  *
1561  * The timestamp isn't cryptographically secure and doesn't need to be.
1562  * The double use of the MD5 digest dwords ties it to a specific remote/
1563  * local host/port, remote initial sequence number and our local time
1564  * limited secret.  A received timestamp is reverted (XORed) and then
1565  * the contained MD5 dword is compared to the computed one to ensure the
1566  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1567  * have been tampered with but this isn't different from supplying bogus
1568  * values in the SYN in the first place.
1569  *
1570  * Some problems with SYN cookies remain however:
1571  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1572  * original SYN was accepted, the connection is established.  The second
1573  * SYN is inflight, and if it arrives with an ISN that falls within the
1574  * receive window, the connection is killed.
1575  *
1576  * Notes:
1577  * A heuristic to determine when to accept syn cookies is not necessary.
1578  * An ACK flood would cause the syncookie verification to be attempted,
1579  * but a SYN flood causes syncookies to be generated.  Both are of equal
1580  * cost, so there's no point in trying to optimize the ACK flood case.
1581  * Also, if you don't process certain ACKs for some reason, then all someone
1582  * would have to do is launch a SYN and ACK flood at the same time, which
1583  * would stop cookie verification and defeat the entire purpose of syncookies.
1584  */
1585 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1586 
1587 static void
1588 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1589     u_int32_t *flowlabel)
1590 {
1591 	MD5_CTX ctx;
1592 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1593 	u_int32_t data;
1594 	u_int32_t *secbits;
1595 	u_int off, pmss, mss;
1596 	int i;
1597 
1598 	SCH_LOCK_ASSERT(sch);
1599 
1600 	/* Which of the two secrets to use. */
1601 	secbits = sch->sch_oddeven ?
1602 			sch->sch_secbits_odd : sch->sch_secbits_even;
1603 
1604 	/* Reseed secret if too old. */
1605 	if (sch->sch_reseed < time_uptime) {
1606 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1607 		secbits = sch->sch_oddeven ?
1608 				sch->sch_secbits_odd : sch->sch_secbits_even;
1609 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1610 			secbits[i] = arc4random();
1611 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1612 	}
1613 
1614 	/* Secret rotation offset. */
1615 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1616 
1617 	/* Maximum segment size calculation. */
1618 	pmss =
1619 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1620 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1621 		if (tcp_sc_msstab[mss] <= pmss)
1622 			break;
1623 
1624 	/* Fold parameters and MD5 digest into the ISN we will send. */
1625 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1626 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1627 	data |= mss << 4;	/* mss, 3 bits */
1628 
1629 	MD5Init(&ctx);
1630 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1631 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1632 	MD5Update(&ctx, secbits, off);
1633 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1634 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1635 	MD5Update(&ctx, &data, sizeof(data));
1636 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1637 
1638 	data |= (md5_buffer[0] << 7);
1639 	sc->sc_iss = data;
1640 
1641 #ifdef INET6
1642 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1643 #endif
1644 
1645 	/* Additional parameters are stored in the timestamp if present. */
1646 	if (sc->sc_flags & SCF_TIMESTAMP) {
1647 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1648 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1649 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1650 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1651 		data |= md5_buffer[2] << 10;		/* more digest bits */
1652 		data ^= md5_buffer[3];
1653 		sc->sc_ts = data;
1654 		sc->sc_tsoff = data - ticks;		/* after XOR */
1655 	}
1656 
1657 	TCPSTAT_INC(tcps_sc_sendcookie);
1658 }
1659 
1660 static struct syncache *
1661 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1662     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1663     struct socket *so)
1664 {
1665 	MD5_CTX ctx;
1666 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1667 	u_int32_t data = 0;
1668 	u_int32_t *secbits;
1669 	tcp_seq ack, seq;
1670 	int off, mss, wnd, flags;
1671 
1672 	SCH_LOCK_ASSERT(sch);
1673 
1674 	/*
1675 	 * Pull information out of SYN-ACK/ACK and
1676 	 * revert sequence number advances.
1677 	 */
1678 	ack = th->th_ack - 1;
1679 	seq = th->th_seq - 1;
1680 	off = (ack >> 1) & 0x7;
1681 	mss = (ack >> 4) & 0x7;
1682 	flags = ack & 0x7f;
1683 
1684 	/* Which of the two secrets to use. */
1685 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1686 
1687 	/*
1688 	 * The secret wasn't updated for the lifetime of a syncookie,
1689 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1690 	 */
1691 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1692 		return (NULL);
1693 	}
1694 
1695 	/* Recompute the digest so we can compare it. */
1696 	MD5Init(&ctx);
1697 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1698 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1699 	MD5Update(&ctx, secbits, off);
1700 	MD5Update(&ctx, inc, sizeof(*inc));
1701 	MD5Update(&ctx, &seq, sizeof(seq));
1702 	MD5Update(&ctx, &flags, sizeof(flags));
1703 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1704 
1705 	/* Does the digest part of or ACK'ed ISS match? */
1706 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1707 		return (NULL);
1708 
1709 	/* Does the digest part of our reflected timestamp match? */
1710 	if (to->to_flags & TOF_TS) {
1711 		data = md5_buffer[3] ^ to->to_tsecr;
1712 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1713 			return (NULL);
1714 	}
1715 
1716 	/* Fill in the syncache values. */
1717 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1718 	sc->sc_ipopts = NULL;
1719 
1720 	sc->sc_irs = seq;
1721 	sc->sc_iss = ack;
1722 
1723 #ifdef INET6
1724 	if (inc->inc_flags & INC_ISIPV6) {
1725 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1726 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1727 	} else
1728 #endif
1729 	{
1730 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1731 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1732 	}
1733 
1734 	/* Additional parameters that were encoded in the timestamp. */
1735 	if (data) {
1736 		sc->sc_flags |= SCF_TIMESTAMP;
1737 		sc->sc_tsreflect = to->to_tsval;
1738 		sc->sc_ts = to->to_tsecr;
1739 		sc->sc_tsoff = to->to_tsecr - ticks;
1740 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1741 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1742 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1743 		    TCP_MAX_WINSHIFT);
1744 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1745 		    TCP_MAX_WINSHIFT);
1746 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1747 			sc->sc_flags |= SCF_WINSCALE;
1748 	} else
1749 		sc->sc_flags |= SCF_NOOPT;
1750 
1751 	wnd = sbspace(&so->so_rcv);
1752 	wnd = imax(wnd, 0);
1753 	wnd = imin(wnd, TCP_MAXWIN);
1754 	sc->sc_wnd = wnd;
1755 
1756 	sc->sc_rxmits = 0;
1757 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1758 
1759 	TCPSTAT_INC(tcps_sc_recvcookie);
1760 	return (sc);
1761 }
1762 
1763 /*
1764  * Returns the current number of syncache entries.  This number
1765  * will probably change before you get around to calling
1766  * syncache_pcblist.
1767  */
1768 
1769 int
1770 syncache_pcbcount(void)
1771 {
1772 	struct syncache_head *sch;
1773 	int count, i;
1774 
1775 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1776 		/* No need to lock for a read. */
1777 		sch = &V_tcp_syncache.hashbase[i];
1778 		count += sch->sch_length;
1779 	}
1780 	return count;
1781 }
1782 
1783 /*
1784  * Exports the syncache entries to userland so that netstat can display
1785  * them alongside the other sockets.  This function is intended to be
1786  * called only from tcp_pcblist.
1787  *
1788  * Due to concurrency on an active system, the number of pcbs exported
1789  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1790  * amount of space the caller allocated for this function to use.
1791  */
1792 int
1793 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1794 {
1795 	struct xtcpcb xt;
1796 	struct syncache *sc;
1797 	struct syncache_head *sch;
1798 	int count, error, i;
1799 
1800 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1801 		sch = &V_tcp_syncache.hashbase[i];
1802 		SCH_LOCK(sch);
1803 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1804 			if (count >= max_pcbs) {
1805 				SCH_UNLOCK(sch);
1806 				goto exit;
1807 			}
1808 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1809 				continue;
1810 			bzero(&xt, sizeof(xt));
1811 			xt.xt_len = sizeof(xt);
1812 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1813 				xt.xt_inp.inp_vflag = INP_IPV6;
1814 			else
1815 				xt.xt_inp.inp_vflag = INP_IPV4;
1816 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1817 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1818 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1819 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1820 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1821 			xt.xt_socket.so_type = SOCK_STREAM;
1822 			xt.xt_socket.so_state = SS_ISCONNECTING;
1823 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1824 			if (error) {
1825 				SCH_UNLOCK(sch);
1826 				goto exit;
1827 			}
1828 			count++;
1829 		}
1830 		SCH_UNLOCK(sch);
1831 	}
1832 exit:
1833 	*pcbs_exported = count;
1834 	return error;
1835 }
1836