xref: /freebsd/sys/netinet/tcp_syncache.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/ip_options.h>
79 #ifdef INET6
80 #include <netinet/ip6.h>
81 #include <netinet/icmp6.h>
82 #include <netinet6/nd6.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/in6_pcb.h>
85 #endif
86 #include <netinet/tcp.h>
87 #include <netinet/tcp_fastopen.h>
88 #include <netinet/tcp_fsm.h>
89 #include <netinet/tcp_seq.h>
90 #include <netinet/tcp_timer.h>
91 #include <netinet/tcp_var.h>
92 #include <netinet/tcp_syncache.h>
93 #ifdef INET6
94 #include <netinet6/tcp6_var.h>
95 #endif
96 #ifdef TCP_OFFLOAD
97 #include <netinet/toecore.h>
98 #endif
99 
100 #include <netipsec/ipsec_support.h>
101 
102 #include <machine/in_cksum.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
107 #define	V_tcp_syncookies		VNET(tcp_syncookies)
108 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookies), 0,
110     "Use TCP SYN cookies if the syncache overflows");
111 
112 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
113 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
115     &VNET_NAME(tcp_syncookiesonly), 0,
116     "Use only TCP SYN cookies");
117 
118 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
119 #define V_functions_inherit_listen_socket_stack \
120     VNET(functions_inherit_listen_socket_stack)
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
122     CTLFLAG_VNET | CTLFLAG_RW,
123     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
124     "Inherit listen socket's stack");
125 
126 #ifdef TCP_OFFLOAD
127 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
128 #endif
129 
130 static void	 syncache_drop(struct syncache *, struct syncache_head *);
131 static void	 syncache_free(struct syncache *);
132 static void	 syncache_insert(struct syncache *, struct syncache_head *);
133 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	syncache_pause(struct in_conninfo *);
148 static void	syncache_unpause(void *);
149 static void	 syncookie_reseed(void *);
150 #ifdef INVARIANTS
151 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
152 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
153 		    struct socket *lso);
154 #endif
155 
156 /*
157  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
158  * 3 retransmits corresponds to a timeout with default values of
159  * tcp_rexmit_initial * (             1 +
160  *                       tcp_backoff[1] +
161  *                       tcp_backoff[2] +
162  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
163  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
164  * the odds are that the user has given up attempting to connect by then.
165  */
166 #define SYNCACHE_MAXREXMTS		3
167 
168 /* Arbitrary values */
169 #define TCP_SYNCACHE_HASHSIZE		512
170 #define TCP_SYNCACHE_BUCKETLIMIT	30
171 
172 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
173 #define	V_tcp_syncache			VNET(tcp_syncache)
174 
175 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
176     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
177     "TCP SYN cache");
178 
179 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
180     &VNET_NAME(tcp_syncache.bucket_limit), 0,
181     "Per-bucket hash limit for syncache");
182 
183 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
184     &VNET_NAME(tcp_syncache.cache_limit), 0,
185     "Overall entry limit for syncache");
186 
187 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
188     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
189 
190 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
191     &VNET_NAME(tcp_syncache.hashsize), 0,
192     "Size of TCP syncache hashtable");
193 
194 static int
195 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
196 {
197 	int error;
198 	u_int new;
199 
200 	new = V_tcp_syncache.rexmt_limit;
201 	error = sysctl_handle_int(oidp, &new, 0, req);
202 	if ((error == 0) && (req->newptr != NULL)) {
203 		if (new > TCP_MAXRXTSHIFT)
204 			error = EINVAL;
205 		else
206 			V_tcp_syncache.rexmt_limit = new;
207 	}
208 	return (error);
209 }
210 
211 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
212     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
213     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
214     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
215     "Limit on SYN/ACK retransmissions");
216 
217 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
218 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
219     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
220     "Send reset on socket allocation failure");
221 
222 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
223 
224 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
225 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
226 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
227 
228 /*
229  * Requires the syncache entry to be already removed from the bucket list.
230  */
231 static void
232 syncache_free(struct syncache *sc)
233 {
234 
235 	if (sc->sc_ipopts)
236 		(void) m_free(sc->sc_ipopts);
237 	if (sc->sc_cred)
238 		crfree(sc->sc_cred);
239 #ifdef MAC
240 	mac_syncache_destroy(&sc->sc_label);
241 #endif
242 
243 	uma_zfree(V_tcp_syncache.zone, sc);
244 }
245 
246 void
247 syncache_init(void)
248 {
249 	int i;
250 
251 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
252 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
253 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
254 	V_tcp_syncache.hash_secret = arc4random();
255 
256 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
257 	    &V_tcp_syncache.hashsize);
258 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
259 	    &V_tcp_syncache.bucket_limit);
260 	if (!powerof2(V_tcp_syncache.hashsize) ||
261 	    V_tcp_syncache.hashsize == 0) {
262 		printf("WARNING: syncache hash size is not a power of 2.\n");
263 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
264 	}
265 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
266 
267 	/* Set limits. */
268 	V_tcp_syncache.cache_limit =
269 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
270 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
271 	    &V_tcp_syncache.cache_limit);
272 
273 	/* Allocate the hash table. */
274 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
275 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
276 
277 #ifdef VIMAGE
278 	V_tcp_syncache.vnet = curvnet;
279 #endif
280 
281 	/* Initialize the hash buckets. */
282 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
283 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
284 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
285 			 NULL, MTX_DEF);
286 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
287 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
288 		V_tcp_syncache.hashbase[i].sch_length = 0;
289 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
290 		V_tcp_syncache.hashbase[i].sch_last_overflow =
291 		    -(SYNCOOKIE_LIFETIME + 1);
292 	}
293 
294 	/* Create the syncache entry zone. */
295 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
296 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
297 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
298 	    V_tcp_syncache.cache_limit);
299 
300 	/* Start the SYN cookie reseeder callout. */
301 	callout_init(&V_tcp_syncache.secret.reseed, 1);
302 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
303 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
304 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
305 	    syncookie_reseed, &V_tcp_syncache);
306 
307 	/* Initialize the pause machinery. */
308 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
309 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
310 	    0);
311 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
312 	V_tcp_syncache.pause_backoff = 0;
313 	V_tcp_syncache.paused = false;
314 }
315 
316 #ifdef VIMAGE
317 void
318 syncache_destroy(void)
319 {
320 	struct syncache_head *sch;
321 	struct syncache *sc, *nsc;
322 	int i;
323 
324 	/*
325 	 * Stop the re-seed timer before freeing resources.  No need to
326 	 * possibly schedule it another time.
327 	 */
328 	callout_drain(&V_tcp_syncache.secret.reseed);
329 
330 	/* Stop the SYN cache pause callout. */
331 	mtx_lock(&V_tcp_syncache.pause_mtx);
332 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
333 		mtx_unlock(&V_tcp_syncache.pause_mtx);
334 		callout_drain(&V_tcp_syncache.pause_co);
335 	} else
336 		mtx_unlock(&V_tcp_syncache.pause_mtx);
337 
338 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
339 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
340 		sch = &V_tcp_syncache.hashbase[i];
341 		callout_drain(&sch->sch_timer);
342 
343 		SCH_LOCK(sch);
344 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
345 			syncache_drop(sc, sch);
346 		SCH_UNLOCK(sch);
347 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
348 		    ("%s: sch->sch_bucket not empty", __func__));
349 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
350 		    __func__, sch->sch_length));
351 		mtx_destroy(&sch->sch_mtx);
352 	}
353 
354 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
355 	    ("%s: cache_count not 0", __func__));
356 
357 	/* Free the allocated global resources. */
358 	uma_zdestroy(V_tcp_syncache.zone);
359 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
360 	mtx_destroy(&V_tcp_syncache.pause_mtx);
361 }
362 #endif
363 
364 /*
365  * Inserts a syncache entry into the specified bucket row.
366  * Locks and unlocks the syncache_head autonomously.
367  */
368 static void
369 syncache_insert(struct syncache *sc, struct syncache_head *sch)
370 {
371 	struct syncache *sc2;
372 
373 	SCH_LOCK(sch);
374 
375 	/*
376 	 * Make sure that we don't overflow the per-bucket limit.
377 	 * If the bucket is full, toss the oldest element.
378 	 */
379 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
380 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
381 			("sch->sch_length incorrect"));
382 		syncache_pause(&sc->sc_inc);
383 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
384 		sch->sch_last_overflow = time_uptime;
385 		syncache_drop(sc2, sch);
386 	}
387 
388 	/* Put it into the bucket. */
389 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
390 	sch->sch_length++;
391 
392 #ifdef TCP_OFFLOAD
393 	if (ADDED_BY_TOE(sc)) {
394 		struct toedev *tod = sc->sc_tod;
395 
396 		tod->tod_syncache_added(tod, sc->sc_todctx);
397 	}
398 #endif
399 
400 	/* Reinitialize the bucket row's timer. */
401 	if (sch->sch_length == 1)
402 		sch->sch_nextc = ticks + INT_MAX;
403 	syncache_timeout(sc, sch, 1);
404 
405 	SCH_UNLOCK(sch);
406 
407 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
408 	TCPSTAT_INC(tcps_sc_added);
409 }
410 
411 /*
412  * Remove and free entry from syncache bucket row.
413  * Expects locked syncache head.
414  */
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
417 {
418 
419 	SCH_LOCK_ASSERT(sch);
420 
421 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
422 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
423 	sch->sch_length--;
424 
425 #ifdef TCP_OFFLOAD
426 	if (ADDED_BY_TOE(sc)) {
427 		struct toedev *tod = sc->sc_tod;
428 
429 		tod->tod_syncache_removed(tod, sc->sc_todctx);
430 	}
431 #endif
432 
433 	syncache_free(sc);
434 }
435 
436 /*
437  * Engage/reengage time on bucket row.
438  */
439 static void
440 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
441 {
442 	int rexmt;
443 
444 	if (sc->sc_rxmits == 0)
445 		rexmt = tcp_rexmit_initial;
446 	else
447 		TCPT_RANGESET(rexmt,
448 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
449 		    tcp_rexmit_min, TCPTV_REXMTMAX);
450 	sc->sc_rxttime = ticks + rexmt;
451 	sc->sc_rxmits++;
452 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
453 		sch->sch_nextc = sc->sc_rxttime;
454 		if (docallout)
455 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
456 			    syncache_timer, (void *)sch);
457 	}
458 }
459 
460 /*
461  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
462  * If we have retransmitted an entry the maximum number of times, expire it.
463  * One separate timer for each bucket row.
464  */
465 static void
466 syncache_timer(void *xsch)
467 {
468 	struct syncache_head *sch = (struct syncache_head *)xsch;
469 	struct syncache *sc, *nsc;
470 	struct epoch_tracker et;
471 	int tick = ticks;
472 	char *s;
473 	bool paused;
474 
475 	CURVNET_SET(sch->sch_sc->vnet);
476 
477 	/* NB: syncache_head has already been locked by the callout. */
478 	SCH_LOCK_ASSERT(sch);
479 
480 	/*
481 	 * In the following cycle we may remove some entries and/or
482 	 * advance some timeouts, so re-initialize the bucket timer.
483 	 */
484 	sch->sch_nextc = tick + INT_MAX;
485 
486 	/*
487 	 * If we have paused processing, unconditionally remove
488 	 * all syncache entries.
489 	 */
490 	mtx_lock(&V_tcp_syncache.pause_mtx);
491 	paused = V_tcp_syncache.paused;
492 	mtx_unlock(&V_tcp_syncache.pause_mtx);
493 
494 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
495 		if (paused) {
496 			syncache_drop(sc, sch);
497 			continue;
498 		}
499 		/*
500 		 * We do not check if the listen socket still exists
501 		 * and accept the case where the listen socket may be
502 		 * gone by the time we resend the SYN/ACK.  We do
503 		 * not expect this to happens often. If it does,
504 		 * then the RST will be sent by the time the remote
505 		 * host does the SYN/ACK->ACK.
506 		 */
507 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
508 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
509 				sch->sch_nextc = sc->sc_rxttime;
510 			continue;
511 		}
512 		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
513 			sc->sc_flags &= ~SCF_ECN;
514 		}
515 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
516 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
517 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
518 				    "giving up and removing syncache entry\n",
519 				    s, __func__);
520 				free(s, M_TCPLOG);
521 			}
522 			syncache_drop(sc, sch);
523 			TCPSTAT_INC(tcps_sc_stale);
524 			continue;
525 		}
526 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
527 			log(LOG_DEBUG, "%s; %s: Response timeout, "
528 			    "retransmitting (%u) SYN|ACK\n",
529 			    s, __func__, sc->sc_rxmits);
530 			free(s, M_TCPLOG);
531 		}
532 
533 		NET_EPOCH_ENTER(et);
534 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
535 		NET_EPOCH_EXIT(et);
536 		TCPSTAT_INC(tcps_sc_retransmitted);
537 		syncache_timeout(sc, sch, 0);
538 	}
539 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
540 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
541 			syncache_timer, (void *)(sch));
542 	CURVNET_RESTORE();
543 }
544 
545 /*
546  * Returns true if the system is only using cookies at the moment.
547  * This could be due to a sysadmin decision to only use cookies, or it
548  * could be due to the system detecting an attack.
549  */
550 static inline bool
551 syncache_cookiesonly(void)
552 {
553 
554 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
555 	    V_tcp_syncookiesonly));
556 }
557 
558 /*
559  * Find the hash bucket for the given connection.
560  */
561 static struct syncache_head *
562 syncache_hashbucket(struct in_conninfo *inc)
563 {
564 	uint32_t hash;
565 
566 	/*
567 	 * The hash is built on foreign port + local port + foreign address.
568 	 * We rely on the fact that struct in_conninfo starts with 16 bits
569 	 * of foreign port, then 16 bits of local port then followed by 128
570 	 * bits of foreign address.  In case of IPv4 address, the first 3
571 	 * 32-bit words of the address always are zeroes.
572 	 */
573 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
574 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
575 
576 	return (&V_tcp_syncache.hashbase[hash]);
577 }
578 
579 /*
580  * Find an entry in the syncache.
581  * Returns always with locked syncache_head plus a matching entry or NULL.
582  */
583 static struct syncache *
584 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
585 {
586 	struct syncache *sc;
587 	struct syncache_head *sch;
588 
589 	*schp = sch = syncache_hashbucket(inc);
590 	SCH_LOCK(sch);
591 
592 	/* Circle through bucket row to find matching entry. */
593 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
594 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
595 		    sizeof(struct in_endpoints)) == 0)
596 			break;
597 
598 	return (sc);	/* Always returns with locked sch. */
599 }
600 
601 /*
602  * This function is called when we get a RST for a
603  * non-existent connection, so that we can see if the
604  * connection is in the syn cache.  If it is, zap it.
605  * If required send a challenge ACK.
606  */
607 void
608 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m)
609 {
610 	struct syncache *sc;
611 	struct syncache_head *sch;
612 	char *s = NULL;
613 
614 	if (syncache_cookiesonly())
615 		return;
616 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
617 	SCH_LOCK_ASSERT(sch);
618 
619 	/*
620 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
621 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
622 	 */
623 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
624 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
625 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
626 			    "FIN flag set, segment ignored\n", s, __func__);
627 		TCPSTAT_INC(tcps_badrst);
628 		goto done;
629 	}
630 
631 	/*
632 	 * No corresponding connection was found in syncache.
633 	 * If syncookies are enabled and possibly exclusively
634 	 * used, or we are under memory pressure, a valid RST
635 	 * may not find a syncache entry.  In that case we're
636 	 * done and no SYN|ACK retransmissions will happen.
637 	 * Otherwise the RST was misdirected or spoofed.
638 	 */
639 	if (sc == NULL) {
640 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
641 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
642 			    "syncache entry (possibly syncookie only), "
643 			    "segment ignored\n", s, __func__);
644 		TCPSTAT_INC(tcps_badrst);
645 		goto done;
646 	}
647 
648 	/*
649 	 * If the RST bit is set, check the sequence number to see
650 	 * if this is a valid reset segment.
651 	 *
652 	 * RFC 793 page 37:
653 	 *   In all states except SYN-SENT, all reset (RST) segments
654 	 *   are validated by checking their SEQ-fields.  A reset is
655 	 *   valid if its sequence number is in the window.
656 	 *
657 	 * RFC 793 page 69:
658 	 *   There are four cases for the acceptability test for an incoming
659 	 *   segment:
660 	 *
661 	 * Segment Receive  Test
662 	 * Length  Window
663 	 * ------- -------  -------------------------------------------
664 	 *    0       0     SEG.SEQ = RCV.NXT
665 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
666 	 *   >0       0     not acceptable
667 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
668 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
669 	 *
670 	 * Note that when receiving a SYN segment in the LISTEN state,
671 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
672 	 * described in RFC 793, page 66.
673 	 */
674 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
675 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
676 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
677 		if (V_tcp_insecure_rst ||
678 		    th->th_seq == sc->sc_irs + 1) {
679 			syncache_drop(sc, sch);
680 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
681 				log(LOG_DEBUG,
682 				    "%s; %s: Our SYN|ACK was rejected, "
683 				    "connection attempt aborted by remote "
684 				    "endpoint\n",
685 				    s, __func__);
686 			TCPSTAT_INC(tcps_sc_reset);
687 		} else {
688 			TCPSTAT_INC(tcps_badrst);
689 			/* Send challenge ACK. */
690 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
691 				log(LOG_DEBUG, "%s; %s: RST with invalid "
692 				    " SEQ %u != NXT %u (+WND %u), "
693 				    "sending challenge ACK\n",
694 				    s, __func__,
695 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
696 			syncache_respond(sc, m, TH_ACK);
697 		}
698 	} else {
699 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
700 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
701 			    "NXT %u (+WND %u), segment ignored\n",
702 			    s, __func__,
703 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
704 		TCPSTAT_INC(tcps_badrst);
705 	}
706 
707 done:
708 	if (s != NULL)
709 		free(s, M_TCPLOG);
710 	SCH_UNLOCK(sch);
711 }
712 
713 void
714 syncache_badack(struct in_conninfo *inc)
715 {
716 	struct syncache *sc;
717 	struct syncache_head *sch;
718 
719 	if (syncache_cookiesonly())
720 		return;
721 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
722 	SCH_LOCK_ASSERT(sch);
723 	if (sc != NULL) {
724 		syncache_drop(sc, sch);
725 		TCPSTAT_INC(tcps_sc_badack);
726 	}
727 	SCH_UNLOCK(sch);
728 }
729 
730 void
731 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
732 {
733 	struct syncache *sc;
734 	struct syncache_head *sch;
735 
736 	if (syncache_cookiesonly())
737 		return;
738 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
739 	SCH_LOCK_ASSERT(sch);
740 	if (sc == NULL)
741 		goto done;
742 
743 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
744 	if (ntohl(th_seq) != sc->sc_iss)
745 		goto done;
746 
747 	/*
748 	 * If we've rertransmitted 3 times and this is our second error,
749 	 * we remove the entry.  Otherwise, we allow it to continue on.
750 	 * This prevents us from incorrectly nuking an entry during a
751 	 * spurious network outage.
752 	 *
753 	 * See tcp_notify().
754 	 */
755 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
756 		sc->sc_flags |= SCF_UNREACH;
757 		goto done;
758 	}
759 	syncache_drop(sc, sch);
760 	TCPSTAT_INC(tcps_sc_unreach);
761 done:
762 	SCH_UNLOCK(sch);
763 }
764 
765 /*
766  * Build a new TCP socket structure from a syncache entry.
767  *
768  * On success return the newly created socket with its underlying inp locked.
769  */
770 static struct socket *
771 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
772 {
773 	struct tcp_function_block *blk;
774 	struct inpcb *inp = NULL;
775 	struct socket *so;
776 	struct tcpcb *tp;
777 	int error;
778 	char *s;
779 
780 	NET_EPOCH_ASSERT();
781 
782 	/*
783 	 * Ok, create the full blown connection, and set things up
784 	 * as they would have been set up if we had created the
785 	 * connection when the SYN arrived.  If we can't create
786 	 * the connection, abort it.
787 	 */
788 	so = sonewconn(lso, 0);
789 	if (so == NULL) {
790 		/*
791 		 * Drop the connection; we will either send a RST or
792 		 * have the peer retransmit its SYN again after its
793 		 * RTO and try again.
794 		 */
795 		TCPSTAT_INC(tcps_listendrop);
796 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
797 			log(LOG_DEBUG, "%s; %s: Socket create failed "
798 			    "due to limits or memory shortage\n",
799 			    s, __func__);
800 			free(s, M_TCPLOG);
801 		}
802 		goto abort2;
803 	}
804 #ifdef MAC
805 	mac_socketpeer_set_from_mbuf(m, so);
806 #endif
807 
808 	inp = sotoinpcb(so);
809 	inp->inp_inc.inc_fibnum = so->so_fibnum;
810 	INP_WLOCK(inp);
811 	/*
812 	 * Exclusive pcbinfo lock is not required in syncache socket case even
813 	 * if two inpcb locks can be acquired simultaneously:
814 	 *  - the inpcb in LISTEN state,
815 	 *  - the newly created inp.
816 	 *
817 	 * In this case, an inp cannot be at same time in LISTEN state and
818 	 * just created by an accept() call.
819 	 */
820 	INP_HASH_WLOCK(&V_tcbinfo);
821 
822 	/* Insert new socket into PCB hash list. */
823 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
824 #ifdef INET6
825 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
826 		inp->inp_vflag &= ~INP_IPV4;
827 		inp->inp_vflag |= INP_IPV6;
828 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
829 	} else {
830 		inp->inp_vflag &= ~INP_IPV6;
831 		inp->inp_vflag |= INP_IPV4;
832 #endif
833 		inp->inp_ip_ttl = sc->sc_ip_ttl;
834 		inp->inp_ip_tos = sc->sc_ip_tos;
835 		inp->inp_laddr = sc->sc_inc.inc_laddr;
836 #ifdef INET6
837 	}
838 #endif
839 
840 	/*
841 	 * If there's an mbuf and it has a flowid, then let's initialise the
842 	 * inp with that particular flowid.
843 	 */
844 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
845 		inp->inp_flowid = m->m_pkthdr.flowid;
846 		inp->inp_flowtype = M_HASHTYPE_GET(m);
847 #ifdef NUMA
848 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
849 #endif
850 	}
851 
852 	inp->inp_lport = sc->sc_inc.inc_lport;
853 #ifdef INET6
854 	if (inp->inp_vflag & INP_IPV6PROTO) {
855 		struct inpcb *oinp = sotoinpcb(lso);
856 
857 		/*
858 		 * Inherit socket options from the listening socket.
859 		 * Note that in6p_inputopts are not (and should not be)
860 		 * copied, since it stores previously received options and is
861 		 * used to detect if each new option is different than the
862 		 * previous one and hence should be passed to a user.
863 		 * If we copied in6p_inputopts, a user would not be able to
864 		 * receive options just after calling the accept system call.
865 		 */
866 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
867 		if (oinp->in6p_outputopts)
868 			inp->in6p_outputopts =
869 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
870 		inp->in6p_hops = oinp->in6p_hops;
871 	}
872 
873 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
874 		struct in6_addr laddr6;
875 		struct sockaddr_in6 sin6;
876 
877 		sin6.sin6_family = AF_INET6;
878 		sin6.sin6_len = sizeof(sin6);
879 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
880 		sin6.sin6_port = sc->sc_inc.inc_fport;
881 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
882 		laddr6 = inp->in6p_laddr;
883 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
884 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
885 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
886 		    thread0.td_ucred, m, false)) != 0) {
887 			inp->in6p_laddr = laddr6;
888 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
889 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
890 				    "with error %i\n",
891 				    s, __func__, error);
892 				free(s, M_TCPLOG);
893 			}
894 			INP_HASH_WUNLOCK(&V_tcbinfo);
895 			goto abort;
896 		}
897 		/* Override flowlabel from in6_pcbconnect. */
898 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
899 		inp->inp_flow |= sc->sc_flowlabel;
900 	}
901 #endif /* INET6 */
902 #if defined(INET) && defined(INET6)
903 	else
904 #endif
905 #ifdef INET
906 	{
907 		struct in_addr laddr;
908 		struct sockaddr_in sin;
909 
910 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
911 
912 		if (inp->inp_options == NULL) {
913 			inp->inp_options = sc->sc_ipopts;
914 			sc->sc_ipopts = NULL;
915 		}
916 
917 		sin.sin_family = AF_INET;
918 		sin.sin_len = sizeof(sin);
919 		sin.sin_addr = sc->sc_inc.inc_faddr;
920 		sin.sin_port = sc->sc_inc.inc_fport;
921 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
922 		laddr = inp->inp_laddr;
923 		if (inp->inp_laddr.s_addr == INADDR_ANY)
924 			inp->inp_laddr = sc->sc_inc.inc_laddr;
925 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
926 		    thread0.td_ucred, m, false)) != 0) {
927 			inp->inp_laddr = laddr;
928 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
929 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
930 				    "with error %i\n",
931 				    s, __func__, error);
932 				free(s, M_TCPLOG);
933 			}
934 			INP_HASH_WUNLOCK(&V_tcbinfo);
935 			goto abort;
936 		}
937 	}
938 #endif /* INET */
939 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
940 	/* Copy old policy into new socket's. */
941 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
942 		printf("syncache_socket: could not copy policy\n");
943 #endif
944 	INP_HASH_WUNLOCK(&V_tcbinfo);
945 	tp = intotcpcb(inp);
946 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
947 	tp->iss = sc->sc_iss;
948 	tp->irs = sc->sc_irs;
949 	tcp_rcvseqinit(tp);
950 	tcp_sendseqinit(tp);
951 	blk = sototcpcb(lso)->t_fb;
952 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
953 		/*
954 		 * Our parents t_fb was not the default,
955 		 * we need to release our ref on tp->t_fb and
956 		 * pickup one on the new entry.
957 		 */
958 		struct tcp_function_block *rblk;
959 
960 		rblk = find_and_ref_tcp_fb(blk);
961 		KASSERT(rblk != NULL,
962 		    ("cannot find blk %p out of syncache?", blk));
963 		if (tp->t_fb->tfb_tcp_fb_fini)
964 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
965 		refcount_release(&tp->t_fb->tfb_refcnt);
966 		tp->t_fb = rblk;
967 		/*
968 		 * XXXrrs this is quite dangerous, it is possible
969 		 * for the new function to fail to init. We also
970 		 * are not asking if the handoff_is_ok though at
971 		 * the very start thats probalbly ok.
972 		 */
973 		if (tp->t_fb->tfb_tcp_fb_init) {
974 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
975 		}
976 	}
977 	tp->snd_wl1 = sc->sc_irs;
978 	tp->snd_max = tp->iss + 1;
979 	tp->snd_nxt = tp->iss + 1;
980 	tp->rcv_up = sc->sc_irs + 1;
981 	tp->rcv_wnd = sc->sc_wnd;
982 	tp->rcv_adv += tp->rcv_wnd;
983 	tp->last_ack_sent = tp->rcv_nxt;
984 
985 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
986 	if (sc->sc_flags & SCF_NOOPT)
987 		tp->t_flags |= TF_NOOPT;
988 	else {
989 		if (sc->sc_flags & SCF_WINSCALE) {
990 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
991 			tp->snd_scale = sc->sc_requested_s_scale;
992 			tp->request_r_scale = sc->sc_requested_r_scale;
993 		}
994 		if (sc->sc_flags & SCF_TIMESTAMP) {
995 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
996 			tp->ts_recent = sc->sc_tsreflect;
997 			tp->ts_recent_age = tcp_ts_getticks();
998 			tp->ts_offset = sc->sc_tsoff;
999 		}
1000 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1001 		if (sc->sc_flags & SCF_SIGNATURE)
1002 			tp->t_flags |= TF_SIGNATURE;
1003 #endif
1004 		if (sc->sc_flags & SCF_SACK)
1005 			tp->t_flags |= TF_SACK_PERMIT;
1006 	}
1007 
1008 	if (sc->sc_flags & SCF_ECN)
1009 		tp->t_flags2 |= TF2_ECN_PERMIT;
1010 
1011 	/*
1012 	 * Set up MSS and get cached values from tcp_hostcache.
1013 	 * This might overwrite some of the defaults we just set.
1014 	 */
1015 	tcp_mss(tp, sc->sc_peer_mss);
1016 
1017 	/*
1018 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
1019 	 * limited to one segment in cc_conn_init().
1020 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
1021 	 */
1022 	if (sc->sc_rxmits > 1)
1023 		tp->snd_cwnd = 1;
1024 
1025 #ifdef TCP_OFFLOAD
1026 	/*
1027 	 * Allow a TOE driver to install its hooks.  Note that we hold the
1028 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
1029 	 * new connection before the TOE driver has done its thing.
1030 	 */
1031 	if (ADDED_BY_TOE(sc)) {
1032 		struct toedev *tod = sc->sc_tod;
1033 
1034 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1035 	}
1036 #endif
1037 	/*
1038 	 * Copy and activate timers.
1039 	 */
1040 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1041 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1042 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1043 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1044 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1045 
1046 	TCPSTAT_INC(tcps_accepts);
1047 	return (so);
1048 
1049 abort:
1050 	INP_WUNLOCK(inp);
1051 abort2:
1052 	if (so != NULL)
1053 		soabort(so);
1054 	return (NULL);
1055 }
1056 
1057 /*
1058  * This function gets called when we receive an ACK for a
1059  * socket in the LISTEN state.  We look up the connection
1060  * in the syncache, and if its there, we pull it out of
1061  * the cache and turn it into a full-blown connection in
1062  * the SYN-RECEIVED state.
1063  *
1064  * On syncache_socket() success the newly created socket
1065  * has its underlying inp locked.
1066  */
1067 int
1068 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1069     struct socket **lsop, struct mbuf *m)
1070 {
1071 	struct syncache *sc;
1072 	struct syncache_head *sch;
1073 	struct syncache scs;
1074 	char *s;
1075 	bool locked;
1076 
1077 	NET_EPOCH_ASSERT();
1078 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1079 	    ("%s: can handle only ACK", __func__));
1080 
1081 	if (syncache_cookiesonly()) {
1082 		sc = NULL;
1083 		sch = syncache_hashbucket(inc);
1084 		locked = false;
1085 	} else {
1086 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1087 		locked = true;
1088 		SCH_LOCK_ASSERT(sch);
1089 	}
1090 
1091 #ifdef INVARIANTS
1092 	/*
1093 	 * Test code for syncookies comparing the syncache stored
1094 	 * values with the reconstructed values from the cookie.
1095 	 */
1096 	if (sc != NULL)
1097 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
1098 #endif
1099 
1100 	if (sc == NULL) {
1101 		/*
1102 		 * There is no syncache entry, so see if this ACK is
1103 		 * a returning syncookie.  To do this, first:
1104 		 *  A. Check if syncookies are used in case of syncache
1105 		 *     overflows
1106 		 *  B. See if this socket has had a syncache entry dropped in
1107 		 *     the recent past. We don't want to accept a bogus
1108 		 *     syncookie if we've never received a SYN or accept it
1109 		 *     twice.
1110 		 *  C. check that the syncookie is valid.  If it is, then
1111 		 *     cobble up a fake syncache entry, and return.
1112 		 */
1113 		if (locked && !V_tcp_syncookies) {
1114 			SCH_UNLOCK(sch);
1115 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1116 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1117 				    "segment rejected (syncookies disabled)\n",
1118 				    s, __func__);
1119 			goto failed;
1120 		}
1121 		if (locked && !V_tcp_syncookiesonly &&
1122 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1123 			SCH_UNLOCK(sch);
1124 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1125 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1126 				    "segment rejected (no syncache entry)\n",
1127 				    s, __func__);
1128 			goto failed;
1129 		}
1130 		bzero(&scs, sizeof(scs));
1131 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1132 		if (locked)
1133 			SCH_UNLOCK(sch);
1134 		if (sc == NULL) {
1135 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1136 				log(LOG_DEBUG, "%s; %s: Segment failed "
1137 				    "SYNCOOKIE authentication, segment rejected "
1138 				    "(probably spoofed)\n", s, __func__);
1139 			goto failed;
1140 		}
1141 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1142 		/* If received ACK has MD5 signature, check it. */
1143 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1144 		    (!TCPMD5_ENABLED() ||
1145 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1146 			/* Drop the ACK. */
1147 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1148 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1149 				    "MD5 signature doesn't match.\n",
1150 				    s, __func__);
1151 				free(s, M_TCPLOG);
1152 			}
1153 			TCPSTAT_INC(tcps_sig_err_sigopt);
1154 			return (-1); /* Do not send RST */
1155 		}
1156 #endif /* TCP_SIGNATURE */
1157 	} else {
1158 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1159 		/*
1160 		 * If listening socket requested TCP digests, check that
1161 		 * received ACK has signature and it is correct.
1162 		 * If not, drop the ACK and leave sc entry in th cache,
1163 		 * because SYN was received with correct signature.
1164 		 */
1165 		if (sc->sc_flags & SCF_SIGNATURE) {
1166 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1167 				/* No signature */
1168 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1169 				SCH_UNLOCK(sch);
1170 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1171 					log(LOG_DEBUG, "%s; %s: Segment "
1172 					    "rejected, MD5 signature wasn't "
1173 					    "provided.\n", s, __func__);
1174 					free(s, M_TCPLOG);
1175 				}
1176 				return (-1); /* Do not send RST */
1177 			}
1178 			if (!TCPMD5_ENABLED() ||
1179 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1180 				/* Doesn't match or no SA */
1181 				SCH_UNLOCK(sch);
1182 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1183 					log(LOG_DEBUG, "%s; %s: Segment "
1184 					    "rejected, MD5 signature doesn't "
1185 					    "match.\n", s, __func__);
1186 					free(s, M_TCPLOG);
1187 				}
1188 				return (-1); /* Do not send RST */
1189 			}
1190 		}
1191 #endif /* TCP_SIGNATURE */
1192 
1193 		/*
1194 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1195 		 * it's less than ts_recent, drop it.
1196 		 * XXXMT: RFC 7323 also requires to send an ACK.
1197 		 *        In tcp_input.c this is only done for TCP segments
1198 		 *        with user data, so be consistent here and just drop
1199 		 *        the segment.
1200 		 */
1201 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1202 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1203 			SCH_UNLOCK(sch);
1204 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1205 				log(LOG_DEBUG,
1206 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1207 				    "segment dropped\n", s, __func__,
1208 				    to->to_tsval, sc->sc_tsreflect);
1209 				free(s, M_TCPLOG);
1210 			}
1211 			return (-1);  /* Do not send RST */
1212 		}
1213 
1214 		/*
1215 		 * Pull out the entry to unlock the bucket row.
1216 		 *
1217 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1218 		 * tcp_state_change().  The tcpcb is not existent at this
1219 		 * moment.  A new one will be allocated via syncache_socket->
1220 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1221 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1222 		 */
1223 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1224 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1225 		sch->sch_length--;
1226 #ifdef TCP_OFFLOAD
1227 		if (ADDED_BY_TOE(sc)) {
1228 			struct toedev *tod = sc->sc_tod;
1229 
1230 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1231 		}
1232 #endif
1233 		SCH_UNLOCK(sch);
1234 	}
1235 
1236 	/*
1237 	 * Segment validation:
1238 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1239 	 */
1240 	if (th->th_ack != sc->sc_iss + 1) {
1241 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1242 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1243 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1244 		goto failed;
1245 	}
1246 
1247 	/*
1248 	 * The SEQ must fall in the window starting at the received
1249 	 * initial receive sequence number + 1 (the SYN).
1250 	 */
1251 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1252 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1253 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1254 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1255 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1256 		goto failed;
1257 	}
1258 
1259 	/*
1260 	 * If timestamps were not negotiated during SYN/ACK they
1261 	 * must not appear on any segment during this session.
1262 	 */
1263 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1264 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1265 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1266 			    "segment rejected\n", s, __func__);
1267 		goto failed;
1268 	}
1269 
1270 	/*
1271 	 * If timestamps were negotiated during SYN/ACK they should
1272 	 * appear on every segment during this session.
1273 	 * XXXAO: This is only informal as there have been unverified
1274 	 * reports of non-compliants stacks.
1275 	 */
1276 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1277 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1278 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1279 			    "no action\n", s, __func__);
1280 			free(s, M_TCPLOG);
1281 			s = NULL;
1282 		}
1283 	}
1284 
1285 	*lsop = syncache_socket(sc, *lsop, m);
1286 
1287 	if (*lsop == NULL)
1288 		TCPSTAT_INC(tcps_sc_aborted);
1289 	else
1290 		TCPSTAT_INC(tcps_sc_completed);
1291 
1292 /* how do we find the inp for the new socket? */
1293 	if (sc != &scs)
1294 		syncache_free(sc);
1295 	return (1);
1296 failed:
1297 	if (sc != NULL && sc != &scs)
1298 		syncache_free(sc);
1299 	if (s != NULL)
1300 		free(s, M_TCPLOG);
1301 	*lsop = NULL;
1302 	return (0);
1303 }
1304 
1305 static void
1306 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1307     uint64_t response_cookie)
1308 {
1309 	struct inpcb *inp;
1310 	struct tcpcb *tp;
1311 	unsigned int *pending_counter;
1312 
1313 	NET_EPOCH_ASSERT();
1314 
1315 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1316 	*lsop = syncache_socket(sc, *lsop, m);
1317 	if (*lsop == NULL) {
1318 		TCPSTAT_INC(tcps_sc_aborted);
1319 		atomic_subtract_int(pending_counter, 1);
1320 	} else {
1321 		soisconnected(*lsop);
1322 		inp = sotoinpcb(*lsop);
1323 		tp = intotcpcb(inp);
1324 		tp->t_flags |= TF_FASTOPEN;
1325 		tp->t_tfo_cookie.server = response_cookie;
1326 		tp->snd_max = tp->iss;
1327 		tp->snd_nxt = tp->iss;
1328 		tp->t_tfo_pending = pending_counter;
1329 		TCPSTAT_INC(tcps_sc_completed);
1330 	}
1331 }
1332 
1333 /*
1334  * Given a LISTEN socket and an inbound SYN request, add
1335  * this to the syn cache, and send back a segment:
1336  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1337  * to the source.
1338  *
1339  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1340  * Doing so would require that we hold onto the data and deliver it
1341  * to the application.  However, if we are the target of a SYN-flood
1342  * DoS attack, an attacker could send data which would eventually
1343  * consume all available buffer space if it were ACKed.  By not ACKing
1344  * the data, we avoid this DoS scenario.
1345  *
1346  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1347  * cookie is processed and a new socket is created.  In this case, any data
1348  * accompanying the SYN will be queued to the socket by tcp_input() and will
1349  * be ACKed either when the application sends response data or the delayed
1350  * ACK timer expires, whichever comes first.
1351  */
1352 int
1353 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1354     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1355     void *todctx, uint8_t iptos)
1356 {
1357 	struct tcpcb *tp;
1358 	struct socket *so;
1359 	struct syncache *sc = NULL;
1360 	struct syncache_head *sch;
1361 	struct mbuf *ipopts = NULL;
1362 	u_int ltflags;
1363 	int win, ip_ttl, ip_tos;
1364 	char *s;
1365 	int rv = 0;
1366 #ifdef INET6
1367 	int autoflowlabel = 0;
1368 #endif
1369 #ifdef MAC
1370 	struct label *maclabel;
1371 #endif
1372 	struct syncache scs;
1373 	struct ucred *cred;
1374 	uint64_t tfo_response_cookie;
1375 	unsigned int *tfo_pending = NULL;
1376 	int tfo_cookie_valid = 0;
1377 	int tfo_response_cookie_valid = 0;
1378 	bool locked;
1379 
1380 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1381 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1382 	    ("%s: unexpected tcp flags", __func__));
1383 
1384 	/*
1385 	 * Combine all so/tp operations very early to drop the INP lock as
1386 	 * soon as possible.
1387 	 */
1388 	so = *lsop;
1389 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1390 	tp = sototcpcb(so);
1391 	cred = crhold(so->so_cred);
1392 
1393 #ifdef INET6
1394 	if (inc->inc_flags & INC_ISIPV6) {
1395 		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1396 			autoflowlabel = 1;
1397 		}
1398 		ip_ttl = in6_selecthlim(inp, NULL);
1399 		if ((inp->in6p_outputopts == NULL) ||
1400 		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1401 			ip_tos = 0;
1402 		} else {
1403 			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1404 		}
1405 	}
1406 #endif
1407 #if defined(INET6) && defined(INET)
1408 	else
1409 #endif
1410 #ifdef INET
1411 	{
1412 		ip_ttl = inp->inp_ip_ttl;
1413 		ip_tos = inp->inp_ip_tos;
1414 	}
1415 #endif
1416 	win = so->sol_sbrcv_hiwat;
1417 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1418 
1419 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1420 	    (tp->t_tfo_pending != NULL) &&
1421 	    (to->to_flags & TOF_FASTOPEN)) {
1422 		/*
1423 		 * Limit the number of pending TFO connections to
1424 		 * approximately half of the queue limit.  This prevents TFO
1425 		 * SYN floods from starving the service by filling the
1426 		 * listen queue with bogus TFO connections.
1427 		 */
1428 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1429 		    (so->sol_qlimit / 2)) {
1430 			int result;
1431 
1432 			result = tcp_fastopen_check_cookie(inc,
1433 			    to->to_tfo_cookie, to->to_tfo_len,
1434 			    &tfo_response_cookie);
1435 			tfo_cookie_valid = (result > 0);
1436 			tfo_response_cookie_valid = (result >= 0);
1437 		}
1438 
1439 		/*
1440 		 * Remember the TFO pending counter as it will have to be
1441 		 * decremented below if we don't make it to syncache_tfo_expand().
1442 		 */
1443 		tfo_pending = tp->t_tfo_pending;
1444 	}
1445 
1446 	/* By the time we drop the lock these should no longer be used. */
1447 	so = NULL;
1448 	tp = NULL;
1449 
1450 #ifdef MAC
1451 	if (mac_syncache_init(&maclabel) != 0) {
1452 		INP_WUNLOCK(inp);
1453 		goto done;
1454 	} else
1455 		mac_syncache_create(maclabel, inp);
1456 #endif
1457 	if (!tfo_cookie_valid)
1458 		INP_WUNLOCK(inp);
1459 
1460 	/*
1461 	 * Remember the IP options, if any.
1462 	 */
1463 #ifdef INET6
1464 	if (!(inc->inc_flags & INC_ISIPV6))
1465 #endif
1466 #ifdef INET
1467 		ipopts = (m) ? ip_srcroute(m) : NULL;
1468 #else
1469 		ipopts = NULL;
1470 #endif
1471 
1472 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1473 	/*
1474 	 * If listening socket requested TCP digests, check that received
1475 	 * SYN has signature and it is correct. If signature doesn't match
1476 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1477 	 */
1478 	if (ltflags & TF_SIGNATURE) {
1479 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1480 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1481 			goto done;
1482 		}
1483 		if (!TCPMD5_ENABLED() ||
1484 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1485 			goto done;
1486 	}
1487 #endif	/* TCP_SIGNATURE */
1488 	/*
1489 	 * See if we already have an entry for this connection.
1490 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1491 	 *
1492 	 * XXX: should the syncache be re-initialized with the contents
1493 	 * of the new SYN here (which may have different options?)
1494 	 *
1495 	 * XXX: We do not check the sequence number to see if this is a
1496 	 * real retransmit or a new connection attempt.  The question is
1497 	 * how to handle such a case; either ignore it as spoofed, or
1498 	 * drop the current entry and create a new one?
1499 	 */
1500 	if (syncache_cookiesonly()) {
1501 		sc = NULL;
1502 		sch = syncache_hashbucket(inc);
1503 		locked = false;
1504 	} else {
1505 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1506 		locked = true;
1507 		SCH_LOCK_ASSERT(sch);
1508 	}
1509 	if (sc != NULL) {
1510 		if (tfo_cookie_valid)
1511 			INP_WUNLOCK(inp);
1512 		TCPSTAT_INC(tcps_sc_dupsyn);
1513 		if (ipopts) {
1514 			/*
1515 			 * If we were remembering a previous source route,
1516 			 * forget it and use the new one we've been given.
1517 			 */
1518 			if (sc->sc_ipopts)
1519 				(void) m_free(sc->sc_ipopts);
1520 			sc->sc_ipopts = ipopts;
1521 		}
1522 		/*
1523 		 * Update timestamp if present.
1524 		 */
1525 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1526 			sc->sc_tsreflect = to->to_tsval;
1527 		else
1528 			sc->sc_flags &= ~SCF_TIMESTAMP;
1529 		/*
1530 		 * Disable ECN if needed.
1531 		 */
1532 		if ((sc->sc_flags & SCF_ECN) &&
1533 		    ((th->th_flags & (TH_ECE|TH_CWR)) != (TH_ECE|TH_CWR))) {
1534 			sc->sc_flags &= ~SCF_ECN;
1535 		}
1536 #ifdef MAC
1537 		/*
1538 		 * Since we have already unconditionally allocated label
1539 		 * storage, free it up.  The syncache entry will already
1540 		 * have an initialized label we can use.
1541 		 */
1542 		mac_syncache_destroy(&maclabel);
1543 #endif
1544 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1545 		/* Retransmit SYN|ACK and reset retransmit count. */
1546 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1547 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1548 			    "resetting timer and retransmitting SYN|ACK\n",
1549 			    s, __func__);
1550 			free(s, M_TCPLOG);
1551 		}
1552 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1553 			sc->sc_rxmits = 0;
1554 			syncache_timeout(sc, sch, 1);
1555 			TCPSTAT_INC(tcps_sndacks);
1556 			TCPSTAT_INC(tcps_sndtotal);
1557 		}
1558 		SCH_UNLOCK(sch);
1559 		goto donenoprobe;
1560 	}
1561 
1562 	if (tfo_cookie_valid) {
1563 		bzero(&scs, sizeof(scs));
1564 		sc = &scs;
1565 		goto skip_alloc;
1566 	}
1567 
1568 	/*
1569 	 * Skip allocating a syncache entry if we are just going to discard
1570 	 * it later.
1571 	 */
1572 	if (!locked) {
1573 		bzero(&scs, sizeof(scs));
1574 		sc = &scs;
1575 	} else
1576 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1577 	if (sc == NULL) {
1578 		/*
1579 		 * The zone allocator couldn't provide more entries.
1580 		 * Treat this as if the cache was full; drop the oldest
1581 		 * entry and insert the new one.
1582 		 */
1583 		TCPSTAT_INC(tcps_sc_zonefail);
1584 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1585 			sch->sch_last_overflow = time_uptime;
1586 			syncache_drop(sc, sch);
1587 			syncache_pause(inc);
1588 		}
1589 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1590 		if (sc == NULL) {
1591 			if (V_tcp_syncookies) {
1592 				bzero(&scs, sizeof(scs));
1593 				sc = &scs;
1594 			} else {
1595 				KASSERT(locked,
1596 				    ("%s: bucket unexpectedly unlocked",
1597 				    __func__));
1598 				SCH_UNLOCK(sch);
1599 				if (ipopts)
1600 					(void) m_free(ipopts);
1601 				goto done;
1602 			}
1603 		}
1604 	}
1605 
1606 skip_alloc:
1607 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1608 		sc->sc_tfo_cookie = &tfo_response_cookie;
1609 
1610 	/*
1611 	 * Fill in the syncache values.
1612 	 */
1613 #ifdef MAC
1614 	sc->sc_label = maclabel;
1615 #endif
1616 	sc->sc_cred = cred;
1617 	cred = NULL;
1618 	sc->sc_ipopts = ipopts;
1619 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1620 	sc->sc_ip_tos = ip_tos;
1621 	sc->sc_ip_ttl = ip_ttl;
1622 #ifdef TCP_OFFLOAD
1623 	sc->sc_tod = tod;
1624 	sc->sc_todctx = todctx;
1625 #endif
1626 	sc->sc_irs = th->th_seq;
1627 	sc->sc_flags = 0;
1628 	sc->sc_flowlabel = 0;
1629 
1630 	/*
1631 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1632 	 * win was derived from socket earlier in the function.
1633 	 */
1634 	win = imax(win, 0);
1635 	win = imin(win, TCP_MAXWIN);
1636 	sc->sc_wnd = win;
1637 
1638 	if (V_tcp_do_rfc1323) {
1639 		/*
1640 		 * A timestamp received in a SYN makes
1641 		 * it ok to send timestamp requests and replies.
1642 		 */
1643 		if (to->to_flags & TOF_TS) {
1644 			sc->sc_tsreflect = to->to_tsval;
1645 			sc->sc_flags |= SCF_TIMESTAMP;
1646 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1647 		}
1648 		if (to->to_flags & TOF_SCALE) {
1649 			int wscale = 0;
1650 
1651 			/*
1652 			 * Pick the smallest possible scaling factor that
1653 			 * will still allow us to scale up to sb_max, aka
1654 			 * kern.ipc.maxsockbuf.
1655 			 *
1656 			 * We do this because there are broken firewalls that
1657 			 * will corrupt the window scale option, leading to
1658 			 * the other endpoint believing that our advertised
1659 			 * window is unscaled.  At scale factors larger than
1660 			 * 5 the unscaled window will drop below 1500 bytes,
1661 			 * leading to serious problems when traversing these
1662 			 * broken firewalls.
1663 			 *
1664 			 * With the default maxsockbuf of 256K, a scale factor
1665 			 * of 3 will be chosen by this algorithm.  Those who
1666 			 * choose a larger maxsockbuf should watch out
1667 			 * for the compatibility problems mentioned above.
1668 			 *
1669 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1670 			 * or <SYN,ACK>) segment itself is never scaled.
1671 			 */
1672 			while (wscale < TCP_MAX_WINSHIFT &&
1673 			    (TCP_MAXWIN << wscale) < sb_max)
1674 				wscale++;
1675 			sc->sc_requested_r_scale = wscale;
1676 			sc->sc_requested_s_scale = to->to_wscale;
1677 			sc->sc_flags |= SCF_WINSCALE;
1678 		}
1679 	}
1680 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1681 	/*
1682 	 * If listening socket requested TCP digests, flag this in the
1683 	 * syncache so that syncache_respond() will do the right thing
1684 	 * with the SYN+ACK.
1685 	 */
1686 	if (ltflags & TF_SIGNATURE)
1687 		sc->sc_flags |= SCF_SIGNATURE;
1688 #endif	/* TCP_SIGNATURE */
1689 	if (to->to_flags & TOF_SACKPERM)
1690 		sc->sc_flags |= SCF_SACK;
1691 	if (to->to_flags & TOF_MSS)
1692 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1693 	if (ltflags & TF_NOOPT)
1694 		sc->sc_flags |= SCF_NOOPT;
1695 	if (((th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) &&
1696 	    V_tcp_do_ecn)
1697 		sc->sc_flags |= SCF_ECN;
1698 
1699 	if (V_tcp_syncookies)
1700 		sc->sc_iss = syncookie_generate(sch, sc);
1701 	else
1702 		sc->sc_iss = arc4random();
1703 #ifdef INET6
1704 	if (autoflowlabel) {
1705 		if (V_tcp_syncookies)
1706 			sc->sc_flowlabel = sc->sc_iss;
1707 		else
1708 			sc->sc_flowlabel = ip6_randomflowlabel();
1709 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1710 	}
1711 #endif
1712 	if (locked)
1713 		SCH_UNLOCK(sch);
1714 
1715 	if (tfo_cookie_valid) {
1716 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1717 		/* INP_WUNLOCK(inp) will be performed by the caller */
1718 		rv = 1;
1719 		goto tfo_expanded;
1720 	}
1721 
1722 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1723 	/*
1724 	 * Do a standard 3-way handshake.
1725 	 */
1726 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1727 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1728 			syncache_free(sc);
1729 		else if (sc != &scs)
1730 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1731 		TCPSTAT_INC(tcps_sndacks);
1732 		TCPSTAT_INC(tcps_sndtotal);
1733 	} else {
1734 		if (sc != &scs)
1735 			syncache_free(sc);
1736 		TCPSTAT_INC(tcps_sc_dropped);
1737 	}
1738 	goto donenoprobe;
1739 
1740 done:
1741 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1742 donenoprobe:
1743 	if (m) {
1744 		*lsop = NULL;
1745 		m_freem(m);
1746 	}
1747 	/*
1748 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1749 	 * result in a new socket was processed and the associated pending
1750 	 * counter has not yet been decremented.  All such TFO processing paths
1751 	 * transit this point.
1752 	 */
1753 	if (tfo_pending != NULL)
1754 		tcp_fastopen_decrement_counter(tfo_pending);
1755 
1756 tfo_expanded:
1757 	if (cred != NULL)
1758 		crfree(cred);
1759 #ifdef MAC
1760 	if (sc == &scs)
1761 		mac_syncache_destroy(&maclabel);
1762 #endif
1763 	return (rv);
1764 }
1765 
1766 /*
1767  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1768  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1769  */
1770 static int
1771 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1772 {
1773 	struct ip *ip = NULL;
1774 	struct mbuf *m;
1775 	struct tcphdr *th = NULL;
1776 	int optlen, error = 0;	/* Make compiler happy */
1777 	u_int16_t hlen, tlen, mssopt;
1778 	struct tcpopt to;
1779 #ifdef INET6
1780 	struct ip6_hdr *ip6 = NULL;
1781 #endif
1782 
1783 	NET_EPOCH_ASSERT();
1784 
1785 	hlen =
1786 #ifdef INET6
1787 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1788 #endif
1789 		sizeof(struct ip);
1790 	tlen = hlen + sizeof(struct tcphdr);
1791 
1792 	/* Determine MSS we advertize to other end of connection. */
1793 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1794 
1795 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1796 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1797 	    ("syncache: mbuf too small"));
1798 
1799 	/* Create the IP+TCP header from scratch. */
1800 	m = m_gethdr(M_NOWAIT, MT_DATA);
1801 	if (m == NULL)
1802 		return (ENOBUFS);
1803 #ifdef MAC
1804 	mac_syncache_create_mbuf(sc->sc_label, m);
1805 #endif
1806 	m->m_data += max_linkhdr;
1807 	m->m_len = tlen;
1808 	m->m_pkthdr.len = tlen;
1809 	m->m_pkthdr.rcvif = NULL;
1810 
1811 #ifdef INET6
1812 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1813 		ip6 = mtod(m, struct ip6_hdr *);
1814 		ip6->ip6_vfc = IPV6_VERSION;
1815 		ip6->ip6_nxt = IPPROTO_TCP;
1816 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1817 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1818 		ip6->ip6_plen = htons(tlen - hlen);
1819 		/* ip6_hlim is set after checksum */
1820 		/* Zero out traffic class and flow label. */
1821 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1822 		ip6->ip6_flow |= sc->sc_flowlabel;
1823 		ip6->ip6_flow |= htonl(sc->sc_ip_tos << 20);
1824 
1825 		th = (struct tcphdr *)(ip6 + 1);
1826 	}
1827 #endif
1828 #if defined(INET6) && defined(INET)
1829 	else
1830 #endif
1831 #ifdef INET
1832 	{
1833 		ip = mtod(m, struct ip *);
1834 		ip->ip_v = IPVERSION;
1835 		ip->ip_hl = sizeof(struct ip) >> 2;
1836 		ip->ip_len = htons(tlen);
1837 		ip->ip_id = 0;
1838 		ip->ip_off = 0;
1839 		ip->ip_sum = 0;
1840 		ip->ip_p = IPPROTO_TCP;
1841 		ip->ip_src = sc->sc_inc.inc_laddr;
1842 		ip->ip_dst = sc->sc_inc.inc_faddr;
1843 		ip->ip_ttl = sc->sc_ip_ttl;
1844 		ip->ip_tos = sc->sc_ip_tos;
1845 
1846 		/*
1847 		 * See if we should do MTU discovery.  Route lookups are
1848 		 * expensive, so we will only unset the DF bit if:
1849 		 *
1850 		 *	1) path_mtu_discovery is disabled
1851 		 *	2) the SCF_UNREACH flag has been set
1852 		 */
1853 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1854 		       ip->ip_off |= htons(IP_DF);
1855 
1856 		th = (struct tcphdr *)(ip + 1);
1857 	}
1858 #endif /* INET */
1859 	th->th_sport = sc->sc_inc.inc_lport;
1860 	th->th_dport = sc->sc_inc.inc_fport;
1861 
1862 	if (flags & TH_SYN)
1863 		th->th_seq = htonl(sc->sc_iss);
1864 	else
1865 		th->th_seq = htonl(sc->sc_iss + 1);
1866 	th->th_ack = htonl(sc->sc_irs + 1);
1867 	th->th_off = sizeof(struct tcphdr) >> 2;
1868 	th->th_x2 = 0;
1869 	th->th_flags = flags;
1870 	th->th_win = htons(sc->sc_wnd);
1871 	th->th_urp = 0;
1872 
1873 	if ((flags & TH_SYN) && (sc->sc_flags & SCF_ECN)) {
1874 		th->th_flags |= TH_ECE;
1875 		TCPSTAT_INC(tcps_ecn_shs);
1876 	}
1877 
1878 	/* Tack on the TCP options. */
1879 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1880 		to.to_flags = 0;
1881 
1882 		if (flags & TH_SYN) {
1883 			to.to_mss = mssopt;
1884 			to.to_flags = TOF_MSS;
1885 			if (sc->sc_flags & SCF_WINSCALE) {
1886 				to.to_wscale = sc->sc_requested_r_scale;
1887 				to.to_flags |= TOF_SCALE;
1888 			}
1889 			if (sc->sc_flags & SCF_SACK)
1890 				to.to_flags |= TOF_SACKPERM;
1891 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1892 			if (sc->sc_flags & SCF_SIGNATURE)
1893 				to.to_flags |= TOF_SIGNATURE;
1894 #endif
1895 			if (sc->sc_tfo_cookie) {
1896 				to.to_flags |= TOF_FASTOPEN;
1897 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1898 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1899 				/* don't send cookie again when retransmitting response */
1900 				sc->sc_tfo_cookie = NULL;
1901 			}
1902 		}
1903 		if (sc->sc_flags & SCF_TIMESTAMP) {
1904 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1905 			to.to_tsecr = sc->sc_tsreflect;
1906 			to.to_flags |= TOF_TS;
1907 		}
1908 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1909 
1910 		/* Adjust headers by option size. */
1911 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1912 		m->m_len += optlen;
1913 		m->m_pkthdr.len += optlen;
1914 #ifdef INET6
1915 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1916 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1917 		else
1918 #endif
1919 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1920 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1921 		if (sc->sc_flags & SCF_SIGNATURE) {
1922 			KASSERT(to.to_flags & TOF_SIGNATURE,
1923 			    ("tcp_addoptions() didn't set tcp_signature"));
1924 
1925 			/* NOTE: to.to_signature is inside of mbuf */
1926 			if (!TCPMD5_ENABLED() ||
1927 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1928 				m_freem(m);
1929 				return (EACCES);
1930 			}
1931 		}
1932 #endif
1933 	} else
1934 		optlen = 0;
1935 
1936 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1937 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1938 	/*
1939 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1940 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1941 	 * to SYN|ACK due to lack of inp here.
1942 	 */
1943 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1944 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1945 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1946 	}
1947 #ifdef INET6
1948 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1949 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1950 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1951 		    IPPROTO_TCP, 0);
1952 		ip6->ip6_hlim = sc->sc_ip_ttl;
1953 #ifdef TCP_OFFLOAD
1954 		if (ADDED_BY_TOE(sc)) {
1955 			struct toedev *tod = sc->sc_tod;
1956 
1957 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1958 
1959 			return (error);
1960 		}
1961 #endif
1962 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
1963 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1964 	}
1965 #endif
1966 #if defined(INET6) && defined(INET)
1967 	else
1968 #endif
1969 #ifdef INET
1970 	{
1971 		m->m_pkthdr.csum_flags = CSUM_TCP;
1972 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1973 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1974 #ifdef TCP_OFFLOAD
1975 		if (ADDED_BY_TOE(sc)) {
1976 			struct toedev *tod = sc->sc_tod;
1977 
1978 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1979 
1980 			return (error);
1981 		}
1982 #endif
1983 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
1984 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1985 	}
1986 #endif
1987 	return (error);
1988 }
1989 
1990 /*
1991  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1992  * that exceed the capacity of the syncache by avoiding the storage of any
1993  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1994  * attacks where the attacker does not have access to our responses.
1995  *
1996  * Syncookies encode and include all necessary information about the
1997  * connection setup within the SYN|ACK that we send back.  That way we
1998  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1999  * (if ever).  Normally the syncache and syncookies are running in parallel
2000  * with the latter taking over when the former is exhausted.  When matching
2001  * syncache entry is found the syncookie is ignored.
2002  *
2003  * The only reliable information persisting the 3WHS is our initial sequence
2004  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2005  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2006  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2007  * returns and signifies a legitimate connection if it matches the ACK.
2008  *
2009  * The available space of 32 bits to store the hash and to encode the SYN
2010  * option information is very tight and we should have at least 24 bits for
2011  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2012  *
2013  * SYN option information we have to encode to fully restore a connection:
2014  * MSS: is imporant to chose an optimal segment size to avoid IP level
2015  *   fragmentation along the path.  The common MSS values can be encoded
2016  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2017  *   in the table leading to a slight increase in packetization overhead.
2018  * WSCALE: is necessary to allow large windows to be used for high delay-
2019  *   bandwidth product links.  Not scaling the window when it was initially
2020  *   negotiated is bad for performance as lack of scaling further decreases
2021  *   the apparent available send window.  We only need to encode the WSCALE
2022  *   we received from the remote end.  Our end can be recalculated at any
2023  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2024  *   Uncommon values are captured by the next lower value in the table
2025  *   making us under-estimate the available window size halving our
2026  *   theoretically possible maximum throughput for that connection.
2027  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2028  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2029  *   that are included in all segments on a connection.  We enable them when
2030  *   the ACK has them.
2031  *
2032  * Security of syncookies and attack vectors:
2033  *
2034  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2035  * together with the gloabl secret to make it unique per connection attempt.
2036  * Thus any change of any of those parameters results in a different MAC output
2037  * in an unpredictable way unless a collision is encountered.  24 bits of the
2038  * MAC are embedded into the ISS.
2039  *
2040  * To prevent replay attacks two rotating global secrets are updated with a
2041  * new random value every 15 seconds.  The life-time of a syncookie is thus
2042  * 15-30 seconds.
2043  *
2044  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2045  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2046  * text attack by varying and testing the all parameters under his control.
2047  * The strength depends on the size and randomness of the secret, and the
2048  * cryptographic security of the MAC function.  Due to the constant updating
2049  * of the secret the attacker has at most 29.999 seconds to find the secret
2050  * and launch spoofed connections.  After that he has to start all over again.
2051  *
2052  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2053  * size an average of 4,823 attempts are required for a 50% chance of success
2054  * to spoof a single syncookie (birthday collision paradox).  However the
2055  * attacker is blind and doesn't know if one of his attempts succeeded unless
2056  * he has a side channel to interfere success from.  A single connection setup
2057  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2058  * This many attempts are required for each one blind spoofed connection.  For
2059  * every additional spoofed connection he has to launch another N attempts.
2060  * Thus for a sustained rate 100 spoofed connections per second approximately
2061  * 1,800,000 packets per second would have to be sent.
2062  *
2063  * NB: The MAC function should be fast so that it doesn't become a CPU
2064  * exhaustion attack vector itself.
2065  *
2066  * References:
2067  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2068  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2069  *   http://cr.yp.to/syncookies.html    (overview)
2070  *   http://cr.yp.to/syncookies/archive (details)
2071  *
2072  *
2073  * Schematic construction of a syncookie enabled Initial Sequence Number:
2074  *  0        1         2         3
2075  *  12345678901234567890123456789012
2076  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2077  *
2078  *  x 24 MAC (truncated)
2079  *  W  3 Send Window Scale index
2080  *  M  3 MSS index
2081  *  S  1 SACK permitted
2082  *  P  1 Odd/even secret
2083  */
2084 
2085 /*
2086  * Distribution and probability of certain MSS values.  Those in between are
2087  * rounded down to the next lower one.
2088  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2089  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2090  */
2091 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2092 
2093 /*
2094  * Distribution and probability of certain WSCALE values.  We have to map the
2095  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2096  * bits based on prevalence of certain values.  Where we don't have an exact
2097  * match for are rounded down to the next lower one letting us under-estimate
2098  * the true available window.  At the moment this would happen only for the
2099  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2100  * and window size).  The absence of the WSCALE option (no scaling in either
2101  * direction) is encoded with index zero.
2102  * [WSCALE values histograms, Allman, 2012]
2103  *                            X 10 10 35  5  6 14 10%   by host
2104  *                            X 11  4  5  5 18 49  3%   by connections
2105  */
2106 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2107 
2108 /*
2109  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2110  * and good cryptographic properties.
2111  */
2112 static uint32_t
2113 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2114     uint8_t *secbits, uintptr_t secmod)
2115 {
2116 	SIPHASH_CTX ctx;
2117 	uint32_t siphash[2];
2118 
2119 	SipHash24_Init(&ctx);
2120 	SipHash_SetKey(&ctx, secbits);
2121 	switch (inc->inc_flags & INC_ISIPV6) {
2122 #ifdef INET
2123 	case 0:
2124 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2125 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2126 		break;
2127 #endif
2128 #ifdef INET6
2129 	case INC_ISIPV6:
2130 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2131 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2132 		break;
2133 #endif
2134 	}
2135 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2136 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2137 	SipHash_Update(&ctx, &irs, sizeof(irs));
2138 	SipHash_Update(&ctx, &flags, sizeof(flags));
2139 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2140 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2141 
2142 	return (siphash[0] ^ siphash[1]);
2143 }
2144 
2145 static tcp_seq
2146 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2147 {
2148 	u_int i, secbit, wscale;
2149 	uint32_t iss, hash;
2150 	uint8_t *secbits;
2151 	union syncookie cookie;
2152 
2153 	cookie.cookie = 0;
2154 
2155 	/* Map our computed MSS into the 3-bit index. */
2156 	for (i = nitems(tcp_sc_msstab) - 1;
2157 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2158 	     i--)
2159 		;
2160 	cookie.flags.mss_idx = i;
2161 
2162 	/*
2163 	 * Map the send window scale into the 3-bit index but only if
2164 	 * the wscale option was received.
2165 	 */
2166 	if (sc->sc_flags & SCF_WINSCALE) {
2167 		wscale = sc->sc_requested_s_scale;
2168 		for (i = nitems(tcp_sc_wstab) - 1;
2169 		    tcp_sc_wstab[i] > wscale && i > 0;
2170 		     i--)
2171 			;
2172 		cookie.flags.wscale_idx = i;
2173 	}
2174 
2175 	/* Can we do SACK? */
2176 	if (sc->sc_flags & SCF_SACK)
2177 		cookie.flags.sack_ok = 1;
2178 
2179 	/* Which of the two secrets to use. */
2180 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2181 	cookie.flags.odd_even = secbit;
2182 
2183 	secbits = V_tcp_syncache.secret.key[secbit];
2184 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2185 	    (uintptr_t)sch);
2186 
2187 	/*
2188 	 * Put the flags into the hash and XOR them to get better ISS number
2189 	 * variance.  This doesn't enhance the cryptographic strength and is
2190 	 * done to prevent the 8 cookie bits from showing up directly on the
2191 	 * wire.
2192 	 */
2193 	iss = hash & ~0xff;
2194 	iss |= cookie.cookie ^ (hash >> 24);
2195 
2196 	TCPSTAT_INC(tcps_sc_sendcookie);
2197 	return (iss);
2198 }
2199 
2200 static struct syncache *
2201 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2202     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2203     struct socket *lso)
2204 {
2205 	uint32_t hash;
2206 	uint8_t *secbits;
2207 	tcp_seq ack, seq;
2208 	int wnd, wscale = 0;
2209 	union syncookie cookie;
2210 
2211 	/*
2212 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2213 	 * advances.
2214 	 */
2215 	ack = th->th_ack - 1;
2216 	seq = th->th_seq - 1;
2217 
2218 	/*
2219 	 * Unpack the flags containing enough information to restore the
2220 	 * connection.
2221 	 */
2222 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2223 
2224 	/* Which of the two secrets to use. */
2225 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2226 
2227 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2228 
2229 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2230 	if ((ack & ~0xff) != (hash & ~0xff))
2231 		return (NULL);
2232 
2233 	/* Fill in the syncache values. */
2234 	sc->sc_flags = 0;
2235 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2236 	sc->sc_ipopts = NULL;
2237 
2238 	sc->sc_irs = seq;
2239 	sc->sc_iss = ack;
2240 
2241 	switch (inc->inc_flags & INC_ISIPV6) {
2242 #ifdef INET
2243 	case 0:
2244 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2245 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2246 		break;
2247 #endif
2248 #ifdef INET6
2249 	case INC_ISIPV6:
2250 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2251 			sc->sc_flowlabel =
2252 			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2253 		break;
2254 #endif
2255 	}
2256 
2257 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2258 
2259 	/* We can simply recompute receive window scale we sent earlier. */
2260 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2261 		wscale++;
2262 
2263 	/* Only use wscale if it was enabled in the orignal SYN. */
2264 	if (cookie.flags.wscale_idx > 0) {
2265 		sc->sc_requested_r_scale = wscale;
2266 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2267 		sc->sc_flags |= SCF_WINSCALE;
2268 	}
2269 
2270 	wnd = lso->sol_sbrcv_hiwat;
2271 	wnd = imax(wnd, 0);
2272 	wnd = imin(wnd, TCP_MAXWIN);
2273 	sc->sc_wnd = wnd;
2274 
2275 	if (cookie.flags.sack_ok)
2276 		sc->sc_flags |= SCF_SACK;
2277 
2278 	if (to->to_flags & TOF_TS) {
2279 		sc->sc_flags |= SCF_TIMESTAMP;
2280 		sc->sc_tsreflect = to->to_tsval;
2281 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2282 	}
2283 
2284 	if (to->to_flags & TOF_SIGNATURE)
2285 		sc->sc_flags |= SCF_SIGNATURE;
2286 
2287 	sc->sc_rxmits = 0;
2288 
2289 	TCPSTAT_INC(tcps_sc_recvcookie);
2290 	return (sc);
2291 }
2292 
2293 #ifdef INVARIANTS
2294 static int
2295 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2296     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2297     struct socket *lso)
2298 {
2299 	struct syncache scs, *scx;
2300 	char *s;
2301 
2302 	bzero(&scs, sizeof(scs));
2303 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2304 
2305 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2306 		return (0);
2307 
2308 	if (scx != NULL) {
2309 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2310 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2311 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2312 
2313 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2314 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2315 			    s, __func__, sc->sc_requested_r_scale,
2316 			    scx->sc_requested_r_scale);
2317 
2318 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2319 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2320 			    s, __func__, sc->sc_requested_s_scale,
2321 			    scx->sc_requested_s_scale);
2322 
2323 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2324 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2325 	}
2326 
2327 	if (s != NULL)
2328 		free(s, M_TCPLOG);
2329 	return (0);
2330 }
2331 #endif /* INVARIANTS */
2332 
2333 static void
2334 syncookie_reseed(void *arg)
2335 {
2336 	struct tcp_syncache *sc = arg;
2337 	uint8_t *secbits;
2338 	int secbit;
2339 
2340 	/*
2341 	 * Reseeding the secret doesn't have to be protected by a lock.
2342 	 * It only must be ensured that the new random values are visible
2343 	 * to all CPUs in a SMP environment.  The atomic with release
2344 	 * semantics ensures that.
2345 	 */
2346 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2347 	secbits = sc->secret.key[secbit];
2348 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2349 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2350 
2351 	/* Reschedule ourself. */
2352 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2353 }
2354 
2355 /*
2356  * We have overflowed a bucket. Let's pause dealing with the syncache.
2357  * This function will increment the bucketoverflow statistics appropriately
2358  * (once per pause when pausing is enabled; otherwise, once per overflow).
2359  */
2360 static void
2361 syncache_pause(struct in_conninfo *inc)
2362 {
2363 	time_t delta;
2364 	const char *s;
2365 
2366 	/* XXX:
2367 	 * 2. Add sysctl read here so we don't get the benefit of this
2368 	 * change without the new sysctl.
2369 	 */
2370 
2371 	/*
2372 	 * Try an unlocked read. If we already know that another thread
2373 	 * has activated the feature, there is no need to proceed.
2374 	 */
2375 	if (V_tcp_syncache.paused)
2376 		return;
2377 
2378 	/* Are cookied enabled? If not, we can't pause. */
2379 	if (!V_tcp_syncookies) {
2380 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2381 		return;
2382 	}
2383 
2384 	/*
2385 	 * We may be the first thread to find an overflow. Get the lock
2386 	 * and evaluate if we need to take action.
2387 	 */
2388 	mtx_lock(&V_tcp_syncache.pause_mtx);
2389 	if (V_tcp_syncache.paused) {
2390 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2391 		return;
2392 	}
2393 
2394 	/* Activate protection. */
2395 	V_tcp_syncache.paused = true;
2396 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2397 
2398 	/*
2399 	 * Determine the last backoff time. If we are seeing a re-newed
2400 	 * attack within that same time after last reactivating the syncache,
2401 	 * consider it an extension of the same attack.
2402 	 */
2403 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2404 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2405 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2406 			delta <<= 1;
2407 			V_tcp_syncache.pause_backoff++;
2408 		}
2409 	} else {
2410 		delta = TCP_SYNCACHE_PAUSE_TIME;
2411 		V_tcp_syncache.pause_backoff = 0;
2412 	}
2413 
2414 	/* Log a warning, including IP addresses, if able. */
2415 	if (inc != NULL)
2416 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2417 	else
2418 		s = (const char *)NULL;
2419 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2420 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2421 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2422 	    (s != NULL) ? ")" : "");
2423 	free(__DECONST(void *, s), M_TCPLOG);
2424 
2425 	/* Use the calculated delta to set a new pause time. */
2426 	V_tcp_syncache.pause_until = time_uptime + delta;
2427 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2428 	    &V_tcp_syncache);
2429 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2430 }
2431 
2432 /* Evaluate whether we need to unpause. */
2433 static void
2434 syncache_unpause(void *arg)
2435 {
2436 	struct tcp_syncache *sc;
2437 	time_t delta;
2438 
2439 	sc = arg;
2440 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2441 	callout_deactivate(&sc->pause_co);
2442 
2443 	/*
2444 	 * Check to make sure we are not running early. If the pause
2445 	 * time has expired, then deactivate the protection.
2446 	 */
2447 	if ((delta = sc->pause_until - time_uptime) > 0)
2448 		callout_schedule(&sc->pause_co, delta * hz);
2449 	else
2450 		sc->paused = false;
2451 }
2452 
2453 /*
2454  * Exports the syncache entries to userland so that netstat can display
2455  * them alongside the other sockets.  This function is intended to be
2456  * called only from tcp_pcblist.
2457  *
2458  * Due to concurrency on an active system, the number of pcbs exported
2459  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2460  * amount of space the caller allocated for this function to use.
2461  */
2462 int
2463 syncache_pcblist(struct sysctl_req *req)
2464 {
2465 	struct xtcpcb xt;
2466 	struct syncache *sc;
2467 	struct syncache_head *sch;
2468 	int error, i;
2469 
2470 	bzero(&xt, sizeof(xt));
2471 	xt.xt_len = sizeof(xt);
2472 	xt.t_state = TCPS_SYN_RECEIVED;
2473 	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2474 	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2475 	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2476 	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2477 
2478 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2479 		sch = &V_tcp_syncache.hashbase[i];
2480 		SCH_LOCK(sch);
2481 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2482 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2483 				continue;
2484 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2485 				xt.xt_inp.inp_vflag = INP_IPV6;
2486 			else
2487 				xt.xt_inp.inp_vflag = INP_IPV4;
2488 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2489 			    sizeof (struct in_conninfo));
2490 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2491 			if (error) {
2492 				SCH_UNLOCK(sch);
2493 				return (0);
2494 			}
2495 		}
2496 		SCH_UNLOCK(sch);
2497 	}
2498 
2499 	return (0);
2500 }
2501