xref: /freebsd/sys/netinet/tcp_syncache.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/hash.h>
44 #include <sys/refcount.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/limits.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/proc.h>		/* for proc0 declaration */
53 #include <sys/random.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/ucred.h>
58 
59 #include <sys/md5.h>
60 #include <crypto/siphash/siphash.h>
61 
62 #include <vm/uma.h>
63 
64 #include <net/if.h>
65 #include <net/if_var.h>
66 #include <net/route.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_var.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_options.h>
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet6/nd6.h>
80 #include <netinet6/ip6_var.h>
81 #include <netinet6/in6_pcb.h>
82 #endif
83 #include <netinet/tcp.h>
84 #ifdef TCP_RFC7413
85 #include <netinet/tcp_fastopen.h>
86 #endif
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #ifdef INET6
102 #include <netipsec/ipsec6.h>
103 #endif
104 #include <netipsec/key.h>
105 #endif /*IPSEC*/
106 
107 #include <machine/in_cksum.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static VNET_DEFINE(int, tcp_syncookies) = 1;
112 #define	V_tcp_syncookies		VNET(tcp_syncookies)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookies), 0,
115     "Use TCP SYN cookies if the syncache overflows");
116 
117 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
118 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
120     &VNET_NAME(tcp_syncookiesonly), 0,
121     "Use only TCP SYN cookies");
122 
123 #ifdef TCP_OFFLOAD
124 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
125 #endif
126 
127 static void	 syncache_drop(struct syncache *, struct syncache_head *);
128 static void	 syncache_free(struct syncache *);
129 static void	 syncache_insert(struct syncache *, struct syncache_head *);
130 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
131 		    const struct mbuf *);
132 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
133 		    struct mbuf *m);
134 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
135 		    int docallout);
136 static void	 syncache_timer(void *);
137 
138 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
139 		    uint8_t *, uintptr_t);
140 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
141 static struct syncache
142 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
143 		    struct syncache *, struct tcphdr *, struct tcpopt *,
144 		    struct socket *);
145 static void	 syncookie_reseed(void *);
146 #ifdef INVARIANTS
147 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
148 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
149 		    struct socket *lso);
150 #endif
151 
152 /*
153  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
155  * the odds are that the user has given up attempting to connect by then.
156  */
157 #define SYNCACHE_MAXREXMTS		3
158 
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE		512
161 #define TCP_SYNCACHE_BUCKETLIMIT	30
162 
163 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
164 #define	V_tcp_syncache			VNET(tcp_syncache)
165 
166 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
167     "TCP SYN cache");
168 
169 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
170     &VNET_NAME(tcp_syncache.bucket_limit), 0,
171     "Per-bucket hash limit for syncache");
172 
173 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
174     &VNET_NAME(tcp_syncache.cache_limit), 0,
175     "Overall entry limit for syncache");
176 
177 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
178     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
179 
180 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
181     &VNET_NAME(tcp_syncache.hashsize), 0,
182     "Size of TCP syncache hashtable");
183 
184 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
185     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
186     "Limit on SYN/ACK retransmissions");
187 
188 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
189 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
190     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
191     "Send reset on socket allocation failure");
192 
193 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
194 
195 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
196 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
197 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
198 
199 /*
200  * Requires the syncache entry to be already removed from the bucket list.
201  */
202 static void
203 syncache_free(struct syncache *sc)
204 {
205 
206 	if (sc->sc_ipopts)
207 		(void) m_free(sc->sc_ipopts);
208 	if (sc->sc_cred)
209 		crfree(sc->sc_cred);
210 #ifdef MAC
211 	mac_syncache_destroy(&sc->sc_label);
212 #endif
213 
214 	uma_zfree(V_tcp_syncache.zone, sc);
215 }
216 
217 void
218 syncache_init(void)
219 {
220 	int i;
221 
222 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
223 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
224 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
225 	V_tcp_syncache.hash_secret = arc4random();
226 
227 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
228 	    &V_tcp_syncache.hashsize);
229 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
230 	    &V_tcp_syncache.bucket_limit);
231 	if (!powerof2(V_tcp_syncache.hashsize) ||
232 	    V_tcp_syncache.hashsize == 0) {
233 		printf("WARNING: syncache hash size is not a power of 2.\n");
234 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
235 	}
236 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
237 
238 	/* Set limits. */
239 	V_tcp_syncache.cache_limit =
240 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
241 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
242 	    &V_tcp_syncache.cache_limit);
243 
244 	/* Allocate the hash table. */
245 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
246 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
247 
248 #ifdef VIMAGE
249 	V_tcp_syncache.vnet = curvnet;
250 #endif
251 
252 	/* Initialize the hash buckets. */
253 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
254 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
255 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
256 			 NULL, MTX_DEF);
257 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
258 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
259 		V_tcp_syncache.hashbase[i].sch_length = 0;
260 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
261 	}
262 
263 	/* Create the syncache entry zone. */
264 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
265 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
266 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
267 	    V_tcp_syncache.cache_limit);
268 
269 	/* Start the SYN cookie reseeder callout. */
270 	callout_init(&V_tcp_syncache.secret.reseed, 1);
271 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
272 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
273 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
274 	    syncookie_reseed, &V_tcp_syncache);
275 }
276 
277 #ifdef VIMAGE
278 void
279 syncache_destroy(void)
280 {
281 	struct syncache_head *sch;
282 	struct syncache *sc, *nsc;
283 	int i;
284 
285 	/*
286 	 * Stop the re-seed timer before freeing resources.  No need to
287 	 * possibly schedule it another time.
288 	 */
289 	callout_drain(&V_tcp_syncache.secret.reseed);
290 
291 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
292 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
293 
294 		sch = &V_tcp_syncache.hashbase[i];
295 		callout_drain(&sch->sch_timer);
296 
297 		SCH_LOCK(sch);
298 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
299 			syncache_drop(sc, sch);
300 		SCH_UNLOCK(sch);
301 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
302 		    ("%s: sch->sch_bucket not empty", __func__));
303 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
304 		    __func__, sch->sch_length));
305 		mtx_destroy(&sch->sch_mtx);
306 	}
307 
308 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
309 	    ("%s: cache_count not 0", __func__));
310 
311 	/* Free the allocated global resources. */
312 	uma_zdestroy(V_tcp_syncache.zone);
313 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
314 }
315 #endif
316 
317 /*
318  * Inserts a syncache entry into the specified bucket row.
319  * Locks and unlocks the syncache_head autonomously.
320  */
321 static void
322 syncache_insert(struct syncache *sc, struct syncache_head *sch)
323 {
324 	struct syncache *sc2;
325 
326 	SCH_LOCK(sch);
327 
328 	/*
329 	 * Make sure that we don't overflow the per-bucket limit.
330 	 * If the bucket is full, toss the oldest element.
331 	 */
332 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
333 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
334 			("sch->sch_length incorrect"));
335 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
336 		syncache_drop(sc2, sch);
337 		TCPSTAT_INC(tcps_sc_bucketoverflow);
338 	}
339 
340 	/* Put it into the bucket. */
341 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
342 	sch->sch_length++;
343 
344 #ifdef TCP_OFFLOAD
345 	if (ADDED_BY_TOE(sc)) {
346 		struct toedev *tod = sc->sc_tod;
347 
348 		tod->tod_syncache_added(tod, sc->sc_todctx);
349 	}
350 #endif
351 
352 	/* Reinitialize the bucket row's timer. */
353 	if (sch->sch_length == 1)
354 		sch->sch_nextc = ticks + INT_MAX;
355 	syncache_timeout(sc, sch, 1);
356 
357 	SCH_UNLOCK(sch);
358 
359 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
360 	TCPSTAT_INC(tcps_sc_added);
361 }
362 
363 /*
364  * Remove and free entry from syncache bucket row.
365  * Expects locked syncache head.
366  */
367 static void
368 syncache_drop(struct syncache *sc, struct syncache_head *sch)
369 {
370 
371 	SCH_LOCK_ASSERT(sch);
372 
373 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
374 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
375 	sch->sch_length--;
376 
377 #ifdef TCP_OFFLOAD
378 	if (ADDED_BY_TOE(sc)) {
379 		struct toedev *tod = sc->sc_tod;
380 
381 		tod->tod_syncache_removed(tod, sc->sc_todctx);
382 	}
383 #endif
384 
385 	syncache_free(sc);
386 }
387 
388 /*
389  * Engage/reengage time on bucket row.
390  */
391 static void
392 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
393 {
394 	sc->sc_rxttime = ticks +
395 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
396 	sc->sc_rxmits++;
397 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
398 		sch->sch_nextc = sc->sc_rxttime;
399 		if (docallout)
400 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
401 			    syncache_timer, (void *)sch);
402 	}
403 }
404 
405 /*
406  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
407  * If we have retransmitted an entry the maximum number of times, expire it.
408  * One separate timer for each bucket row.
409  */
410 static void
411 syncache_timer(void *xsch)
412 {
413 	struct syncache_head *sch = (struct syncache_head *)xsch;
414 	struct syncache *sc, *nsc;
415 	int tick = ticks;
416 	char *s;
417 
418 	CURVNET_SET(sch->sch_sc->vnet);
419 
420 	/* NB: syncache_head has already been locked by the callout. */
421 	SCH_LOCK_ASSERT(sch);
422 
423 	/*
424 	 * In the following cycle we may remove some entries and/or
425 	 * advance some timeouts, so re-initialize the bucket timer.
426 	 */
427 	sch->sch_nextc = tick + INT_MAX;
428 
429 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
430 		/*
431 		 * We do not check if the listen socket still exists
432 		 * and accept the case where the listen socket may be
433 		 * gone by the time we resend the SYN/ACK.  We do
434 		 * not expect this to happens often. If it does,
435 		 * then the RST will be sent by the time the remote
436 		 * host does the SYN/ACK->ACK.
437 		 */
438 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
439 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
440 				sch->sch_nextc = sc->sc_rxttime;
441 			continue;
442 		}
443 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
444 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
445 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
446 				    "giving up and removing syncache entry\n",
447 				    s, __func__);
448 				free(s, M_TCPLOG);
449 			}
450 			syncache_drop(sc, sch);
451 			TCPSTAT_INC(tcps_sc_stale);
452 			continue;
453 		}
454 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
455 			log(LOG_DEBUG, "%s; %s: Response timeout, "
456 			    "retransmitting (%u) SYN|ACK\n",
457 			    s, __func__, sc->sc_rxmits);
458 			free(s, M_TCPLOG);
459 		}
460 
461 		syncache_respond(sc, sch, 1, NULL);
462 		TCPSTAT_INC(tcps_sc_retransmitted);
463 		syncache_timeout(sc, sch, 0);
464 	}
465 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
466 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
467 			syncache_timer, (void *)(sch));
468 	CURVNET_RESTORE();
469 }
470 
471 /*
472  * Find an entry in the syncache.
473  * Returns always with locked syncache_head plus a matching entry or NULL.
474  */
475 static struct syncache *
476 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
477 {
478 	struct syncache *sc;
479 	struct syncache_head *sch;
480 	uint32_t hash;
481 
482 	/*
483 	 * The hash is built on foreign port + local port + foreign address.
484 	 * We rely on the fact that struct in_conninfo starts with 16 bits
485 	 * of foreign port, then 16 bits of local port then followed by 128
486 	 * bits of foreign address.  In case of IPv4 address, the first 3
487 	 * 32-bit words of the address always are zeroes.
488 	 */
489 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
490 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
491 
492 	sch = &V_tcp_syncache.hashbase[hash];
493 	*schp = sch;
494 	SCH_LOCK(sch);
495 
496 	/* Circle through bucket row to find matching entry. */
497 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
498 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
499 		    sizeof(struct in_endpoints)) == 0)
500 			break;
501 
502 	return (sc);	/* Always returns with locked sch. */
503 }
504 
505 /*
506  * This function is called when we get a RST for a
507  * non-existent connection, so that we can see if the
508  * connection is in the syn cache.  If it is, zap it.
509  */
510 void
511 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
512 {
513 	struct syncache *sc;
514 	struct syncache_head *sch;
515 	char *s = NULL;
516 
517 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
518 	SCH_LOCK_ASSERT(sch);
519 
520 	/*
521 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
522 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
523 	 */
524 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
525 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
526 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
527 			    "FIN flag set, segment ignored\n", s, __func__);
528 		TCPSTAT_INC(tcps_badrst);
529 		goto done;
530 	}
531 
532 	/*
533 	 * No corresponding connection was found in syncache.
534 	 * If syncookies are enabled and possibly exclusively
535 	 * used, or we are under memory pressure, a valid RST
536 	 * may not find a syncache entry.  In that case we're
537 	 * done and no SYN|ACK retransmissions will happen.
538 	 * Otherwise the RST was misdirected or spoofed.
539 	 */
540 	if (sc == NULL) {
541 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
542 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
543 			    "syncache entry (possibly syncookie only), "
544 			    "segment ignored\n", s, __func__);
545 		TCPSTAT_INC(tcps_badrst);
546 		goto done;
547 	}
548 
549 	/*
550 	 * If the RST bit is set, check the sequence number to see
551 	 * if this is a valid reset segment.
552 	 * RFC 793 page 37:
553 	 *   In all states except SYN-SENT, all reset (RST) segments
554 	 *   are validated by checking their SEQ-fields.  A reset is
555 	 *   valid if its sequence number is in the window.
556 	 *
557 	 *   The sequence number in the reset segment is normally an
558 	 *   echo of our outgoing acknowlegement numbers, but some hosts
559 	 *   send a reset with the sequence number at the rightmost edge
560 	 *   of our receive window, and we have to handle this case.
561 	 */
562 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
563 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
564 		syncache_drop(sc, sch);
565 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
566 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
567 			    "connection attempt aborted by remote endpoint\n",
568 			    s, __func__);
569 		TCPSTAT_INC(tcps_sc_reset);
570 	} else {
571 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
572 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
573 			    "IRS %u (+WND %u), segment ignored\n",
574 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
575 		TCPSTAT_INC(tcps_badrst);
576 	}
577 
578 done:
579 	if (s != NULL)
580 		free(s, M_TCPLOG);
581 	SCH_UNLOCK(sch);
582 }
583 
584 void
585 syncache_badack(struct in_conninfo *inc)
586 {
587 	struct syncache *sc;
588 	struct syncache_head *sch;
589 
590 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
591 	SCH_LOCK_ASSERT(sch);
592 	if (sc != NULL) {
593 		syncache_drop(sc, sch);
594 		TCPSTAT_INC(tcps_sc_badack);
595 	}
596 	SCH_UNLOCK(sch);
597 }
598 
599 void
600 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
601 {
602 	struct syncache *sc;
603 	struct syncache_head *sch;
604 
605 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
606 	SCH_LOCK_ASSERT(sch);
607 	if (sc == NULL)
608 		goto done;
609 
610 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
611 	if (ntohl(th->th_seq) != sc->sc_iss)
612 		goto done;
613 
614 	/*
615 	 * If we've rertransmitted 3 times and this is our second error,
616 	 * we remove the entry.  Otherwise, we allow it to continue on.
617 	 * This prevents us from incorrectly nuking an entry during a
618 	 * spurious network outage.
619 	 *
620 	 * See tcp_notify().
621 	 */
622 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
623 		sc->sc_flags |= SCF_UNREACH;
624 		goto done;
625 	}
626 	syncache_drop(sc, sch);
627 	TCPSTAT_INC(tcps_sc_unreach);
628 done:
629 	SCH_UNLOCK(sch);
630 }
631 
632 /*
633  * Build a new TCP socket structure from a syncache entry.
634  *
635  * On success return the newly created socket with its underlying inp locked.
636  */
637 static struct socket *
638 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
639 {
640 	struct tcp_function_block *blk;
641 	struct inpcb *inp = NULL;
642 	struct socket *so;
643 	struct tcpcb *tp;
644 	int error;
645 	char *s;
646 
647 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
648 
649 	/*
650 	 * Ok, create the full blown connection, and set things up
651 	 * as they would have been set up if we had created the
652 	 * connection when the SYN arrived.  If we can't create
653 	 * the connection, abort it.
654 	 */
655 	so = sonewconn(lso, 0);
656 	if (so == NULL) {
657 		/*
658 		 * Drop the connection; we will either send a RST or
659 		 * have the peer retransmit its SYN again after its
660 		 * RTO and try again.
661 		 */
662 		TCPSTAT_INC(tcps_listendrop);
663 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
664 			log(LOG_DEBUG, "%s; %s: Socket create failed "
665 			    "due to limits or memory shortage\n",
666 			    s, __func__);
667 			free(s, M_TCPLOG);
668 		}
669 		goto abort2;
670 	}
671 #ifdef MAC
672 	mac_socketpeer_set_from_mbuf(m, so);
673 #endif
674 
675 	inp = sotoinpcb(so);
676 	inp->inp_inc.inc_fibnum = so->so_fibnum;
677 	INP_WLOCK(inp);
678 	/*
679 	 * Exclusive pcbinfo lock is not required in syncache socket case even
680 	 * if two inpcb locks can be acquired simultaneously:
681 	 *  - the inpcb in LISTEN state,
682 	 *  - the newly created inp.
683 	 *
684 	 * In this case, an inp cannot be at same time in LISTEN state and
685 	 * just created by an accept() call.
686 	 */
687 	INP_HASH_WLOCK(&V_tcbinfo);
688 
689 	/* Insert new socket into PCB hash list. */
690 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
691 #ifdef INET6
692 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
693 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
694 	} else {
695 		inp->inp_vflag &= ~INP_IPV6;
696 		inp->inp_vflag |= INP_IPV4;
697 #endif
698 		inp->inp_laddr = sc->sc_inc.inc_laddr;
699 #ifdef INET6
700 	}
701 #endif
702 
703 	/*
704 	 * If there's an mbuf and it has a flowid, then let's initialise the
705 	 * inp with that particular flowid.
706 	 */
707 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
708 		inp->inp_flowid = m->m_pkthdr.flowid;
709 		inp->inp_flowtype = M_HASHTYPE_GET(m);
710 	}
711 
712 	/*
713 	 * Install in the reservation hash table for now, but don't yet
714 	 * install a connection group since the full 4-tuple isn't yet
715 	 * configured.
716 	 */
717 	inp->inp_lport = sc->sc_inc.inc_lport;
718 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
719 		/*
720 		 * Undo the assignments above if we failed to
721 		 * put the PCB on the hash lists.
722 		 */
723 #ifdef INET6
724 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
725 			inp->in6p_laddr = in6addr_any;
726 		else
727 #endif
728 			inp->inp_laddr.s_addr = INADDR_ANY;
729 		inp->inp_lport = 0;
730 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
731 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
732 			    "with error %i\n",
733 			    s, __func__, error);
734 			free(s, M_TCPLOG);
735 		}
736 		INP_HASH_WUNLOCK(&V_tcbinfo);
737 		goto abort;
738 	}
739 #ifdef IPSEC
740 	/* Copy old policy into new socket's. */
741 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
742 		printf("syncache_socket: could not copy policy\n");
743 #endif
744 #ifdef INET6
745 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
746 		struct inpcb *oinp = sotoinpcb(lso);
747 		struct in6_addr laddr6;
748 		struct sockaddr_in6 sin6;
749 		/*
750 		 * Inherit socket options from the listening socket.
751 		 * Note that in6p_inputopts are not (and should not be)
752 		 * copied, since it stores previously received options and is
753 		 * used to detect if each new option is different than the
754 		 * previous one and hence should be passed to a user.
755 		 * If we copied in6p_inputopts, a user would not be able to
756 		 * receive options just after calling the accept system call.
757 		 */
758 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
759 		if (oinp->in6p_outputopts)
760 			inp->in6p_outputopts =
761 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
762 
763 		sin6.sin6_family = AF_INET6;
764 		sin6.sin6_len = sizeof(sin6);
765 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
766 		sin6.sin6_port = sc->sc_inc.inc_fport;
767 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
768 		laddr6 = inp->in6p_laddr;
769 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
770 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
771 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
772 		    thread0.td_ucred, m)) != 0) {
773 			inp->in6p_laddr = laddr6;
774 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
775 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
776 				    "with error %i\n",
777 				    s, __func__, error);
778 				free(s, M_TCPLOG);
779 			}
780 			INP_HASH_WUNLOCK(&V_tcbinfo);
781 			goto abort;
782 		}
783 		/* Override flowlabel from in6_pcbconnect. */
784 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
785 		inp->inp_flow |= sc->sc_flowlabel;
786 	}
787 #endif /* INET6 */
788 #if defined(INET) && defined(INET6)
789 	else
790 #endif
791 #ifdef INET
792 	{
793 		struct in_addr laddr;
794 		struct sockaddr_in sin;
795 
796 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
797 
798 		if (inp->inp_options == NULL) {
799 			inp->inp_options = sc->sc_ipopts;
800 			sc->sc_ipopts = NULL;
801 		}
802 
803 		sin.sin_family = AF_INET;
804 		sin.sin_len = sizeof(sin);
805 		sin.sin_addr = sc->sc_inc.inc_faddr;
806 		sin.sin_port = sc->sc_inc.inc_fport;
807 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
808 		laddr = inp->inp_laddr;
809 		if (inp->inp_laddr.s_addr == INADDR_ANY)
810 			inp->inp_laddr = sc->sc_inc.inc_laddr;
811 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
812 		    thread0.td_ucred, m)) != 0) {
813 			inp->inp_laddr = laddr;
814 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
815 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
816 				    "with error %i\n",
817 				    s, __func__, error);
818 				free(s, M_TCPLOG);
819 			}
820 			INP_HASH_WUNLOCK(&V_tcbinfo);
821 			goto abort;
822 		}
823 	}
824 #endif /* INET */
825 	INP_HASH_WUNLOCK(&V_tcbinfo);
826 	tp = intotcpcb(inp);
827 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
828 	tp->iss = sc->sc_iss;
829 	tp->irs = sc->sc_irs;
830 	tcp_rcvseqinit(tp);
831 	tcp_sendseqinit(tp);
832 	blk = sototcpcb(lso)->t_fb;
833 	if (blk != tp->t_fb) {
834 		/*
835 		 * Our parents t_fb was not the default,
836 		 * we need to release our ref on tp->t_fb and
837 		 * pickup one on the new entry.
838 		 */
839 		struct tcp_function_block *rblk;
840 
841 		rblk = find_and_ref_tcp_fb(blk);
842 		KASSERT(rblk != NULL,
843 		    ("cannot find blk %p out of syncache?", blk));
844 		if (tp->t_fb->tfb_tcp_fb_fini)
845 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
846 		refcount_release(&tp->t_fb->tfb_refcnt);
847 		tp->t_fb = rblk;
848 		if (tp->t_fb->tfb_tcp_fb_init) {
849 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
850 		}
851 	}
852 	tp->snd_wl1 = sc->sc_irs;
853 	tp->snd_max = tp->iss + 1;
854 	tp->snd_nxt = tp->iss + 1;
855 	tp->rcv_up = sc->sc_irs + 1;
856 	tp->rcv_wnd = sc->sc_wnd;
857 	tp->rcv_adv += tp->rcv_wnd;
858 	tp->last_ack_sent = tp->rcv_nxt;
859 
860 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
861 	if (sc->sc_flags & SCF_NOOPT)
862 		tp->t_flags |= TF_NOOPT;
863 	else {
864 		if (sc->sc_flags & SCF_WINSCALE) {
865 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
866 			tp->snd_scale = sc->sc_requested_s_scale;
867 			tp->request_r_scale = sc->sc_requested_r_scale;
868 		}
869 		if (sc->sc_flags & SCF_TIMESTAMP) {
870 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
871 			tp->ts_recent = sc->sc_tsreflect;
872 			tp->ts_recent_age = tcp_ts_getticks();
873 			tp->ts_offset = sc->sc_tsoff;
874 		}
875 #ifdef TCP_SIGNATURE
876 		if (sc->sc_flags & SCF_SIGNATURE)
877 			tp->t_flags |= TF_SIGNATURE;
878 #endif
879 		if (sc->sc_flags & SCF_SACK)
880 			tp->t_flags |= TF_SACK_PERMIT;
881 	}
882 
883 	if (sc->sc_flags & SCF_ECN)
884 		tp->t_flags |= TF_ECN_PERMIT;
885 
886 	/*
887 	 * Set up MSS and get cached values from tcp_hostcache.
888 	 * This might overwrite some of the defaults we just set.
889 	 */
890 	tcp_mss(tp, sc->sc_peer_mss);
891 
892 	/*
893 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
894 	 * limited to one segment in cc_conn_init().
895 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
896 	 */
897 	if (sc->sc_rxmits > 1)
898 		tp->snd_cwnd = 1;
899 
900 #ifdef TCP_OFFLOAD
901 	/*
902 	 * Allow a TOE driver to install its hooks.  Note that we hold the
903 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
904 	 * new connection before the TOE driver has done its thing.
905 	 */
906 	if (ADDED_BY_TOE(sc)) {
907 		struct toedev *tod = sc->sc_tod;
908 
909 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
910 	}
911 #endif
912 	/*
913 	 * Copy and activate timers.
914 	 */
915 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
916 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
917 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
918 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
919 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
920 
921 	TCPSTAT_INC(tcps_accepts);
922 	return (so);
923 
924 abort:
925 	INP_WUNLOCK(inp);
926 abort2:
927 	if (so != NULL)
928 		soabort(so);
929 	return (NULL);
930 }
931 
932 /*
933  * This function gets called when we receive an ACK for a
934  * socket in the LISTEN state.  We look up the connection
935  * in the syncache, and if its there, we pull it out of
936  * the cache and turn it into a full-blown connection in
937  * the SYN-RECEIVED state.
938  *
939  * On syncache_socket() success the newly created socket
940  * has its underlying inp locked.
941  */
942 int
943 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
944     struct socket **lsop, struct mbuf *m)
945 {
946 	struct syncache *sc;
947 	struct syncache_head *sch;
948 	struct syncache scs;
949 	char *s;
950 
951 	/*
952 	 * Global TCP locks are held because we manipulate the PCB lists
953 	 * and create a new socket.
954 	 */
955 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
956 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
957 	    ("%s: can handle only ACK", __func__));
958 
959 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
960 	SCH_LOCK_ASSERT(sch);
961 
962 #ifdef INVARIANTS
963 	/*
964 	 * Test code for syncookies comparing the syncache stored
965 	 * values with the reconstructed values from the cookie.
966 	 */
967 	if (sc != NULL)
968 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
969 #endif
970 
971 	if (sc == NULL) {
972 		/*
973 		 * There is no syncache entry, so see if this ACK is
974 		 * a returning syncookie.  To do this, first:
975 		 *  A. See if this socket has had a syncache entry dropped in
976 		 *     the past.  We don't want to accept a bogus syncookie
977 		 *     if we've never received a SYN.
978 		 *  B. check that the syncookie is valid.  If it is, then
979 		 *     cobble up a fake syncache entry, and return.
980 		 */
981 		if (!V_tcp_syncookies) {
982 			SCH_UNLOCK(sch);
983 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
984 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
985 				    "segment rejected (syncookies disabled)\n",
986 				    s, __func__);
987 			goto failed;
988 		}
989 		bzero(&scs, sizeof(scs));
990 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
991 		SCH_UNLOCK(sch);
992 		if (sc == NULL) {
993 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
994 				log(LOG_DEBUG, "%s; %s: Segment failed "
995 				    "SYNCOOKIE authentication, segment rejected "
996 				    "(probably spoofed)\n", s, __func__);
997 			goto failed;
998 		}
999 	} else {
1000 		/*
1001 		 * Pull out the entry to unlock the bucket row.
1002 		 *
1003 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1004 		 * tcp_state_change().  The tcpcb is not existent at this
1005 		 * moment.  A new one will be allocated via syncache_socket->
1006 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1007 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1008 		 */
1009 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1010 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1011 		sch->sch_length--;
1012 #ifdef TCP_OFFLOAD
1013 		if (ADDED_BY_TOE(sc)) {
1014 			struct toedev *tod = sc->sc_tod;
1015 
1016 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1017 		}
1018 #endif
1019 		SCH_UNLOCK(sch);
1020 	}
1021 
1022 	/*
1023 	 * Segment validation:
1024 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1025 	 */
1026 	if (th->th_ack != sc->sc_iss + 1) {
1027 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1028 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1029 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1030 		goto failed;
1031 	}
1032 
1033 	/*
1034 	 * The SEQ must fall in the window starting at the received
1035 	 * initial receive sequence number + 1 (the SYN).
1036 	 */
1037 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1038 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1039 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1040 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1041 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1042 		goto failed;
1043 	}
1044 
1045 	/*
1046 	 * If timestamps were not negotiated during SYN/ACK they
1047 	 * must not appear on any segment during this session.
1048 	 */
1049 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1050 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1051 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1052 			    "segment rejected\n", s, __func__);
1053 		goto failed;
1054 	}
1055 
1056 	/*
1057 	 * If timestamps were negotiated during SYN/ACK they should
1058 	 * appear on every segment during this session.
1059 	 * XXXAO: This is only informal as there have been unverified
1060 	 * reports of non-compliants stacks.
1061 	 */
1062 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1063 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1064 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1065 			    "no action\n", s, __func__);
1066 			free(s, M_TCPLOG);
1067 			s = NULL;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * If timestamps were negotiated, the reflected timestamp
1073 	 * must be equal to what we actually sent in the SYN|ACK
1074 	 * except in the case of 0. Some boxes are known for sending
1075 	 * broken timestamp replies during the 3whs (and potentially
1076 	 * during the connection also).
1077 	 *
1078 	 * Accept the final ACK of 3whs with reflected timestamp of 0
1079 	 * instead of sending a RST and deleting the syncache entry.
1080 	 */
1081 	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1082 	    to->to_tsecr != sc->sc_ts) {
1083 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1084 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1085 			    "segment rejected\n",
1086 			    s, __func__, to->to_tsecr, sc->sc_ts);
1087 		goto failed;
1088 	}
1089 
1090 	*lsop = syncache_socket(sc, *lsop, m);
1091 
1092 	if (*lsop == NULL)
1093 		TCPSTAT_INC(tcps_sc_aborted);
1094 	else
1095 		TCPSTAT_INC(tcps_sc_completed);
1096 
1097 /* how do we find the inp for the new socket? */
1098 	if (sc != &scs)
1099 		syncache_free(sc);
1100 	return (1);
1101 failed:
1102 	if (sc != NULL && sc != &scs)
1103 		syncache_free(sc);
1104 	if (s != NULL)
1105 		free(s, M_TCPLOG);
1106 	*lsop = NULL;
1107 	return (0);
1108 }
1109 
1110 #ifdef TCP_RFC7413
1111 static void
1112 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1113     uint64_t response_cookie)
1114 {
1115 	struct inpcb *inp;
1116 	struct tcpcb *tp;
1117 	unsigned int *pending_counter;
1118 
1119 	/*
1120 	 * Global TCP locks are held because we manipulate the PCB lists
1121 	 * and create a new socket.
1122 	 */
1123 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1124 
1125 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1126 	*lsop = syncache_socket(sc, *lsop, m);
1127 	if (*lsop == NULL) {
1128 		TCPSTAT_INC(tcps_sc_aborted);
1129 		atomic_subtract_int(pending_counter, 1);
1130 	} else {
1131 		inp = sotoinpcb(*lsop);
1132 		tp = intotcpcb(inp);
1133 		tp->t_flags |= TF_FASTOPEN;
1134 		tp->t_tfo_cookie = response_cookie;
1135 		tp->snd_max = tp->iss;
1136 		tp->snd_nxt = tp->iss;
1137 		tp->t_tfo_pending = pending_counter;
1138 		TCPSTAT_INC(tcps_sc_completed);
1139 	}
1140 }
1141 #endif /* TCP_RFC7413 */
1142 
1143 /*
1144  * Given a LISTEN socket and an inbound SYN request, add
1145  * this to the syn cache, and send back a segment:
1146  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1147  * to the source.
1148  *
1149  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1150  * Doing so would require that we hold onto the data and deliver it
1151  * to the application.  However, if we are the target of a SYN-flood
1152  * DoS attack, an attacker could send data which would eventually
1153  * consume all available buffer space if it were ACKed.  By not ACKing
1154  * the data, we avoid this DoS scenario.
1155  *
1156  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1157  * cookie is processed and a new socket is created.  In this case, any data
1158  * accompanying the SYN will be queued to the socket by tcp_input() and will
1159  * be ACKed either when the application sends response data or the delayed
1160  * ACK timer expires, whichever comes first.
1161  */
1162 int
1163 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1164     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1165     void *todctx)
1166 {
1167 	struct tcpcb *tp;
1168 	struct socket *so;
1169 	struct syncache *sc = NULL;
1170 	struct syncache_head *sch;
1171 	struct mbuf *ipopts = NULL;
1172 	u_int ltflags;
1173 	int win, ip_ttl, ip_tos;
1174 	char *s;
1175 	int rv = 0;
1176 #ifdef INET6
1177 	int autoflowlabel = 0;
1178 #endif
1179 #ifdef MAC
1180 	struct label *maclabel;
1181 #endif
1182 	struct syncache scs;
1183 	struct ucred *cred;
1184 #ifdef TCP_RFC7413
1185 	uint64_t tfo_response_cookie;
1186 	unsigned int *tfo_pending = NULL;
1187 	int tfo_cookie_valid = 0;
1188 	int tfo_response_cookie_valid = 0;
1189 #endif
1190 
1191 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1192 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1193 	    ("%s: unexpected tcp flags", __func__));
1194 
1195 	/*
1196 	 * Combine all so/tp operations very early to drop the INP lock as
1197 	 * soon as possible.
1198 	 */
1199 	so = *lsop;
1200 	tp = sototcpcb(so);
1201 	cred = crhold(so->so_cred);
1202 
1203 #ifdef INET6
1204 	if ((inc->inc_flags & INC_ISIPV6) &&
1205 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1206 		autoflowlabel = 1;
1207 #endif
1208 	ip_ttl = inp->inp_ip_ttl;
1209 	ip_tos = inp->inp_ip_tos;
1210 	win = sbspace(&so->so_rcv);
1211 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1212 
1213 #ifdef TCP_RFC7413
1214 	if (V_tcp_fastopen_enabled && IS_FASTOPEN(tp->t_flags) &&
1215 	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1216 		/*
1217 		 * Limit the number of pending TFO connections to
1218 		 * approximately half of the queue limit.  This prevents TFO
1219 		 * SYN floods from starving the service by filling the
1220 		 * listen queue with bogus TFO connections.
1221 		 */
1222 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1223 		    (so->so_qlimit / 2)) {
1224 			int result;
1225 
1226 			result = tcp_fastopen_check_cookie(inc,
1227 			    to->to_tfo_cookie, to->to_tfo_len,
1228 			    &tfo_response_cookie);
1229 			tfo_cookie_valid = (result > 0);
1230 			tfo_response_cookie_valid = (result >= 0);
1231 		}
1232 
1233 		/*
1234 		 * Remember the TFO pending counter as it will have to be
1235 		 * decremented below if we don't make it to syncache_tfo_expand().
1236 		 */
1237 		tfo_pending = tp->t_tfo_pending;
1238 	}
1239 #endif
1240 
1241 	/* By the time we drop the lock these should no longer be used. */
1242 	so = NULL;
1243 	tp = NULL;
1244 
1245 #ifdef MAC
1246 	if (mac_syncache_init(&maclabel) != 0) {
1247 		INP_WUNLOCK(inp);
1248 		goto done;
1249 	} else
1250 		mac_syncache_create(maclabel, inp);
1251 #endif
1252 #ifdef TCP_RFC7413
1253 	if (!tfo_cookie_valid)
1254 #endif
1255 		INP_WUNLOCK(inp);
1256 
1257 	/*
1258 	 * Remember the IP options, if any.
1259 	 */
1260 #ifdef INET6
1261 	if (!(inc->inc_flags & INC_ISIPV6))
1262 #endif
1263 #ifdef INET
1264 		ipopts = (m) ? ip_srcroute(m) : NULL;
1265 #else
1266 		ipopts = NULL;
1267 #endif
1268 
1269 	/*
1270 	 * See if we already have an entry for this connection.
1271 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1272 	 *
1273 	 * XXX: should the syncache be re-initialized with the contents
1274 	 * of the new SYN here (which may have different options?)
1275 	 *
1276 	 * XXX: We do not check the sequence number to see if this is a
1277 	 * real retransmit or a new connection attempt.  The question is
1278 	 * how to handle such a case; either ignore it as spoofed, or
1279 	 * drop the current entry and create a new one?
1280 	 */
1281 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1282 	SCH_LOCK_ASSERT(sch);
1283 	if (sc != NULL) {
1284 #ifdef TCP_RFC7413
1285 		if (tfo_cookie_valid)
1286 			INP_WUNLOCK(inp);
1287 #endif
1288 		TCPSTAT_INC(tcps_sc_dupsyn);
1289 		if (ipopts) {
1290 			/*
1291 			 * If we were remembering a previous source route,
1292 			 * forget it and use the new one we've been given.
1293 			 */
1294 			if (sc->sc_ipopts)
1295 				(void) m_free(sc->sc_ipopts);
1296 			sc->sc_ipopts = ipopts;
1297 		}
1298 		/*
1299 		 * Update timestamp if present.
1300 		 */
1301 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1302 			sc->sc_tsreflect = to->to_tsval;
1303 		else
1304 			sc->sc_flags &= ~SCF_TIMESTAMP;
1305 #ifdef MAC
1306 		/*
1307 		 * Since we have already unconditionally allocated label
1308 		 * storage, free it up.  The syncache entry will already
1309 		 * have an initialized label we can use.
1310 		 */
1311 		mac_syncache_destroy(&maclabel);
1312 #endif
1313 		/* Retransmit SYN|ACK and reset retransmit count. */
1314 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1315 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1316 			    "resetting timer and retransmitting SYN|ACK\n",
1317 			    s, __func__);
1318 			free(s, M_TCPLOG);
1319 		}
1320 		if (syncache_respond(sc, sch, 1, m) == 0) {
1321 			sc->sc_rxmits = 0;
1322 			syncache_timeout(sc, sch, 1);
1323 			TCPSTAT_INC(tcps_sndacks);
1324 			TCPSTAT_INC(tcps_sndtotal);
1325 		}
1326 		SCH_UNLOCK(sch);
1327 		goto done;
1328 	}
1329 
1330 #ifdef TCP_RFC7413
1331 	if (tfo_cookie_valid) {
1332 		bzero(&scs, sizeof(scs));
1333 		sc = &scs;
1334 		goto skip_alloc;
1335 	}
1336 #endif
1337 
1338 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1339 	if (sc == NULL) {
1340 		/*
1341 		 * The zone allocator couldn't provide more entries.
1342 		 * Treat this as if the cache was full; drop the oldest
1343 		 * entry and insert the new one.
1344 		 */
1345 		TCPSTAT_INC(tcps_sc_zonefail);
1346 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1347 			syncache_drop(sc, sch);
1348 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1349 		if (sc == NULL) {
1350 			if (V_tcp_syncookies) {
1351 				bzero(&scs, sizeof(scs));
1352 				sc = &scs;
1353 			} else {
1354 				SCH_UNLOCK(sch);
1355 				if (ipopts)
1356 					(void) m_free(ipopts);
1357 				goto done;
1358 			}
1359 		}
1360 	}
1361 
1362 #ifdef TCP_RFC7413
1363 skip_alloc:
1364 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1365 		sc->sc_tfo_cookie = &tfo_response_cookie;
1366 #endif
1367 
1368 	/*
1369 	 * Fill in the syncache values.
1370 	 */
1371 #ifdef MAC
1372 	sc->sc_label = maclabel;
1373 #endif
1374 	sc->sc_cred = cred;
1375 	cred = NULL;
1376 	sc->sc_ipopts = ipopts;
1377 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1378 #ifdef INET6
1379 	if (!(inc->inc_flags & INC_ISIPV6))
1380 #endif
1381 	{
1382 		sc->sc_ip_tos = ip_tos;
1383 		sc->sc_ip_ttl = ip_ttl;
1384 	}
1385 #ifdef TCP_OFFLOAD
1386 	sc->sc_tod = tod;
1387 	sc->sc_todctx = todctx;
1388 #endif
1389 	sc->sc_irs = th->th_seq;
1390 	sc->sc_iss = arc4random();
1391 	sc->sc_flags = 0;
1392 	sc->sc_flowlabel = 0;
1393 
1394 	/*
1395 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1396 	 * win was derived from socket earlier in the function.
1397 	 */
1398 	win = imax(win, 0);
1399 	win = imin(win, TCP_MAXWIN);
1400 	sc->sc_wnd = win;
1401 
1402 	if (V_tcp_do_rfc1323) {
1403 		/*
1404 		 * A timestamp received in a SYN makes
1405 		 * it ok to send timestamp requests and replies.
1406 		 */
1407 		if (to->to_flags & TOF_TS) {
1408 			sc->sc_tsreflect = to->to_tsval;
1409 			sc->sc_ts = tcp_ts_getticks();
1410 			sc->sc_flags |= SCF_TIMESTAMP;
1411 		}
1412 		if (to->to_flags & TOF_SCALE) {
1413 			int wscale = 0;
1414 
1415 			/*
1416 			 * Pick the smallest possible scaling factor that
1417 			 * will still allow us to scale up to sb_max, aka
1418 			 * kern.ipc.maxsockbuf.
1419 			 *
1420 			 * We do this because there are broken firewalls that
1421 			 * will corrupt the window scale option, leading to
1422 			 * the other endpoint believing that our advertised
1423 			 * window is unscaled.  At scale factors larger than
1424 			 * 5 the unscaled window will drop below 1500 bytes,
1425 			 * leading to serious problems when traversing these
1426 			 * broken firewalls.
1427 			 *
1428 			 * With the default maxsockbuf of 256K, a scale factor
1429 			 * of 3 will be chosen by this algorithm.  Those who
1430 			 * choose a larger maxsockbuf should watch out
1431 			 * for the compatibility problems mentioned above.
1432 			 *
1433 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1434 			 * or <SYN,ACK>) segment itself is never scaled.
1435 			 */
1436 			while (wscale < TCP_MAX_WINSHIFT &&
1437 			    (TCP_MAXWIN << wscale) < sb_max)
1438 				wscale++;
1439 			sc->sc_requested_r_scale = wscale;
1440 			sc->sc_requested_s_scale = to->to_wscale;
1441 			sc->sc_flags |= SCF_WINSCALE;
1442 		}
1443 	}
1444 #ifdef TCP_SIGNATURE
1445 	/*
1446 	 * If listening socket requested TCP digests, OR received SYN
1447 	 * contains the option, flag this in the syncache so that
1448 	 * syncache_respond() will do the right thing with the SYN+ACK.
1449 	 */
1450 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1451 		sc->sc_flags |= SCF_SIGNATURE;
1452 #endif
1453 	if (to->to_flags & TOF_SACKPERM)
1454 		sc->sc_flags |= SCF_SACK;
1455 	if (to->to_flags & TOF_MSS)
1456 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1457 	if (ltflags & TF_NOOPT)
1458 		sc->sc_flags |= SCF_NOOPT;
1459 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1460 		sc->sc_flags |= SCF_ECN;
1461 
1462 	if (V_tcp_syncookies)
1463 		sc->sc_iss = syncookie_generate(sch, sc);
1464 #ifdef INET6
1465 	if (autoflowlabel) {
1466 		if (V_tcp_syncookies)
1467 			sc->sc_flowlabel = sc->sc_iss;
1468 		else
1469 			sc->sc_flowlabel = ip6_randomflowlabel();
1470 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1471 	}
1472 #endif
1473 	SCH_UNLOCK(sch);
1474 
1475 #ifdef TCP_RFC7413
1476 	if (tfo_cookie_valid) {
1477 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1478 		/* INP_WUNLOCK(inp) will be performed by the caller */
1479 		rv = 1;
1480 		goto tfo_expanded;
1481 	}
1482 #endif
1483 
1484 	/*
1485 	 * Do a standard 3-way handshake.
1486 	 */
1487 	if (syncache_respond(sc, sch, 0, m) == 0) {
1488 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1489 			syncache_free(sc);
1490 		else if (sc != &scs)
1491 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1492 		TCPSTAT_INC(tcps_sndacks);
1493 		TCPSTAT_INC(tcps_sndtotal);
1494 	} else {
1495 		if (sc != &scs)
1496 			syncache_free(sc);
1497 		TCPSTAT_INC(tcps_sc_dropped);
1498 	}
1499 
1500 done:
1501 	if (m) {
1502 		*lsop = NULL;
1503 		m_freem(m);
1504 	}
1505 #ifdef TCP_RFC7413
1506 	/*
1507 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1508 	 * result in a new socket was processed and the associated pending
1509 	 * counter has not yet been decremented.  All such TFO processing paths
1510 	 * transit this point.
1511 	 */
1512 	if (tfo_pending != NULL)
1513 		tcp_fastopen_decrement_counter(tfo_pending);
1514 
1515 tfo_expanded:
1516 #endif
1517 	if (cred != NULL)
1518 		crfree(cred);
1519 #ifdef MAC
1520 	if (sc == &scs)
1521 		mac_syncache_destroy(&maclabel);
1522 #endif
1523 	return (rv);
1524 }
1525 
1526 /*
1527  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1528  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1529  */
1530 static int
1531 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1532     const struct mbuf *m0)
1533 {
1534 	struct ip *ip = NULL;
1535 	struct mbuf *m;
1536 	struct tcphdr *th = NULL;
1537 	int optlen, error = 0;	/* Make compiler happy */
1538 	u_int16_t hlen, tlen, mssopt;
1539 	struct tcpopt to;
1540 #ifdef INET6
1541 	struct ip6_hdr *ip6 = NULL;
1542 #endif
1543 #ifdef TCP_SIGNATURE
1544 	struct secasvar *sav;
1545 #endif
1546 
1547 	hlen =
1548 #ifdef INET6
1549 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1550 #endif
1551 		sizeof(struct ip);
1552 	tlen = hlen + sizeof(struct tcphdr);
1553 
1554 	/* Determine MSS we advertize to other end of connection. */
1555 	mssopt = tcp_mssopt(&sc->sc_inc);
1556 	if (sc->sc_peer_mss)
1557 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1558 
1559 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1560 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1561 	    ("syncache: mbuf too small"));
1562 
1563 	/* Create the IP+TCP header from scratch. */
1564 	m = m_gethdr(M_NOWAIT, MT_DATA);
1565 	if (m == NULL)
1566 		return (ENOBUFS);
1567 #ifdef MAC
1568 	mac_syncache_create_mbuf(sc->sc_label, m);
1569 #endif
1570 	m->m_data += max_linkhdr;
1571 	m->m_len = tlen;
1572 	m->m_pkthdr.len = tlen;
1573 	m->m_pkthdr.rcvif = NULL;
1574 
1575 #ifdef INET6
1576 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1577 		ip6 = mtod(m, struct ip6_hdr *);
1578 		ip6->ip6_vfc = IPV6_VERSION;
1579 		ip6->ip6_nxt = IPPROTO_TCP;
1580 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1581 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1582 		ip6->ip6_plen = htons(tlen - hlen);
1583 		/* ip6_hlim is set after checksum */
1584 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1585 		ip6->ip6_flow |= sc->sc_flowlabel;
1586 
1587 		th = (struct tcphdr *)(ip6 + 1);
1588 	}
1589 #endif
1590 #if defined(INET6) && defined(INET)
1591 	else
1592 #endif
1593 #ifdef INET
1594 	{
1595 		ip = mtod(m, struct ip *);
1596 		ip->ip_v = IPVERSION;
1597 		ip->ip_hl = sizeof(struct ip) >> 2;
1598 		ip->ip_len = htons(tlen);
1599 		ip->ip_id = 0;
1600 		ip->ip_off = 0;
1601 		ip->ip_sum = 0;
1602 		ip->ip_p = IPPROTO_TCP;
1603 		ip->ip_src = sc->sc_inc.inc_laddr;
1604 		ip->ip_dst = sc->sc_inc.inc_faddr;
1605 		ip->ip_ttl = sc->sc_ip_ttl;
1606 		ip->ip_tos = sc->sc_ip_tos;
1607 
1608 		/*
1609 		 * See if we should do MTU discovery.  Route lookups are
1610 		 * expensive, so we will only unset the DF bit if:
1611 		 *
1612 		 *	1) path_mtu_discovery is disabled
1613 		 *	2) the SCF_UNREACH flag has been set
1614 		 */
1615 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1616 		       ip->ip_off |= htons(IP_DF);
1617 
1618 		th = (struct tcphdr *)(ip + 1);
1619 	}
1620 #endif /* INET */
1621 	th->th_sport = sc->sc_inc.inc_lport;
1622 	th->th_dport = sc->sc_inc.inc_fport;
1623 
1624 	th->th_seq = htonl(sc->sc_iss);
1625 	th->th_ack = htonl(sc->sc_irs + 1);
1626 	th->th_off = sizeof(struct tcphdr) >> 2;
1627 	th->th_x2 = 0;
1628 	th->th_flags = TH_SYN|TH_ACK;
1629 	th->th_win = htons(sc->sc_wnd);
1630 	th->th_urp = 0;
1631 
1632 	if (sc->sc_flags & SCF_ECN) {
1633 		th->th_flags |= TH_ECE;
1634 		TCPSTAT_INC(tcps_ecn_shs);
1635 	}
1636 
1637 	/* Tack on the TCP options. */
1638 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1639 		to.to_flags = 0;
1640 
1641 		to.to_mss = mssopt;
1642 		to.to_flags = TOF_MSS;
1643 		if (sc->sc_flags & SCF_WINSCALE) {
1644 			to.to_wscale = sc->sc_requested_r_scale;
1645 			to.to_flags |= TOF_SCALE;
1646 		}
1647 		if (sc->sc_flags & SCF_TIMESTAMP) {
1648 			/* Virgin timestamp or TCP cookie enhanced one. */
1649 			to.to_tsval = sc->sc_ts;
1650 			to.to_tsecr = sc->sc_tsreflect;
1651 			to.to_flags |= TOF_TS;
1652 		}
1653 		if (sc->sc_flags & SCF_SACK)
1654 			to.to_flags |= TOF_SACKPERM;
1655 #ifdef TCP_SIGNATURE
1656 		sav = NULL;
1657 		if (sc->sc_flags & SCF_SIGNATURE) {
1658 			sav = tcp_get_sav(m, IPSEC_DIR_OUTBOUND);
1659 			if (sav != NULL)
1660 				to.to_flags |= TOF_SIGNATURE;
1661 			else {
1662 
1663 				/*
1664 				 * We've got SCF_SIGNATURE flag
1665 				 * inherited from listening socket,
1666 				 * but no SADB key for given source
1667 				 * address. Assume signature is not
1668 				 * required and remove signature flag
1669 				 * instead of silently dropping
1670 				 * connection.
1671 				 */
1672 				if (locked == 0)
1673 					SCH_LOCK(sch);
1674 				sc->sc_flags &= ~SCF_SIGNATURE;
1675 				if (locked == 0)
1676 					SCH_UNLOCK(sch);
1677 			}
1678 		}
1679 #endif
1680 
1681 #ifdef TCP_RFC7413
1682 		if (sc->sc_tfo_cookie) {
1683 			to.to_flags |= TOF_FASTOPEN;
1684 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1685 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1686 			/* don't send cookie again when retransmitting response */
1687 			sc->sc_tfo_cookie = NULL;
1688 		}
1689 #endif
1690 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1691 
1692 		/* Adjust headers by option size. */
1693 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1694 		m->m_len += optlen;
1695 		m->m_pkthdr.len += optlen;
1696 
1697 #ifdef TCP_SIGNATURE
1698 		if (sc->sc_flags & SCF_SIGNATURE)
1699 			tcp_signature_do_compute(m, 0, optlen,
1700 			    to.to_signature, sav);
1701 #endif
1702 #ifdef INET6
1703 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1704 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1705 		else
1706 #endif
1707 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1708 	} else
1709 		optlen = 0;
1710 
1711 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1712 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1713 	/*
1714 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1715 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1716 	 * to SYN|ACK due to lack of inp here.
1717 	 */
1718 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1719 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1720 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1721 	}
1722 #ifdef INET6
1723 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1724 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1725 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1726 		    IPPROTO_TCP, 0);
1727 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1728 #ifdef TCP_OFFLOAD
1729 		if (ADDED_BY_TOE(sc)) {
1730 			struct toedev *tod = sc->sc_tod;
1731 
1732 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1733 
1734 			return (error);
1735 		}
1736 #endif
1737 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1738 	}
1739 #endif
1740 #if defined(INET6) && defined(INET)
1741 	else
1742 #endif
1743 #ifdef INET
1744 	{
1745 		m->m_pkthdr.csum_flags = CSUM_TCP;
1746 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1747 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1748 #ifdef TCP_OFFLOAD
1749 		if (ADDED_BY_TOE(sc)) {
1750 			struct toedev *tod = sc->sc_tod;
1751 
1752 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1753 
1754 			return (error);
1755 		}
1756 #endif
1757 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1758 	}
1759 #endif
1760 	return (error);
1761 }
1762 
1763 /*
1764  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1765  * that exceed the capacity of the syncache by avoiding the storage of any
1766  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1767  * attacks where the attacker does not have access to our responses.
1768  *
1769  * Syncookies encode and include all necessary information about the
1770  * connection setup within the SYN|ACK that we send back.  That way we
1771  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1772  * (if ever).  Normally the syncache and syncookies are running in parallel
1773  * with the latter taking over when the former is exhausted.  When matching
1774  * syncache entry is found the syncookie is ignored.
1775  *
1776  * The only reliable information persisting the 3WHS is our initial sequence
1777  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1778  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1779  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1780  * returns and signifies a legitimate connection if it matches the ACK.
1781  *
1782  * The available space of 32 bits to store the hash and to encode the SYN
1783  * option information is very tight and we should have at least 24 bits for
1784  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1785  *
1786  * SYN option information we have to encode to fully restore a connection:
1787  * MSS: is imporant to chose an optimal segment size to avoid IP level
1788  *   fragmentation along the path.  The common MSS values can be encoded
1789  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1790  *   in the table leading to a slight increase in packetization overhead.
1791  * WSCALE: is necessary to allow large windows to be used for high delay-
1792  *   bandwidth product links.  Not scaling the window when it was initially
1793  *   negotiated is bad for performance as lack of scaling further decreases
1794  *   the apparent available send window.  We only need to encode the WSCALE
1795  *   we received from the remote end.  Our end can be recalculated at any
1796  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1797  *   Uncommon values are captured by the next lower value in the table
1798  *   making us under-estimate the available window size halving our
1799  *   theoretically possible maximum throughput for that connection.
1800  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1801  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1802  *   that are included in all segments on a connection.  We enable them when
1803  *   the ACK has them.
1804  *
1805  * Security of syncookies and attack vectors:
1806  *
1807  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1808  * together with the gloabl secret to make it unique per connection attempt.
1809  * Thus any change of any of those parameters results in a different MAC output
1810  * in an unpredictable way unless a collision is encountered.  24 bits of the
1811  * MAC are embedded into the ISS.
1812  *
1813  * To prevent replay attacks two rotating global secrets are updated with a
1814  * new random value every 15 seconds.  The life-time of a syncookie is thus
1815  * 15-30 seconds.
1816  *
1817  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1818  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1819  * text attack by varying and testing the all parameters under his control.
1820  * The strength depends on the size and randomness of the secret, and the
1821  * cryptographic security of the MAC function.  Due to the constant updating
1822  * of the secret the attacker has at most 29.999 seconds to find the secret
1823  * and launch spoofed connections.  After that he has to start all over again.
1824  *
1825  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1826  * size an average of 4,823 attempts are required for a 50% chance of success
1827  * to spoof a single syncookie (birthday collision paradox).  However the
1828  * attacker is blind and doesn't know if one of his attempts succeeded unless
1829  * he has a side channel to interfere success from.  A single connection setup
1830  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1831  * This many attempts are required for each one blind spoofed connection.  For
1832  * every additional spoofed connection he has to launch another N attempts.
1833  * Thus for a sustained rate 100 spoofed connections per second approximately
1834  * 1,800,000 packets per second would have to be sent.
1835  *
1836  * NB: The MAC function should be fast so that it doesn't become a CPU
1837  * exhaustion attack vector itself.
1838  *
1839  * References:
1840  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1841  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1842  *   http://cr.yp.to/syncookies.html    (overview)
1843  *   http://cr.yp.to/syncookies/archive (details)
1844  *
1845  *
1846  * Schematic construction of a syncookie enabled Initial Sequence Number:
1847  *  0        1         2         3
1848  *  12345678901234567890123456789012
1849  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1850  *
1851  *  x 24 MAC (truncated)
1852  *  W  3 Send Window Scale index
1853  *  M  3 MSS index
1854  *  S  1 SACK permitted
1855  *  P  1 Odd/even secret
1856  */
1857 
1858 /*
1859  * Distribution and probability of certain MSS values.  Those in between are
1860  * rounded down to the next lower one.
1861  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1862  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1863  */
1864 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1865 
1866 /*
1867  * Distribution and probability of certain WSCALE values.  We have to map the
1868  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1869  * bits based on prevalence of certain values.  Where we don't have an exact
1870  * match for are rounded down to the next lower one letting us under-estimate
1871  * the true available window.  At the moment this would happen only for the
1872  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1873  * and window size).  The absence of the WSCALE option (no scaling in either
1874  * direction) is encoded with index zero.
1875  * [WSCALE values histograms, Allman, 2012]
1876  *                            X 10 10 35  5  6 14 10%   by host
1877  *                            X 11  4  5  5 18 49  3%   by connections
1878  */
1879 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1880 
1881 /*
1882  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1883  * and good cryptographic properties.
1884  */
1885 static uint32_t
1886 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1887     uint8_t *secbits, uintptr_t secmod)
1888 {
1889 	SIPHASH_CTX ctx;
1890 	uint32_t siphash[2];
1891 
1892 	SipHash24_Init(&ctx);
1893 	SipHash_SetKey(&ctx, secbits);
1894 	switch (inc->inc_flags & INC_ISIPV6) {
1895 #ifdef INET
1896 	case 0:
1897 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1898 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1899 		break;
1900 #endif
1901 #ifdef INET6
1902 	case INC_ISIPV6:
1903 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1904 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1905 		break;
1906 #endif
1907 	}
1908 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1909 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1910 	SipHash_Update(&ctx, &irs, sizeof(irs));
1911 	SipHash_Update(&ctx, &flags, sizeof(flags));
1912 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1913 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1914 
1915 	return (siphash[0] ^ siphash[1]);
1916 }
1917 
1918 static tcp_seq
1919 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1920 {
1921 	u_int i, mss, secbit, wscale;
1922 	uint32_t iss, hash;
1923 	uint8_t *secbits;
1924 	union syncookie cookie;
1925 
1926 	SCH_LOCK_ASSERT(sch);
1927 
1928 	cookie.cookie = 0;
1929 
1930 	/* Map our computed MSS into the 3-bit index. */
1931 	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1932 	for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > mss && i > 0;
1933 	     i--)
1934 		;
1935 	cookie.flags.mss_idx = i;
1936 
1937 	/*
1938 	 * Map the send window scale into the 3-bit index but only if
1939 	 * the wscale option was received.
1940 	 */
1941 	if (sc->sc_flags & SCF_WINSCALE) {
1942 		wscale = sc->sc_requested_s_scale;
1943 		for (i = nitems(tcp_sc_wstab) - 1;
1944 		    tcp_sc_wstab[i] > wscale && i > 0;
1945 		     i--)
1946 			;
1947 		cookie.flags.wscale_idx = i;
1948 	}
1949 
1950 	/* Can we do SACK? */
1951 	if (sc->sc_flags & SCF_SACK)
1952 		cookie.flags.sack_ok = 1;
1953 
1954 	/* Which of the two secrets to use. */
1955 	secbit = sch->sch_sc->secret.oddeven & 0x1;
1956 	cookie.flags.odd_even = secbit;
1957 
1958 	secbits = sch->sch_sc->secret.key[secbit];
1959 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1960 	    (uintptr_t)sch);
1961 
1962 	/*
1963 	 * Put the flags into the hash and XOR them to get better ISS number
1964 	 * variance.  This doesn't enhance the cryptographic strength and is
1965 	 * done to prevent the 8 cookie bits from showing up directly on the
1966 	 * wire.
1967 	 */
1968 	iss = hash & ~0xff;
1969 	iss |= cookie.cookie ^ (hash >> 24);
1970 
1971 	/* Randomize the timestamp. */
1972 	if (sc->sc_flags & SCF_TIMESTAMP) {
1973 		sc->sc_ts = arc4random();
1974 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1975 	}
1976 
1977 	TCPSTAT_INC(tcps_sc_sendcookie);
1978 	return (iss);
1979 }
1980 
1981 static struct syncache *
1982 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1983     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1984     struct socket *lso)
1985 {
1986 	uint32_t hash;
1987 	uint8_t *secbits;
1988 	tcp_seq ack, seq;
1989 	int wnd, wscale = 0;
1990 	union syncookie cookie;
1991 
1992 	SCH_LOCK_ASSERT(sch);
1993 
1994 	/*
1995 	 * Pull information out of SYN-ACK/ACK and revert sequence number
1996 	 * advances.
1997 	 */
1998 	ack = th->th_ack - 1;
1999 	seq = th->th_seq - 1;
2000 
2001 	/*
2002 	 * Unpack the flags containing enough information to restore the
2003 	 * connection.
2004 	 */
2005 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2006 
2007 	/* Which of the two secrets to use. */
2008 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2009 
2010 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2011 
2012 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2013 	if ((ack & ~0xff) != (hash & ~0xff))
2014 		return (NULL);
2015 
2016 	/* Fill in the syncache values. */
2017 	sc->sc_flags = 0;
2018 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2019 	sc->sc_ipopts = NULL;
2020 
2021 	sc->sc_irs = seq;
2022 	sc->sc_iss = ack;
2023 
2024 	switch (inc->inc_flags & INC_ISIPV6) {
2025 #ifdef INET
2026 	case 0:
2027 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2028 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2029 		break;
2030 #endif
2031 #ifdef INET6
2032 	case INC_ISIPV6:
2033 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2034 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2035 		break;
2036 #endif
2037 	}
2038 
2039 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2040 
2041 	/* We can simply recompute receive window scale we sent earlier. */
2042 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2043 		wscale++;
2044 
2045 	/* Only use wscale if it was enabled in the orignal SYN. */
2046 	if (cookie.flags.wscale_idx > 0) {
2047 		sc->sc_requested_r_scale = wscale;
2048 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2049 		sc->sc_flags |= SCF_WINSCALE;
2050 	}
2051 
2052 	wnd = sbspace(&lso->so_rcv);
2053 	wnd = imax(wnd, 0);
2054 	wnd = imin(wnd, TCP_MAXWIN);
2055 	sc->sc_wnd = wnd;
2056 
2057 	if (cookie.flags.sack_ok)
2058 		sc->sc_flags |= SCF_SACK;
2059 
2060 	if (to->to_flags & TOF_TS) {
2061 		sc->sc_flags |= SCF_TIMESTAMP;
2062 		sc->sc_tsreflect = to->to_tsval;
2063 		sc->sc_ts = to->to_tsecr;
2064 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2065 	}
2066 
2067 	if (to->to_flags & TOF_SIGNATURE)
2068 		sc->sc_flags |= SCF_SIGNATURE;
2069 
2070 	sc->sc_rxmits = 0;
2071 
2072 	TCPSTAT_INC(tcps_sc_recvcookie);
2073 	return (sc);
2074 }
2075 
2076 #ifdef INVARIANTS
2077 static int
2078 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2079     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2080     struct socket *lso)
2081 {
2082 	struct syncache scs, *scx;
2083 	char *s;
2084 
2085 	bzero(&scs, sizeof(scs));
2086 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2087 
2088 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2089 		return (0);
2090 
2091 	if (scx != NULL) {
2092 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2093 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2094 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2095 
2096 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2097 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2098 			    s, __func__, sc->sc_requested_r_scale,
2099 			    scx->sc_requested_r_scale);
2100 
2101 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2102 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2103 			    s, __func__, sc->sc_requested_s_scale,
2104 			    scx->sc_requested_s_scale);
2105 
2106 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2107 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2108 	}
2109 
2110 	if (s != NULL)
2111 		free(s, M_TCPLOG);
2112 	return (0);
2113 }
2114 #endif /* INVARIANTS */
2115 
2116 static void
2117 syncookie_reseed(void *arg)
2118 {
2119 	struct tcp_syncache *sc = arg;
2120 	uint8_t *secbits;
2121 	int secbit;
2122 
2123 	/*
2124 	 * Reseeding the secret doesn't have to be protected by a lock.
2125 	 * It only must be ensured that the new random values are visible
2126 	 * to all CPUs in a SMP environment.  The atomic with release
2127 	 * semantics ensures that.
2128 	 */
2129 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2130 	secbits = sc->secret.key[secbit];
2131 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2132 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2133 
2134 	/* Reschedule ourself. */
2135 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2136 }
2137 
2138 /*
2139  * Exports the syncache entries to userland so that netstat can display
2140  * them alongside the other sockets.  This function is intended to be
2141  * called only from tcp_pcblist.
2142  *
2143  * Due to concurrency on an active system, the number of pcbs exported
2144  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2145  * amount of space the caller allocated for this function to use.
2146  */
2147 int
2148 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2149 {
2150 	struct xtcpcb xt;
2151 	struct syncache *sc;
2152 	struct syncache_head *sch;
2153 	int count, error, i;
2154 
2155 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2156 		sch = &V_tcp_syncache.hashbase[i];
2157 		SCH_LOCK(sch);
2158 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2159 			if (count >= max_pcbs) {
2160 				SCH_UNLOCK(sch);
2161 				goto exit;
2162 			}
2163 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2164 				continue;
2165 			bzero(&xt, sizeof(xt));
2166 			xt.xt_len = sizeof(xt);
2167 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2168 				xt.xt_inp.inp_vflag = INP_IPV6;
2169 			else
2170 				xt.xt_inp.inp_vflag = INP_IPV4;
2171 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2172 			xt.xt_tp.t_inpcb = &xt.xt_inp;
2173 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2174 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2175 			xt.xt_socket.xso_len = sizeof (struct xsocket);
2176 			xt.xt_socket.so_type = SOCK_STREAM;
2177 			xt.xt_socket.so_state = SS_ISCONNECTING;
2178 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2179 			if (error) {
2180 				SCH_UNLOCK(sch);
2181 				goto exit;
2182 			}
2183 			count++;
2184 		}
2185 		SCH_UNLOCK(sch);
2186 	}
2187 exit:
2188 	*pcbs_exported = count;
2189 	return error;
2190 }
2191