xref: /freebsd/sys/netinet/tcp_syncache.c (revision 81ea85a8845662ca329a954eeeb3e6d4124282a2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
134 		    const struct mbuf *);
135 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
136 		    struct mbuf *m);
137 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
138 		    int docallout);
139 static void	 syncache_timer(void *);
140 
141 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
142 		    uint8_t *, uintptr_t);
143 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
144 static struct syncache
145 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
146 		    struct syncache *, struct tcphdr *, struct tcpopt *,
147 		    struct socket *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
158  * the odds are that the user has given up attempting to connect by then.
159  */
160 #define SYNCACHE_MAXREXMTS		3
161 
162 /* Arbitrary values */
163 #define TCP_SYNCACHE_HASHSIZE		512
164 #define TCP_SYNCACHE_BUCKETLIMIT	30
165 
166 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
167 #define	V_tcp_syncache			VNET(tcp_syncache)
168 
169 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
170     "TCP SYN cache");
171 
172 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
173     &VNET_NAME(tcp_syncache.bucket_limit), 0,
174     "Per-bucket hash limit for syncache");
175 
176 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
177     &VNET_NAME(tcp_syncache.cache_limit), 0,
178     "Overall entry limit for syncache");
179 
180 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
181     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
182 
183 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
184     &VNET_NAME(tcp_syncache.hashsize), 0,
185     "Size of TCP syncache hashtable");
186 
187 static int
188 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
189 {
190 	int error;
191 	u_int new;
192 
193 	new = V_tcp_syncache.rexmt_limit;
194 	error = sysctl_handle_int(oidp, &new, 0, req);
195 	if ((error == 0) && (req->newptr != NULL)) {
196 		if (new > TCP_MAXRXTSHIFT)
197 			error = EINVAL;
198 		else
199 			V_tcp_syncache.rexmt_limit = new;
200 	}
201 	return (error);
202 }
203 
204 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
205     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW,
206     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
207     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
208     "Limit on SYN/ACK retransmissions");
209 
210 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
212     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
213     "Send reset on socket allocation failure");
214 
215 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
216 
217 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
218 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
219 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
220 
221 /*
222  * Requires the syncache entry to be already removed from the bucket list.
223  */
224 static void
225 syncache_free(struct syncache *sc)
226 {
227 
228 	if (sc->sc_ipopts)
229 		(void) m_free(sc->sc_ipopts);
230 	if (sc->sc_cred)
231 		crfree(sc->sc_cred);
232 #ifdef MAC
233 	mac_syncache_destroy(&sc->sc_label);
234 #endif
235 
236 	uma_zfree(V_tcp_syncache.zone, sc);
237 }
238 
239 void
240 syncache_init(void)
241 {
242 	int i;
243 
244 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
245 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
246 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
247 	V_tcp_syncache.hash_secret = arc4random();
248 
249 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
250 	    &V_tcp_syncache.hashsize);
251 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
252 	    &V_tcp_syncache.bucket_limit);
253 	if (!powerof2(V_tcp_syncache.hashsize) ||
254 	    V_tcp_syncache.hashsize == 0) {
255 		printf("WARNING: syncache hash size is not a power of 2.\n");
256 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
257 	}
258 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
259 
260 	/* Set limits. */
261 	V_tcp_syncache.cache_limit =
262 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
263 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
264 	    &V_tcp_syncache.cache_limit);
265 
266 	/* Allocate the hash table. */
267 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
268 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
269 
270 #ifdef VIMAGE
271 	V_tcp_syncache.vnet = curvnet;
272 #endif
273 
274 	/* Initialize the hash buckets. */
275 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
276 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
277 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
278 			 NULL, MTX_DEF);
279 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
280 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
281 		V_tcp_syncache.hashbase[i].sch_length = 0;
282 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
283 		V_tcp_syncache.hashbase[i].sch_last_overflow =
284 		    -(SYNCOOKIE_LIFETIME + 1);
285 	}
286 
287 	/* Create the syncache entry zone. */
288 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
289 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
290 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
291 	    V_tcp_syncache.cache_limit);
292 
293 	/* Start the SYN cookie reseeder callout. */
294 	callout_init(&V_tcp_syncache.secret.reseed, 1);
295 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
296 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
297 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
298 	    syncookie_reseed, &V_tcp_syncache);
299 }
300 
301 #ifdef VIMAGE
302 void
303 syncache_destroy(void)
304 {
305 	struct syncache_head *sch;
306 	struct syncache *sc, *nsc;
307 	int i;
308 
309 	/*
310 	 * Stop the re-seed timer before freeing resources.  No need to
311 	 * possibly schedule it another time.
312 	 */
313 	callout_drain(&V_tcp_syncache.secret.reseed);
314 
315 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
316 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
317 
318 		sch = &V_tcp_syncache.hashbase[i];
319 		callout_drain(&sch->sch_timer);
320 
321 		SCH_LOCK(sch);
322 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
323 			syncache_drop(sc, sch);
324 		SCH_UNLOCK(sch);
325 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
326 		    ("%s: sch->sch_bucket not empty", __func__));
327 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
328 		    __func__, sch->sch_length));
329 		mtx_destroy(&sch->sch_mtx);
330 	}
331 
332 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
333 	    ("%s: cache_count not 0", __func__));
334 
335 	/* Free the allocated global resources. */
336 	uma_zdestroy(V_tcp_syncache.zone);
337 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
338 }
339 #endif
340 
341 /*
342  * Inserts a syncache entry into the specified bucket row.
343  * Locks and unlocks the syncache_head autonomously.
344  */
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 {
348 	struct syncache *sc2;
349 
350 	SCH_LOCK(sch);
351 
352 	/*
353 	 * Make sure that we don't overflow the per-bucket limit.
354 	 * If the bucket is full, toss the oldest element.
355 	 */
356 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
357 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
358 			("sch->sch_length incorrect"));
359 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
360 		sch->sch_last_overflow = time_uptime;
361 		syncache_drop(sc2, sch);
362 		TCPSTAT_INC(tcps_sc_bucketoverflow);
363 	}
364 
365 	/* Put it into the bucket. */
366 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
367 	sch->sch_length++;
368 
369 #ifdef TCP_OFFLOAD
370 	if (ADDED_BY_TOE(sc)) {
371 		struct toedev *tod = sc->sc_tod;
372 
373 		tod->tod_syncache_added(tod, sc->sc_todctx);
374 	}
375 #endif
376 
377 	/* Reinitialize the bucket row's timer. */
378 	if (sch->sch_length == 1)
379 		sch->sch_nextc = ticks + INT_MAX;
380 	syncache_timeout(sc, sch, 1);
381 
382 	SCH_UNLOCK(sch);
383 
384 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
385 	TCPSTAT_INC(tcps_sc_added);
386 }
387 
388 /*
389  * Remove and free entry from syncache bucket row.
390  * Expects locked syncache head.
391  */
392 static void
393 syncache_drop(struct syncache *sc, struct syncache_head *sch)
394 {
395 
396 	SCH_LOCK_ASSERT(sch);
397 
398 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
399 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
400 	sch->sch_length--;
401 
402 #ifdef TCP_OFFLOAD
403 	if (ADDED_BY_TOE(sc)) {
404 		struct toedev *tod = sc->sc_tod;
405 
406 		tod->tod_syncache_removed(tod, sc->sc_todctx);
407 	}
408 #endif
409 
410 	syncache_free(sc);
411 }
412 
413 /*
414  * Engage/reengage time on bucket row.
415  */
416 static void
417 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
418 {
419 	int rexmt;
420 
421 	if (sc->sc_rxmits == 0)
422 		rexmt = TCPTV_RTOBASE;
423 	else
424 		TCPT_RANGESET(rexmt, TCPTV_RTOBASE * tcp_syn_backoff[sc->sc_rxmits],
425 		    tcp_rexmit_min, TCPTV_REXMTMAX);
426 	sc->sc_rxttime = ticks + rexmt;
427 	sc->sc_rxmits++;
428 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
429 		sch->sch_nextc = sc->sc_rxttime;
430 		if (docallout)
431 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
432 			    syncache_timer, (void *)sch);
433 	}
434 }
435 
436 /*
437  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
438  * If we have retransmitted an entry the maximum number of times, expire it.
439  * One separate timer for each bucket row.
440  */
441 static void
442 syncache_timer(void *xsch)
443 {
444 	struct syncache_head *sch = (struct syncache_head *)xsch;
445 	struct syncache *sc, *nsc;
446 	int tick = ticks;
447 	char *s;
448 
449 	CURVNET_SET(sch->sch_sc->vnet);
450 
451 	/* NB: syncache_head has already been locked by the callout. */
452 	SCH_LOCK_ASSERT(sch);
453 
454 	/*
455 	 * In the following cycle we may remove some entries and/or
456 	 * advance some timeouts, so re-initialize the bucket timer.
457 	 */
458 	sch->sch_nextc = tick + INT_MAX;
459 
460 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
461 		/*
462 		 * We do not check if the listen socket still exists
463 		 * and accept the case where the listen socket may be
464 		 * gone by the time we resend the SYN/ACK.  We do
465 		 * not expect this to happens often. If it does,
466 		 * then the RST will be sent by the time the remote
467 		 * host does the SYN/ACK->ACK.
468 		 */
469 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
470 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
471 				sch->sch_nextc = sc->sc_rxttime;
472 			continue;
473 		}
474 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
475 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
476 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
477 				    "giving up and removing syncache entry\n",
478 				    s, __func__);
479 				free(s, M_TCPLOG);
480 			}
481 			syncache_drop(sc, sch);
482 			TCPSTAT_INC(tcps_sc_stale);
483 			continue;
484 		}
485 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
486 			log(LOG_DEBUG, "%s; %s: Response timeout, "
487 			    "retransmitting (%u) SYN|ACK\n",
488 			    s, __func__, sc->sc_rxmits);
489 			free(s, M_TCPLOG);
490 		}
491 
492 		syncache_respond(sc, sch, 1, NULL);
493 		TCPSTAT_INC(tcps_sc_retransmitted);
494 		syncache_timeout(sc, sch, 0);
495 	}
496 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
497 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
498 			syncache_timer, (void *)(sch));
499 	CURVNET_RESTORE();
500 }
501 
502 /*
503  * Find an entry in the syncache.
504  * Returns always with locked syncache_head plus a matching entry or NULL.
505  */
506 static struct syncache *
507 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
508 {
509 	struct syncache *sc;
510 	struct syncache_head *sch;
511 	uint32_t hash;
512 
513 	/*
514 	 * The hash is built on foreign port + local port + foreign address.
515 	 * We rely on the fact that struct in_conninfo starts with 16 bits
516 	 * of foreign port, then 16 bits of local port then followed by 128
517 	 * bits of foreign address.  In case of IPv4 address, the first 3
518 	 * 32-bit words of the address always are zeroes.
519 	 */
520 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
521 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
522 
523 	sch = &V_tcp_syncache.hashbase[hash];
524 	*schp = sch;
525 	SCH_LOCK(sch);
526 
527 	/* Circle through bucket row to find matching entry. */
528 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
529 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
530 		    sizeof(struct in_endpoints)) == 0)
531 			break;
532 
533 	return (sc);	/* Always returns with locked sch. */
534 }
535 
536 /*
537  * This function is called when we get a RST for a
538  * non-existent connection, so that we can see if the
539  * connection is in the syn cache.  If it is, zap it.
540  */
541 void
542 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
543 {
544 	struct syncache *sc;
545 	struct syncache_head *sch;
546 	char *s = NULL;
547 
548 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
549 	SCH_LOCK_ASSERT(sch);
550 
551 	/*
552 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
553 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
554 	 */
555 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
556 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
557 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
558 			    "FIN flag set, segment ignored\n", s, __func__);
559 		TCPSTAT_INC(tcps_badrst);
560 		goto done;
561 	}
562 
563 	/*
564 	 * No corresponding connection was found in syncache.
565 	 * If syncookies are enabled and possibly exclusively
566 	 * used, or we are under memory pressure, a valid RST
567 	 * may not find a syncache entry.  In that case we're
568 	 * done and no SYN|ACK retransmissions will happen.
569 	 * Otherwise the RST was misdirected or spoofed.
570 	 */
571 	if (sc == NULL) {
572 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
573 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
574 			    "syncache entry (possibly syncookie only), "
575 			    "segment ignored\n", s, __func__);
576 		TCPSTAT_INC(tcps_badrst);
577 		goto done;
578 	}
579 
580 	/*
581 	 * If the RST bit is set, check the sequence number to see
582 	 * if this is a valid reset segment.
583 	 * RFC 793 page 37:
584 	 *   In all states except SYN-SENT, all reset (RST) segments
585 	 *   are validated by checking their SEQ-fields.  A reset is
586 	 *   valid if its sequence number is in the window.
587 	 *
588 	 *   The sequence number in the reset segment is normally an
589 	 *   echo of our outgoing acknowlegement numbers, but some hosts
590 	 *   send a reset with the sequence number at the rightmost edge
591 	 *   of our receive window, and we have to handle this case.
592 	 */
593 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
594 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
595 		syncache_drop(sc, sch);
596 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
597 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
598 			    "connection attempt aborted by remote endpoint\n",
599 			    s, __func__);
600 		TCPSTAT_INC(tcps_sc_reset);
601 	} else {
602 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
603 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
604 			    "IRS %u (+WND %u), segment ignored\n",
605 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
606 		TCPSTAT_INC(tcps_badrst);
607 	}
608 
609 done:
610 	if (s != NULL)
611 		free(s, M_TCPLOG);
612 	SCH_UNLOCK(sch);
613 }
614 
615 void
616 syncache_badack(struct in_conninfo *inc)
617 {
618 	struct syncache *sc;
619 	struct syncache_head *sch;
620 
621 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
622 	SCH_LOCK_ASSERT(sch);
623 	if (sc != NULL) {
624 		syncache_drop(sc, sch);
625 		TCPSTAT_INC(tcps_sc_badack);
626 	}
627 	SCH_UNLOCK(sch);
628 }
629 
630 void
631 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
632 {
633 	struct syncache *sc;
634 	struct syncache_head *sch;
635 
636 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
637 	SCH_LOCK_ASSERT(sch);
638 	if (sc == NULL)
639 		goto done;
640 
641 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
642 	if (ntohl(th_seq) != sc->sc_iss)
643 		goto done;
644 
645 	/*
646 	 * If we've rertransmitted 3 times and this is our second error,
647 	 * we remove the entry.  Otherwise, we allow it to continue on.
648 	 * This prevents us from incorrectly nuking an entry during a
649 	 * spurious network outage.
650 	 *
651 	 * See tcp_notify().
652 	 */
653 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
654 		sc->sc_flags |= SCF_UNREACH;
655 		goto done;
656 	}
657 	syncache_drop(sc, sch);
658 	TCPSTAT_INC(tcps_sc_unreach);
659 done:
660 	SCH_UNLOCK(sch);
661 }
662 
663 /*
664  * Build a new TCP socket structure from a syncache entry.
665  *
666  * On success return the newly created socket with its underlying inp locked.
667  */
668 static struct socket *
669 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
670 {
671 	struct tcp_function_block *blk;
672 	struct inpcb *inp = NULL;
673 	struct socket *so;
674 	struct tcpcb *tp;
675 	int error;
676 	char *s;
677 
678 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
679 
680 	/*
681 	 * Ok, create the full blown connection, and set things up
682 	 * as they would have been set up if we had created the
683 	 * connection when the SYN arrived.  If we can't create
684 	 * the connection, abort it.
685 	 */
686 	so = sonewconn(lso, 0);
687 	if (so == NULL) {
688 		/*
689 		 * Drop the connection; we will either send a RST or
690 		 * have the peer retransmit its SYN again after its
691 		 * RTO and try again.
692 		 */
693 		TCPSTAT_INC(tcps_listendrop);
694 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
695 			log(LOG_DEBUG, "%s; %s: Socket create failed "
696 			    "due to limits or memory shortage\n",
697 			    s, __func__);
698 			free(s, M_TCPLOG);
699 		}
700 		goto abort2;
701 	}
702 #ifdef MAC
703 	mac_socketpeer_set_from_mbuf(m, so);
704 #endif
705 
706 	inp = sotoinpcb(so);
707 	inp->inp_inc.inc_fibnum = so->so_fibnum;
708 	INP_WLOCK(inp);
709 	/*
710 	 * Exclusive pcbinfo lock is not required in syncache socket case even
711 	 * if two inpcb locks can be acquired simultaneously:
712 	 *  - the inpcb in LISTEN state,
713 	 *  - the newly created inp.
714 	 *
715 	 * In this case, an inp cannot be at same time in LISTEN state and
716 	 * just created by an accept() call.
717 	 */
718 	INP_HASH_WLOCK(&V_tcbinfo);
719 
720 	/* Insert new socket into PCB hash list. */
721 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
722 #ifdef INET6
723 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
724 		inp->inp_vflag &= ~INP_IPV4;
725 		inp->inp_vflag |= INP_IPV6;
726 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
727 	} else {
728 		inp->inp_vflag &= ~INP_IPV6;
729 		inp->inp_vflag |= INP_IPV4;
730 #endif
731 		inp->inp_laddr = sc->sc_inc.inc_laddr;
732 #ifdef INET6
733 	}
734 #endif
735 
736 	/*
737 	 * If there's an mbuf and it has a flowid, then let's initialise the
738 	 * inp with that particular flowid.
739 	 */
740 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
741 		inp->inp_flowid = m->m_pkthdr.flowid;
742 		inp->inp_flowtype = M_HASHTYPE_GET(m);
743 	}
744 
745 	/*
746 	 * Install in the reservation hash table for now, but don't yet
747 	 * install a connection group since the full 4-tuple isn't yet
748 	 * configured.
749 	 */
750 	inp->inp_lport = sc->sc_inc.inc_lport;
751 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
752 		/*
753 		 * Undo the assignments above if we failed to
754 		 * put the PCB on the hash lists.
755 		 */
756 #ifdef INET6
757 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
758 			inp->in6p_laddr = in6addr_any;
759 		else
760 #endif
761 			inp->inp_laddr.s_addr = INADDR_ANY;
762 		inp->inp_lport = 0;
763 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
764 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
765 			    "with error %i\n",
766 			    s, __func__, error);
767 			free(s, M_TCPLOG);
768 		}
769 		INP_HASH_WUNLOCK(&V_tcbinfo);
770 		goto abort;
771 	}
772 #ifdef INET6
773 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
774 		struct inpcb *oinp = sotoinpcb(lso);
775 		struct in6_addr laddr6;
776 		struct sockaddr_in6 sin6;
777 		/*
778 		 * Inherit socket options from the listening socket.
779 		 * Note that in6p_inputopts are not (and should not be)
780 		 * copied, since it stores previously received options and is
781 		 * used to detect if each new option is different than the
782 		 * previous one and hence should be passed to a user.
783 		 * If we copied in6p_inputopts, a user would not be able to
784 		 * receive options just after calling the accept system call.
785 		 */
786 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
787 		if (oinp->in6p_outputopts)
788 			inp->in6p_outputopts =
789 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
790 
791 		sin6.sin6_family = AF_INET6;
792 		sin6.sin6_len = sizeof(sin6);
793 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
794 		sin6.sin6_port = sc->sc_inc.inc_fport;
795 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
796 		laddr6 = inp->in6p_laddr;
797 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
798 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
799 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
800 		    thread0.td_ucred, m)) != 0) {
801 			inp->in6p_laddr = laddr6;
802 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
803 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
804 				    "with error %i\n",
805 				    s, __func__, error);
806 				free(s, M_TCPLOG);
807 			}
808 			INP_HASH_WUNLOCK(&V_tcbinfo);
809 			goto abort;
810 		}
811 		/* Override flowlabel from in6_pcbconnect. */
812 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
813 		inp->inp_flow |= sc->sc_flowlabel;
814 	}
815 #endif /* INET6 */
816 #if defined(INET) && defined(INET6)
817 	else
818 #endif
819 #ifdef INET
820 	{
821 		struct in_addr laddr;
822 		struct sockaddr_in sin;
823 
824 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
825 
826 		if (inp->inp_options == NULL) {
827 			inp->inp_options = sc->sc_ipopts;
828 			sc->sc_ipopts = NULL;
829 		}
830 
831 		sin.sin_family = AF_INET;
832 		sin.sin_len = sizeof(sin);
833 		sin.sin_addr = sc->sc_inc.inc_faddr;
834 		sin.sin_port = sc->sc_inc.inc_fport;
835 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
836 		laddr = inp->inp_laddr;
837 		if (inp->inp_laddr.s_addr == INADDR_ANY)
838 			inp->inp_laddr = sc->sc_inc.inc_laddr;
839 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
840 		    thread0.td_ucred, m)) != 0) {
841 			inp->inp_laddr = laddr;
842 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
843 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
844 				    "with error %i\n",
845 				    s, __func__, error);
846 				free(s, M_TCPLOG);
847 			}
848 			INP_HASH_WUNLOCK(&V_tcbinfo);
849 			goto abort;
850 		}
851 	}
852 #endif /* INET */
853 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
854 	/* Copy old policy into new socket's. */
855 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
856 		printf("syncache_socket: could not copy policy\n");
857 #endif
858 	INP_HASH_WUNLOCK(&V_tcbinfo);
859 	tp = intotcpcb(inp);
860 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
861 	tp->iss = sc->sc_iss;
862 	tp->irs = sc->sc_irs;
863 	tcp_rcvseqinit(tp);
864 	tcp_sendseqinit(tp);
865 	blk = sototcpcb(lso)->t_fb;
866 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
867 		/*
868 		 * Our parents t_fb was not the default,
869 		 * we need to release our ref on tp->t_fb and
870 		 * pickup one on the new entry.
871 		 */
872 		struct tcp_function_block *rblk;
873 
874 		rblk = find_and_ref_tcp_fb(blk);
875 		KASSERT(rblk != NULL,
876 		    ("cannot find blk %p out of syncache?", blk));
877 		if (tp->t_fb->tfb_tcp_fb_fini)
878 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
879 		refcount_release(&tp->t_fb->tfb_refcnt);
880 		tp->t_fb = rblk;
881 		/*
882 		 * XXXrrs this is quite dangerous, it is possible
883 		 * for the new function to fail to init. We also
884 		 * are not asking if the handoff_is_ok though at
885 		 * the very start thats probalbly ok.
886 		 */
887 		if (tp->t_fb->tfb_tcp_fb_init) {
888 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
889 		}
890 	}
891 	tp->snd_wl1 = sc->sc_irs;
892 	tp->snd_max = tp->iss + 1;
893 	tp->snd_nxt = tp->iss + 1;
894 	tp->rcv_up = sc->sc_irs + 1;
895 	tp->rcv_wnd = sc->sc_wnd;
896 	tp->rcv_adv += tp->rcv_wnd;
897 	tp->last_ack_sent = tp->rcv_nxt;
898 
899 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
900 	if (sc->sc_flags & SCF_NOOPT)
901 		tp->t_flags |= TF_NOOPT;
902 	else {
903 		if (sc->sc_flags & SCF_WINSCALE) {
904 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
905 			tp->snd_scale = sc->sc_requested_s_scale;
906 			tp->request_r_scale = sc->sc_requested_r_scale;
907 		}
908 		if (sc->sc_flags & SCF_TIMESTAMP) {
909 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
910 			tp->ts_recent = sc->sc_tsreflect;
911 			tp->ts_recent_age = tcp_ts_getticks();
912 			tp->ts_offset = sc->sc_tsoff;
913 		}
914 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
915 		if (sc->sc_flags & SCF_SIGNATURE)
916 			tp->t_flags |= TF_SIGNATURE;
917 #endif
918 		if (sc->sc_flags & SCF_SACK)
919 			tp->t_flags |= TF_SACK_PERMIT;
920 	}
921 
922 	if (sc->sc_flags & SCF_ECN)
923 		tp->t_flags |= TF_ECN_PERMIT;
924 
925 	/*
926 	 * Set up MSS and get cached values from tcp_hostcache.
927 	 * This might overwrite some of the defaults we just set.
928 	 */
929 	tcp_mss(tp, sc->sc_peer_mss);
930 
931 	/*
932 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
933 	 * limited to one segment in cc_conn_init().
934 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
935 	 */
936 	if (sc->sc_rxmits > 1)
937 		tp->snd_cwnd = 1;
938 
939 #ifdef TCP_OFFLOAD
940 	/*
941 	 * Allow a TOE driver to install its hooks.  Note that we hold the
942 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
943 	 * new connection before the TOE driver has done its thing.
944 	 */
945 	if (ADDED_BY_TOE(sc)) {
946 		struct toedev *tod = sc->sc_tod;
947 
948 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
949 	}
950 #endif
951 	/*
952 	 * Copy and activate timers.
953 	 */
954 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
955 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
956 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
957 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
958 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
959 
960 	TCPSTAT_INC(tcps_accepts);
961 	return (so);
962 
963 abort:
964 	INP_WUNLOCK(inp);
965 abort2:
966 	if (so != NULL)
967 		soabort(so);
968 	return (NULL);
969 }
970 
971 /*
972  * This function gets called when we receive an ACK for a
973  * socket in the LISTEN state.  We look up the connection
974  * in the syncache, and if its there, we pull it out of
975  * the cache and turn it into a full-blown connection in
976  * the SYN-RECEIVED state.
977  *
978  * On syncache_socket() success the newly created socket
979  * has its underlying inp locked.
980  */
981 int
982 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
983     struct socket **lsop, struct mbuf *m)
984 {
985 	struct syncache *sc;
986 	struct syncache_head *sch;
987 	struct syncache scs;
988 	char *s;
989 
990 	/*
991 	 * Global TCP locks are held because we manipulate the PCB lists
992 	 * and create a new socket.
993 	 */
994 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
995 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
996 	    ("%s: can handle only ACK", __func__));
997 
998 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
999 	SCH_LOCK_ASSERT(sch);
1000 
1001 #ifdef INVARIANTS
1002 	/*
1003 	 * Test code for syncookies comparing the syncache stored
1004 	 * values with the reconstructed values from the cookie.
1005 	 */
1006 	if (sc != NULL)
1007 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1008 #endif
1009 
1010 	if (sc == NULL) {
1011 		/*
1012 		 * There is no syncache entry, so see if this ACK is
1013 		 * a returning syncookie.  To do this, first:
1014 		 *  A. Check if syncookies are used in case of syncache
1015 		 *     overflows
1016 		 *  B. See if this socket has had a syncache entry dropped in
1017 		 *     the recent past. We don't want to accept a bogus
1018 		 *     syncookie if we've never received a SYN or accept it
1019 		 *     twice.
1020 		 *  C. check that the syncookie is valid.  If it is, then
1021 		 *     cobble up a fake syncache entry, and return.
1022 		 */
1023 		if (!V_tcp_syncookies) {
1024 			SCH_UNLOCK(sch);
1025 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1026 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1027 				    "segment rejected (syncookies disabled)\n",
1028 				    s, __func__);
1029 			goto failed;
1030 		}
1031 		if (!V_tcp_syncookiesonly &&
1032 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1033 			SCH_UNLOCK(sch);
1034 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1035 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1036 				    "segment rejected (no syncache entry)\n",
1037 				    s, __func__);
1038 			goto failed;
1039 		}
1040 		bzero(&scs, sizeof(scs));
1041 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1042 		SCH_UNLOCK(sch);
1043 		if (sc == NULL) {
1044 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1045 				log(LOG_DEBUG, "%s; %s: Segment failed "
1046 				    "SYNCOOKIE authentication, segment rejected "
1047 				    "(probably spoofed)\n", s, __func__);
1048 			goto failed;
1049 		}
1050 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1051 		/* If received ACK has MD5 signature, check it. */
1052 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1053 		    (!TCPMD5_ENABLED() ||
1054 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1055 			/* Drop the ACK. */
1056 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1057 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1058 				    "MD5 signature doesn't match.\n",
1059 				    s, __func__);
1060 				free(s, M_TCPLOG);
1061 			}
1062 			TCPSTAT_INC(tcps_sig_err_sigopt);
1063 			return (-1); /* Do not send RST */
1064 		}
1065 #endif /* TCP_SIGNATURE */
1066 	} else {
1067 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1068 		/*
1069 		 * If listening socket requested TCP digests, check that
1070 		 * received ACK has signature and it is correct.
1071 		 * If not, drop the ACK and leave sc entry in th cache,
1072 		 * because SYN was received with correct signature.
1073 		 */
1074 		if (sc->sc_flags & SCF_SIGNATURE) {
1075 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1076 				/* No signature */
1077 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1078 				SCH_UNLOCK(sch);
1079 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1080 					log(LOG_DEBUG, "%s; %s: Segment "
1081 					    "rejected, MD5 signature wasn't "
1082 					    "provided.\n", s, __func__);
1083 					free(s, M_TCPLOG);
1084 				}
1085 				return (-1); /* Do not send RST */
1086 			}
1087 			if (!TCPMD5_ENABLED() ||
1088 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1089 				/* Doesn't match or no SA */
1090 				SCH_UNLOCK(sch);
1091 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1092 					log(LOG_DEBUG, "%s; %s: Segment "
1093 					    "rejected, MD5 signature doesn't "
1094 					    "match.\n", s, __func__);
1095 					free(s, M_TCPLOG);
1096 				}
1097 				return (-1); /* Do not send RST */
1098 			}
1099 		}
1100 #endif /* TCP_SIGNATURE */
1101 		/*
1102 		 * Pull out the entry to unlock the bucket row.
1103 		 *
1104 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1105 		 * tcp_state_change().  The tcpcb is not existent at this
1106 		 * moment.  A new one will be allocated via syncache_socket->
1107 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1108 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1109 		 */
1110 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1111 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1112 		sch->sch_length--;
1113 #ifdef TCP_OFFLOAD
1114 		if (ADDED_BY_TOE(sc)) {
1115 			struct toedev *tod = sc->sc_tod;
1116 
1117 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1118 		}
1119 #endif
1120 		SCH_UNLOCK(sch);
1121 	}
1122 
1123 	/*
1124 	 * Segment validation:
1125 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1126 	 */
1127 	if (th->th_ack != sc->sc_iss + 1) {
1128 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1129 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1130 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1131 		goto failed;
1132 	}
1133 
1134 	/*
1135 	 * The SEQ must fall in the window starting at the received
1136 	 * initial receive sequence number + 1 (the SYN).
1137 	 */
1138 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1139 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1140 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1141 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1142 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1143 		goto failed;
1144 	}
1145 
1146 	/*
1147 	 * If timestamps were not negotiated during SYN/ACK they
1148 	 * must not appear on any segment during this session.
1149 	 */
1150 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1151 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1152 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1153 			    "segment rejected\n", s, __func__);
1154 		goto failed;
1155 	}
1156 
1157 	/*
1158 	 * If timestamps were negotiated during SYN/ACK they should
1159 	 * appear on every segment during this session.
1160 	 * XXXAO: This is only informal as there have been unverified
1161 	 * reports of non-compliants stacks.
1162 	 */
1163 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1164 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1165 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1166 			    "no action\n", s, __func__);
1167 			free(s, M_TCPLOG);
1168 			s = NULL;
1169 		}
1170 	}
1171 
1172 	*lsop = syncache_socket(sc, *lsop, m);
1173 
1174 	if (*lsop == NULL)
1175 		TCPSTAT_INC(tcps_sc_aborted);
1176 	else
1177 		TCPSTAT_INC(tcps_sc_completed);
1178 
1179 /* how do we find the inp for the new socket? */
1180 	if (sc != &scs)
1181 		syncache_free(sc);
1182 	return (1);
1183 failed:
1184 	if (sc != NULL && sc != &scs)
1185 		syncache_free(sc);
1186 	if (s != NULL)
1187 		free(s, M_TCPLOG);
1188 	*lsop = NULL;
1189 	return (0);
1190 }
1191 
1192 static void
1193 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1194     uint64_t response_cookie)
1195 {
1196 	struct inpcb *inp;
1197 	struct tcpcb *tp;
1198 	unsigned int *pending_counter;
1199 
1200 	/*
1201 	 * Global TCP locks are held because we manipulate the PCB lists
1202 	 * and create a new socket.
1203 	 */
1204 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1205 
1206 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1207 	*lsop = syncache_socket(sc, *lsop, m);
1208 	if (*lsop == NULL) {
1209 		TCPSTAT_INC(tcps_sc_aborted);
1210 		atomic_subtract_int(pending_counter, 1);
1211 	} else {
1212 		soisconnected(*lsop);
1213 		inp = sotoinpcb(*lsop);
1214 		tp = intotcpcb(inp);
1215 		tp->t_flags |= TF_FASTOPEN;
1216 		tp->t_tfo_cookie.server = response_cookie;
1217 		tp->snd_max = tp->iss;
1218 		tp->snd_nxt = tp->iss;
1219 		tp->t_tfo_pending = pending_counter;
1220 		TCPSTAT_INC(tcps_sc_completed);
1221 	}
1222 }
1223 
1224 /*
1225  * Given a LISTEN socket and an inbound SYN request, add
1226  * this to the syn cache, and send back a segment:
1227  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1228  * to the source.
1229  *
1230  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1231  * Doing so would require that we hold onto the data and deliver it
1232  * to the application.  However, if we are the target of a SYN-flood
1233  * DoS attack, an attacker could send data which would eventually
1234  * consume all available buffer space if it were ACKed.  By not ACKing
1235  * the data, we avoid this DoS scenario.
1236  *
1237  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1238  * cookie is processed and a new socket is created.  In this case, any data
1239  * accompanying the SYN will be queued to the socket by tcp_input() and will
1240  * be ACKed either when the application sends response data or the delayed
1241  * ACK timer expires, whichever comes first.
1242  */
1243 int
1244 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1245     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1246     void *todctx)
1247 {
1248 	struct tcpcb *tp;
1249 	struct socket *so;
1250 	struct syncache *sc = NULL;
1251 	struct syncache_head *sch;
1252 	struct mbuf *ipopts = NULL;
1253 	u_int ltflags;
1254 	int win, ip_ttl, ip_tos;
1255 	char *s;
1256 	int rv = 0;
1257 #ifdef INET6
1258 	int autoflowlabel = 0;
1259 #endif
1260 #ifdef MAC
1261 	struct label *maclabel;
1262 #endif
1263 	struct syncache scs;
1264 	struct ucred *cred;
1265 	uint64_t tfo_response_cookie;
1266 	unsigned int *tfo_pending = NULL;
1267 	int tfo_cookie_valid = 0;
1268 	int tfo_response_cookie_valid = 0;
1269 
1270 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1271 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1272 	    ("%s: unexpected tcp flags", __func__));
1273 
1274 	/*
1275 	 * Combine all so/tp operations very early to drop the INP lock as
1276 	 * soon as possible.
1277 	 */
1278 	so = *lsop;
1279 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1280 	tp = sototcpcb(so);
1281 	cred = crhold(so->so_cred);
1282 
1283 #ifdef INET6
1284 	if ((inc->inc_flags & INC_ISIPV6) &&
1285 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1286 		autoflowlabel = 1;
1287 #endif
1288 	ip_ttl = inp->inp_ip_ttl;
1289 	ip_tos = inp->inp_ip_tos;
1290 	win = so->sol_sbrcv_hiwat;
1291 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1292 
1293 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1294 	    (tp->t_tfo_pending != NULL) &&
1295 	    (to->to_flags & TOF_FASTOPEN)) {
1296 		/*
1297 		 * Limit the number of pending TFO connections to
1298 		 * approximately half of the queue limit.  This prevents TFO
1299 		 * SYN floods from starving the service by filling the
1300 		 * listen queue with bogus TFO connections.
1301 		 */
1302 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1303 		    (so->sol_qlimit / 2)) {
1304 			int result;
1305 
1306 			result = tcp_fastopen_check_cookie(inc,
1307 			    to->to_tfo_cookie, to->to_tfo_len,
1308 			    &tfo_response_cookie);
1309 			tfo_cookie_valid = (result > 0);
1310 			tfo_response_cookie_valid = (result >= 0);
1311 		}
1312 
1313 		/*
1314 		 * Remember the TFO pending counter as it will have to be
1315 		 * decremented below if we don't make it to syncache_tfo_expand().
1316 		 */
1317 		tfo_pending = tp->t_tfo_pending;
1318 	}
1319 
1320 	/* By the time we drop the lock these should no longer be used. */
1321 	so = NULL;
1322 	tp = NULL;
1323 
1324 #ifdef MAC
1325 	if (mac_syncache_init(&maclabel) != 0) {
1326 		INP_WUNLOCK(inp);
1327 		goto done;
1328 	} else
1329 		mac_syncache_create(maclabel, inp);
1330 #endif
1331 	if (!tfo_cookie_valid)
1332 		INP_WUNLOCK(inp);
1333 
1334 	/*
1335 	 * Remember the IP options, if any.
1336 	 */
1337 #ifdef INET6
1338 	if (!(inc->inc_flags & INC_ISIPV6))
1339 #endif
1340 #ifdef INET
1341 		ipopts = (m) ? ip_srcroute(m) : NULL;
1342 #else
1343 		ipopts = NULL;
1344 #endif
1345 
1346 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1347 	/*
1348 	 * If listening socket requested TCP digests, check that received
1349 	 * SYN has signature and it is correct. If signature doesn't match
1350 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1351 	 */
1352 	if (ltflags & TF_SIGNATURE) {
1353 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1354 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1355 			goto done;
1356 		}
1357 		if (!TCPMD5_ENABLED() ||
1358 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1359 			goto done;
1360 	}
1361 #endif	/* TCP_SIGNATURE */
1362 	/*
1363 	 * See if we already have an entry for this connection.
1364 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1365 	 *
1366 	 * XXX: should the syncache be re-initialized with the contents
1367 	 * of the new SYN here (which may have different options?)
1368 	 *
1369 	 * XXX: We do not check the sequence number to see if this is a
1370 	 * real retransmit or a new connection attempt.  The question is
1371 	 * how to handle such a case; either ignore it as spoofed, or
1372 	 * drop the current entry and create a new one?
1373 	 */
1374 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1375 	SCH_LOCK_ASSERT(sch);
1376 	if (sc != NULL) {
1377 		if (tfo_cookie_valid)
1378 			INP_WUNLOCK(inp);
1379 		TCPSTAT_INC(tcps_sc_dupsyn);
1380 		if (ipopts) {
1381 			/*
1382 			 * If we were remembering a previous source route,
1383 			 * forget it and use the new one we've been given.
1384 			 */
1385 			if (sc->sc_ipopts)
1386 				(void) m_free(sc->sc_ipopts);
1387 			sc->sc_ipopts = ipopts;
1388 		}
1389 		/*
1390 		 * Update timestamp if present.
1391 		 */
1392 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1393 			sc->sc_tsreflect = to->to_tsval;
1394 		else
1395 			sc->sc_flags &= ~SCF_TIMESTAMP;
1396 #ifdef MAC
1397 		/*
1398 		 * Since we have already unconditionally allocated label
1399 		 * storage, free it up.  The syncache entry will already
1400 		 * have an initialized label we can use.
1401 		 */
1402 		mac_syncache_destroy(&maclabel);
1403 #endif
1404 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1405 		/* Retransmit SYN|ACK and reset retransmit count. */
1406 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1407 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1408 			    "resetting timer and retransmitting SYN|ACK\n",
1409 			    s, __func__);
1410 			free(s, M_TCPLOG);
1411 		}
1412 		if (syncache_respond(sc, sch, 1, m) == 0) {
1413 			sc->sc_rxmits = 0;
1414 			syncache_timeout(sc, sch, 1);
1415 			TCPSTAT_INC(tcps_sndacks);
1416 			TCPSTAT_INC(tcps_sndtotal);
1417 		}
1418 		SCH_UNLOCK(sch);
1419 		goto donenoprobe;
1420 	}
1421 
1422 	if (tfo_cookie_valid) {
1423 		bzero(&scs, sizeof(scs));
1424 		sc = &scs;
1425 		goto skip_alloc;
1426 	}
1427 
1428 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1429 	if (sc == NULL) {
1430 		/*
1431 		 * The zone allocator couldn't provide more entries.
1432 		 * Treat this as if the cache was full; drop the oldest
1433 		 * entry and insert the new one.
1434 		 */
1435 		TCPSTAT_INC(tcps_sc_zonefail);
1436 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1437 			sch->sch_last_overflow = time_uptime;
1438 			syncache_drop(sc, sch);
1439 		}
1440 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1441 		if (sc == NULL) {
1442 			if (V_tcp_syncookies) {
1443 				bzero(&scs, sizeof(scs));
1444 				sc = &scs;
1445 			} else {
1446 				SCH_UNLOCK(sch);
1447 				if (ipopts)
1448 					(void) m_free(ipopts);
1449 				goto done;
1450 			}
1451 		}
1452 	}
1453 
1454 skip_alloc:
1455 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1456 		sc->sc_tfo_cookie = &tfo_response_cookie;
1457 
1458 	/*
1459 	 * Fill in the syncache values.
1460 	 */
1461 #ifdef MAC
1462 	sc->sc_label = maclabel;
1463 #endif
1464 	sc->sc_cred = cred;
1465 	cred = NULL;
1466 	sc->sc_ipopts = ipopts;
1467 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1468 #ifdef INET6
1469 	if (!(inc->inc_flags & INC_ISIPV6))
1470 #endif
1471 	{
1472 		sc->sc_ip_tos = ip_tos;
1473 		sc->sc_ip_ttl = ip_ttl;
1474 	}
1475 #ifdef TCP_OFFLOAD
1476 	sc->sc_tod = tod;
1477 	sc->sc_todctx = todctx;
1478 #endif
1479 	sc->sc_irs = th->th_seq;
1480 	sc->sc_iss = arc4random();
1481 	sc->sc_flags = 0;
1482 	sc->sc_flowlabel = 0;
1483 
1484 	/*
1485 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1486 	 * win was derived from socket earlier in the function.
1487 	 */
1488 	win = imax(win, 0);
1489 	win = imin(win, TCP_MAXWIN);
1490 	sc->sc_wnd = win;
1491 
1492 	if (V_tcp_do_rfc1323) {
1493 		/*
1494 		 * A timestamp received in a SYN makes
1495 		 * it ok to send timestamp requests and replies.
1496 		 */
1497 		if (to->to_flags & TOF_TS) {
1498 			sc->sc_tsreflect = to->to_tsval;
1499 			sc->sc_flags |= SCF_TIMESTAMP;
1500 		}
1501 		if (to->to_flags & TOF_SCALE) {
1502 			int wscale = 0;
1503 
1504 			/*
1505 			 * Pick the smallest possible scaling factor that
1506 			 * will still allow us to scale up to sb_max, aka
1507 			 * kern.ipc.maxsockbuf.
1508 			 *
1509 			 * We do this because there are broken firewalls that
1510 			 * will corrupt the window scale option, leading to
1511 			 * the other endpoint believing that our advertised
1512 			 * window is unscaled.  At scale factors larger than
1513 			 * 5 the unscaled window will drop below 1500 bytes,
1514 			 * leading to serious problems when traversing these
1515 			 * broken firewalls.
1516 			 *
1517 			 * With the default maxsockbuf of 256K, a scale factor
1518 			 * of 3 will be chosen by this algorithm.  Those who
1519 			 * choose a larger maxsockbuf should watch out
1520 			 * for the compatibility problems mentioned above.
1521 			 *
1522 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1523 			 * or <SYN,ACK>) segment itself is never scaled.
1524 			 */
1525 			while (wscale < TCP_MAX_WINSHIFT &&
1526 			    (TCP_MAXWIN << wscale) < sb_max)
1527 				wscale++;
1528 			sc->sc_requested_r_scale = wscale;
1529 			sc->sc_requested_s_scale = to->to_wscale;
1530 			sc->sc_flags |= SCF_WINSCALE;
1531 		}
1532 	}
1533 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1534 	/*
1535 	 * If listening socket requested TCP digests, flag this in the
1536 	 * syncache so that syncache_respond() will do the right thing
1537 	 * with the SYN+ACK.
1538 	 */
1539 	if (ltflags & TF_SIGNATURE)
1540 		sc->sc_flags |= SCF_SIGNATURE;
1541 #endif	/* TCP_SIGNATURE */
1542 	if (to->to_flags & TOF_SACKPERM)
1543 		sc->sc_flags |= SCF_SACK;
1544 	if (to->to_flags & TOF_MSS)
1545 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1546 	if (ltflags & TF_NOOPT)
1547 		sc->sc_flags |= SCF_NOOPT;
1548 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1549 		sc->sc_flags |= SCF_ECN;
1550 
1551 	if (V_tcp_syncookies)
1552 		sc->sc_iss = syncookie_generate(sch, sc);
1553 #ifdef INET6
1554 	if (autoflowlabel) {
1555 		if (V_tcp_syncookies)
1556 			sc->sc_flowlabel = sc->sc_iss;
1557 		else
1558 			sc->sc_flowlabel = ip6_randomflowlabel();
1559 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1560 	}
1561 #endif
1562 	SCH_UNLOCK(sch);
1563 
1564 	if (tfo_cookie_valid) {
1565 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1566 		/* INP_WUNLOCK(inp) will be performed by the caller */
1567 		rv = 1;
1568 		goto tfo_expanded;
1569 	}
1570 
1571 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1572 	/*
1573 	 * Do a standard 3-way handshake.
1574 	 */
1575 	if (syncache_respond(sc, sch, 0, m) == 0) {
1576 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1577 			syncache_free(sc);
1578 		else if (sc != &scs)
1579 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1580 		TCPSTAT_INC(tcps_sndacks);
1581 		TCPSTAT_INC(tcps_sndtotal);
1582 	} else {
1583 		if (sc != &scs)
1584 			syncache_free(sc);
1585 		TCPSTAT_INC(tcps_sc_dropped);
1586 	}
1587 	goto donenoprobe;
1588 
1589 done:
1590 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1591 donenoprobe:
1592 	if (m) {
1593 		*lsop = NULL;
1594 		m_freem(m);
1595 	}
1596 	/*
1597 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1598 	 * result in a new socket was processed and the associated pending
1599 	 * counter has not yet been decremented.  All such TFO processing paths
1600 	 * transit this point.
1601 	 */
1602 	if (tfo_pending != NULL)
1603 		tcp_fastopen_decrement_counter(tfo_pending);
1604 
1605 tfo_expanded:
1606 	if (cred != NULL)
1607 		crfree(cred);
1608 #ifdef MAC
1609 	if (sc == &scs)
1610 		mac_syncache_destroy(&maclabel);
1611 #endif
1612 	return (rv);
1613 }
1614 
1615 /*
1616  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1617  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1618  */
1619 static int
1620 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1621     const struct mbuf *m0)
1622 {
1623 	struct ip *ip = NULL;
1624 	struct mbuf *m;
1625 	struct tcphdr *th = NULL;
1626 	int optlen, error = 0;	/* Make compiler happy */
1627 	u_int16_t hlen, tlen, mssopt;
1628 	struct tcpopt to;
1629 #ifdef INET6
1630 	struct ip6_hdr *ip6 = NULL;
1631 #endif
1632 	hlen =
1633 #ifdef INET6
1634 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1635 #endif
1636 		sizeof(struct ip);
1637 	tlen = hlen + sizeof(struct tcphdr);
1638 
1639 	/* Determine MSS we advertize to other end of connection. */
1640 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1641 
1642 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1643 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1644 	    ("syncache: mbuf too small"));
1645 
1646 	/* Create the IP+TCP header from scratch. */
1647 	m = m_gethdr(M_NOWAIT, MT_DATA);
1648 	if (m == NULL)
1649 		return (ENOBUFS);
1650 #ifdef MAC
1651 	mac_syncache_create_mbuf(sc->sc_label, m);
1652 #endif
1653 	m->m_data += max_linkhdr;
1654 	m->m_len = tlen;
1655 	m->m_pkthdr.len = tlen;
1656 	m->m_pkthdr.rcvif = NULL;
1657 
1658 #ifdef INET6
1659 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1660 		ip6 = mtod(m, struct ip6_hdr *);
1661 		ip6->ip6_vfc = IPV6_VERSION;
1662 		ip6->ip6_nxt = IPPROTO_TCP;
1663 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1664 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1665 		ip6->ip6_plen = htons(tlen - hlen);
1666 		/* ip6_hlim is set after checksum */
1667 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1668 		ip6->ip6_flow |= sc->sc_flowlabel;
1669 
1670 		th = (struct tcphdr *)(ip6 + 1);
1671 	}
1672 #endif
1673 #if defined(INET6) && defined(INET)
1674 	else
1675 #endif
1676 #ifdef INET
1677 	{
1678 		ip = mtod(m, struct ip *);
1679 		ip->ip_v = IPVERSION;
1680 		ip->ip_hl = sizeof(struct ip) >> 2;
1681 		ip->ip_len = htons(tlen);
1682 		ip->ip_id = 0;
1683 		ip->ip_off = 0;
1684 		ip->ip_sum = 0;
1685 		ip->ip_p = IPPROTO_TCP;
1686 		ip->ip_src = sc->sc_inc.inc_laddr;
1687 		ip->ip_dst = sc->sc_inc.inc_faddr;
1688 		ip->ip_ttl = sc->sc_ip_ttl;
1689 		ip->ip_tos = sc->sc_ip_tos;
1690 
1691 		/*
1692 		 * See if we should do MTU discovery.  Route lookups are
1693 		 * expensive, so we will only unset the DF bit if:
1694 		 *
1695 		 *	1) path_mtu_discovery is disabled
1696 		 *	2) the SCF_UNREACH flag has been set
1697 		 */
1698 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1699 		       ip->ip_off |= htons(IP_DF);
1700 
1701 		th = (struct tcphdr *)(ip + 1);
1702 	}
1703 #endif /* INET */
1704 	th->th_sport = sc->sc_inc.inc_lport;
1705 	th->th_dport = sc->sc_inc.inc_fport;
1706 
1707 	th->th_seq = htonl(sc->sc_iss);
1708 	th->th_ack = htonl(sc->sc_irs + 1);
1709 	th->th_off = sizeof(struct tcphdr) >> 2;
1710 	th->th_x2 = 0;
1711 	th->th_flags = TH_SYN|TH_ACK;
1712 	th->th_win = htons(sc->sc_wnd);
1713 	th->th_urp = 0;
1714 
1715 	if (sc->sc_flags & SCF_ECN) {
1716 		th->th_flags |= TH_ECE;
1717 		TCPSTAT_INC(tcps_ecn_shs);
1718 	}
1719 
1720 	/* Tack on the TCP options. */
1721 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1722 		to.to_flags = 0;
1723 
1724 		to.to_mss = mssopt;
1725 		to.to_flags = TOF_MSS;
1726 		if (sc->sc_flags & SCF_WINSCALE) {
1727 			to.to_wscale = sc->sc_requested_r_scale;
1728 			to.to_flags |= TOF_SCALE;
1729 		}
1730 		if (sc->sc_flags & SCF_TIMESTAMP) {
1731 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1732 			to.to_tsecr = sc->sc_tsreflect;
1733 			to.to_flags |= TOF_TS;
1734 		}
1735 		if (sc->sc_flags & SCF_SACK)
1736 			to.to_flags |= TOF_SACKPERM;
1737 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1738 		if (sc->sc_flags & SCF_SIGNATURE)
1739 			to.to_flags |= TOF_SIGNATURE;
1740 #endif
1741 		if (sc->sc_tfo_cookie) {
1742 			to.to_flags |= TOF_FASTOPEN;
1743 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1744 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1745 			/* don't send cookie again when retransmitting response */
1746 			sc->sc_tfo_cookie = NULL;
1747 		}
1748 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1749 
1750 		/* Adjust headers by option size. */
1751 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1752 		m->m_len += optlen;
1753 		m->m_pkthdr.len += optlen;
1754 #ifdef INET6
1755 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1756 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1757 		else
1758 #endif
1759 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1760 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1761 		if (sc->sc_flags & SCF_SIGNATURE) {
1762 			KASSERT(to.to_flags & TOF_SIGNATURE,
1763 			    ("tcp_addoptions() didn't set tcp_signature"));
1764 
1765 			/* NOTE: to.to_signature is inside of mbuf */
1766 			if (!TCPMD5_ENABLED() ||
1767 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1768 				m_freem(m);
1769 				return (EACCES);
1770 			}
1771 		}
1772 #endif
1773 	} else
1774 		optlen = 0;
1775 
1776 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1777 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1778 	/*
1779 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1780 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1781 	 * to SYN|ACK due to lack of inp here.
1782 	 */
1783 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1784 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1785 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1786 	}
1787 #ifdef INET6
1788 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1789 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1790 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1791 		    IPPROTO_TCP, 0);
1792 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1793 #ifdef TCP_OFFLOAD
1794 		if (ADDED_BY_TOE(sc)) {
1795 			struct toedev *tod = sc->sc_tod;
1796 
1797 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1798 
1799 			return (error);
1800 		}
1801 #endif
1802 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1803 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1804 	}
1805 #endif
1806 #if defined(INET6) && defined(INET)
1807 	else
1808 #endif
1809 #ifdef INET
1810 	{
1811 		m->m_pkthdr.csum_flags = CSUM_TCP;
1812 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1813 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1814 #ifdef TCP_OFFLOAD
1815 		if (ADDED_BY_TOE(sc)) {
1816 			struct toedev *tod = sc->sc_tod;
1817 
1818 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1819 
1820 			return (error);
1821 		}
1822 #endif
1823 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1824 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1825 	}
1826 #endif
1827 	return (error);
1828 }
1829 
1830 /*
1831  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1832  * that exceed the capacity of the syncache by avoiding the storage of any
1833  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1834  * attacks where the attacker does not have access to our responses.
1835  *
1836  * Syncookies encode and include all necessary information about the
1837  * connection setup within the SYN|ACK that we send back.  That way we
1838  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1839  * (if ever).  Normally the syncache and syncookies are running in parallel
1840  * with the latter taking over when the former is exhausted.  When matching
1841  * syncache entry is found the syncookie is ignored.
1842  *
1843  * The only reliable information persisting the 3WHS is our initial sequence
1844  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1845  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1846  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1847  * returns and signifies a legitimate connection if it matches the ACK.
1848  *
1849  * The available space of 32 bits to store the hash and to encode the SYN
1850  * option information is very tight and we should have at least 24 bits for
1851  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1852  *
1853  * SYN option information we have to encode to fully restore a connection:
1854  * MSS: is imporant to chose an optimal segment size to avoid IP level
1855  *   fragmentation along the path.  The common MSS values can be encoded
1856  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1857  *   in the table leading to a slight increase in packetization overhead.
1858  * WSCALE: is necessary to allow large windows to be used for high delay-
1859  *   bandwidth product links.  Not scaling the window when it was initially
1860  *   negotiated is bad for performance as lack of scaling further decreases
1861  *   the apparent available send window.  We only need to encode the WSCALE
1862  *   we received from the remote end.  Our end can be recalculated at any
1863  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1864  *   Uncommon values are captured by the next lower value in the table
1865  *   making us under-estimate the available window size halving our
1866  *   theoretically possible maximum throughput for that connection.
1867  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1868  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1869  *   that are included in all segments on a connection.  We enable them when
1870  *   the ACK has them.
1871  *
1872  * Security of syncookies and attack vectors:
1873  *
1874  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1875  * together with the gloabl secret to make it unique per connection attempt.
1876  * Thus any change of any of those parameters results in a different MAC output
1877  * in an unpredictable way unless a collision is encountered.  24 bits of the
1878  * MAC are embedded into the ISS.
1879  *
1880  * To prevent replay attacks two rotating global secrets are updated with a
1881  * new random value every 15 seconds.  The life-time of a syncookie is thus
1882  * 15-30 seconds.
1883  *
1884  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1885  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1886  * text attack by varying and testing the all parameters under his control.
1887  * The strength depends on the size and randomness of the secret, and the
1888  * cryptographic security of the MAC function.  Due to the constant updating
1889  * of the secret the attacker has at most 29.999 seconds to find the secret
1890  * and launch spoofed connections.  After that he has to start all over again.
1891  *
1892  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1893  * size an average of 4,823 attempts are required for a 50% chance of success
1894  * to spoof a single syncookie (birthday collision paradox).  However the
1895  * attacker is blind and doesn't know if one of his attempts succeeded unless
1896  * he has a side channel to interfere success from.  A single connection setup
1897  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1898  * This many attempts are required for each one blind spoofed connection.  For
1899  * every additional spoofed connection he has to launch another N attempts.
1900  * Thus for a sustained rate 100 spoofed connections per second approximately
1901  * 1,800,000 packets per second would have to be sent.
1902  *
1903  * NB: The MAC function should be fast so that it doesn't become a CPU
1904  * exhaustion attack vector itself.
1905  *
1906  * References:
1907  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1908  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1909  *   http://cr.yp.to/syncookies.html    (overview)
1910  *   http://cr.yp.to/syncookies/archive (details)
1911  *
1912  *
1913  * Schematic construction of a syncookie enabled Initial Sequence Number:
1914  *  0        1         2         3
1915  *  12345678901234567890123456789012
1916  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1917  *
1918  *  x 24 MAC (truncated)
1919  *  W  3 Send Window Scale index
1920  *  M  3 MSS index
1921  *  S  1 SACK permitted
1922  *  P  1 Odd/even secret
1923  */
1924 
1925 /*
1926  * Distribution and probability of certain MSS values.  Those in between are
1927  * rounded down to the next lower one.
1928  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1929  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1930  */
1931 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1932 
1933 /*
1934  * Distribution and probability of certain WSCALE values.  We have to map the
1935  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1936  * bits based on prevalence of certain values.  Where we don't have an exact
1937  * match for are rounded down to the next lower one letting us under-estimate
1938  * the true available window.  At the moment this would happen only for the
1939  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1940  * and window size).  The absence of the WSCALE option (no scaling in either
1941  * direction) is encoded with index zero.
1942  * [WSCALE values histograms, Allman, 2012]
1943  *                            X 10 10 35  5  6 14 10%   by host
1944  *                            X 11  4  5  5 18 49  3%   by connections
1945  */
1946 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1947 
1948 /*
1949  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1950  * and good cryptographic properties.
1951  */
1952 static uint32_t
1953 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1954     uint8_t *secbits, uintptr_t secmod)
1955 {
1956 	SIPHASH_CTX ctx;
1957 	uint32_t siphash[2];
1958 
1959 	SipHash24_Init(&ctx);
1960 	SipHash_SetKey(&ctx, secbits);
1961 	switch (inc->inc_flags & INC_ISIPV6) {
1962 #ifdef INET
1963 	case 0:
1964 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1965 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1966 		break;
1967 #endif
1968 #ifdef INET6
1969 	case INC_ISIPV6:
1970 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1971 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1972 		break;
1973 #endif
1974 	}
1975 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1976 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1977 	SipHash_Update(&ctx, &irs, sizeof(irs));
1978 	SipHash_Update(&ctx, &flags, sizeof(flags));
1979 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1980 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1981 
1982 	return (siphash[0] ^ siphash[1]);
1983 }
1984 
1985 static tcp_seq
1986 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1987 {
1988 	u_int i, secbit, wscale;
1989 	uint32_t iss, hash;
1990 	uint8_t *secbits;
1991 	union syncookie cookie;
1992 
1993 	SCH_LOCK_ASSERT(sch);
1994 
1995 	cookie.cookie = 0;
1996 
1997 	/* Map our computed MSS into the 3-bit index. */
1998 	for (i = nitems(tcp_sc_msstab) - 1;
1999 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2000 	     i--)
2001 		;
2002 	cookie.flags.mss_idx = i;
2003 
2004 	/*
2005 	 * Map the send window scale into the 3-bit index but only if
2006 	 * the wscale option was received.
2007 	 */
2008 	if (sc->sc_flags & SCF_WINSCALE) {
2009 		wscale = sc->sc_requested_s_scale;
2010 		for (i = nitems(tcp_sc_wstab) - 1;
2011 		    tcp_sc_wstab[i] > wscale && i > 0;
2012 		     i--)
2013 			;
2014 		cookie.flags.wscale_idx = i;
2015 	}
2016 
2017 	/* Can we do SACK? */
2018 	if (sc->sc_flags & SCF_SACK)
2019 		cookie.flags.sack_ok = 1;
2020 
2021 	/* Which of the two secrets to use. */
2022 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2023 	cookie.flags.odd_even = secbit;
2024 
2025 	secbits = sch->sch_sc->secret.key[secbit];
2026 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2027 	    (uintptr_t)sch);
2028 
2029 	/*
2030 	 * Put the flags into the hash and XOR them to get better ISS number
2031 	 * variance.  This doesn't enhance the cryptographic strength and is
2032 	 * done to prevent the 8 cookie bits from showing up directly on the
2033 	 * wire.
2034 	 */
2035 	iss = hash & ~0xff;
2036 	iss |= cookie.cookie ^ (hash >> 24);
2037 
2038 	/* Randomize the timestamp. */
2039 	if (sc->sc_flags & SCF_TIMESTAMP) {
2040 		sc->sc_tsoff = arc4random() - tcp_ts_getticks();
2041 	}
2042 
2043 	TCPSTAT_INC(tcps_sc_sendcookie);
2044 	return (iss);
2045 }
2046 
2047 static struct syncache *
2048 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2049     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2050     struct socket *lso)
2051 {
2052 	uint32_t hash;
2053 	uint8_t *secbits;
2054 	tcp_seq ack, seq;
2055 	int wnd, wscale = 0;
2056 	union syncookie cookie;
2057 
2058 	SCH_LOCK_ASSERT(sch);
2059 
2060 	/*
2061 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2062 	 * advances.
2063 	 */
2064 	ack = th->th_ack - 1;
2065 	seq = th->th_seq - 1;
2066 
2067 	/*
2068 	 * Unpack the flags containing enough information to restore the
2069 	 * connection.
2070 	 */
2071 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2072 
2073 	/* Which of the two secrets to use. */
2074 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2075 
2076 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2077 
2078 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2079 	if ((ack & ~0xff) != (hash & ~0xff))
2080 		return (NULL);
2081 
2082 	/* Fill in the syncache values. */
2083 	sc->sc_flags = 0;
2084 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2085 	sc->sc_ipopts = NULL;
2086 
2087 	sc->sc_irs = seq;
2088 	sc->sc_iss = ack;
2089 
2090 	switch (inc->inc_flags & INC_ISIPV6) {
2091 #ifdef INET
2092 	case 0:
2093 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2094 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2095 		break;
2096 #endif
2097 #ifdef INET6
2098 	case INC_ISIPV6:
2099 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2100 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2101 		break;
2102 #endif
2103 	}
2104 
2105 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2106 
2107 	/* We can simply recompute receive window scale we sent earlier. */
2108 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2109 		wscale++;
2110 
2111 	/* Only use wscale if it was enabled in the orignal SYN. */
2112 	if (cookie.flags.wscale_idx > 0) {
2113 		sc->sc_requested_r_scale = wscale;
2114 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2115 		sc->sc_flags |= SCF_WINSCALE;
2116 	}
2117 
2118 	wnd = lso->sol_sbrcv_hiwat;
2119 	wnd = imax(wnd, 0);
2120 	wnd = imin(wnd, TCP_MAXWIN);
2121 	sc->sc_wnd = wnd;
2122 
2123 	if (cookie.flags.sack_ok)
2124 		sc->sc_flags |= SCF_SACK;
2125 
2126 	if (to->to_flags & TOF_TS) {
2127 		sc->sc_flags |= SCF_TIMESTAMP;
2128 		sc->sc_tsreflect = to->to_tsval;
2129 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2130 	}
2131 
2132 	if (to->to_flags & TOF_SIGNATURE)
2133 		sc->sc_flags |= SCF_SIGNATURE;
2134 
2135 	sc->sc_rxmits = 0;
2136 
2137 	TCPSTAT_INC(tcps_sc_recvcookie);
2138 	return (sc);
2139 }
2140 
2141 #ifdef INVARIANTS
2142 static int
2143 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2144     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2145     struct socket *lso)
2146 {
2147 	struct syncache scs, *scx;
2148 	char *s;
2149 
2150 	bzero(&scs, sizeof(scs));
2151 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2152 
2153 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2154 		return (0);
2155 
2156 	if (scx != NULL) {
2157 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2158 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2159 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2160 
2161 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2162 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2163 			    s, __func__, sc->sc_requested_r_scale,
2164 			    scx->sc_requested_r_scale);
2165 
2166 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2167 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2168 			    s, __func__, sc->sc_requested_s_scale,
2169 			    scx->sc_requested_s_scale);
2170 
2171 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2172 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2173 	}
2174 
2175 	if (s != NULL)
2176 		free(s, M_TCPLOG);
2177 	return (0);
2178 }
2179 #endif /* INVARIANTS */
2180 
2181 static void
2182 syncookie_reseed(void *arg)
2183 {
2184 	struct tcp_syncache *sc = arg;
2185 	uint8_t *secbits;
2186 	int secbit;
2187 
2188 	/*
2189 	 * Reseeding the secret doesn't have to be protected by a lock.
2190 	 * It only must be ensured that the new random values are visible
2191 	 * to all CPUs in a SMP environment.  The atomic with release
2192 	 * semantics ensures that.
2193 	 */
2194 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2195 	secbits = sc->secret.key[secbit];
2196 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2197 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2198 
2199 	/* Reschedule ourself. */
2200 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2201 }
2202 
2203 /*
2204  * Exports the syncache entries to userland so that netstat can display
2205  * them alongside the other sockets.  This function is intended to be
2206  * called only from tcp_pcblist.
2207  *
2208  * Due to concurrency on an active system, the number of pcbs exported
2209  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2210  * amount of space the caller allocated for this function to use.
2211  */
2212 int
2213 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2214 {
2215 	struct xtcpcb xt;
2216 	struct syncache *sc;
2217 	struct syncache_head *sch;
2218 	int count, error, i;
2219 
2220 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2221 		sch = &V_tcp_syncache.hashbase[i];
2222 		SCH_LOCK(sch);
2223 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2224 			if (count >= max_pcbs) {
2225 				SCH_UNLOCK(sch);
2226 				goto exit;
2227 			}
2228 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2229 				continue;
2230 			bzero(&xt, sizeof(xt));
2231 			xt.xt_len = sizeof(xt);
2232 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2233 				xt.xt_inp.inp_vflag = INP_IPV6;
2234 			else
2235 				xt.xt_inp.inp_vflag = INP_IPV4;
2236 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2237 			    sizeof (struct in_conninfo));
2238 			xt.t_state = TCPS_SYN_RECEIVED;
2239 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2240 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2241 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2242 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2243 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2244 			if (error) {
2245 				SCH_UNLOCK(sch);
2246 				goto exit;
2247 			}
2248 			count++;
2249 		}
2250 		SCH_UNLOCK(sch);
2251 	}
2252 exit:
2253 	*pcbs_exported = count;
2254 	return error;
2255 }
2256