xref: /freebsd/sys/netinet/tcp_syncache.c (revision 864c53ead899f7838cd2e1cca3b485a4a82f5cdc)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <sys/md5.h>
58 #include <crypto/siphash/siphash.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/route.h>
65 #include <net/vnet.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_var.h>
71 #include <netinet/in_pcb.h>
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_options.h>
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/nd6.h>
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/in6_pcb.h>
80 #endif
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #include <netinet/tcp_syncache.h>
87 #ifdef INET6
88 #include <netinet6/tcp6_var.h>
89 #endif
90 #ifdef TCP_OFFLOAD
91 #include <netinet/toecore.h>
92 #endif
93 
94 #ifdef IPSEC
95 #include <netipsec/ipsec.h>
96 #ifdef INET6
97 #include <netipsec/ipsec6.h>
98 #endif
99 #include <netipsec/key.h>
100 #endif /*IPSEC*/
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 static VNET_DEFINE(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 #ifdef TCP_OFFLOAD
119 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
120 #endif
121 
122 static void	 syncache_drop(struct syncache *, struct syncache_head *);
123 static void	 syncache_free(struct syncache *);
124 static void	 syncache_insert(struct syncache *, struct syncache_head *);
125 static int	 syncache_respond(struct syncache *);
126 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127 		    struct mbuf *m);
128 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
129 		    int docallout);
130 static void	 syncache_timer(void *);
131 
132 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
133 		    uint8_t *, uintptr_t);
134 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
135 static struct syncache
136 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137 		    struct syncache *, struct tcphdr *, struct tcpopt *,
138 		    struct socket *);
139 static void	 syncookie_reseed(void *);
140 #ifdef INVARIANTS
141 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
142 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
143 		    struct socket *lso);
144 #endif
145 
146 /*
147  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
148  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
149  * the odds are that the user has given up attempting to connect by then.
150  */
151 #define SYNCACHE_MAXREXMTS		3
152 
153 /* Arbitrary values */
154 #define TCP_SYNCACHE_HASHSIZE		512
155 #define TCP_SYNCACHE_BUCKETLIMIT	30
156 
157 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
158 #define	V_tcp_syncache			VNET(tcp_syncache)
159 
160 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
161     "TCP SYN cache");
162 
163 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
164     &VNET_NAME(tcp_syncache.bucket_limit), 0,
165     "Per-bucket hash limit for syncache");
166 
167 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
168     &VNET_NAME(tcp_syncache.cache_limit), 0,
169     "Overall entry limit for syncache");
170 
171 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
172     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
173 
174 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
175     &VNET_NAME(tcp_syncache.hashsize), 0,
176     "Size of TCP syncache hashtable");
177 
178 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
179     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
180     "Limit on SYN/ACK retransmissions");
181 
182 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
183 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
184     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
185     "Send reset on socket allocation failure");
186 
187 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
188 
189 #define SYNCACHE_HASH(inc, mask)					\
190 	((V_tcp_syncache.hash_secret ^					\
191 	  (inc)->inc_faddr.s_addr ^					\
192 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
193 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
194 
195 #define SYNCACHE_HASH6(inc, mask)					\
196 	((V_tcp_syncache.hash_secret ^					\
197 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
198 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
199 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
200 
201 #define ENDPTS_EQ(a, b) (						\
202 	(a)->ie_fport == (b)->ie_fport &&				\
203 	(a)->ie_lport == (b)->ie_lport &&				\
204 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
205 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
206 )
207 
208 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
209 
210 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
211 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
212 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
213 
214 /*
215  * Requires the syncache entry to be already removed from the bucket list.
216  */
217 static void
218 syncache_free(struct syncache *sc)
219 {
220 
221 	if (sc->sc_ipopts)
222 		(void) m_free(sc->sc_ipopts);
223 	if (sc->sc_cred)
224 		crfree(sc->sc_cred);
225 #ifdef MAC
226 	mac_syncache_destroy(&sc->sc_label);
227 #endif
228 
229 	uma_zfree(V_tcp_syncache.zone, sc);
230 }
231 
232 void
233 syncache_init(void)
234 {
235 	int i;
236 
237 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
238 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
239 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
240 	V_tcp_syncache.hash_secret = arc4random();
241 
242 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
243 	    &V_tcp_syncache.hashsize);
244 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
245 	    &V_tcp_syncache.bucket_limit);
246 	if (!powerof2(V_tcp_syncache.hashsize) ||
247 	    V_tcp_syncache.hashsize == 0) {
248 		printf("WARNING: syncache hash size is not a power of 2.\n");
249 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
250 	}
251 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
252 
253 	/* Set limits. */
254 	V_tcp_syncache.cache_limit =
255 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
256 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
257 	    &V_tcp_syncache.cache_limit);
258 
259 	/* Allocate the hash table. */
260 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
261 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
262 
263 #ifdef VIMAGE
264 	V_tcp_syncache.vnet = curvnet;
265 #endif
266 
267 	/* Initialize the hash buckets. */
268 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
269 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
270 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
271 			 NULL, MTX_DEF);
272 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
273 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
274 		V_tcp_syncache.hashbase[i].sch_length = 0;
275 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
276 	}
277 
278 	/* Create the syncache entry zone. */
279 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
280 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
281 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
282 	    V_tcp_syncache.cache_limit);
283 
284 	/* Start the SYN cookie reseeder callout. */
285 	callout_init(&V_tcp_syncache.secret.reseed, 1);
286 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
287 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
288 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
289 	    syncookie_reseed, &V_tcp_syncache);
290 }
291 
292 #ifdef VIMAGE
293 void
294 syncache_destroy(void)
295 {
296 	struct syncache_head *sch;
297 	struct syncache *sc, *nsc;
298 	int i;
299 
300 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
301 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
302 
303 		sch = &V_tcp_syncache.hashbase[i];
304 		callout_drain(&sch->sch_timer);
305 
306 		SCH_LOCK(sch);
307 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
308 			syncache_drop(sc, sch);
309 		SCH_UNLOCK(sch);
310 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
311 		    ("%s: sch->sch_bucket not empty", __func__));
312 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
313 		    __func__, sch->sch_length));
314 		mtx_destroy(&sch->sch_mtx);
315 	}
316 
317 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
318 	    ("%s: cache_count not 0", __func__));
319 
320 	/* Free the allocated global resources. */
321 	uma_zdestroy(V_tcp_syncache.zone);
322 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
323 
324 	callout_drain(&V_tcp_syncache.secret.reseed);
325 }
326 #endif
327 
328 /*
329  * Inserts a syncache entry into the specified bucket row.
330  * Locks and unlocks the syncache_head autonomously.
331  */
332 static void
333 syncache_insert(struct syncache *sc, struct syncache_head *sch)
334 {
335 	struct syncache *sc2;
336 
337 	SCH_LOCK(sch);
338 
339 	/*
340 	 * Make sure that we don't overflow the per-bucket limit.
341 	 * If the bucket is full, toss the oldest element.
342 	 */
343 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
344 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
345 			("sch->sch_length incorrect"));
346 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
347 		syncache_drop(sc2, sch);
348 		TCPSTAT_INC(tcps_sc_bucketoverflow);
349 	}
350 
351 	/* Put it into the bucket. */
352 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
353 	sch->sch_length++;
354 
355 #ifdef TCP_OFFLOAD
356 	if (ADDED_BY_TOE(sc)) {
357 		struct toedev *tod = sc->sc_tod;
358 
359 		tod->tod_syncache_added(tod, sc->sc_todctx);
360 	}
361 #endif
362 
363 	/* Reinitialize the bucket row's timer. */
364 	if (sch->sch_length == 1)
365 		sch->sch_nextc = ticks + INT_MAX;
366 	syncache_timeout(sc, sch, 1);
367 
368 	SCH_UNLOCK(sch);
369 
370 	TCPSTAT_INC(tcps_sc_added);
371 }
372 
373 /*
374  * Remove and free entry from syncache bucket row.
375  * Expects locked syncache head.
376  */
377 static void
378 syncache_drop(struct syncache *sc, struct syncache_head *sch)
379 {
380 
381 	SCH_LOCK_ASSERT(sch);
382 
383 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
384 	sch->sch_length--;
385 
386 #ifdef TCP_OFFLOAD
387 	if (ADDED_BY_TOE(sc)) {
388 		struct toedev *tod = sc->sc_tod;
389 
390 		tod->tod_syncache_removed(tod, sc->sc_todctx);
391 	}
392 #endif
393 
394 	syncache_free(sc);
395 }
396 
397 /*
398  * Engage/reengage time on bucket row.
399  */
400 static void
401 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
402 {
403 	sc->sc_rxttime = ticks +
404 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
405 	sc->sc_rxmits++;
406 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
407 		sch->sch_nextc = sc->sc_rxttime;
408 		if (docallout)
409 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
410 			    syncache_timer, (void *)sch);
411 	}
412 }
413 
414 /*
415  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
416  * If we have retransmitted an entry the maximum number of times, expire it.
417  * One separate timer for each bucket row.
418  */
419 static void
420 syncache_timer(void *xsch)
421 {
422 	struct syncache_head *sch = (struct syncache_head *)xsch;
423 	struct syncache *sc, *nsc;
424 	int tick = ticks;
425 	char *s;
426 
427 	CURVNET_SET(sch->sch_sc->vnet);
428 
429 	/* NB: syncache_head has already been locked by the callout. */
430 	SCH_LOCK_ASSERT(sch);
431 
432 	/*
433 	 * In the following cycle we may remove some entries and/or
434 	 * advance some timeouts, so re-initialize the bucket timer.
435 	 */
436 	sch->sch_nextc = tick + INT_MAX;
437 
438 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
439 		/*
440 		 * We do not check if the listen socket still exists
441 		 * and accept the case where the listen socket may be
442 		 * gone by the time we resend the SYN/ACK.  We do
443 		 * not expect this to happens often. If it does,
444 		 * then the RST will be sent by the time the remote
445 		 * host does the SYN/ACK->ACK.
446 		 */
447 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
448 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
449 				sch->sch_nextc = sc->sc_rxttime;
450 			continue;
451 		}
452 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
453 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
454 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
455 				    "giving up and removing syncache entry\n",
456 				    s, __func__);
457 				free(s, M_TCPLOG);
458 			}
459 			syncache_drop(sc, sch);
460 			TCPSTAT_INC(tcps_sc_stale);
461 			continue;
462 		}
463 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
464 			log(LOG_DEBUG, "%s; %s: Response timeout, "
465 			    "retransmitting (%u) SYN|ACK\n",
466 			    s, __func__, sc->sc_rxmits);
467 			free(s, M_TCPLOG);
468 		}
469 
470 		(void) syncache_respond(sc);
471 		TCPSTAT_INC(tcps_sc_retransmitted);
472 		syncache_timeout(sc, sch, 0);
473 	}
474 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
475 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
476 			syncache_timer, (void *)(sch));
477 	CURVNET_RESTORE();
478 }
479 
480 /*
481  * Find an entry in the syncache.
482  * Returns always with locked syncache_head plus a matching entry or NULL.
483  */
484 static struct syncache *
485 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
486 {
487 	struct syncache *sc;
488 	struct syncache_head *sch;
489 
490 #ifdef INET6
491 	if (inc->inc_flags & INC_ISIPV6) {
492 		sch = &V_tcp_syncache.hashbase[
493 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
494 		*schp = sch;
495 
496 		SCH_LOCK(sch);
497 
498 		/* Circle through bucket row to find matching entry. */
499 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
500 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
501 				return (sc);
502 		}
503 	} else
504 #endif
505 	{
506 		sch = &V_tcp_syncache.hashbase[
507 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
508 		*schp = sch;
509 
510 		SCH_LOCK(sch);
511 
512 		/* Circle through bucket row to find matching entry. */
513 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
514 #ifdef INET6
515 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
516 				continue;
517 #endif
518 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
519 				return (sc);
520 		}
521 	}
522 	SCH_LOCK_ASSERT(*schp);
523 	return (NULL);			/* always returns with locked sch */
524 }
525 
526 /*
527  * This function is called when we get a RST for a
528  * non-existent connection, so that we can see if the
529  * connection is in the syn cache.  If it is, zap it.
530  */
531 void
532 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
533 {
534 	struct syncache *sc;
535 	struct syncache_head *sch;
536 	char *s = NULL;
537 
538 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
539 	SCH_LOCK_ASSERT(sch);
540 
541 	/*
542 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
543 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
544 	 */
545 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
546 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
547 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
548 			    "FIN flag set, segment ignored\n", s, __func__);
549 		TCPSTAT_INC(tcps_badrst);
550 		goto done;
551 	}
552 
553 	/*
554 	 * No corresponding connection was found in syncache.
555 	 * If syncookies are enabled and possibly exclusively
556 	 * used, or we are under memory pressure, a valid RST
557 	 * may not find a syncache entry.  In that case we're
558 	 * done and no SYN|ACK retransmissions will happen.
559 	 * Otherwise the RST was misdirected or spoofed.
560 	 */
561 	if (sc == NULL) {
562 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
563 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
564 			    "syncache entry (possibly syncookie only), "
565 			    "segment ignored\n", s, __func__);
566 		TCPSTAT_INC(tcps_badrst);
567 		goto done;
568 	}
569 
570 	/*
571 	 * If the RST bit is set, check the sequence number to see
572 	 * if this is a valid reset segment.
573 	 * RFC 793 page 37:
574 	 *   In all states except SYN-SENT, all reset (RST) segments
575 	 *   are validated by checking their SEQ-fields.  A reset is
576 	 *   valid if its sequence number is in the window.
577 	 *
578 	 *   The sequence number in the reset segment is normally an
579 	 *   echo of our outgoing acknowlegement numbers, but some hosts
580 	 *   send a reset with the sequence number at the rightmost edge
581 	 *   of our receive window, and we have to handle this case.
582 	 */
583 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
584 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
585 		syncache_drop(sc, sch);
586 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
587 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
588 			    "connection attempt aborted by remote endpoint\n",
589 			    s, __func__);
590 		TCPSTAT_INC(tcps_sc_reset);
591 	} else {
592 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
593 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
594 			    "IRS %u (+WND %u), segment ignored\n",
595 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
596 		TCPSTAT_INC(tcps_badrst);
597 	}
598 
599 done:
600 	if (s != NULL)
601 		free(s, M_TCPLOG);
602 	SCH_UNLOCK(sch);
603 }
604 
605 void
606 syncache_badack(struct in_conninfo *inc)
607 {
608 	struct syncache *sc;
609 	struct syncache_head *sch;
610 
611 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
612 	SCH_LOCK_ASSERT(sch);
613 	if (sc != NULL) {
614 		syncache_drop(sc, sch);
615 		TCPSTAT_INC(tcps_sc_badack);
616 	}
617 	SCH_UNLOCK(sch);
618 }
619 
620 void
621 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
622 {
623 	struct syncache *sc;
624 	struct syncache_head *sch;
625 
626 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
627 	SCH_LOCK_ASSERT(sch);
628 	if (sc == NULL)
629 		goto done;
630 
631 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
632 	if (ntohl(th->th_seq) != sc->sc_iss)
633 		goto done;
634 
635 	/*
636 	 * If we've rertransmitted 3 times and this is our second error,
637 	 * we remove the entry.  Otherwise, we allow it to continue on.
638 	 * This prevents us from incorrectly nuking an entry during a
639 	 * spurious network outage.
640 	 *
641 	 * See tcp_notify().
642 	 */
643 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
644 		sc->sc_flags |= SCF_UNREACH;
645 		goto done;
646 	}
647 	syncache_drop(sc, sch);
648 	TCPSTAT_INC(tcps_sc_unreach);
649 done:
650 	SCH_UNLOCK(sch);
651 }
652 
653 /*
654  * Build a new TCP socket structure from a syncache entry.
655  */
656 static struct socket *
657 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
658 {
659 	struct inpcb *inp = NULL;
660 	struct socket *so;
661 	struct tcpcb *tp;
662 	int error;
663 	char *s;
664 
665 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
666 
667 	/*
668 	 * Ok, create the full blown connection, and set things up
669 	 * as they would have been set up if we had created the
670 	 * connection when the SYN arrived.  If we can't create
671 	 * the connection, abort it.
672 	 */
673 	so = sonewconn(lso, 0);
674 	if (so == NULL) {
675 		/*
676 		 * Drop the connection; we will either send a RST or
677 		 * have the peer retransmit its SYN again after its
678 		 * RTO and try again.
679 		 */
680 		TCPSTAT_INC(tcps_listendrop);
681 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
682 			log(LOG_DEBUG, "%s; %s: Socket create failed "
683 			    "due to limits or memory shortage\n",
684 			    s, __func__);
685 			free(s, M_TCPLOG);
686 		}
687 		goto abort2;
688 	}
689 #ifdef MAC
690 	mac_socketpeer_set_from_mbuf(m, so);
691 #endif
692 
693 	inp = sotoinpcb(so);
694 	inp->inp_inc.inc_fibnum = so->so_fibnum;
695 	INP_WLOCK(inp);
696 	INP_HASH_WLOCK(&V_tcbinfo);
697 
698 	/* Insert new socket into PCB hash list. */
699 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
700 #ifdef INET6
701 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
702 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
703 	} else {
704 		inp->inp_vflag &= ~INP_IPV6;
705 		inp->inp_vflag |= INP_IPV4;
706 #endif
707 		inp->inp_laddr = sc->sc_inc.inc_laddr;
708 #ifdef INET6
709 	}
710 #endif
711 
712 	/*
713 	 * If there's an mbuf and it has a flowid, then let's initialise the
714 	 * inp with that particular flowid.
715 	 */
716 	if (m != NULL && m->m_flags & M_FLOWID) {
717 		inp->inp_flags |= INP_HW_FLOWID;
718 		inp->inp_flags &= ~INP_SW_FLOWID;
719 		inp->inp_flowid = m->m_pkthdr.flowid;
720 		inp->inp_flowtype = M_HASHTYPE_GET(m);
721 	}
722 
723 	/*
724 	 * Install in the reservation hash table for now, but don't yet
725 	 * install a connection group since the full 4-tuple isn't yet
726 	 * configured.
727 	 */
728 	inp->inp_lport = sc->sc_inc.inc_lport;
729 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
730 		/*
731 		 * Undo the assignments above if we failed to
732 		 * put the PCB on the hash lists.
733 		 */
734 #ifdef INET6
735 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
736 			inp->in6p_laddr = in6addr_any;
737 		else
738 #endif
739 			inp->inp_laddr.s_addr = INADDR_ANY;
740 		inp->inp_lport = 0;
741 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
742 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
743 			    "with error %i\n",
744 			    s, __func__, error);
745 			free(s, M_TCPLOG);
746 		}
747 		INP_HASH_WUNLOCK(&V_tcbinfo);
748 		goto abort;
749 	}
750 #ifdef IPSEC
751 	/* Copy old policy into new socket's. */
752 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
753 		printf("syncache_socket: could not copy policy\n");
754 #endif
755 #ifdef INET6
756 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
757 		struct inpcb *oinp = sotoinpcb(lso);
758 		struct in6_addr laddr6;
759 		struct sockaddr_in6 sin6;
760 		/*
761 		 * Inherit socket options from the listening socket.
762 		 * Note that in6p_inputopts are not (and should not be)
763 		 * copied, since it stores previously received options and is
764 		 * used to detect if each new option is different than the
765 		 * previous one and hence should be passed to a user.
766 		 * If we copied in6p_inputopts, a user would not be able to
767 		 * receive options just after calling the accept system call.
768 		 */
769 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
770 		if (oinp->in6p_outputopts)
771 			inp->in6p_outputopts =
772 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
773 
774 		sin6.sin6_family = AF_INET6;
775 		sin6.sin6_len = sizeof(sin6);
776 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
777 		sin6.sin6_port = sc->sc_inc.inc_fport;
778 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
779 		laddr6 = inp->in6p_laddr;
780 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
781 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
782 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
783 		    thread0.td_ucred, m)) != 0) {
784 			inp->in6p_laddr = laddr6;
785 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
786 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
787 				    "with error %i\n",
788 				    s, __func__, error);
789 				free(s, M_TCPLOG);
790 			}
791 			INP_HASH_WUNLOCK(&V_tcbinfo);
792 			goto abort;
793 		}
794 		/* Override flowlabel from in6_pcbconnect. */
795 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
796 		inp->inp_flow |= sc->sc_flowlabel;
797 	}
798 #endif /* INET6 */
799 #if defined(INET) && defined(INET6)
800 	else
801 #endif
802 #ifdef INET
803 	{
804 		struct in_addr laddr;
805 		struct sockaddr_in sin;
806 
807 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
808 
809 		if (inp->inp_options == NULL) {
810 			inp->inp_options = sc->sc_ipopts;
811 			sc->sc_ipopts = NULL;
812 		}
813 
814 		sin.sin_family = AF_INET;
815 		sin.sin_len = sizeof(sin);
816 		sin.sin_addr = sc->sc_inc.inc_faddr;
817 		sin.sin_port = sc->sc_inc.inc_fport;
818 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
819 		laddr = inp->inp_laddr;
820 		if (inp->inp_laddr.s_addr == INADDR_ANY)
821 			inp->inp_laddr = sc->sc_inc.inc_laddr;
822 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
823 		    thread0.td_ucred, m)) != 0) {
824 			inp->inp_laddr = laddr;
825 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
826 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
827 				    "with error %i\n",
828 				    s, __func__, error);
829 				free(s, M_TCPLOG);
830 			}
831 			INP_HASH_WUNLOCK(&V_tcbinfo);
832 			goto abort;
833 		}
834 	}
835 #endif /* INET */
836 	INP_HASH_WUNLOCK(&V_tcbinfo);
837 	tp = intotcpcb(inp);
838 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
839 	tp->iss = sc->sc_iss;
840 	tp->irs = sc->sc_irs;
841 	tcp_rcvseqinit(tp);
842 	tcp_sendseqinit(tp);
843 	tp->snd_wl1 = sc->sc_irs;
844 	tp->snd_max = tp->iss + 1;
845 	tp->snd_nxt = tp->iss + 1;
846 	tp->rcv_up = sc->sc_irs + 1;
847 	tp->rcv_wnd = sc->sc_wnd;
848 	tp->rcv_adv += tp->rcv_wnd;
849 	tp->last_ack_sent = tp->rcv_nxt;
850 
851 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
852 	if (sc->sc_flags & SCF_NOOPT)
853 		tp->t_flags |= TF_NOOPT;
854 	else {
855 		if (sc->sc_flags & SCF_WINSCALE) {
856 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
857 			tp->snd_scale = sc->sc_requested_s_scale;
858 			tp->request_r_scale = sc->sc_requested_r_scale;
859 		}
860 		if (sc->sc_flags & SCF_TIMESTAMP) {
861 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
862 			tp->ts_recent = sc->sc_tsreflect;
863 			tp->ts_recent_age = tcp_ts_getticks();
864 			tp->ts_offset = sc->sc_tsoff;
865 		}
866 #ifdef TCP_SIGNATURE
867 		if (sc->sc_flags & SCF_SIGNATURE)
868 			tp->t_flags |= TF_SIGNATURE;
869 #endif
870 		if (sc->sc_flags & SCF_SACK)
871 			tp->t_flags |= TF_SACK_PERMIT;
872 	}
873 
874 	if (sc->sc_flags & SCF_ECN)
875 		tp->t_flags |= TF_ECN_PERMIT;
876 
877 	/*
878 	 * Set up MSS and get cached values from tcp_hostcache.
879 	 * This might overwrite some of the defaults we just set.
880 	 */
881 	tcp_mss(tp, sc->sc_peer_mss);
882 
883 	/*
884 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
885 	 * limited to one segment in cc_conn_init().
886 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
887 	 */
888 	if (sc->sc_rxmits > 1)
889 		tp->snd_cwnd = 1;
890 
891 #ifdef TCP_OFFLOAD
892 	/*
893 	 * Allow a TOE driver to install its hooks.  Note that we hold the
894 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
895 	 * new connection before the TOE driver has done its thing.
896 	 */
897 	if (ADDED_BY_TOE(sc)) {
898 		struct toedev *tod = sc->sc_tod;
899 
900 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
901 	}
902 #endif
903 	/*
904 	 * Copy and activate timers.
905 	 */
906 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
907 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
908 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
909 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
910 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
911 
912 	INP_WUNLOCK(inp);
913 
914 	soisconnected(so);
915 
916 	TCPSTAT_INC(tcps_accepts);
917 	return (so);
918 
919 abort:
920 	INP_WUNLOCK(inp);
921 abort2:
922 	if (so != NULL)
923 		soabort(so);
924 	return (NULL);
925 }
926 
927 /*
928  * This function gets called when we receive an ACK for a
929  * socket in the LISTEN state.  We look up the connection
930  * in the syncache, and if its there, we pull it out of
931  * the cache and turn it into a full-blown connection in
932  * the SYN-RECEIVED state.
933  */
934 int
935 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
936     struct socket **lsop, struct mbuf *m)
937 {
938 	struct syncache *sc;
939 	struct syncache_head *sch;
940 	struct syncache scs;
941 	char *s;
942 
943 	/*
944 	 * Global TCP locks are held because we manipulate the PCB lists
945 	 * and create a new socket.
946 	 */
947 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
948 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
949 	    ("%s: can handle only ACK", __func__));
950 
951 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
952 	SCH_LOCK_ASSERT(sch);
953 
954 #ifdef INVARIANTS
955 	/*
956 	 * Test code for syncookies comparing the syncache stored
957 	 * values with the reconstructed values from the cookie.
958 	 */
959 	if (sc != NULL)
960 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
961 #endif
962 
963 	if (sc == NULL) {
964 		/*
965 		 * There is no syncache entry, so see if this ACK is
966 		 * a returning syncookie.  To do this, first:
967 		 *  A. See if this socket has had a syncache entry dropped in
968 		 *     the past.  We don't want to accept a bogus syncookie
969 		 *     if we've never received a SYN.
970 		 *  B. check that the syncookie is valid.  If it is, then
971 		 *     cobble up a fake syncache entry, and return.
972 		 */
973 		if (!V_tcp_syncookies) {
974 			SCH_UNLOCK(sch);
975 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
976 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
977 				    "segment rejected (syncookies disabled)\n",
978 				    s, __func__);
979 			goto failed;
980 		}
981 		bzero(&scs, sizeof(scs));
982 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
983 		SCH_UNLOCK(sch);
984 		if (sc == NULL) {
985 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
986 				log(LOG_DEBUG, "%s; %s: Segment failed "
987 				    "SYNCOOKIE authentication, segment rejected "
988 				    "(probably spoofed)\n", s, __func__);
989 			goto failed;
990 		}
991 	} else {
992 		/* Pull out the entry to unlock the bucket row. */
993 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
994 		sch->sch_length--;
995 #ifdef TCP_OFFLOAD
996 		if (ADDED_BY_TOE(sc)) {
997 			struct toedev *tod = sc->sc_tod;
998 
999 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1000 		}
1001 #endif
1002 		SCH_UNLOCK(sch);
1003 	}
1004 
1005 	/*
1006 	 * Segment validation:
1007 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1008 	 */
1009 	if (th->th_ack != sc->sc_iss + 1) {
1010 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1011 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1012 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1013 		goto failed;
1014 	}
1015 
1016 	/*
1017 	 * The SEQ must fall in the window starting at the received
1018 	 * initial receive sequence number + 1 (the SYN).
1019 	 */
1020 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1021 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1022 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1023 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1024 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1025 		goto failed;
1026 	}
1027 
1028 	/*
1029 	 * If timestamps were not negotiated during SYN/ACK they
1030 	 * must not appear on any segment during this session.
1031 	 */
1032 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1033 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1034 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1035 			    "segment rejected\n", s, __func__);
1036 		goto failed;
1037 	}
1038 
1039 	/*
1040 	 * If timestamps were negotiated during SYN/ACK they should
1041 	 * appear on every segment during this session.
1042 	 * XXXAO: This is only informal as there have been unverified
1043 	 * reports of non-compliants stacks.
1044 	 */
1045 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1046 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1047 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1048 			    "no action\n", s, __func__);
1049 			free(s, M_TCPLOG);
1050 			s = NULL;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * If timestamps were negotiated the reflected timestamp
1056 	 * must be equal to what we actually sent in the SYN|ACK.
1057 	 */
1058 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1059 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1060 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1061 			    "segment rejected\n",
1062 			    s, __func__, to->to_tsecr, sc->sc_ts);
1063 		goto failed;
1064 	}
1065 
1066 	*lsop = syncache_socket(sc, *lsop, m);
1067 
1068 	if (*lsop == NULL)
1069 		TCPSTAT_INC(tcps_sc_aborted);
1070 	else
1071 		TCPSTAT_INC(tcps_sc_completed);
1072 
1073 /* how do we find the inp for the new socket? */
1074 	if (sc != &scs)
1075 		syncache_free(sc);
1076 	return (1);
1077 failed:
1078 	if (sc != NULL && sc != &scs)
1079 		syncache_free(sc);
1080 	if (s != NULL)
1081 		free(s, M_TCPLOG);
1082 	*lsop = NULL;
1083 	return (0);
1084 }
1085 
1086 /*
1087  * Given a LISTEN socket and an inbound SYN request, add
1088  * this to the syn cache, and send back a segment:
1089  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1090  * to the source.
1091  *
1092  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1093  * Doing so would require that we hold onto the data and deliver it
1094  * to the application.  However, if we are the target of a SYN-flood
1095  * DoS attack, an attacker could send data which would eventually
1096  * consume all available buffer space if it were ACKed.  By not ACKing
1097  * the data, we avoid this DoS scenario.
1098  */
1099 void
1100 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1101     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1102     void *todctx)
1103 {
1104 	struct tcpcb *tp;
1105 	struct socket *so;
1106 	struct syncache *sc = NULL;
1107 	struct syncache_head *sch;
1108 	struct mbuf *ipopts = NULL;
1109 	u_int ltflags;
1110 	int win, sb_hiwat, ip_ttl, ip_tos;
1111 	char *s;
1112 #ifdef INET6
1113 	int autoflowlabel = 0;
1114 #endif
1115 #ifdef MAC
1116 	struct label *maclabel;
1117 #endif
1118 	struct syncache scs;
1119 	struct ucred *cred;
1120 
1121 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1122 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1123 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1124 	    ("%s: unexpected tcp flags", __func__));
1125 
1126 	/*
1127 	 * Combine all so/tp operations very early to drop the INP lock as
1128 	 * soon as possible.
1129 	 */
1130 	so = *lsop;
1131 	tp = sototcpcb(so);
1132 	cred = crhold(so->so_cred);
1133 
1134 #ifdef INET6
1135 	if ((inc->inc_flags & INC_ISIPV6) &&
1136 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1137 		autoflowlabel = 1;
1138 #endif
1139 	ip_ttl = inp->inp_ip_ttl;
1140 	ip_tos = inp->inp_ip_tos;
1141 	win = sbspace(&so->so_rcv);
1142 	sb_hiwat = so->so_rcv.sb_hiwat;
1143 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1144 
1145 	/* By the time we drop the lock these should no longer be used. */
1146 	so = NULL;
1147 	tp = NULL;
1148 
1149 #ifdef MAC
1150 	if (mac_syncache_init(&maclabel) != 0) {
1151 		INP_WUNLOCK(inp);
1152 		INP_INFO_WUNLOCK(&V_tcbinfo);
1153 		goto done;
1154 	} else
1155 		mac_syncache_create(maclabel, inp);
1156 #endif
1157 	INP_WUNLOCK(inp);
1158 	INP_INFO_WUNLOCK(&V_tcbinfo);
1159 
1160 	/*
1161 	 * Remember the IP options, if any.
1162 	 */
1163 #ifdef INET6
1164 	if (!(inc->inc_flags & INC_ISIPV6))
1165 #endif
1166 #ifdef INET
1167 		ipopts = (m) ? ip_srcroute(m) : NULL;
1168 #else
1169 		ipopts = NULL;
1170 #endif
1171 
1172 	/*
1173 	 * See if we already have an entry for this connection.
1174 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1175 	 *
1176 	 * XXX: should the syncache be re-initialized with the contents
1177 	 * of the new SYN here (which may have different options?)
1178 	 *
1179 	 * XXX: We do not check the sequence number to see if this is a
1180 	 * real retransmit or a new connection attempt.  The question is
1181 	 * how to handle such a case; either ignore it as spoofed, or
1182 	 * drop the current entry and create a new one?
1183 	 */
1184 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1185 	SCH_LOCK_ASSERT(sch);
1186 	if (sc != NULL) {
1187 		TCPSTAT_INC(tcps_sc_dupsyn);
1188 		if (ipopts) {
1189 			/*
1190 			 * If we were remembering a previous source route,
1191 			 * forget it and use the new one we've been given.
1192 			 */
1193 			if (sc->sc_ipopts)
1194 				(void) m_free(sc->sc_ipopts);
1195 			sc->sc_ipopts = ipopts;
1196 		}
1197 		/*
1198 		 * Update timestamp if present.
1199 		 */
1200 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1201 			sc->sc_tsreflect = to->to_tsval;
1202 		else
1203 			sc->sc_flags &= ~SCF_TIMESTAMP;
1204 #ifdef MAC
1205 		/*
1206 		 * Since we have already unconditionally allocated label
1207 		 * storage, free it up.  The syncache entry will already
1208 		 * have an initialized label we can use.
1209 		 */
1210 		mac_syncache_destroy(&maclabel);
1211 #endif
1212 		/* Retransmit SYN|ACK and reset retransmit count. */
1213 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1214 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1215 			    "resetting timer and retransmitting SYN|ACK\n",
1216 			    s, __func__);
1217 			free(s, M_TCPLOG);
1218 		}
1219 		if (syncache_respond(sc) == 0) {
1220 			sc->sc_rxmits = 0;
1221 			syncache_timeout(sc, sch, 1);
1222 			TCPSTAT_INC(tcps_sndacks);
1223 			TCPSTAT_INC(tcps_sndtotal);
1224 		}
1225 		SCH_UNLOCK(sch);
1226 		goto done;
1227 	}
1228 
1229 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1230 	if (sc == NULL) {
1231 		/*
1232 		 * The zone allocator couldn't provide more entries.
1233 		 * Treat this as if the cache was full; drop the oldest
1234 		 * entry and insert the new one.
1235 		 */
1236 		TCPSTAT_INC(tcps_sc_zonefail);
1237 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1238 			syncache_drop(sc, sch);
1239 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1240 		if (sc == NULL) {
1241 			if (V_tcp_syncookies) {
1242 				bzero(&scs, sizeof(scs));
1243 				sc = &scs;
1244 			} else {
1245 				SCH_UNLOCK(sch);
1246 				if (ipopts)
1247 					(void) m_free(ipopts);
1248 				goto done;
1249 			}
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * Fill in the syncache values.
1255 	 */
1256 #ifdef MAC
1257 	sc->sc_label = maclabel;
1258 #endif
1259 	sc->sc_cred = cred;
1260 	cred = NULL;
1261 	sc->sc_ipopts = ipopts;
1262 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1263 #ifdef INET6
1264 	if (!(inc->inc_flags & INC_ISIPV6))
1265 #endif
1266 	{
1267 		sc->sc_ip_tos = ip_tos;
1268 		sc->sc_ip_ttl = ip_ttl;
1269 	}
1270 #ifdef TCP_OFFLOAD
1271 	sc->sc_tod = tod;
1272 	sc->sc_todctx = todctx;
1273 #endif
1274 	sc->sc_irs = th->th_seq;
1275 	sc->sc_iss = arc4random();
1276 	sc->sc_flags = 0;
1277 	sc->sc_flowlabel = 0;
1278 
1279 	/*
1280 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1281 	 * win was derived from socket earlier in the function.
1282 	 */
1283 	win = imax(win, 0);
1284 	win = imin(win, TCP_MAXWIN);
1285 	sc->sc_wnd = win;
1286 
1287 	if (V_tcp_do_rfc1323) {
1288 		/*
1289 		 * A timestamp received in a SYN makes
1290 		 * it ok to send timestamp requests and replies.
1291 		 */
1292 		if (to->to_flags & TOF_TS) {
1293 			sc->sc_tsreflect = to->to_tsval;
1294 			sc->sc_ts = tcp_ts_getticks();
1295 			sc->sc_flags |= SCF_TIMESTAMP;
1296 		}
1297 		if (to->to_flags & TOF_SCALE) {
1298 			int wscale = 0;
1299 
1300 			/*
1301 			 * Pick the smallest possible scaling factor that
1302 			 * will still allow us to scale up to sb_max, aka
1303 			 * kern.ipc.maxsockbuf.
1304 			 *
1305 			 * We do this because there are broken firewalls that
1306 			 * will corrupt the window scale option, leading to
1307 			 * the other endpoint believing that our advertised
1308 			 * window is unscaled.  At scale factors larger than
1309 			 * 5 the unscaled window will drop below 1500 bytes,
1310 			 * leading to serious problems when traversing these
1311 			 * broken firewalls.
1312 			 *
1313 			 * With the default maxsockbuf of 256K, a scale factor
1314 			 * of 3 will be chosen by this algorithm.  Those who
1315 			 * choose a larger maxsockbuf should watch out
1316 			 * for the compatiblity problems mentioned above.
1317 			 *
1318 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1319 			 * or <SYN,ACK>) segment itself is never scaled.
1320 			 */
1321 			while (wscale < TCP_MAX_WINSHIFT &&
1322 			    (TCP_MAXWIN << wscale) < sb_max)
1323 				wscale++;
1324 			sc->sc_requested_r_scale = wscale;
1325 			sc->sc_requested_s_scale = to->to_wscale;
1326 			sc->sc_flags |= SCF_WINSCALE;
1327 		}
1328 	}
1329 #ifdef TCP_SIGNATURE
1330 	/*
1331 	 * If listening socket requested TCP digests, and received SYN
1332 	 * contains the option, flag this in the syncache so that
1333 	 * syncache_respond() will do the right thing with the SYN+ACK.
1334 	 * XXX: Currently we always record the option by default and will
1335 	 * attempt to use it in syncache_respond().
1336 	 */
1337 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1338 		sc->sc_flags |= SCF_SIGNATURE;
1339 #endif
1340 	if (to->to_flags & TOF_SACKPERM)
1341 		sc->sc_flags |= SCF_SACK;
1342 	if (to->to_flags & TOF_MSS)
1343 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1344 	if (ltflags & TF_NOOPT)
1345 		sc->sc_flags |= SCF_NOOPT;
1346 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1347 		sc->sc_flags |= SCF_ECN;
1348 
1349 	if (V_tcp_syncookies)
1350 		sc->sc_iss = syncookie_generate(sch, sc);
1351 #ifdef INET6
1352 	if (autoflowlabel) {
1353 		if (V_tcp_syncookies)
1354 			sc->sc_flowlabel = sc->sc_iss;
1355 		else
1356 			sc->sc_flowlabel = ip6_randomflowlabel();
1357 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1358 	}
1359 #endif
1360 	SCH_UNLOCK(sch);
1361 
1362 	/*
1363 	 * Do a standard 3-way handshake.
1364 	 */
1365 	if (syncache_respond(sc) == 0) {
1366 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1367 			syncache_free(sc);
1368 		else if (sc != &scs)
1369 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1370 		TCPSTAT_INC(tcps_sndacks);
1371 		TCPSTAT_INC(tcps_sndtotal);
1372 	} else {
1373 		if (sc != &scs)
1374 			syncache_free(sc);
1375 		TCPSTAT_INC(tcps_sc_dropped);
1376 	}
1377 
1378 done:
1379 	if (cred != NULL)
1380 		crfree(cred);
1381 #ifdef MAC
1382 	if (sc == &scs)
1383 		mac_syncache_destroy(&maclabel);
1384 #endif
1385 	if (m) {
1386 
1387 		*lsop = NULL;
1388 		m_freem(m);
1389 	}
1390 }
1391 
1392 static int
1393 syncache_respond(struct syncache *sc)
1394 {
1395 	struct ip *ip = NULL;
1396 	struct mbuf *m;
1397 	struct tcphdr *th = NULL;
1398 	int optlen, error = 0;	/* Make compiler happy */
1399 	u_int16_t hlen, tlen, mssopt;
1400 	struct tcpopt to;
1401 #ifdef INET6
1402 	struct ip6_hdr *ip6 = NULL;
1403 #endif
1404 
1405 	hlen =
1406 #ifdef INET6
1407 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1408 #endif
1409 		sizeof(struct ip);
1410 	tlen = hlen + sizeof(struct tcphdr);
1411 
1412 	/* Determine MSS we advertize to other end of connection. */
1413 	mssopt = tcp_mssopt(&sc->sc_inc);
1414 	if (sc->sc_peer_mss)
1415 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1416 
1417 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1418 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1419 	    ("syncache: mbuf too small"));
1420 
1421 	/* Create the IP+TCP header from scratch. */
1422 	m = m_gethdr(M_NOWAIT, MT_DATA);
1423 	if (m == NULL)
1424 		return (ENOBUFS);
1425 #ifdef MAC
1426 	mac_syncache_create_mbuf(sc->sc_label, m);
1427 #endif
1428 	m->m_data += max_linkhdr;
1429 	m->m_len = tlen;
1430 	m->m_pkthdr.len = tlen;
1431 	m->m_pkthdr.rcvif = NULL;
1432 
1433 #ifdef INET6
1434 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1435 		ip6 = mtod(m, struct ip6_hdr *);
1436 		ip6->ip6_vfc = IPV6_VERSION;
1437 		ip6->ip6_nxt = IPPROTO_TCP;
1438 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1439 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1440 		ip6->ip6_plen = htons(tlen - hlen);
1441 		/* ip6_hlim is set after checksum */
1442 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1443 		ip6->ip6_flow |= sc->sc_flowlabel;
1444 
1445 		th = (struct tcphdr *)(ip6 + 1);
1446 	}
1447 #endif
1448 #if defined(INET6) && defined(INET)
1449 	else
1450 #endif
1451 #ifdef INET
1452 	{
1453 		ip = mtod(m, struct ip *);
1454 		ip->ip_v = IPVERSION;
1455 		ip->ip_hl = sizeof(struct ip) >> 2;
1456 		ip->ip_len = htons(tlen);
1457 		ip->ip_id = 0;
1458 		ip->ip_off = 0;
1459 		ip->ip_sum = 0;
1460 		ip->ip_p = IPPROTO_TCP;
1461 		ip->ip_src = sc->sc_inc.inc_laddr;
1462 		ip->ip_dst = sc->sc_inc.inc_faddr;
1463 		ip->ip_ttl = sc->sc_ip_ttl;
1464 		ip->ip_tos = sc->sc_ip_tos;
1465 
1466 		/*
1467 		 * See if we should do MTU discovery.  Route lookups are
1468 		 * expensive, so we will only unset the DF bit if:
1469 		 *
1470 		 *	1) path_mtu_discovery is disabled
1471 		 *	2) the SCF_UNREACH flag has been set
1472 		 */
1473 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1474 		       ip->ip_off |= htons(IP_DF);
1475 
1476 		th = (struct tcphdr *)(ip + 1);
1477 	}
1478 #endif /* INET */
1479 	th->th_sport = sc->sc_inc.inc_lport;
1480 	th->th_dport = sc->sc_inc.inc_fport;
1481 
1482 	th->th_seq = htonl(sc->sc_iss);
1483 	th->th_ack = htonl(sc->sc_irs + 1);
1484 	th->th_off = sizeof(struct tcphdr) >> 2;
1485 	th->th_x2 = 0;
1486 	th->th_flags = TH_SYN|TH_ACK;
1487 	th->th_win = htons(sc->sc_wnd);
1488 	th->th_urp = 0;
1489 
1490 	if (sc->sc_flags & SCF_ECN) {
1491 		th->th_flags |= TH_ECE;
1492 		TCPSTAT_INC(tcps_ecn_shs);
1493 	}
1494 
1495 	/* Tack on the TCP options. */
1496 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1497 		to.to_flags = 0;
1498 
1499 		to.to_mss = mssopt;
1500 		to.to_flags = TOF_MSS;
1501 		if (sc->sc_flags & SCF_WINSCALE) {
1502 			to.to_wscale = sc->sc_requested_r_scale;
1503 			to.to_flags |= TOF_SCALE;
1504 		}
1505 		if (sc->sc_flags & SCF_TIMESTAMP) {
1506 			/* Virgin timestamp or TCP cookie enhanced one. */
1507 			to.to_tsval = sc->sc_ts;
1508 			to.to_tsecr = sc->sc_tsreflect;
1509 			to.to_flags |= TOF_TS;
1510 		}
1511 		if (sc->sc_flags & SCF_SACK)
1512 			to.to_flags |= TOF_SACKPERM;
1513 #ifdef TCP_SIGNATURE
1514 		if (sc->sc_flags & SCF_SIGNATURE)
1515 			to.to_flags |= TOF_SIGNATURE;
1516 #endif
1517 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1518 
1519 		/* Adjust headers by option size. */
1520 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1521 		m->m_len += optlen;
1522 		m->m_pkthdr.len += optlen;
1523 
1524 #ifdef TCP_SIGNATURE
1525 		if (sc->sc_flags & SCF_SIGNATURE)
1526 			tcp_signature_compute(m, 0, 0, optlen,
1527 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1528 #endif
1529 #ifdef INET6
1530 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1531 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1532 		else
1533 #endif
1534 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1535 	} else
1536 		optlen = 0;
1537 
1538 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1539 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1540 #ifdef INET6
1541 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1542 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1543 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1544 		    IPPROTO_TCP, 0);
1545 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1546 #ifdef TCP_OFFLOAD
1547 		if (ADDED_BY_TOE(sc)) {
1548 			struct toedev *tod = sc->sc_tod;
1549 
1550 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1551 
1552 			return (error);
1553 		}
1554 #endif
1555 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1556 	}
1557 #endif
1558 #if defined(INET6) && defined(INET)
1559 	else
1560 #endif
1561 #ifdef INET
1562 	{
1563 		m->m_pkthdr.csum_flags = CSUM_TCP;
1564 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1565 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1566 #ifdef TCP_OFFLOAD
1567 		if (ADDED_BY_TOE(sc)) {
1568 			struct toedev *tod = sc->sc_tod;
1569 
1570 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1571 
1572 			return (error);
1573 		}
1574 #endif
1575 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1576 	}
1577 #endif
1578 	return (error);
1579 }
1580 
1581 /*
1582  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1583  * that exceed the capacity of the syncache by avoiding the storage of any
1584  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1585  * attacks where the attacker does not have access to our responses.
1586  *
1587  * Syncookies encode and include all necessary information about the
1588  * connection setup within the SYN|ACK that we send back.  That way we
1589  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1590  * (if ever).  Normally the syncache and syncookies are running in parallel
1591  * with the latter taking over when the former is exhausted.  When matching
1592  * syncache entry is found the syncookie is ignored.
1593  *
1594  * The only reliable information persisting the 3WHS is our inital sequence
1595  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1596  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1597  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1598  * returns and signifies a legitimate connection if it matches the ACK.
1599  *
1600  * The available space of 32 bits to store the hash and to encode the SYN
1601  * option information is very tight and we should have at least 24 bits for
1602  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1603  *
1604  * SYN option information we have to encode to fully restore a connection:
1605  * MSS: is imporant to chose an optimal segment size to avoid IP level
1606  *   fragmentation along the path.  The common MSS values can be encoded
1607  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1608  *   in the table leading to a slight increase in packetization overhead.
1609  * WSCALE: is necessary to allow large windows to be used for high delay-
1610  *   bandwidth product links.  Not scaling the window when it was initially
1611  *   negotiated is bad for performance as lack of scaling further decreases
1612  *   the apparent available send window.  We only need to encode the WSCALE
1613  *   we received from the remote end.  Our end can be recalculated at any
1614  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1615  *   Uncommon values are captured by the next lower value in the table
1616  *   making us under-estimate the available window size halving our
1617  *   theoretically possible maximum throughput for that connection.
1618  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1619  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1620  *   that are included in all segments on a connection.  We enable them when
1621  *   the ACK has them.
1622  *
1623  * Security of syncookies and attack vectors:
1624  *
1625  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1626  * together with the gloabl secret to make it unique per connection attempt.
1627  * Thus any change of any of those parameters results in a different MAC output
1628  * in an unpredictable way unless a collision is encountered.  24 bits of the
1629  * MAC are embedded into the ISS.
1630  *
1631  * To prevent replay attacks two rotating global secrets are updated with a
1632  * new random value every 15 seconds.  The life-time of a syncookie is thus
1633  * 15-30 seconds.
1634  *
1635  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1636  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1637  * text attack by varying and testing the all parameters under his control.
1638  * The strength depends on the size and randomness of the secret, and the
1639  * cryptographic security of the MAC function.  Due to the constant updating
1640  * of the secret the attacker has at most 29.999 seconds to find the secret
1641  * and launch spoofed connections.  After that he has to start all over again.
1642  *
1643  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1644  * size an average of 4,823 attempts are required for a 50% chance of success
1645  * to spoof a single syncookie (birthday collision paradox).  However the
1646  * attacker is blind and doesn't know if one of his attempts succeeded unless
1647  * he has a side channel to interfere success from.  A single connection setup
1648  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1649  * This many attempts are required for each one blind spoofed connection.  For
1650  * every additional spoofed connection he has to launch another N attempts.
1651  * Thus for a sustained rate 100 spoofed connections per second approximately
1652  * 1,800,000 packets per second would have to be sent.
1653  *
1654  * NB: The MAC function should be fast so that it doesn't become a CPU
1655  * exhaustion attack vector itself.
1656  *
1657  * References:
1658  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1659  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1660  *   http://cr.yp.to/syncookies.html    (overview)
1661  *   http://cr.yp.to/syncookies/archive (details)
1662  *
1663  *
1664  * Schematic construction of a syncookie enabled Initial Sequence Number:
1665  *  0        1         2         3
1666  *  12345678901234567890123456789012
1667  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1668  *
1669  *  x 24 MAC (truncated)
1670  *  W  3 Send Window Scale index
1671  *  M  3 MSS index
1672  *  S  1 SACK permitted
1673  *  P  1 Odd/even secret
1674  */
1675 
1676 /*
1677  * Distribution and probability of certain MSS values.  Those in between are
1678  * rounded down to the next lower one.
1679  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1680  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1681  */
1682 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1683 
1684 /*
1685  * Distribution and probability of certain WSCALE values.  We have to map the
1686  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1687  * bits based on prevalence of certain values.  Where we don't have an exact
1688  * match for are rounded down to the next lower one letting us under-estimate
1689  * the true available window.  At the moment this would happen only for the
1690  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1691  * and window size).  The absence of the WSCALE option (no scaling in either
1692  * direction) is encoded with index zero.
1693  * [WSCALE values histograms, Allman, 2012]
1694  *                            X 10 10 35  5  6 14 10%   by host
1695  *                            X 11  4  5  5 18 49  3%   by connections
1696  */
1697 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1698 
1699 /*
1700  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1701  * and good cryptographic properties.
1702  */
1703 static uint32_t
1704 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1705     uint8_t *secbits, uintptr_t secmod)
1706 {
1707 	SIPHASH_CTX ctx;
1708 	uint32_t siphash[2];
1709 
1710 	SipHash24_Init(&ctx);
1711 	SipHash_SetKey(&ctx, secbits);
1712 	switch (inc->inc_flags & INC_ISIPV6) {
1713 #ifdef INET
1714 	case 0:
1715 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1716 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1717 		break;
1718 #endif
1719 #ifdef INET6
1720 	case INC_ISIPV6:
1721 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1722 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1723 		break;
1724 #endif
1725 	}
1726 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1727 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1728 	SipHash_Update(&ctx, &flags, sizeof(flags));
1729 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1730 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1731 
1732 	return (siphash[0] ^ siphash[1]);
1733 }
1734 
1735 static tcp_seq
1736 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1737 {
1738 	u_int i, mss, secbit, wscale;
1739 	uint32_t iss, hash;
1740 	uint8_t *secbits;
1741 	union syncookie cookie;
1742 
1743 	SCH_LOCK_ASSERT(sch);
1744 
1745 	cookie.cookie = 0;
1746 
1747 	/* Map our computed MSS into the 3-bit index. */
1748 	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1749 	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1750 	     tcp_sc_msstab[i] > mss && i > 0;
1751 	     i--)
1752 		;
1753 	cookie.flags.mss_idx = i;
1754 
1755 	/*
1756 	 * Map the send window scale into the 3-bit index but only if
1757 	 * the wscale option was received.
1758 	 */
1759 	if (sc->sc_flags & SCF_WINSCALE) {
1760 		wscale = sc->sc_requested_s_scale;
1761 		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1762 		     tcp_sc_wstab[i] > wscale && i > 0;
1763 		     i--)
1764 			;
1765 		cookie.flags.wscale_idx = i;
1766 	}
1767 
1768 	/* Can we do SACK? */
1769 	if (sc->sc_flags & SCF_SACK)
1770 		cookie.flags.sack_ok = 1;
1771 
1772 	/* Which of the two secrets to use. */
1773 	secbit = sch->sch_sc->secret.oddeven & 0x1;
1774 	cookie.flags.odd_even = secbit;
1775 
1776 	secbits = sch->sch_sc->secret.key[secbit];
1777 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1778 	    (uintptr_t)sch);
1779 
1780 	/*
1781 	 * Put the flags into the hash and XOR them to get better ISS number
1782 	 * variance.  This doesn't enhance the cryptographic strength and is
1783 	 * done to prevent the 8 cookie bits from showing up directly on the
1784 	 * wire.
1785 	 */
1786 	iss = hash & ~0xff;
1787 	iss |= cookie.cookie ^ (hash >> 24);
1788 
1789 	/* Randomize the timestamp. */
1790 	if (sc->sc_flags & SCF_TIMESTAMP) {
1791 		sc->sc_ts = arc4random();
1792 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1793 	}
1794 
1795 	TCPSTAT_INC(tcps_sc_sendcookie);
1796 	return (iss);
1797 }
1798 
1799 static struct syncache *
1800 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1801     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1802     struct socket *lso)
1803 {
1804 	uint32_t hash;
1805 	uint8_t *secbits;
1806 	tcp_seq ack, seq;
1807 	int wnd, wscale = 0;
1808 	union syncookie cookie;
1809 
1810 	SCH_LOCK_ASSERT(sch);
1811 
1812 	/*
1813 	 * Pull information out of SYN-ACK/ACK and revert sequence number
1814 	 * advances.
1815 	 */
1816 	ack = th->th_ack - 1;
1817 	seq = th->th_seq - 1;
1818 
1819 	/*
1820 	 * Unpack the flags containing enough information to restore the
1821 	 * connection.
1822 	 */
1823 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1824 
1825 	/* Which of the two secrets to use. */
1826 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1827 
1828 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1829 
1830 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1831 	if ((ack & ~0xff) != (hash & ~0xff))
1832 		return (NULL);
1833 
1834 	/* Fill in the syncache values. */
1835 	sc->sc_flags = 0;
1836 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1837 	sc->sc_ipopts = NULL;
1838 
1839 	sc->sc_irs = seq;
1840 	sc->sc_iss = ack;
1841 
1842 	switch (inc->inc_flags & INC_ISIPV6) {
1843 #ifdef INET
1844 	case 0:
1845 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1846 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1847 		break;
1848 #endif
1849 #ifdef INET6
1850 	case INC_ISIPV6:
1851 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1852 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1853 		break;
1854 #endif
1855 	}
1856 
1857 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1858 
1859 	/* We can simply recompute receive window scale we sent earlier. */
1860 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1861 		wscale++;
1862 
1863 	/* Only use wscale if it was enabled in the orignal SYN. */
1864 	if (cookie.flags.wscale_idx > 0) {
1865 		sc->sc_requested_r_scale = wscale;
1866 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1867 		sc->sc_flags |= SCF_WINSCALE;
1868 	}
1869 
1870 	wnd = sbspace(&lso->so_rcv);
1871 	wnd = imax(wnd, 0);
1872 	wnd = imin(wnd, TCP_MAXWIN);
1873 	sc->sc_wnd = wnd;
1874 
1875 	if (cookie.flags.sack_ok)
1876 		sc->sc_flags |= SCF_SACK;
1877 
1878 	if (to->to_flags & TOF_TS) {
1879 		sc->sc_flags |= SCF_TIMESTAMP;
1880 		sc->sc_tsreflect = to->to_tsval;
1881 		sc->sc_ts = to->to_tsecr;
1882 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1883 	}
1884 
1885 	if (to->to_flags & TOF_SIGNATURE)
1886 		sc->sc_flags |= SCF_SIGNATURE;
1887 
1888 	sc->sc_rxmits = 0;
1889 
1890 	TCPSTAT_INC(tcps_sc_recvcookie);
1891 	return (sc);
1892 }
1893 
1894 #ifdef INVARIANTS
1895 static int
1896 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1897     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1898     struct socket *lso)
1899 {
1900 	struct syncache scs, *scx;
1901 	char *s;
1902 
1903 	bzero(&scs, sizeof(scs));
1904 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1905 
1906 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1907 		return (0);
1908 
1909 	if (scx != NULL) {
1910 		if (sc->sc_peer_mss != scx->sc_peer_mss)
1911 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1912 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1913 
1914 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1915 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1916 			    s, __func__, sc->sc_requested_r_scale,
1917 			    scx->sc_requested_r_scale);
1918 
1919 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1920 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1921 			    s, __func__, sc->sc_requested_s_scale,
1922 			    scx->sc_requested_s_scale);
1923 
1924 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1925 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1926 	}
1927 
1928 	if (s != NULL)
1929 		free(s, M_TCPLOG);
1930 	return (0);
1931 }
1932 #endif /* INVARIANTS */
1933 
1934 static void
1935 syncookie_reseed(void *arg)
1936 {
1937 	struct tcp_syncache *sc = arg;
1938 	uint8_t *secbits;
1939 	int secbit;
1940 
1941 	/*
1942 	 * Reseeding the secret doesn't have to be protected by a lock.
1943 	 * It only must be ensured that the new random values are visible
1944 	 * to all CPUs in a SMP environment.  The atomic with release
1945 	 * semantics ensures that.
1946 	 */
1947 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1948 	secbits = sc->secret.key[secbit];
1949 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1950 	atomic_add_rel_int(&sc->secret.oddeven, 1);
1951 
1952 	/* Reschedule ourself. */
1953 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1954 }
1955 
1956 /*
1957  * Returns the current number of syncache entries.  This number
1958  * will probably change before you get around to calling
1959  * syncache_pcblist.
1960  */
1961 int
1962 syncache_pcbcount(void)
1963 {
1964 	struct syncache_head *sch;
1965 	int count, i;
1966 
1967 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1968 		/* No need to lock for a read. */
1969 		sch = &V_tcp_syncache.hashbase[i];
1970 		count += sch->sch_length;
1971 	}
1972 	return count;
1973 }
1974 
1975 /*
1976  * Exports the syncache entries to userland so that netstat can display
1977  * them alongside the other sockets.  This function is intended to be
1978  * called only from tcp_pcblist.
1979  *
1980  * Due to concurrency on an active system, the number of pcbs exported
1981  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1982  * amount of space the caller allocated for this function to use.
1983  */
1984 int
1985 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1986 {
1987 	struct xtcpcb xt;
1988 	struct syncache *sc;
1989 	struct syncache_head *sch;
1990 	int count, error, i;
1991 
1992 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1993 		sch = &V_tcp_syncache.hashbase[i];
1994 		SCH_LOCK(sch);
1995 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1996 			if (count >= max_pcbs) {
1997 				SCH_UNLOCK(sch);
1998 				goto exit;
1999 			}
2000 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2001 				continue;
2002 			bzero(&xt, sizeof(xt));
2003 			xt.xt_len = sizeof(xt);
2004 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2005 				xt.xt_inp.inp_vflag = INP_IPV6;
2006 			else
2007 				xt.xt_inp.inp_vflag = INP_IPV4;
2008 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2009 			xt.xt_tp.t_inpcb = &xt.xt_inp;
2010 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2011 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2012 			xt.xt_socket.xso_len = sizeof (struct xsocket);
2013 			xt.xt_socket.so_type = SOCK_STREAM;
2014 			xt.xt_socket.so_state = SS_ISCONNECTING;
2015 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2016 			if (error) {
2017 				SCH_UNLOCK(sch);
2018 				goto exit;
2019 			}
2020 			count++;
2021 		}
2022 		SCH_UNLOCK(sch);
2023 	}
2024 exit:
2025 	*pcbs_exported = count;
2026 	return error;
2027 }
2028