xref: /freebsd/sys/netinet/tcp_syncache.c (revision 6bf91573c153d48344d9eb66dd654e44ab2a1002)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/hash.h>
45 #include <sys/refcount.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/proc.h>		/* for proc0 declaration */
54 #include <sys/random.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/syslog.h>
58 #include <sys/ucred.h>
59 
60 #include <sys/md5.h>
61 #include <crypto/siphash/siphash.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/route.h>
68 #include <net/vnet.h>
69 
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #include <netinet/tcp_ecn.h>
93 #ifdef TCP_OFFLOAD
94 #include <netinet/toecore.h>
95 #endif
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
133 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
134 		    struct mbuf *m);
135 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
136 		    int docallout);
137 static void	 syncache_timer(void *);
138 
139 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
140 		    uint8_t *, uintptr_t);
141 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
142 static struct syncache
143 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
144 		    struct syncache *, struct tcphdr *, struct tcpopt *,
145 		    struct socket *, uint16_t);
146 static void	syncache_pause(struct in_conninfo *);
147 static void	syncache_unpause(void *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso, uint16_t port);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout with default values of
158  * tcp_rexmit_initial * (             1 +
159  *                       tcp_backoff[1] +
160  *                       tcp_backoff[2] +
161  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
162  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
163  * the odds are that the user has given up attempting to connect by then.
164  */
165 #define SYNCACHE_MAXREXMTS		3
166 
167 /* Arbitrary values */
168 #define TCP_SYNCACHE_HASHSIZE		512
169 #define TCP_SYNCACHE_BUCKETLIMIT	30
170 
171 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
172 #define	V_tcp_syncache			VNET(tcp_syncache)
173 
174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
175     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "TCP SYN cache");
177 
178 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
179     &VNET_NAME(tcp_syncache.bucket_limit), 0,
180     "Per-bucket hash limit for syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.cache_limit), 0,
184     "Overall entry limit for syncache");
185 
186 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
187     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
188 
189 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
190     &VNET_NAME(tcp_syncache.hashsize), 0,
191     "Size of TCP syncache hashtable");
192 
193 SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET |
194     CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0,
195     "All syncache(4) entries are visible, ignoring UID/GID, jail(2) "
196     "and mac(4) checks");
197 
198 static int
199 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
200 {
201 	int error;
202 	u_int new;
203 
204 	new = V_tcp_syncache.rexmt_limit;
205 	error = sysctl_handle_int(oidp, &new, 0, req);
206 	if ((error == 0) && (req->newptr != NULL)) {
207 		if (new > TCP_MAXRXTSHIFT)
208 			error = EINVAL;
209 		else
210 			V_tcp_syncache.rexmt_limit = new;
211 	}
212 	return (error);
213 }
214 
215 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
216     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
217     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
218     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
219     "Limit on SYN/ACK retransmissions");
220 
221 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
222 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
223     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
224     "Send reset on socket allocation failure");
225 
226 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
227 
228 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
229 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
230 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
231 
232 /*
233  * Requires the syncache entry to be already removed from the bucket list.
234  */
235 static void
236 syncache_free(struct syncache *sc)
237 {
238 
239 	if (sc->sc_ipopts)
240 		(void) m_free(sc->sc_ipopts);
241 	if (sc->sc_cred)
242 		crfree(sc->sc_cred);
243 #ifdef MAC
244 	mac_syncache_destroy(&sc->sc_label);
245 #endif
246 
247 	uma_zfree(V_tcp_syncache.zone, sc);
248 }
249 
250 void
251 syncache_init(void)
252 {
253 	int i;
254 
255 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
256 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
257 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
258 	V_tcp_syncache.hash_secret = arc4random();
259 
260 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
261 	    &V_tcp_syncache.hashsize);
262 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
263 	    &V_tcp_syncache.bucket_limit);
264 	if (!powerof2(V_tcp_syncache.hashsize) ||
265 	    V_tcp_syncache.hashsize == 0) {
266 		printf("WARNING: syncache hash size is not a power of 2.\n");
267 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
268 	}
269 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
270 
271 	/* Set limits. */
272 	V_tcp_syncache.cache_limit =
273 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
274 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
275 	    &V_tcp_syncache.cache_limit);
276 
277 	/* Allocate the hash table. */
278 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
279 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
280 
281 #ifdef VIMAGE
282 	V_tcp_syncache.vnet = curvnet;
283 #endif
284 
285 	/* Initialize the hash buckets. */
286 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
287 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
288 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
289 			 NULL, MTX_DEF);
290 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
291 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
292 		V_tcp_syncache.hashbase[i].sch_length = 0;
293 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
294 		V_tcp_syncache.hashbase[i].sch_last_overflow =
295 		    -(SYNCOOKIE_LIFETIME + 1);
296 	}
297 
298 	/* Create the syncache entry zone. */
299 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
300 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
301 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
302 	    V_tcp_syncache.cache_limit);
303 
304 	/* Start the SYN cookie reseeder callout. */
305 	callout_init(&V_tcp_syncache.secret.reseed, 1);
306 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
307 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
308 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
309 	    syncookie_reseed, &V_tcp_syncache);
310 
311 	/* Initialize the pause machinery. */
312 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
313 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
314 	    0);
315 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
316 	V_tcp_syncache.pause_backoff = 0;
317 	V_tcp_syncache.paused = false;
318 }
319 
320 #ifdef VIMAGE
321 void
322 syncache_destroy(void)
323 {
324 	struct syncache_head *sch;
325 	struct syncache *sc, *nsc;
326 	int i;
327 
328 	/*
329 	 * Stop the re-seed timer before freeing resources.  No need to
330 	 * possibly schedule it another time.
331 	 */
332 	callout_drain(&V_tcp_syncache.secret.reseed);
333 
334 	/* Stop the SYN cache pause callout. */
335 	mtx_lock(&V_tcp_syncache.pause_mtx);
336 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
337 		mtx_unlock(&V_tcp_syncache.pause_mtx);
338 		callout_drain(&V_tcp_syncache.pause_co);
339 	} else
340 		mtx_unlock(&V_tcp_syncache.pause_mtx);
341 
342 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
343 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
344 		sch = &V_tcp_syncache.hashbase[i];
345 		callout_drain(&sch->sch_timer);
346 
347 		SCH_LOCK(sch);
348 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
349 			syncache_drop(sc, sch);
350 		SCH_UNLOCK(sch);
351 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
352 		    ("%s: sch->sch_bucket not empty", __func__));
353 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
354 		    __func__, sch->sch_length));
355 		mtx_destroy(&sch->sch_mtx);
356 	}
357 
358 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
359 	    ("%s: cache_count not 0", __func__));
360 
361 	/* Free the allocated global resources. */
362 	uma_zdestroy(V_tcp_syncache.zone);
363 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
364 	mtx_destroy(&V_tcp_syncache.pause_mtx);
365 }
366 #endif
367 
368 /*
369  * Inserts a syncache entry into the specified bucket row.
370  * Locks and unlocks the syncache_head autonomously.
371  */
372 static void
373 syncache_insert(struct syncache *sc, struct syncache_head *sch)
374 {
375 	struct syncache *sc2;
376 
377 	SCH_LOCK(sch);
378 
379 	/*
380 	 * Make sure that we don't overflow the per-bucket limit.
381 	 * If the bucket is full, toss the oldest element.
382 	 */
383 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
384 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
385 			("sch->sch_length incorrect"));
386 		syncache_pause(&sc->sc_inc);
387 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
388 		sch->sch_last_overflow = time_uptime;
389 		syncache_drop(sc2, sch);
390 	}
391 
392 	/* Put it into the bucket. */
393 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
394 	sch->sch_length++;
395 
396 #ifdef TCP_OFFLOAD
397 	if (ADDED_BY_TOE(sc)) {
398 		struct toedev *tod = sc->sc_tod;
399 
400 		tod->tod_syncache_added(tod, sc->sc_todctx);
401 	}
402 #endif
403 
404 	/* Reinitialize the bucket row's timer. */
405 	if (sch->sch_length == 1)
406 		sch->sch_nextc = ticks + INT_MAX;
407 	syncache_timeout(sc, sch, 1);
408 
409 	SCH_UNLOCK(sch);
410 
411 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
412 	TCPSTAT_INC(tcps_sc_added);
413 }
414 
415 /*
416  * Remove and free entry from syncache bucket row.
417  * Expects locked syncache head.
418  */
419 static void
420 syncache_drop(struct syncache *sc, struct syncache_head *sch)
421 {
422 
423 	SCH_LOCK_ASSERT(sch);
424 
425 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
426 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
427 	sch->sch_length--;
428 
429 #ifdef TCP_OFFLOAD
430 	if (ADDED_BY_TOE(sc)) {
431 		struct toedev *tod = sc->sc_tod;
432 
433 		tod->tod_syncache_removed(tod, sc->sc_todctx);
434 	}
435 #endif
436 
437 	syncache_free(sc);
438 }
439 
440 /*
441  * Engage/reengage time on bucket row.
442  */
443 static void
444 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
445 {
446 	int rexmt;
447 
448 	if (sc->sc_rxmits == 0)
449 		rexmt = tcp_rexmit_initial;
450 	else
451 		TCPT_RANGESET(rexmt,
452 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
453 		    tcp_rexmit_min, TCPTV_REXMTMAX);
454 	sc->sc_rxttime = ticks + rexmt;
455 	sc->sc_rxmits++;
456 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
457 		sch->sch_nextc = sc->sc_rxttime;
458 		if (docallout)
459 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
460 			    syncache_timer, (void *)sch);
461 	}
462 }
463 
464 /*
465  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
466  * If we have retransmitted an entry the maximum number of times, expire it.
467  * One separate timer for each bucket row.
468  */
469 static void
470 syncache_timer(void *xsch)
471 {
472 	struct syncache_head *sch = (struct syncache_head *)xsch;
473 	struct syncache *sc, *nsc;
474 	struct epoch_tracker et;
475 	int tick = ticks;
476 	char *s;
477 	bool paused;
478 
479 	CURVNET_SET(sch->sch_sc->vnet);
480 
481 	/* NB: syncache_head has already been locked by the callout. */
482 	SCH_LOCK_ASSERT(sch);
483 
484 	/*
485 	 * In the following cycle we may remove some entries and/or
486 	 * advance some timeouts, so re-initialize the bucket timer.
487 	 */
488 	sch->sch_nextc = tick + INT_MAX;
489 
490 	/*
491 	 * If we have paused processing, unconditionally remove
492 	 * all syncache entries.
493 	 */
494 	mtx_lock(&V_tcp_syncache.pause_mtx);
495 	paused = V_tcp_syncache.paused;
496 	mtx_unlock(&V_tcp_syncache.pause_mtx);
497 
498 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
499 		if (paused) {
500 			syncache_drop(sc, sch);
501 			continue;
502 		}
503 		/*
504 		 * We do not check if the listen socket still exists
505 		 * and accept the case where the listen socket may be
506 		 * gone by the time we resend the SYN/ACK.  We do
507 		 * not expect this to happens often. If it does,
508 		 * then the RST will be sent by the time the remote
509 		 * host does the SYN/ACK->ACK.
510 		 */
511 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
512 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
513 				sch->sch_nextc = sc->sc_rxttime;
514 			continue;
515 		}
516 		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
517 			sc->sc_flags &= ~SCF_ECN_MASK;
518 		}
519 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
520 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
521 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
522 				    "giving up and removing syncache entry\n",
523 				    s, __func__);
524 				free(s, M_TCPLOG);
525 			}
526 			syncache_drop(sc, sch);
527 			TCPSTAT_INC(tcps_sc_stale);
528 			continue;
529 		}
530 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
531 			log(LOG_DEBUG, "%s; %s: Response timeout, "
532 			    "retransmitting (%u) SYN|ACK\n",
533 			    s, __func__, sc->sc_rxmits);
534 			free(s, M_TCPLOG);
535 		}
536 
537 		NET_EPOCH_ENTER(et);
538 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
539 		NET_EPOCH_EXIT(et);
540 		TCPSTAT_INC(tcps_sc_retransmitted);
541 		syncache_timeout(sc, sch, 0);
542 	}
543 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
544 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
545 			syncache_timer, (void *)(sch));
546 	CURVNET_RESTORE();
547 }
548 
549 /*
550  * Returns true if the system is only using cookies at the moment.
551  * This could be due to a sysadmin decision to only use cookies, or it
552  * could be due to the system detecting an attack.
553  */
554 static inline bool
555 syncache_cookiesonly(void)
556 {
557 
558 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
559 	    V_tcp_syncookiesonly));
560 }
561 
562 /*
563  * Find the hash bucket for the given connection.
564  */
565 static struct syncache_head *
566 syncache_hashbucket(struct in_conninfo *inc)
567 {
568 	uint32_t hash;
569 
570 	/*
571 	 * The hash is built on foreign port + local port + foreign address.
572 	 * We rely on the fact that struct in_conninfo starts with 16 bits
573 	 * of foreign port, then 16 bits of local port then followed by 128
574 	 * bits of foreign address.  In case of IPv4 address, the first 3
575 	 * 32-bit words of the address always are zeroes.
576 	 */
577 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
578 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
579 
580 	return (&V_tcp_syncache.hashbase[hash]);
581 }
582 
583 /*
584  * Find an entry in the syncache.
585  * Returns always with locked syncache_head plus a matching entry or NULL.
586  */
587 static struct syncache *
588 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
589 {
590 	struct syncache *sc;
591 	struct syncache_head *sch;
592 
593 	*schp = sch = syncache_hashbucket(inc);
594 	SCH_LOCK(sch);
595 
596 	/* Circle through bucket row to find matching entry. */
597 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
598 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
599 		    sizeof(struct in_endpoints)) == 0)
600 			break;
601 
602 	return (sc);	/* Always returns with locked sch. */
603 }
604 
605 /*
606  * This function is called when we get a RST for a
607  * non-existent connection, so that we can see if the
608  * connection is in the syn cache.  If it is, zap it.
609  * If required send a challenge ACK.
610  */
611 void
612 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
613     uint16_t port)
614 {
615 	struct syncache *sc;
616 	struct syncache_head *sch;
617 	char *s = NULL;
618 
619 	if (syncache_cookiesonly())
620 		return;
621 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
622 	SCH_LOCK_ASSERT(sch);
623 
624 	/*
625 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
626 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
627 	 */
628 	if (tcp_get_flags(th) & (TH_ACK|TH_SYN|TH_FIN)) {
629 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
630 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
631 			    "FIN flag set, segment ignored\n", s, __func__);
632 		TCPSTAT_INC(tcps_badrst);
633 		goto done;
634 	}
635 
636 	/*
637 	 * No corresponding connection was found in syncache.
638 	 * If syncookies are enabled and possibly exclusively
639 	 * used, or we are under memory pressure, a valid RST
640 	 * may not find a syncache entry.  In that case we're
641 	 * done and no SYN|ACK retransmissions will happen.
642 	 * Otherwise the RST was misdirected or spoofed.
643 	 */
644 	if (sc == NULL) {
645 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
646 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
647 			    "syncache entry (possibly syncookie only), "
648 			    "segment ignored\n", s, __func__);
649 		TCPSTAT_INC(tcps_badrst);
650 		goto done;
651 	}
652 
653 	/* The remote UDP encaps port does not match. */
654 	if (sc->sc_port != port) {
655 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
656 			log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
657 			    "syncache entry but non-matching UDP encaps port, "
658 			    "segment ignored\n", s, __func__);
659 		TCPSTAT_INC(tcps_badrst);
660 		goto done;
661 	}
662 
663 	/*
664 	 * If the RST bit is set, check the sequence number to see
665 	 * if this is a valid reset segment.
666 	 *
667 	 * RFC 793 page 37:
668 	 *   In all states except SYN-SENT, all reset (RST) segments
669 	 *   are validated by checking their SEQ-fields.  A reset is
670 	 *   valid if its sequence number is in the window.
671 	 *
672 	 * RFC 793 page 69:
673 	 *   There are four cases for the acceptability test for an incoming
674 	 *   segment:
675 	 *
676 	 * Segment Receive  Test
677 	 * Length  Window
678 	 * ------- -------  -------------------------------------------
679 	 *    0       0     SEG.SEQ = RCV.NXT
680 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
681 	 *   >0       0     not acceptable
682 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
683 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
684 	 *
685 	 * Note that when receiving a SYN segment in the LISTEN state,
686 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
687 	 * described in RFC 793, page 66.
688 	 */
689 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
690 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
691 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
692 		if (V_tcp_insecure_rst ||
693 		    th->th_seq == sc->sc_irs + 1) {
694 			syncache_drop(sc, sch);
695 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
696 				log(LOG_DEBUG,
697 				    "%s; %s: Our SYN|ACK was rejected, "
698 				    "connection attempt aborted by remote "
699 				    "endpoint\n",
700 				    s, __func__);
701 			TCPSTAT_INC(tcps_sc_reset);
702 		} else {
703 			TCPSTAT_INC(tcps_badrst);
704 			/* Send challenge ACK. */
705 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
706 				log(LOG_DEBUG, "%s; %s: RST with invalid "
707 				    " SEQ %u != NXT %u (+WND %u), "
708 				    "sending challenge ACK\n",
709 				    s, __func__,
710 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
711 			syncache_respond(sc, m, TH_ACK);
712 		}
713 	} else {
714 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
715 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
716 			    "NXT %u (+WND %u), segment ignored\n",
717 			    s, __func__,
718 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
719 		TCPSTAT_INC(tcps_badrst);
720 	}
721 
722 done:
723 	if (s != NULL)
724 		free(s, M_TCPLOG);
725 	SCH_UNLOCK(sch);
726 }
727 
728 void
729 syncache_badack(struct in_conninfo *inc, uint16_t port)
730 {
731 	struct syncache *sc;
732 	struct syncache_head *sch;
733 
734 	if (syncache_cookiesonly())
735 		return;
736 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
737 	SCH_LOCK_ASSERT(sch);
738 	if ((sc != NULL) && (sc->sc_port == port)) {
739 		syncache_drop(sc, sch);
740 		TCPSTAT_INC(tcps_sc_badack);
741 	}
742 	SCH_UNLOCK(sch);
743 }
744 
745 void
746 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
747 {
748 	struct syncache *sc;
749 	struct syncache_head *sch;
750 
751 	if (syncache_cookiesonly())
752 		return;
753 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
754 	SCH_LOCK_ASSERT(sch);
755 	if (sc == NULL)
756 		goto done;
757 
758 	/* If the port != sc_port, then it's a bogus ICMP msg */
759 	if (port != sc->sc_port)
760 		goto done;
761 
762 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
763 	if (ntohl(th_seq) != sc->sc_iss)
764 		goto done;
765 
766 	/*
767 	 * If we've rertransmitted 3 times and this is our second error,
768 	 * we remove the entry.  Otherwise, we allow it to continue on.
769 	 * This prevents us from incorrectly nuking an entry during a
770 	 * spurious network outage.
771 	 *
772 	 * See tcp_notify().
773 	 */
774 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
775 		sc->sc_flags |= SCF_UNREACH;
776 		goto done;
777 	}
778 	syncache_drop(sc, sch);
779 	TCPSTAT_INC(tcps_sc_unreach);
780 done:
781 	SCH_UNLOCK(sch);
782 }
783 
784 /*
785  * Build a new TCP socket structure from a syncache entry.
786  *
787  * On success return the newly created socket with its underlying inp locked.
788  */
789 static struct socket *
790 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
791 {
792 	struct tcp_function_block *blk;
793 	struct inpcb *inp = NULL;
794 	struct socket *so;
795 	struct tcpcb *tp;
796 	int error;
797 	char *s;
798 
799 	NET_EPOCH_ASSERT();
800 
801 	/*
802 	 * Ok, create the full blown connection, and set things up
803 	 * as they would have been set up if we had created the
804 	 * connection when the SYN arrived.
805 	 */
806 	if ((so = solisten_clone(lso)) == NULL)
807 		goto allocfail;
808 #ifdef MAC
809 	mac_socketpeer_set_from_mbuf(m, so);
810 #endif
811 	error = in_pcballoc(so, &V_tcbinfo);
812 	if (error) {
813 		sodealloc(so);
814 		goto allocfail;
815 	}
816 	inp = sotoinpcb(so);
817 	if ((tp = tcp_newtcpcb(inp)) == NULL) {
818 		in_pcbdetach(inp);
819 		in_pcbfree(inp);
820 		sodealloc(so);
821 		goto allocfail;
822 	}
823 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
824 #ifdef INET6
825 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
826 		inp->inp_vflag &= ~INP_IPV4;
827 		inp->inp_vflag |= INP_IPV6;
828 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
829 	} else {
830 		inp->inp_vflag &= ~INP_IPV6;
831 		inp->inp_vflag |= INP_IPV4;
832 #endif
833 		inp->inp_ip_ttl = sc->sc_ip_ttl;
834 		inp->inp_ip_tos = sc->sc_ip_tos;
835 		inp->inp_laddr = sc->sc_inc.inc_laddr;
836 #ifdef INET6
837 	}
838 #endif
839 
840 	/*
841 	 * If there's an mbuf and it has a flowid, then let's initialise the
842 	 * inp with that particular flowid.
843 	 */
844 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
845 		inp->inp_flowid = m->m_pkthdr.flowid;
846 		inp->inp_flowtype = M_HASHTYPE_GET(m);
847 #ifdef NUMA
848 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
849 #endif
850 	}
851 
852 	inp->inp_lport = sc->sc_inc.inc_lport;
853 #ifdef INET6
854 	if (inp->inp_vflag & INP_IPV6PROTO) {
855 		struct inpcb *oinp = sotoinpcb(lso);
856 
857 		/*
858 		 * Inherit socket options from the listening socket.
859 		 * Note that in6p_inputopts are not (and should not be)
860 		 * copied, since it stores previously received options and is
861 		 * used to detect if each new option is different than the
862 		 * previous one and hence should be passed to a user.
863 		 * If we copied in6p_inputopts, a user would not be able to
864 		 * receive options just after calling the accept system call.
865 		 */
866 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
867 		if (oinp->in6p_outputopts)
868 			inp->in6p_outputopts =
869 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
870 		inp->in6p_hops = oinp->in6p_hops;
871 	}
872 
873 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
874 		struct in6_addr laddr6;
875 		struct sockaddr_in6 sin6;
876 
877 		sin6.sin6_family = AF_INET6;
878 		sin6.sin6_len = sizeof(sin6);
879 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
880 		sin6.sin6_port = sc->sc_inc.inc_fport;
881 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
882 		laddr6 = inp->in6p_laddr;
883 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
884 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
885 		INP_HASH_WLOCK(&V_tcbinfo);
886 		error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
887 		    thread0.td_ucred, m, false);
888 		INP_HASH_WUNLOCK(&V_tcbinfo);
889 		if (error != 0) {
890 			inp->in6p_laddr = laddr6;
891 			goto abort;
892 		}
893 		/* Override flowlabel from in6_pcbconnect. */
894 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
895 		inp->inp_flow |= sc->sc_flowlabel;
896 	}
897 #endif /* INET6 */
898 #if defined(INET) && defined(INET6)
899 	else
900 #endif
901 #ifdef INET
902 	{
903 		struct in_addr laddr;
904 		struct sockaddr_in sin;
905 
906 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
907 
908 		if (inp->inp_options == NULL) {
909 			inp->inp_options = sc->sc_ipopts;
910 			sc->sc_ipopts = NULL;
911 		}
912 
913 		sin.sin_family = AF_INET;
914 		sin.sin_len = sizeof(sin);
915 		sin.sin_addr = sc->sc_inc.inc_faddr;
916 		sin.sin_port = sc->sc_inc.inc_fport;
917 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
918 		laddr = inp->inp_laddr;
919 		if (inp->inp_laddr.s_addr == INADDR_ANY)
920 			inp->inp_laddr = sc->sc_inc.inc_laddr;
921 		INP_HASH_WLOCK(&V_tcbinfo);
922 		error = in_pcbconnect(inp, (struct sockaddr *)&sin,
923 		    thread0.td_ucred, false);
924 		INP_HASH_WUNLOCK(&V_tcbinfo);
925 		if (error != 0) {
926 			inp->inp_laddr = laddr;
927 			goto abort;
928 		}
929 	}
930 #endif /* INET */
931 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
932 	/* Copy old policy into new socket's. */
933 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
934 		printf("syncache_socket: could not copy policy\n");
935 #endif
936 	tp->t_state = TCPS_SYN_RECEIVED;
937 	tp->iss = sc->sc_iss;
938 	tp->irs = sc->sc_irs;
939 	tp->t_port = sc->sc_port;
940 	tcp_rcvseqinit(tp);
941 	tcp_sendseqinit(tp);
942 	blk = sototcpcb(lso)->t_fb;
943 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
944 		/*
945 		 * Our parents t_fb was not the default,
946 		 * we need to release our ref on tp->t_fb and
947 		 * pickup one on the new entry.
948 		 */
949 		struct tcp_function_block *rblk;
950 
951 		rblk = find_and_ref_tcp_fb(blk);
952 		KASSERT(rblk != NULL,
953 		    ("cannot find blk %p out of syncache?", blk));
954 		if (tp->t_fb->tfb_tcp_fb_fini)
955 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
956 		refcount_release(&tp->t_fb->tfb_refcnt);
957 		tp->t_fb = rblk;
958 		/*
959 		 * XXXrrs this is quite dangerous, it is possible
960 		 * for the new function to fail to init. We also
961 		 * are not asking if the handoff_is_ok though at
962 		 * the very start thats probalbly ok.
963 		 */
964 		if (tp->t_fb->tfb_tcp_fb_init) {
965 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
966 		}
967 	}
968 	tp->snd_wl1 = sc->sc_irs;
969 	tp->snd_max = tp->iss + 1;
970 	tp->snd_nxt = tp->iss + 1;
971 	tp->rcv_up = sc->sc_irs + 1;
972 	tp->rcv_wnd = sc->sc_wnd;
973 	tp->rcv_adv += tp->rcv_wnd;
974 	tp->last_ack_sent = tp->rcv_nxt;
975 
976 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
977 	if (sc->sc_flags & SCF_NOOPT)
978 		tp->t_flags |= TF_NOOPT;
979 	else {
980 		if (sc->sc_flags & SCF_WINSCALE) {
981 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
982 			tp->snd_scale = sc->sc_requested_s_scale;
983 			tp->request_r_scale = sc->sc_requested_r_scale;
984 		}
985 		if (sc->sc_flags & SCF_TIMESTAMP) {
986 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
987 			tp->ts_recent = sc->sc_tsreflect;
988 			tp->ts_recent_age = tcp_ts_getticks();
989 			tp->ts_offset = sc->sc_tsoff;
990 		}
991 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
992 		if (sc->sc_flags & SCF_SIGNATURE)
993 			tp->t_flags |= TF_SIGNATURE;
994 #endif
995 		if (sc->sc_flags & SCF_SACK)
996 			tp->t_flags |= TF_SACK_PERMIT;
997 	}
998 
999 	tcp_ecn_syncache_socket(tp, sc);
1000 
1001 	/*
1002 	 * Set up MSS and get cached values from tcp_hostcache.
1003 	 * This might overwrite some of the defaults we just set.
1004 	 */
1005 	tcp_mss(tp, sc->sc_peer_mss);
1006 
1007 	/*
1008 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
1009 	 * limited to one segment in cc_conn_init().
1010 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1011 	 */
1012 	if (sc->sc_rxmits > 1)
1013 		tp->snd_cwnd = 1;
1014 
1015 #ifdef TCP_OFFLOAD
1016 	/*
1017 	 * Allow a TOE driver to install its hooks.  Note that we hold the
1018 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1019 	 * new connection before the TOE driver has done its thing.
1020 	 */
1021 	if (ADDED_BY_TOE(sc)) {
1022 		struct toedev *tod = sc->sc_tod;
1023 
1024 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1025 	}
1026 #endif
1027 	/*
1028 	 * Copy and activate timers.
1029 	 */
1030 	tp->t_maxunacktime = sototcpcb(lso)->t_maxunacktime;
1031 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1032 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1033 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1034 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1035 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1036 
1037 	TCPSTAT_INC(tcps_accepts);
1038 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, TCPS_LISTEN);
1039 
1040 	if (!solisten_enqueue(so, SS_ISCONNECTED))
1041 		tp->t_flags |= TF_SONOTCONN;
1042 
1043 	return (so);
1044 
1045 allocfail:
1046 	/*
1047 	 * Drop the connection; we will either send a RST or have the peer
1048 	 * retransmit its SYN again after its RTO and try again.
1049 	 */
1050 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1051 		log(LOG_DEBUG, "%s; %s: Socket create failed "
1052 		    "due to limits or memory shortage\n",
1053 		    s, __func__);
1054 		free(s, M_TCPLOG);
1055 	}
1056 	TCPSTAT_INC(tcps_listendrop);
1057 	return (NULL);
1058 
1059 abort:
1060 	in_pcbdetach(inp);
1061 	in_pcbfree(inp);
1062 	sodealloc(so);
1063 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1064 		log(LOG_DEBUG, "%s; %s: in%s_pcbconnect failed with error %i\n",
1065 		    s, __func__, (sc->sc_inc.inc_flags & INC_ISIPV6) ? "6" : "",
1066 		    error);
1067 		free(s, M_TCPLOG);
1068 	}
1069 	TCPSTAT_INC(tcps_listendrop);
1070 	return (NULL);
1071 }
1072 
1073 /*
1074  * This function gets called when we receive an ACK for a
1075  * socket in the LISTEN state.  We look up the connection
1076  * in the syncache, and if its there, we pull it out of
1077  * the cache and turn it into a full-blown connection in
1078  * the SYN-RECEIVED state.
1079  *
1080  * On syncache_socket() success the newly created socket
1081  * has its underlying inp locked.
1082  */
1083 int
1084 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1085     struct socket **lsop, struct mbuf *m, uint16_t port)
1086 {
1087 	struct syncache *sc;
1088 	struct syncache_head *sch;
1089 	struct syncache scs;
1090 	char *s;
1091 	bool locked;
1092 
1093 	NET_EPOCH_ASSERT();
1094 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1095 	    ("%s: can handle only ACK", __func__));
1096 
1097 	if (syncache_cookiesonly()) {
1098 		sc = NULL;
1099 		sch = syncache_hashbucket(inc);
1100 		locked = false;
1101 	} else {
1102 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1103 		locked = true;
1104 		SCH_LOCK_ASSERT(sch);
1105 	}
1106 
1107 #ifdef INVARIANTS
1108 	/*
1109 	 * Test code for syncookies comparing the syncache stored
1110 	 * values with the reconstructed values from the cookie.
1111 	 */
1112 	if (sc != NULL)
1113 		syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1114 #endif
1115 
1116 	if (sc == NULL) {
1117 		/*
1118 		 * There is no syncache entry, so see if this ACK is
1119 		 * a returning syncookie.  To do this, first:
1120 		 *  A. Check if syncookies are used in case of syncache
1121 		 *     overflows
1122 		 *  B. See if this socket has had a syncache entry dropped in
1123 		 *     the recent past. We don't want to accept a bogus
1124 		 *     syncookie if we've never received a SYN or accept it
1125 		 *     twice.
1126 		 *  C. check that the syncookie is valid.  If it is, then
1127 		 *     cobble up a fake syncache entry, and return.
1128 		 */
1129 		if (locked && !V_tcp_syncookies) {
1130 			SCH_UNLOCK(sch);
1131 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1132 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1133 				    "segment rejected (syncookies disabled)\n",
1134 				    s, __func__);
1135 			goto failed;
1136 		}
1137 		if (locked && !V_tcp_syncookiesonly &&
1138 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1139 			SCH_UNLOCK(sch);
1140 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1141 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1142 				    "segment rejected (no syncache entry)\n",
1143 				    s, __func__);
1144 			goto failed;
1145 		}
1146 		bzero(&scs, sizeof(scs));
1147 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port);
1148 		if (locked)
1149 			SCH_UNLOCK(sch);
1150 		if (sc == NULL) {
1151 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1152 				log(LOG_DEBUG, "%s; %s: Segment failed "
1153 				    "SYNCOOKIE authentication, segment rejected "
1154 				    "(probably spoofed)\n", s, __func__);
1155 			goto failed;
1156 		}
1157 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1158 		/* If received ACK has MD5 signature, check it. */
1159 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1160 		    (!TCPMD5_ENABLED() ||
1161 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1162 			/* Drop the ACK. */
1163 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1164 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1165 				    "MD5 signature doesn't match.\n",
1166 				    s, __func__);
1167 				free(s, M_TCPLOG);
1168 			}
1169 			TCPSTAT_INC(tcps_sig_err_sigopt);
1170 			return (-1); /* Do not send RST */
1171 		}
1172 #endif /* TCP_SIGNATURE */
1173 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1174 	} else {
1175 		if (sc->sc_port != port) {
1176 			SCH_UNLOCK(sch);
1177 			return (0);
1178 		}
1179 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1180 		/*
1181 		 * If listening socket requested TCP digests, check that
1182 		 * received ACK has signature and it is correct.
1183 		 * If not, drop the ACK and leave sc entry in th cache,
1184 		 * because SYN was received with correct signature.
1185 		 */
1186 		if (sc->sc_flags & SCF_SIGNATURE) {
1187 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1188 				/* No signature */
1189 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1190 				SCH_UNLOCK(sch);
1191 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1192 					log(LOG_DEBUG, "%s; %s: Segment "
1193 					    "rejected, MD5 signature wasn't "
1194 					    "provided.\n", s, __func__);
1195 					free(s, M_TCPLOG);
1196 				}
1197 				return (-1); /* Do not send RST */
1198 			}
1199 			if (!TCPMD5_ENABLED() ||
1200 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1201 				/* Doesn't match or no SA */
1202 				SCH_UNLOCK(sch);
1203 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1204 					log(LOG_DEBUG, "%s; %s: Segment "
1205 					    "rejected, MD5 signature doesn't "
1206 					    "match.\n", s, __func__);
1207 					free(s, M_TCPLOG);
1208 				}
1209 				return (-1); /* Do not send RST */
1210 			}
1211 		}
1212 #endif /* TCP_SIGNATURE */
1213 
1214 		/*
1215 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1216 		 * it's less than ts_recent, drop it.
1217 		 * XXXMT: RFC 7323 also requires to send an ACK.
1218 		 *        In tcp_input.c this is only done for TCP segments
1219 		 *        with user data, so be consistent here and just drop
1220 		 *        the segment.
1221 		 */
1222 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1223 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1224 			SCH_UNLOCK(sch);
1225 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1226 				log(LOG_DEBUG,
1227 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1228 				    "segment dropped\n", s, __func__,
1229 				    to->to_tsval, sc->sc_tsreflect);
1230 				free(s, M_TCPLOG);
1231 			}
1232 			return (-1);  /* Do not send RST */
1233 		}
1234 
1235 		/*
1236 		 * If timestamps were not negotiated during SYN/ACK and a
1237 		 * segment with a timestamp is received, ignore the
1238 		 * timestamp and process the packet normally.
1239 		 * See section 3.2 of RFC 7323.
1240 		 */
1241 		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1242 		    (to->to_flags & TOF_TS)) {
1243 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1244 				log(LOG_DEBUG, "%s; %s: Timestamp not "
1245 				    "expected, segment processed normally\n",
1246 				    s, __func__);
1247 				free(s, M_TCPLOG);
1248 				s = NULL;
1249 			}
1250 		}
1251 
1252 		/*
1253 		 * If timestamps were negotiated during SYN/ACK and a
1254 		 * segment without a timestamp is received, silently drop
1255 		 * the segment, unless the missing timestamps are tolerated.
1256 		 * See section 3.2 of RFC 7323.
1257 		 */
1258 		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1259 		    !(to->to_flags & TOF_TS)) {
1260 			if (V_tcp_tolerate_missing_ts) {
1261 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1262 					log(LOG_DEBUG,
1263 					    "%s; %s: Timestamp missing, "
1264 					    "segment processed normally\n",
1265 					    s, __func__);
1266 					free(s, M_TCPLOG);
1267 				}
1268 			} else {
1269 				SCH_UNLOCK(sch);
1270 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1271 					log(LOG_DEBUG,
1272 					    "%s; %s: Timestamp missing, "
1273 					    "segment silently dropped\n",
1274 					    s, __func__);
1275 					free(s, M_TCPLOG);
1276 				}
1277 				return (-1);  /* Do not send RST */
1278 			}
1279 		}
1280 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1281 		sch->sch_length--;
1282 #ifdef TCP_OFFLOAD
1283 		if (ADDED_BY_TOE(sc)) {
1284 			struct toedev *tod = sc->sc_tod;
1285 
1286 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1287 		}
1288 #endif
1289 		SCH_UNLOCK(sch);
1290 	}
1291 
1292 	/*
1293 	 * Segment validation:
1294 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1295 	 */
1296 	if (th->th_ack != sc->sc_iss + 1) {
1297 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1298 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1299 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1300 		goto failed;
1301 	}
1302 
1303 	/*
1304 	 * The SEQ must fall in the window starting at the received
1305 	 * initial receive sequence number + 1 (the SYN).
1306 	 */
1307 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1308 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1309 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1310 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1311 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1312 		goto failed;
1313 	}
1314 
1315 	*lsop = syncache_socket(sc, *lsop, m);
1316 
1317 	if (*lsop == NULL)
1318 		TCPSTAT_INC(tcps_sc_aborted);
1319 	else
1320 		TCPSTAT_INC(tcps_sc_completed);
1321 
1322 /* how do we find the inp for the new socket? */
1323 	if (sc != &scs)
1324 		syncache_free(sc);
1325 	return (1);
1326 failed:
1327 	if (sc != NULL) {
1328 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1329 		if (sc != &scs)
1330 			syncache_free(sc);
1331 	}
1332 	if (s != NULL)
1333 		free(s, M_TCPLOG);
1334 	*lsop = NULL;
1335 	return (0);
1336 }
1337 
1338 static struct socket *
1339 syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m,
1340     uint64_t response_cookie)
1341 {
1342 	struct inpcb *inp;
1343 	struct tcpcb *tp;
1344 	unsigned int *pending_counter;
1345 	struct socket *so;
1346 
1347 	NET_EPOCH_ASSERT();
1348 
1349 	pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending;
1350 	so = syncache_socket(sc, lso, m);
1351 	if (so == NULL) {
1352 		TCPSTAT_INC(tcps_sc_aborted);
1353 		atomic_subtract_int(pending_counter, 1);
1354 	} else {
1355 		soisconnected(so);
1356 		inp = sotoinpcb(so);
1357 		tp = intotcpcb(inp);
1358 		tp->t_flags |= TF_FASTOPEN;
1359 		tp->t_tfo_cookie.server = response_cookie;
1360 		tp->snd_max = tp->iss;
1361 		tp->snd_nxt = tp->iss;
1362 		tp->t_tfo_pending = pending_counter;
1363 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1364 		TCPSTAT_INC(tcps_sc_completed);
1365 	}
1366 
1367 	return (so);
1368 }
1369 
1370 /*
1371  * Given a LISTEN socket and an inbound SYN request, add
1372  * this to the syn cache, and send back a segment:
1373  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1374  * to the source.
1375  *
1376  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1377  * Doing so would require that we hold onto the data and deliver it
1378  * to the application.  However, if we are the target of a SYN-flood
1379  * DoS attack, an attacker could send data which would eventually
1380  * consume all available buffer space if it were ACKed.  By not ACKing
1381  * the data, we avoid this DoS scenario.
1382  *
1383  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1384  * cookie is processed and a new socket is created.  In this case, any data
1385  * accompanying the SYN will be queued to the socket by tcp_input() and will
1386  * be ACKed either when the application sends response data or the delayed
1387  * ACK timer expires, whichever comes first.
1388  */
1389 struct socket *
1390 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1391     struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod,
1392     void *todctx, uint8_t iptos, uint16_t port)
1393 {
1394 	struct tcpcb *tp;
1395 	struct socket *rv = NULL;
1396 	struct syncache *sc = NULL;
1397 	struct syncache_head *sch;
1398 	struct mbuf *ipopts = NULL;
1399 	u_int ltflags;
1400 	int win, ip_ttl, ip_tos;
1401 	char *s;
1402 #ifdef INET6
1403 	int autoflowlabel = 0;
1404 #endif
1405 #ifdef MAC
1406 	struct label *maclabel;
1407 #endif
1408 	struct syncache scs;
1409 	struct ucred *cred;
1410 	uint64_t tfo_response_cookie;
1411 	unsigned int *tfo_pending = NULL;
1412 	int tfo_cookie_valid = 0;
1413 	int tfo_response_cookie_valid = 0;
1414 	bool locked;
1415 
1416 	INP_RLOCK_ASSERT(inp);			/* listen socket */
1417 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1418 	    ("%s: unexpected tcp flags", __func__));
1419 
1420 	/*
1421 	 * Combine all so/tp operations very early to drop the INP lock as
1422 	 * soon as possible.
1423 	 */
1424 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1425 	tp = sototcpcb(so);
1426 	cred = V_tcp_syncache.see_other ? NULL : crhold(so->so_cred);
1427 
1428 #ifdef INET6
1429 	if (inc->inc_flags & INC_ISIPV6) {
1430 		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1431 			autoflowlabel = 1;
1432 		}
1433 		ip_ttl = in6_selecthlim(inp, NULL);
1434 		if ((inp->in6p_outputopts == NULL) ||
1435 		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1436 			ip_tos = 0;
1437 		} else {
1438 			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1439 		}
1440 	}
1441 #endif
1442 #if defined(INET6) && defined(INET)
1443 	else
1444 #endif
1445 #ifdef INET
1446 	{
1447 		ip_ttl = inp->inp_ip_ttl;
1448 		ip_tos = inp->inp_ip_tos;
1449 	}
1450 #endif
1451 	win = so->sol_sbrcv_hiwat;
1452 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1453 
1454 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1455 	    (tp->t_tfo_pending != NULL) &&
1456 	    (to->to_flags & TOF_FASTOPEN)) {
1457 		/*
1458 		 * Limit the number of pending TFO connections to
1459 		 * approximately half of the queue limit.  This prevents TFO
1460 		 * SYN floods from starving the service by filling the
1461 		 * listen queue with bogus TFO connections.
1462 		 */
1463 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1464 		    (so->sol_qlimit / 2)) {
1465 			int result;
1466 
1467 			result = tcp_fastopen_check_cookie(inc,
1468 			    to->to_tfo_cookie, to->to_tfo_len,
1469 			    &tfo_response_cookie);
1470 			tfo_cookie_valid = (result > 0);
1471 			tfo_response_cookie_valid = (result >= 0);
1472 		}
1473 
1474 		/*
1475 		 * Remember the TFO pending counter as it will have to be
1476 		 * decremented below if we don't make it to syncache_tfo_expand().
1477 		 */
1478 		tfo_pending = tp->t_tfo_pending;
1479 	}
1480 
1481 #ifdef MAC
1482 	if (mac_syncache_init(&maclabel) != 0) {
1483 		INP_RUNLOCK(inp);
1484 		goto done;
1485 	} else
1486 		mac_syncache_create(maclabel, inp);
1487 #endif
1488 	if (!tfo_cookie_valid)
1489 		INP_RUNLOCK(inp);
1490 
1491 	/*
1492 	 * Remember the IP options, if any.
1493 	 */
1494 #ifdef INET6
1495 	if (!(inc->inc_flags & INC_ISIPV6))
1496 #endif
1497 #ifdef INET
1498 		ipopts = (m) ? ip_srcroute(m) : NULL;
1499 #else
1500 		ipopts = NULL;
1501 #endif
1502 
1503 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1504 	/*
1505 	 * When the socket is TCP-MD5 enabled check that,
1506 	 *  - a signed packet is valid
1507 	 *  - a non-signed packet does not have a security association
1508 	 *
1509 	 *  If a signed packet fails validation or a non-signed packet has a
1510 	 *  security association, the packet will be dropped.
1511 	 */
1512 	if (ltflags & TF_SIGNATURE) {
1513 		if (to->to_flags & TOF_SIGNATURE) {
1514 			if (!TCPMD5_ENABLED() ||
1515 			    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1516 				goto done;
1517 		} else {
1518 			if (TCPMD5_ENABLED() &&
1519 			    TCPMD5_INPUT(m, NULL, NULL) != ENOENT)
1520 				goto done;
1521 		}
1522 	} else if (to->to_flags & TOF_SIGNATURE)
1523 		goto done;
1524 #endif	/* TCP_SIGNATURE */
1525 	/*
1526 	 * See if we already have an entry for this connection.
1527 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1528 	 *
1529 	 * XXX: should the syncache be re-initialized with the contents
1530 	 * of the new SYN here (which may have different options?)
1531 	 *
1532 	 * XXX: We do not check the sequence number to see if this is a
1533 	 * real retransmit or a new connection attempt.  The question is
1534 	 * how to handle such a case; either ignore it as spoofed, or
1535 	 * drop the current entry and create a new one?
1536 	 */
1537 	if (syncache_cookiesonly()) {
1538 		sc = NULL;
1539 		sch = syncache_hashbucket(inc);
1540 		locked = false;
1541 	} else {
1542 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1543 		locked = true;
1544 		SCH_LOCK_ASSERT(sch);
1545 	}
1546 	if (sc != NULL) {
1547 		if (tfo_cookie_valid)
1548 			INP_RUNLOCK(inp);
1549 		TCPSTAT_INC(tcps_sc_dupsyn);
1550 		if (ipopts) {
1551 			/*
1552 			 * If we were remembering a previous source route,
1553 			 * forget it and use the new one we've been given.
1554 			 */
1555 			if (sc->sc_ipopts)
1556 				(void) m_free(sc->sc_ipopts);
1557 			sc->sc_ipopts = ipopts;
1558 		}
1559 		/*
1560 		 * Update timestamp if present.
1561 		 */
1562 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1563 			sc->sc_tsreflect = to->to_tsval;
1564 		else
1565 			sc->sc_flags &= ~SCF_TIMESTAMP;
1566 		/*
1567 		 * Adjust ECN response if needed, e.g. different
1568 		 * IP ECN field, or a fallback by the remote host.
1569 		 */
1570 		if (sc->sc_flags & SCF_ECN_MASK) {
1571 			sc->sc_flags &= ~SCF_ECN_MASK;
1572 			sc->sc_flags = tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1573 		}
1574 #ifdef MAC
1575 		/*
1576 		 * Since we have already unconditionally allocated label
1577 		 * storage, free it up.  The syncache entry will already
1578 		 * have an initialized label we can use.
1579 		 */
1580 		mac_syncache_destroy(&maclabel);
1581 #endif
1582 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1583 		/* Retransmit SYN|ACK and reset retransmit count. */
1584 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1585 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1586 			    "resetting timer and retransmitting SYN|ACK\n",
1587 			    s, __func__);
1588 			free(s, M_TCPLOG);
1589 		}
1590 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1591 			sc->sc_rxmits = 0;
1592 			syncache_timeout(sc, sch, 1);
1593 			TCPSTAT_INC(tcps_sndacks);
1594 			TCPSTAT_INC(tcps_sndtotal);
1595 		}
1596 		SCH_UNLOCK(sch);
1597 		goto donenoprobe;
1598 	}
1599 
1600 	if (tfo_cookie_valid) {
1601 		bzero(&scs, sizeof(scs));
1602 		sc = &scs;
1603 		goto skip_alloc;
1604 	}
1605 
1606 	/*
1607 	 * Skip allocating a syncache entry if we are just going to discard
1608 	 * it later.
1609 	 */
1610 	if (!locked) {
1611 		bzero(&scs, sizeof(scs));
1612 		sc = &scs;
1613 	} else
1614 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1615 	if (sc == NULL) {
1616 		/*
1617 		 * The zone allocator couldn't provide more entries.
1618 		 * Treat this as if the cache was full; drop the oldest
1619 		 * entry and insert the new one.
1620 		 */
1621 		TCPSTAT_INC(tcps_sc_zonefail);
1622 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1623 			sch->sch_last_overflow = time_uptime;
1624 			syncache_drop(sc, sch);
1625 			syncache_pause(inc);
1626 		}
1627 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1628 		if (sc == NULL) {
1629 			if (V_tcp_syncookies) {
1630 				bzero(&scs, sizeof(scs));
1631 				sc = &scs;
1632 			} else {
1633 				KASSERT(locked,
1634 				    ("%s: bucket unexpectedly unlocked",
1635 				    __func__));
1636 				SCH_UNLOCK(sch);
1637 				if (ipopts)
1638 					(void) m_free(ipopts);
1639 				goto done;
1640 			}
1641 		}
1642 	}
1643 
1644 skip_alloc:
1645 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1646 		sc->sc_tfo_cookie = &tfo_response_cookie;
1647 
1648 	/*
1649 	 * Fill in the syncache values.
1650 	 */
1651 #ifdef MAC
1652 	sc->sc_label = maclabel;
1653 #endif
1654 	sc->sc_cred = cred;
1655 	sc->sc_port = port;
1656 	cred = NULL;
1657 	sc->sc_ipopts = ipopts;
1658 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1659 	sc->sc_ip_tos = ip_tos;
1660 	sc->sc_ip_ttl = ip_ttl;
1661 #ifdef TCP_OFFLOAD
1662 	sc->sc_tod = tod;
1663 	sc->sc_todctx = todctx;
1664 #endif
1665 	sc->sc_irs = th->th_seq;
1666 	sc->sc_flags = 0;
1667 	sc->sc_flowlabel = 0;
1668 
1669 	/*
1670 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1671 	 * win was derived from socket earlier in the function.
1672 	 */
1673 	win = imax(win, 0);
1674 	win = imin(win, TCP_MAXWIN);
1675 	sc->sc_wnd = win;
1676 
1677 	if (V_tcp_do_rfc1323 &&
1678 	    !(ltflags & TF_NOOPT)) {
1679 		/*
1680 		 * A timestamp received in a SYN makes
1681 		 * it ok to send timestamp requests and replies.
1682 		 */
1683 		if ((to->to_flags & TOF_TS) && (V_tcp_do_rfc1323 != 2)) {
1684 			sc->sc_tsreflect = to->to_tsval;
1685 			sc->sc_flags |= SCF_TIMESTAMP;
1686 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1687 		}
1688 		if ((to->to_flags & TOF_SCALE) && (V_tcp_do_rfc1323 != 3)) {
1689 			int wscale = 0;
1690 
1691 			/*
1692 			 * Pick the smallest possible scaling factor that
1693 			 * will still allow us to scale up to sb_max, aka
1694 			 * kern.ipc.maxsockbuf.
1695 			 *
1696 			 * We do this because there are broken firewalls that
1697 			 * will corrupt the window scale option, leading to
1698 			 * the other endpoint believing that our advertised
1699 			 * window is unscaled.  At scale factors larger than
1700 			 * 5 the unscaled window will drop below 1500 bytes,
1701 			 * leading to serious problems when traversing these
1702 			 * broken firewalls.
1703 			 *
1704 			 * With the default maxsockbuf of 256K, a scale factor
1705 			 * of 3 will be chosen by this algorithm.  Those who
1706 			 * choose a larger maxsockbuf should watch out
1707 			 * for the compatibility problems mentioned above.
1708 			 *
1709 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1710 			 * or <SYN,ACK>) segment itself is never scaled.
1711 			 */
1712 			while (wscale < TCP_MAX_WINSHIFT &&
1713 			    (TCP_MAXWIN << wscale) < sb_max)
1714 				wscale++;
1715 			sc->sc_requested_r_scale = wscale;
1716 			sc->sc_requested_s_scale = to->to_wscale;
1717 			sc->sc_flags |= SCF_WINSCALE;
1718 		}
1719 	}
1720 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1721 	/*
1722 	 * If incoming packet has an MD5 signature, flag this in the
1723 	 * syncache so that syncache_respond() will do the right thing
1724 	 * with the SYN+ACK.
1725 	 */
1726 	if (to->to_flags & TOF_SIGNATURE)
1727 		sc->sc_flags |= SCF_SIGNATURE;
1728 #endif	/* TCP_SIGNATURE */
1729 	if (to->to_flags & TOF_SACKPERM)
1730 		sc->sc_flags |= SCF_SACK;
1731 	if (to->to_flags & TOF_MSS)
1732 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1733 	if (ltflags & TF_NOOPT)
1734 		sc->sc_flags |= SCF_NOOPT;
1735 	/* ECN Handshake */
1736 	if (V_tcp_do_ecn)
1737 		sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1738 
1739 	if (V_tcp_syncookies)
1740 		sc->sc_iss = syncookie_generate(sch, sc);
1741 	else
1742 		sc->sc_iss = arc4random();
1743 #ifdef INET6
1744 	if (autoflowlabel) {
1745 		if (V_tcp_syncookies)
1746 			sc->sc_flowlabel = sc->sc_iss;
1747 		else
1748 			sc->sc_flowlabel = ip6_randomflowlabel();
1749 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1750 	}
1751 #endif
1752 	if (locked)
1753 		SCH_UNLOCK(sch);
1754 
1755 	if (tfo_cookie_valid) {
1756 		rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie);
1757 		/* INP_RUNLOCK(inp) will be performed by the caller */
1758 		goto tfo_expanded;
1759 	}
1760 
1761 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1762 	/*
1763 	 * Do a standard 3-way handshake.
1764 	 */
1765 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1766 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1767 			syncache_free(sc);
1768 		else if (sc != &scs)
1769 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1770 		TCPSTAT_INC(tcps_sndacks);
1771 		TCPSTAT_INC(tcps_sndtotal);
1772 	} else {
1773 		if (sc != &scs)
1774 			syncache_free(sc);
1775 		TCPSTAT_INC(tcps_sc_dropped);
1776 	}
1777 	goto donenoprobe;
1778 
1779 done:
1780 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1781 donenoprobe:
1782 	if (m)
1783 		m_freem(m);
1784 	/*
1785 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1786 	 * result in a new socket was processed and the associated pending
1787 	 * counter has not yet been decremented.  All such TFO processing paths
1788 	 * transit this point.
1789 	 */
1790 	if (tfo_pending != NULL)
1791 		tcp_fastopen_decrement_counter(tfo_pending);
1792 
1793 tfo_expanded:
1794 	if (cred != NULL)
1795 		crfree(cred);
1796 #ifdef MAC
1797 	if (sc == &scs)
1798 		mac_syncache_destroy(&maclabel);
1799 #endif
1800 	return (rv);
1801 }
1802 
1803 /*
1804  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1805  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1806  */
1807 static int
1808 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1809 {
1810 	struct ip *ip = NULL;
1811 	struct mbuf *m;
1812 	struct tcphdr *th = NULL;
1813 	struct udphdr *udp = NULL;
1814 	int optlen, error = 0;	/* Make compiler happy */
1815 	u_int16_t hlen, tlen, mssopt, ulen;
1816 	struct tcpopt to;
1817 #ifdef INET6
1818 	struct ip6_hdr *ip6 = NULL;
1819 #endif
1820 
1821 	NET_EPOCH_ASSERT();
1822 
1823 	hlen =
1824 #ifdef INET6
1825 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1826 #endif
1827 		sizeof(struct ip);
1828 	tlen = hlen + sizeof(struct tcphdr);
1829 	if (sc->sc_port) {
1830 		tlen += sizeof(struct udphdr);
1831 	}
1832 	/* Determine MSS we advertize to other end of connection. */
1833 	mssopt = tcp_mssopt(&sc->sc_inc);
1834 	if (sc->sc_port)
1835 		mssopt -= V_tcp_udp_tunneling_overhead;
1836 	mssopt = max(mssopt, V_tcp_minmss);
1837 
1838 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1839 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1840 	    ("syncache: mbuf too small: hlen %u, sc_port %u, max_linkhdr %d + "
1841 	    "tlen %d + TCP_MAXOLEN %ju <= MHLEN %d", hlen, sc->sc_port,
1842 	    max_linkhdr, tlen, (uintmax_t)TCP_MAXOLEN, MHLEN));
1843 
1844 	/* Create the IP+TCP header from scratch. */
1845 	m = m_gethdr(M_NOWAIT, MT_DATA);
1846 	if (m == NULL)
1847 		return (ENOBUFS);
1848 #ifdef MAC
1849 	mac_syncache_create_mbuf(sc->sc_label, m);
1850 #endif
1851 	m->m_data += max_linkhdr;
1852 	m->m_len = tlen;
1853 	m->m_pkthdr.len = tlen;
1854 	m->m_pkthdr.rcvif = NULL;
1855 
1856 #ifdef INET6
1857 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1858 		ip6 = mtod(m, struct ip6_hdr *);
1859 		ip6->ip6_vfc = IPV6_VERSION;
1860 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1861 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1862 		ip6->ip6_plen = htons(tlen - hlen);
1863 		/* ip6_hlim is set after checksum */
1864 		/* Zero out traffic class and flow label. */
1865 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1866 		ip6->ip6_flow |= sc->sc_flowlabel;
1867 		if (sc->sc_port != 0) {
1868 			ip6->ip6_nxt = IPPROTO_UDP;
1869 			udp = (struct udphdr *)(ip6 + 1);
1870 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1871 			udp->uh_dport = sc->sc_port;
1872 			ulen = (tlen - sizeof(struct ip6_hdr));
1873 			th = (struct tcphdr *)(udp + 1);
1874 		} else {
1875 			ip6->ip6_nxt = IPPROTO_TCP;
1876 			th = (struct tcphdr *)(ip6 + 1);
1877 		}
1878 		ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1879 	}
1880 #endif
1881 #if defined(INET6) && defined(INET)
1882 	else
1883 #endif
1884 #ifdef INET
1885 	{
1886 		ip = mtod(m, struct ip *);
1887 		ip->ip_v = IPVERSION;
1888 		ip->ip_hl = sizeof(struct ip) >> 2;
1889 		ip->ip_len = htons(tlen);
1890 		ip->ip_id = 0;
1891 		ip->ip_off = 0;
1892 		ip->ip_sum = 0;
1893 		ip->ip_src = sc->sc_inc.inc_laddr;
1894 		ip->ip_dst = sc->sc_inc.inc_faddr;
1895 		ip->ip_ttl = sc->sc_ip_ttl;
1896 		ip->ip_tos = sc->sc_ip_tos;
1897 
1898 		/*
1899 		 * See if we should do MTU discovery.  Route lookups are
1900 		 * expensive, so we will only unset the DF bit if:
1901 		 *
1902 		 *	1) path_mtu_discovery is disabled
1903 		 *	2) the SCF_UNREACH flag has been set
1904 		 */
1905 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1906 		       ip->ip_off |= htons(IP_DF);
1907 		if (sc->sc_port == 0) {
1908 			ip->ip_p = IPPROTO_TCP;
1909 			th = (struct tcphdr *)(ip + 1);
1910 		} else {
1911 			ip->ip_p = IPPROTO_UDP;
1912 			udp = (struct udphdr *)(ip + 1);
1913 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1914 			udp->uh_dport = sc->sc_port;
1915 			ulen = (tlen - sizeof(struct ip));
1916 			th = (struct tcphdr *)(udp + 1);
1917 		}
1918 	}
1919 #endif /* INET */
1920 	th->th_sport = sc->sc_inc.inc_lport;
1921 	th->th_dport = sc->sc_inc.inc_fport;
1922 
1923 	if (flags & TH_SYN)
1924 		th->th_seq = htonl(sc->sc_iss);
1925 	else
1926 		th->th_seq = htonl(sc->sc_iss + 1);
1927 	th->th_ack = htonl(sc->sc_irs + 1);
1928 	th->th_off = sizeof(struct tcphdr) >> 2;
1929 	th->th_win = htons(sc->sc_wnd);
1930 	th->th_urp = 0;
1931 
1932 	flags = tcp_ecn_syncache_respond(flags, sc);
1933 	tcp_set_flags(th, flags);
1934 
1935 	/* Tack on the TCP options. */
1936 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1937 		to.to_flags = 0;
1938 
1939 		if (flags & TH_SYN) {
1940 			to.to_mss = mssopt;
1941 			to.to_flags = TOF_MSS;
1942 			if (sc->sc_flags & SCF_WINSCALE) {
1943 				to.to_wscale = sc->sc_requested_r_scale;
1944 				to.to_flags |= TOF_SCALE;
1945 			}
1946 			if (sc->sc_flags & SCF_SACK)
1947 				to.to_flags |= TOF_SACKPERM;
1948 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1949 			if (sc->sc_flags & SCF_SIGNATURE)
1950 				to.to_flags |= TOF_SIGNATURE;
1951 #endif
1952 			if (sc->sc_tfo_cookie) {
1953 				to.to_flags |= TOF_FASTOPEN;
1954 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1955 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1956 				/* don't send cookie again when retransmitting response */
1957 				sc->sc_tfo_cookie = NULL;
1958 			}
1959 		}
1960 		if (sc->sc_flags & SCF_TIMESTAMP) {
1961 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1962 			to.to_tsecr = sc->sc_tsreflect;
1963 			to.to_flags |= TOF_TS;
1964 		}
1965 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1966 
1967 		/* Adjust headers by option size. */
1968 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1969 		m->m_len += optlen;
1970 		m->m_pkthdr.len += optlen;
1971 #ifdef INET6
1972 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1973 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1974 		else
1975 #endif
1976 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1977 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1978 		if (sc->sc_flags & SCF_SIGNATURE) {
1979 			KASSERT(to.to_flags & TOF_SIGNATURE,
1980 			    ("tcp_addoptions() didn't set tcp_signature"));
1981 
1982 			/* NOTE: to.to_signature is inside of mbuf */
1983 			if (!TCPMD5_ENABLED() ||
1984 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1985 				m_freem(m);
1986 				return (EACCES);
1987 			}
1988 		}
1989 #endif
1990 	} else
1991 		optlen = 0;
1992 
1993 	if (udp) {
1994 		ulen += optlen;
1995 		udp->uh_ulen = htons(ulen);
1996 	}
1997 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1998 	/*
1999 	 * If we have peer's SYN and it has a flowid, then let's assign it to
2000 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
2001 	 * to SYN|ACK due to lack of inp here.
2002 	 */
2003 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
2004 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
2005 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
2006 	}
2007 #ifdef INET6
2008 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2009 		if (sc->sc_port) {
2010 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2011 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2012 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2013 			      IPPROTO_UDP, 0);
2014 			th->th_sum = htons(0);
2015 		} else {
2016 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2017 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2018 			th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2019 			    IPPROTO_TCP, 0);
2020 		}
2021 		ip6->ip6_hlim = sc->sc_ip_ttl;
2022 #ifdef TCP_OFFLOAD
2023 		if (ADDED_BY_TOE(sc)) {
2024 			struct toedev *tod = sc->sc_tod;
2025 
2026 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2027 
2028 			return (error);
2029 		}
2030 #endif
2031 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2032 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2033 	}
2034 #endif
2035 #if defined(INET6) && defined(INET)
2036 	else
2037 #endif
2038 #ifdef INET
2039 	{
2040 		if (sc->sc_port) {
2041 			m->m_pkthdr.csum_flags = CSUM_UDP;
2042 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2043 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2044 			      ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2045 			th->th_sum = htons(0);
2046 		} else {
2047 			m->m_pkthdr.csum_flags = CSUM_TCP;
2048 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2049 			th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2050 			    htons(tlen + optlen - hlen + IPPROTO_TCP));
2051 		}
2052 #ifdef TCP_OFFLOAD
2053 		if (ADDED_BY_TOE(sc)) {
2054 			struct toedev *tod = sc->sc_tod;
2055 
2056 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2057 
2058 			return (error);
2059 		}
2060 #endif
2061 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2062 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2063 	}
2064 #endif
2065 	return (error);
2066 }
2067 
2068 /*
2069  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2070  * that exceed the capacity of the syncache by avoiding the storage of any
2071  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
2072  * attacks where the attacker does not have access to our responses.
2073  *
2074  * Syncookies encode and include all necessary information about the
2075  * connection setup within the SYN|ACK that we send back.  That way we
2076  * can avoid keeping any local state until the ACK to our SYN|ACK returns
2077  * (if ever).  Normally the syncache and syncookies are running in parallel
2078  * with the latter taking over when the former is exhausted.  When matching
2079  * syncache entry is found the syncookie is ignored.
2080  *
2081  * The only reliable information persisting the 3WHS is our initial sequence
2082  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2083  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2084  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2085  * returns and signifies a legitimate connection if it matches the ACK.
2086  *
2087  * The available space of 32 bits to store the hash and to encode the SYN
2088  * option information is very tight and we should have at least 24 bits for
2089  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2090  *
2091  * SYN option information we have to encode to fully restore a connection:
2092  * MSS: is imporant to chose an optimal segment size to avoid IP level
2093  *   fragmentation along the path.  The common MSS values can be encoded
2094  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2095  *   in the table leading to a slight increase in packetization overhead.
2096  * WSCALE: is necessary to allow large windows to be used for high delay-
2097  *   bandwidth product links.  Not scaling the window when it was initially
2098  *   negotiated is bad for performance as lack of scaling further decreases
2099  *   the apparent available send window.  We only need to encode the WSCALE
2100  *   we received from the remote end.  Our end can be recalculated at any
2101  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2102  *   Uncommon values are captured by the next lower value in the table
2103  *   making us under-estimate the available window size halving our
2104  *   theoretically possible maximum throughput for that connection.
2105  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2106  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2107  *   that are included in all segments on a connection.  We enable them when
2108  *   the ACK has them.
2109  *
2110  * Security of syncookies and attack vectors:
2111  *
2112  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2113  * together with the gloabl secret to make it unique per connection attempt.
2114  * Thus any change of any of those parameters results in a different MAC output
2115  * in an unpredictable way unless a collision is encountered.  24 bits of the
2116  * MAC are embedded into the ISS.
2117  *
2118  * To prevent replay attacks two rotating global secrets are updated with a
2119  * new random value every 15 seconds.  The life-time of a syncookie is thus
2120  * 15-30 seconds.
2121  *
2122  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2123  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2124  * text attack by varying and testing the all parameters under his control.
2125  * The strength depends on the size and randomness of the secret, and the
2126  * cryptographic security of the MAC function.  Due to the constant updating
2127  * of the secret the attacker has at most 29.999 seconds to find the secret
2128  * and launch spoofed connections.  After that he has to start all over again.
2129  *
2130  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2131  * size an average of 4,823 attempts are required for a 50% chance of success
2132  * to spoof a single syncookie (birthday collision paradox).  However the
2133  * attacker is blind and doesn't know if one of his attempts succeeded unless
2134  * he has a side channel to interfere success from.  A single connection setup
2135  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2136  * This many attempts are required for each one blind spoofed connection.  For
2137  * every additional spoofed connection he has to launch another N attempts.
2138  * Thus for a sustained rate 100 spoofed connections per second approximately
2139  * 1,800,000 packets per second would have to be sent.
2140  *
2141  * NB: The MAC function should be fast so that it doesn't become a CPU
2142  * exhaustion attack vector itself.
2143  *
2144  * References:
2145  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2146  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2147  *   http://cr.yp.to/syncookies.html    (overview)
2148  *   http://cr.yp.to/syncookies/archive (details)
2149  *
2150  *
2151  * Schematic construction of a syncookie enabled Initial Sequence Number:
2152  *  0        1         2         3
2153  *  12345678901234567890123456789012
2154  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2155  *
2156  *  x 24 MAC (truncated)
2157  *  W  3 Send Window Scale index
2158  *  M  3 MSS index
2159  *  S  1 SACK permitted
2160  *  P  1 Odd/even secret
2161  */
2162 
2163 /*
2164  * Distribution and probability of certain MSS values.  Those in between are
2165  * rounded down to the next lower one.
2166  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2167  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2168  */
2169 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2170 
2171 /*
2172  * Distribution and probability of certain WSCALE values.  We have to map the
2173  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2174  * bits based on prevalence of certain values.  Where we don't have an exact
2175  * match for are rounded down to the next lower one letting us under-estimate
2176  * the true available window.  At the moment this would happen only for the
2177  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2178  * and window size).  The absence of the WSCALE option (no scaling in either
2179  * direction) is encoded with index zero.
2180  * [WSCALE values histograms, Allman, 2012]
2181  *                            X 10 10 35  5  6 14 10%   by host
2182  *                            X 11  4  5  5 18 49  3%   by connections
2183  */
2184 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2185 
2186 /*
2187  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2188  * and good cryptographic properties.
2189  */
2190 static uint32_t
2191 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2192     uint8_t *secbits, uintptr_t secmod)
2193 {
2194 	SIPHASH_CTX ctx;
2195 	uint32_t siphash[2];
2196 
2197 	SipHash24_Init(&ctx);
2198 	SipHash_SetKey(&ctx, secbits);
2199 	switch (inc->inc_flags & INC_ISIPV6) {
2200 #ifdef INET
2201 	case 0:
2202 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2203 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2204 		break;
2205 #endif
2206 #ifdef INET6
2207 	case INC_ISIPV6:
2208 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2209 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2210 		break;
2211 #endif
2212 	}
2213 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2214 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2215 	SipHash_Update(&ctx, &irs, sizeof(irs));
2216 	SipHash_Update(&ctx, &flags, sizeof(flags));
2217 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2218 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2219 
2220 	return (siphash[0] ^ siphash[1]);
2221 }
2222 
2223 static tcp_seq
2224 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2225 {
2226 	u_int i, secbit, wscale;
2227 	uint32_t iss, hash;
2228 	uint8_t *secbits;
2229 	union syncookie cookie;
2230 
2231 	cookie.cookie = 0;
2232 
2233 	/* Map our computed MSS into the 3-bit index. */
2234 	for (i = nitems(tcp_sc_msstab) - 1;
2235 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2236 	     i--)
2237 		;
2238 	cookie.flags.mss_idx = i;
2239 
2240 	/*
2241 	 * Map the send window scale into the 3-bit index but only if
2242 	 * the wscale option was received.
2243 	 */
2244 	if (sc->sc_flags & SCF_WINSCALE) {
2245 		wscale = sc->sc_requested_s_scale;
2246 		for (i = nitems(tcp_sc_wstab) - 1;
2247 		    tcp_sc_wstab[i] > wscale && i > 0;
2248 		     i--)
2249 			;
2250 		cookie.flags.wscale_idx = i;
2251 	}
2252 
2253 	/* Can we do SACK? */
2254 	if (sc->sc_flags & SCF_SACK)
2255 		cookie.flags.sack_ok = 1;
2256 
2257 	/* Which of the two secrets to use. */
2258 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2259 	cookie.flags.odd_even = secbit;
2260 
2261 	secbits = V_tcp_syncache.secret.key[secbit];
2262 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2263 	    (uintptr_t)sch);
2264 
2265 	/*
2266 	 * Put the flags into the hash and XOR them to get better ISS number
2267 	 * variance.  This doesn't enhance the cryptographic strength and is
2268 	 * done to prevent the 8 cookie bits from showing up directly on the
2269 	 * wire.
2270 	 */
2271 	iss = hash & ~0xff;
2272 	iss |= cookie.cookie ^ (hash >> 24);
2273 
2274 	TCPSTAT_INC(tcps_sc_sendcookie);
2275 	return (iss);
2276 }
2277 
2278 static struct syncache *
2279 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2280     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2281     struct socket *lso, uint16_t port)
2282 {
2283 	uint32_t hash;
2284 	uint8_t *secbits;
2285 	tcp_seq ack, seq;
2286 	int wnd, wscale = 0;
2287 	union syncookie cookie;
2288 
2289 	/*
2290 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2291 	 * advances.
2292 	 */
2293 	ack = th->th_ack - 1;
2294 	seq = th->th_seq - 1;
2295 
2296 	/*
2297 	 * Unpack the flags containing enough information to restore the
2298 	 * connection.
2299 	 */
2300 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2301 
2302 	/* Which of the two secrets to use. */
2303 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2304 
2305 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2306 
2307 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2308 	if ((ack & ~0xff) != (hash & ~0xff))
2309 		return (NULL);
2310 
2311 	/* Fill in the syncache values. */
2312 	sc->sc_flags = 0;
2313 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2314 	sc->sc_ipopts = NULL;
2315 
2316 	sc->sc_irs = seq;
2317 	sc->sc_iss = ack;
2318 
2319 	switch (inc->inc_flags & INC_ISIPV6) {
2320 #ifdef INET
2321 	case 0:
2322 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2323 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2324 		break;
2325 #endif
2326 #ifdef INET6
2327 	case INC_ISIPV6:
2328 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2329 			sc->sc_flowlabel =
2330 			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2331 		break;
2332 #endif
2333 	}
2334 
2335 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2336 
2337 	/* We can simply recompute receive window scale we sent earlier. */
2338 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2339 		wscale++;
2340 
2341 	/* Only use wscale if it was enabled in the orignal SYN. */
2342 	if (cookie.flags.wscale_idx > 0) {
2343 		sc->sc_requested_r_scale = wscale;
2344 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2345 		sc->sc_flags |= SCF_WINSCALE;
2346 	}
2347 
2348 	wnd = lso->sol_sbrcv_hiwat;
2349 	wnd = imax(wnd, 0);
2350 	wnd = imin(wnd, TCP_MAXWIN);
2351 	sc->sc_wnd = wnd;
2352 
2353 	if (cookie.flags.sack_ok)
2354 		sc->sc_flags |= SCF_SACK;
2355 
2356 	if (to->to_flags & TOF_TS) {
2357 		sc->sc_flags |= SCF_TIMESTAMP;
2358 		sc->sc_tsreflect = to->to_tsval;
2359 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2360 	}
2361 
2362 	if (to->to_flags & TOF_SIGNATURE)
2363 		sc->sc_flags |= SCF_SIGNATURE;
2364 
2365 	sc->sc_rxmits = 0;
2366 
2367 	sc->sc_port = port;
2368 
2369 	TCPSTAT_INC(tcps_sc_recvcookie);
2370 	return (sc);
2371 }
2372 
2373 #ifdef INVARIANTS
2374 static int
2375 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2376     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2377     struct socket *lso, uint16_t port)
2378 {
2379 	struct syncache scs, *scx;
2380 	char *s;
2381 
2382 	bzero(&scs, sizeof(scs));
2383 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port);
2384 
2385 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2386 		return (0);
2387 
2388 	if (scx != NULL) {
2389 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2390 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2391 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2392 
2393 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2394 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2395 			    s, __func__, sc->sc_requested_r_scale,
2396 			    scx->sc_requested_r_scale);
2397 
2398 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2399 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2400 			    s, __func__, sc->sc_requested_s_scale,
2401 			    scx->sc_requested_s_scale);
2402 
2403 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2404 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2405 	}
2406 
2407 	if (s != NULL)
2408 		free(s, M_TCPLOG);
2409 	return (0);
2410 }
2411 #endif /* INVARIANTS */
2412 
2413 static void
2414 syncookie_reseed(void *arg)
2415 {
2416 	struct tcp_syncache *sc = arg;
2417 	uint8_t *secbits;
2418 	int secbit;
2419 
2420 	/*
2421 	 * Reseeding the secret doesn't have to be protected by a lock.
2422 	 * It only must be ensured that the new random values are visible
2423 	 * to all CPUs in a SMP environment.  The atomic with release
2424 	 * semantics ensures that.
2425 	 */
2426 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2427 	secbits = sc->secret.key[secbit];
2428 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2429 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2430 
2431 	/* Reschedule ourself. */
2432 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2433 }
2434 
2435 /*
2436  * We have overflowed a bucket. Let's pause dealing with the syncache.
2437  * This function will increment the bucketoverflow statistics appropriately
2438  * (once per pause when pausing is enabled; otherwise, once per overflow).
2439  */
2440 static void
2441 syncache_pause(struct in_conninfo *inc)
2442 {
2443 	time_t delta;
2444 	const char *s;
2445 
2446 	/* XXX:
2447 	 * 2. Add sysctl read here so we don't get the benefit of this
2448 	 * change without the new sysctl.
2449 	 */
2450 
2451 	/*
2452 	 * Try an unlocked read. If we already know that another thread
2453 	 * has activated the feature, there is no need to proceed.
2454 	 */
2455 	if (V_tcp_syncache.paused)
2456 		return;
2457 
2458 	/* Are cookied enabled? If not, we can't pause. */
2459 	if (!V_tcp_syncookies) {
2460 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2461 		return;
2462 	}
2463 
2464 	/*
2465 	 * We may be the first thread to find an overflow. Get the lock
2466 	 * and evaluate if we need to take action.
2467 	 */
2468 	mtx_lock(&V_tcp_syncache.pause_mtx);
2469 	if (V_tcp_syncache.paused) {
2470 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2471 		return;
2472 	}
2473 
2474 	/* Activate protection. */
2475 	V_tcp_syncache.paused = true;
2476 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2477 
2478 	/*
2479 	 * Determine the last backoff time. If we are seeing a re-newed
2480 	 * attack within that same time after last reactivating the syncache,
2481 	 * consider it an extension of the same attack.
2482 	 */
2483 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2484 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2485 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2486 			delta <<= 1;
2487 			V_tcp_syncache.pause_backoff++;
2488 		}
2489 	} else {
2490 		delta = TCP_SYNCACHE_PAUSE_TIME;
2491 		V_tcp_syncache.pause_backoff = 0;
2492 	}
2493 
2494 	/* Log a warning, including IP addresses, if able. */
2495 	if (inc != NULL)
2496 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2497 	else
2498 		s = (const char *)NULL;
2499 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2500 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2501 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2502 	    (s != NULL) ? ")" : "");
2503 	free(__DECONST(void *, s), M_TCPLOG);
2504 
2505 	/* Use the calculated delta to set a new pause time. */
2506 	V_tcp_syncache.pause_until = time_uptime + delta;
2507 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2508 	    &V_tcp_syncache);
2509 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2510 }
2511 
2512 /* Evaluate whether we need to unpause. */
2513 static void
2514 syncache_unpause(void *arg)
2515 {
2516 	struct tcp_syncache *sc;
2517 	time_t delta;
2518 
2519 	sc = arg;
2520 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2521 	callout_deactivate(&sc->pause_co);
2522 
2523 	/*
2524 	 * Check to make sure we are not running early. If the pause
2525 	 * time has expired, then deactivate the protection.
2526 	 */
2527 	if ((delta = sc->pause_until - time_uptime) > 0)
2528 		callout_schedule(&sc->pause_co, delta * hz);
2529 	else
2530 		sc->paused = false;
2531 }
2532 
2533 /*
2534  * Exports the syncache entries to userland so that netstat can display
2535  * them alongside the other sockets.  This function is intended to be
2536  * called only from tcp_pcblist.
2537  *
2538  * Due to concurrency on an active system, the number of pcbs exported
2539  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2540  * amount of space the caller allocated for this function to use.
2541  */
2542 int
2543 syncache_pcblist(struct sysctl_req *req)
2544 {
2545 	struct xtcpcb xt;
2546 	struct syncache *sc;
2547 	struct syncache_head *sch;
2548 	int error, i;
2549 
2550 	bzero(&xt, sizeof(xt));
2551 	xt.xt_len = sizeof(xt);
2552 	xt.t_state = TCPS_SYN_RECEIVED;
2553 	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2554 	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2555 	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2556 	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2557 
2558 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2559 		sch = &V_tcp_syncache.hashbase[i];
2560 		SCH_LOCK(sch);
2561 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2562 			if (sc->sc_cred != NULL &&
2563 			    cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2564 				continue;
2565 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2566 				xt.xt_inp.inp_vflag = INP_IPV6;
2567 			else
2568 				xt.xt_inp.inp_vflag = INP_IPV4;
2569 			xt.xt_encaps_port = sc->sc_port;
2570 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2571 			    sizeof (struct in_conninfo));
2572 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2573 			if (error) {
2574 				SCH_UNLOCK(sch);
2575 				return (0);
2576 			}
2577 		}
2578 		SCH_UNLOCK(sch);
2579 	}
2580 
2581 	return (0);
2582 }
2583