xref: /freebsd/sys/netinet/tcp_syncache.c (revision 5a0bba9007c527b18db7f9b64f06b486cda4fe9d)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysctl.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/md5.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #include <netinet/in_var.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/ip_var.h>
69 #include <netinet/ip_options.h>
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/in6_pcb.h>
76 #endif
77 #include <netinet/tcp.h>
78 #include <netinet/tcp_fsm.h>
79 #include <netinet/tcp_seq.h>
80 #include <netinet/tcp_timer.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/tcp_syncache.h>
83 #include <netinet/tcp_offload.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 
88 #ifdef IPSEC
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 #include <netipsec/key.h>
94 #endif /*IPSEC*/
95 
96 #include <machine/in_cksum.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 static VNET_DEFINE(int, tcp_syncookies) = 1;
101 #define	V_tcp_syncookies		VNET(tcp_syncookies)
102 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
103     &VNET_NAME(tcp_syncookies), 0,
104     "Use TCP SYN cookies if the syncache overflows");
105 
106 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
107 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
108 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
109     &VNET_NAME(tcp_syncookiesonly), 0,
110     "Use only TCP SYN cookies");
111 
112 #ifdef TCP_OFFLOAD_DISABLE
113 #define TOEPCB_ISSET(sc) (0)
114 #else
115 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
116 #endif
117 
118 static void	 syncache_drop(struct syncache *, struct syncache_head *);
119 static void	 syncache_free(struct syncache *);
120 static void	 syncache_insert(struct syncache *, struct syncache_head *);
121 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
122 static int	 syncache_respond(struct syncache *);
123 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
124 		    struct mbuf *m);
125 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
126 		    int docallout);
127 static void	 syncache_timer(void *);
128 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
129 		    u_int32_t *);
130 static struct syncache
131 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
132 		    struct syncache *, struct tcpopt *, struct tcphdr *,
133 		    struct socket *);
134 
135 /*
136  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
137  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
138  * the odds are that the user has given up attempting to connect by then.
139  */
140 #define SYNCACHE_MAXREXMTS		3
141 
142 /* Arbitrary values */
143 #define TCP_SYNCACHE_HASHSIZE		512
144 #define TCP_SYNCACHE_BUCKETLIMIT	30
145 
146 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
147 #define	V_tcp_syncache			VNET(tcp_syncache)
148 
149 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
150 
151 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
152     &VNET_NAME(tcp_syncache.bucket_limit), 0,
153     "Per-bucket hash limit for syncache");
154 
155 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
156     &VNET_NAME(tcp_syncache.cache_limit), 0,
157     "Overall entry limit for syncache");
158 
159 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160     &VNET_NAME(tcp_syncache.cache_count), 0,
161     "Current number of entries in syncache");
162 
163 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
164     &VNET_NAME(tcp_syncache.hashsize), 0,
165     "Size of TCP syncache hashtable");
166 
167 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
168     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
169     "Limit on SYN/ACK retransmissions");
170 
171 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
172 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
173     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
174     "Send reset on socket allocation failure");
175 
176 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
177 
178 #define SYNCACHE_HASH(inc, mask)					\
179 	((V_tcp_syncache.hash_secret ^					\
180 	  (inc)->inc_faddr.s_addr ^					\
181 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
182 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
183 
184 #define SYNCACHE_HASH6(inc, mask)					\
185 	((V_tcp_syncache.hash_secret ^					\
186 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
187 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
188 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
189 
190 #define ENDPTS_EQ(a, b) (						\
191 	(a)->ie_fport == (b)->ie_fport &&				\
192 	(a)->ie_lport == (b)->ie_lport &&				\
193 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
194 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
195 )
196 
197 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
198 
199 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
200 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
201 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
202 
203 /*
204  * Requires the syncache entry to be already removed from the bucket list.
205  */
206 static void
207 syncache_free(struct syncache *sc)
208 {
209 
210 	if (sc->sc_ipopts)
211 		(void) m_free(sc->sc_ipopts);
212 	if (sc->sc_cred)
213 		crfree(sc->sc_cred);
214 #ifdef MAC
215 	mac_syncache_destroy(&sc->sc_label);
216 #endif
217 
218 	uma_zfree(V_tcp_syncache.zone, sc);
219 }
220 
221 void
222 syncache_init(void)
223 {
224 	int i;
225 
226 	V_tcp_syncache.cache_count = 0;
227 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
230 	V_tcp_syncache.hash_secret = arc4random();
231 
232 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
233 	    &V_tcp_syncache.hashsize);
234 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
235 	    &V_tcp_syncache.bucket_limit);
236 	if (!powerof2(V_tcp_syncache.hashsize) ||
237 	    V_tcp_syncache.hashsize == 0) {
238 		printf("WARNING: syncache hash size is not a power of 2.\n");
239 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240 	}
241 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
242 
243 	/* Set limits. */
244 	V_tcp_syncache.cache_limit =
245 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
246 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
247 	    &V_tcp_syncache.cache_limit);
248 
249 	/* Allocate the hash table. */
250 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
251 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
252 
253 	/* Initialize the hash buckets. */
254 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
255 #ifdef VIMAGE
256 		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
257 #endif
258 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
259 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
260 			 NULL, MTX_DEF);
261 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
262 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
263 		V_tcp_syncache.hashbase[i].sch_length = 0;
264 	}
265 
266 	/* Create the syncache entry zone. */
267 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
269 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
270 }
271 
272 #ifdef VIMAGE
273 void
274 syncache_destroy(void)
275 {
276 	struct syncache_head *sch;
277 	struct syncache *sc, *nsc;
278 	int i;
279 
280 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
281 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
282 
283 		sch = &V_tcp_syncache.hashbase[i];
284 		callout_drain(&sch->sch_timer);
285 
286 		SCH_LOCK(sch);
287 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
288 			syncache_drop(sc, sch);
289 		SCH_UNLOCK(sch);
290 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
291 		    ("%s: sch->sch_bucket not empty", __func__));
292 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
293 		    __func__, sch->sch_length));
294 		mtx_destroy(&sch->sch_mtx);
295 	}
296 
297 	KASSERT(V_tcp_syncache.cache_count == 0, ("%s: cache_count %d not 0",
298 	    __func__, V_tcp_syncache.cache_count));
299 
300 	/* Free the allocated global resources. */
301 	uma_zdestroy(V_tcp_syncache.zone);
302 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
303 }
304 #endif
305 
306 /*
307  * Inserts a syncache entry into the specified bucket row.
308  * Locks and unlocks the syncache_head autonomously.
309  */
310 static void
311 syncache_insert(struct syncache *sc, struct syncache_head *sch)
312 {
313 	struct syncache *sc2;
314 
315 	SCH_LOCK(sch);
316 
317 	/*
318 	 * Make sure that we don't overflow the per-bucket limit.
319 	 * If the bucket is full, toss the oldest element.
320 	 */
321 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
322 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
323 			("sch->sch_length incorrect"));
324 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
325 		syncache_drop(sc2, sch);
326 		TCPSTAT_INC(tcps_sc_bucketoverflow);
327 	}
328 
329 	/* Put it into the bucket. */
330 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
331 	sch->sch_length++;
332 
333 	/* Reinitialize the bucket row's timer. */
334 	if (sch->sch_length == 1)
335 		sch->sch_nextc = ticks + INT_MAX;
336 	syncache_timeout(sc, sch, 1);
337 
338 	SCH_UNLOCK(sch);
339 
340 	V_tcp_syncache.cache_count++;
341 	TCPSTAT_INC(tcps_sc_added);
342 }
343 
344 /*
345  * Remove and free entry from syncache bucket row.
346  * Expects locked syncache head.
347  */
348 static void
349 syncache_drop(struct syncache *sc, struct syncache_head *sch)
350 {
351 
352 	SCH_LOCK_ASSERT(sch);
353 
354 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
355 	sch->sch_length--;
356 
357 #ifndef TCP_OFFLOAD_DISABLE
358 	if (sc->sc_tu)
359 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
360 #endif
361 	syncache_free(sc);
362 	V_tcp_syncache.cache_count--;
363 }
364 
365 /*
366  * Engage/reengage time on bucket row.
367  */
368 static void
369 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
370 {
371 	sc->sc_rxttime = ticks +
372 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
373 	sc->sc_rxmits++;
374 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
375 		sch->sch_nextc = sc->sc_rxttime;
376 		if (docallout)
377 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
378 			    syncache_timer, (void *)sch);
379 	}
380 }
381 
382 /*
383  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
384  * If we have retransmitted an entry the maximum number of times, expire it.
385  * One separate timer for each bucket row.
386  */
387 static void
388 syncache_timer(void *xsch)
389 {
390 	struct syncache_head *sch = (struct syncache_head *)xsch;
391 	struct syncache *sc, *nsc;
392 	int tick = ticks;
393 	char *s;
394 
395 	CURVNET_SET(sch->sch_vnet);
396 
397 	/* NB: syncache_head has already been locked by the callout. */
398 	SCH_LOCK_ASSERT(sch);
399 
400 	/*
401 	 * In the following cycle we may remove some entries and/or
402 	 * advance some timeouts, so re-initialize the bucket timer.
403 	 */
404 	sch->sch_nextc = tick + INT_MAX;
405 
406 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
407 		/*
408 		 * We do not check if the listen socket still exists
409 		 * and accept the case where the listen socket may be
410 		 * gone by the time we resend the SYN/ACK.  We do
411 		 * not expect this to happens often. If it does,
412 		 * then the RST will be sent by the time the remote
413 		 * host does the SYN/ACK->ACK.
414 		 */
415 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
416 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
417 				sch->sch_nextc = sc->sc_rxttime;
418 			continue;
419 		}
420 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
421 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
422 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
423 				    "giving up and removing syncache entry\n",
424 				    s, __func__);
425 				free(s, M_TCPLOG);
426 			}
427 			syncache_drop(sc, sch);
428 			TCPSTAT_INC(tcps_sc_stale);
429 			continue;
430 		}
431 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
432 			log(LOG_DEBUG, "%s; %s: Response timeout, "
433 			    "retransmitting (%u) SYN|ACK\n",
434 			    s, __func__, sc->sc_rxmits);
435 			free(s, M_TCPLOG);
436 		}
437 
438 		(void) syncache_respond(sc);
439 		TCPSTAT_INC(tcps_sc_retransmitted);
440 		syncache_timeout(sc, sch, 0);
441 	}
442 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
443 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
444 			syncache_timer, (void *)(sch));
445 	CURVNET_RESTORE();
446 }
447 
448 /*
449  * Find an entry in the syncache.
450  * Returns always with locked syncache_head plus a matching entry or NULL.
451  */
452 struct syncache *
453 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
454 {
455 	struct syncache *sc;
456 	struct syncache_head *sch;
457 
458 #ifdef INET6
459 	if (inc->inc_flags & INC_ISIPV6) {
460 		sch = &V_tcp_syncache.hashbase[
461 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
462 		*schp = sch;
463 
464 		SCH_LOCK(sch);
465 
466 		/* Circle through bucket row to find matching entry. */
467 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
468 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
469 				return (sc);
470 		}
471 	} else
472 #endif
473 	{
474 		sch = &V_tcp_syncache.hashbase[
475 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
476 		*schp = sch;
477 
478 		SCH_LOCK(sch);
479 
480 		/* Circle through bucket row to find matching entry. */
481 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
482 #ifdef INET6
483 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
484 				continue;
485 #endif
486 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
487 				return (sc);
488 		}
489 	}
490 	SCH_LOCK_ASSERT(*schp);
491 	return (NULL);			/* always returns with locked sch */
492 }
493 
494 /*
495  * This function is called when we get a RST for a
496  * non-existent connection, so that we can see if the
497  * connection is in the syn cache.  If it is, zap it.
498  */
499 void
500 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
501 {
502 	struct syncache *sc;
503 	struct syncache_head *sch;
504 	char *s = NULL;
505 
506 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
507 	SCH_LOCK_ASSERT(sch);
508 
509 	/*
510 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
511 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
512 	 */
513 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
514 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
515 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
516 			    "FIN flag set, segment ignored\n", s, __func__);
517 		TCPSTAT_INC(tcps_badrst);
518 		goto done;
519 	}
520 
521 	/*
522 	 * No corresponding connection was found in syncache.
523 	 * If syncookies are enabled and possibly exclusively
524 	 * used, or we are under memory pressure, a valid RST
525 	 * may not find a syncache entry.  In that case we're
526 	 * done and no SYN|ACK retransmissions will happen.
527 	 * Otherwise the the RST was misdirected or spoofed.
528 	 */
529 	if (sc == NULL) {
530 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
531 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
532 			    "syncache entry (possibly syncookie only), "
533 			    "segment ignored\n", s, __func__);
534 		TCPSTAT_INC(tcps_badrst);
535 		goto done;
536 	}
537 
538 	/*
539 	 * If the RST bit is set, check the sequence number to see
540 	 * if this is a valid reset segment.
541 	 * RFC 793 page 37:
542 	 *   In all states except SYN-SENT, all reset (RST) segments
543 	 *   are validated by checking their SEQ-fields.  A reset is
544 	 *   valid if its sequence number is in the window.
545 	 *
546 	 *   The sequence number in the reset segment is normally an
547 	 *   echo of our outgoing acknowlegement numbers, but some hosts
548 	 *   send a reset with the sequence number at the rightmost edge
549 	 *   of our receive window, and we have to handle this case.
550 	 */
551 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
552 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
553 		syncache_drop(sc, sch);
554 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
555 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
556 			    "connection attempt aborted by remote endpoint\n",
557 			    s, __func__);
558 		TCPSTAT_INC(tcps_sc_reset);
559 	} else {
560 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
561 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
562 			    "IRS %u (+WND %u), segment ignored\n",
563 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
564 		TCPSTAT_INC(tcps_badrst);
565 	}
566 
567 done:
568 	if (s != NULL)
569 		free(s, M_TCPLOG);
570 	SCH_UNLOCK(sch);
571 }
572 
573 void
574 syncache_badack(struct in_conninfo *inc)
575 {
576 	struct syncache *sc;
577 	struct syncache_head *sch;
578 
579 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
580 	SCH_LOCK_ASSERT(sch);
581 	if (sc != NULL) {
582 		syncache_drop(sc, sch);
583 		TCPSTAT_INC(tcps_sc_badack);
584 	}
585 	SCH_UNLOCK(sch);
586 }
587 
588 void
589 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
590 {
591 	struct syncache *sc;
592 	struct syncache_head *sch;
593 
594 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
595 	SCH_LOCK_ASSERT(sch);
596 	if (sc == NULL)
597 		goto done;
598 
599 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
600 	if (ntohl(th->th_seq) != sc->sc_iss)
601 		goto done;
602 
603 	/*
604 	 * If we've rertransmitted 3 times and this is our second error,
605 	 * we remove the entry.  Otherwise, we allow it to continue on.
606 	 * This prevents us from incorrectly nuking an entry during a
607 	 * spurious network outage.
608 	 *
609 	 * See tcp_notify().
610 	 */
611 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
612 		sc->sc_flags |= SCF_UNREACH;
613 		goto done;
614 	}
615 	syncache_drop(sc, sch);
616 	TCPSTAT_INC(tcps_sc_unreach);
617 done:
618 	SCH_UNLOCK(sch);
619 }
620 
621 /*
622  * Build a new TCP socket structure from a syncache entry.
623  */
624 static struct socket *
625 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
626 {
627 	struct inpcb *inp = NULL;
628 	struct socket *so;
629 	struct tcpcb *tp;
630 	int error;
631 	char *s;
632 
633 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
634 
635 	/*
636 	 * Ok, create the full blown connection, and set things up
637 	 * as they would have been set up if we had created the
638 	 * connection when the SYN arrived.  If we can't create
639 	 * the connection, abort it.
640 	 */
641 	so = sonewconn(lso, SS_ISCONNECTED);
642 	if (so == NULL) {
643 		/*
644 		 * Drop the connection; we will either send a RST or
645 		 * have the peer retransmit its SYN again after its
646 		 * RTO and try again.
647 		 */
648 		TCPSTAT_INC(tcps_listendrop);
649 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
650 			log(LOG_DEBUG, "%s; %s: Socket create failed "
651 			    "due to limits or memory shortage\n",
652 			    s, __func__);
653 			free(s, M_TCPLOG);
654 		}
655 		goto abort2;
656 	}
657 #ifdef MAC
658 	mac_socketpeer_set_from_mbuf(m, so);
659 #endif
660 
661 	inp = sotoinpcb(so);
662 	inp->inp_inc.inc_fibnum = so->so_fibnum;
663 	INP_WLOCK(inp);
664 
665 	/* Insert new socket into PCB hash list. */
666 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
667 #ifdef INET6
668 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
669 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
670 	} else {
671 		inp->inp_vflag &= ~INP_IPV6;
672 		inp->inp_vflag |= INP_IPV4;
673 #endif
674 		inp->inp_laddr = sc->sc_inc.inc_laddr;
675 #ifdef INET6
676 	}
677 #endif
678 	inp->inp_lport = sc->sc_inc.inc_lport;
679 	if ((error = in_pcbinshash(inp)) != 0) {
680 		/*
681 		 * Undo the assignments above if we failed to
682 		 * put the PCB on the hash lists.
683 		 */
684 #ifdef INET6
685 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
686 			inp->in6p_laddr = in6addr_any;
687 		else
688 #endif
689 			inp->inp_laddr.s_addr = INADDR_ANY;
690 		inp->inp_lport = 0;
691 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
692 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
693 			    "with error %i\n",
694 			    s, __func__, error);
695 			free(s, M_TCPLOG);
696 		}
697 		goto abort;
698 	}
699 #ifdef IPSEC
700 	/* Copy old policy into new socket's. */
701 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
702 		printf("syncache_socket: could not copy policy\n");
703 #endif
704 #ifdef INET6
705 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
706 		struct inpcb *oinp = sotoinpcb(lso);
707 		struct in6_addr laddr6;
708 		struct sockaddr_in6 sin6;
709 		/*
710 		 * Inherit socket options from the listening socket.
711 		 * Note that in6p_inputopts are not (and should not be)
712 		 * copied, since it stores previously received options and is
713 		 * used to detect if each new option is different than the
714 		 * previous one and hence should be passed to a user.
715 		 * If we copied in6p_inputopts, a user would not be able to
716 		 * receive options just after calling the accept system call.
717 		 */
718 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
719 		if (oinp->in6p_outputopts)
720 			inp->in6p_outputopts =
721 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
722 
723 		sin6.sin6_family = AF_INET6;
724 		sin6.sin6_len = sizeof(sin6);
725 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
726 		sin6.sin6_port = sc->sc_inc.inc_fport;
727 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
728 		laddr6 = inp->in6p_laddr;
729 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
730 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
731 		if ((error = in6_pcbconnect(inp, (struct sockaddr *)&sin6,
732 		    thread0.td_ucred)) != 0) {
733 			inp->in6p_laddr = laddr6;
734 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
735 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
736 				    "with error %i\n",
737 				    s, __func__, error);
738 				free(s, M_TCPLOG);
739 			}
740 			goto abort;
741 		}
742 		/* Override flowlabel from in6_pcbconnect. */
743 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
744 		inp->inp_flow |= sc->sc_flowlabel;
745 	} else
746 #endif
747 	{
748 		struct in_addr laddr;
749 		struct sockaddr_in sin;
750 
751 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
752 
753 		if (inp->inp_options == NULL) {
754 			inp->inp_options = sc->sc_ipopts;
755 			sc->sc_ipopts = NULL;
756 		}
757 
758 		sin.sin_family = AF_INET;
759 		sin.sin_len = sizeof(sin);
760 		sin.sin_addr = sc->sc_inc.inc_faddr;
761 		sin.sin_port = sc->sc_inc.inc_fport;
762 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
763 		laddr = inp->inp_laddr;
764 		if (inp->inp_laddr.s_addr == INADDR_ANY)
765 			inp->inp_laddr = sc->sc_inc.inc_laddr;
766 		if ((error = in_pcbconnect(inp, (struct sockaddr *)&sin,
767 		    thread0.td_ucred)) != 0) {
768 			inp->inp_laddr = laddr;
769 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
770 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
771 				    "with error %i\n",
772 				    s, __func__, error);
773 				free(s, M_TCPLOG);
774 			}
775 			goto abort;
776 		}
777 	}
778 	tp = intotcpcb(inp);
779 	tp->t_state = TCPS_SYN_RECEIVED;
780 	tp->iss = sc->sc_iss;
781 	tp->irs = sc->sc_irs;
782 	tcp_rcvseqinit(tp);
783 	tcp_sendseqinit(tp);
784 	tp->snd_wl1 = sc->sc_irs;
785 	tp->snd_max = tp->iss + 1;
786 	tp->snd_nxt = tp->iss + 1;
787 	tp->rcv_up = sc->sc_irs + 1;
788 	tp->rcv_wnd = sc->sc_wnd;
789 	tp->rcv_adv += tp->rcv_wnd;
790 	tp->last_ack_sent = tp->rcv_nxt;
791 
792 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
793 	if (sc->sc_flags & SCF_NOOPT)
794 		tp->t_flags |= TF_NOOPT;
795 	else {
796 		if (sc->sc_flags & SCF_WINSCALE) {
797 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
798 			tp->snd_scale = sc->sc_requested_s_scale;
799 			tp->request_r_scale = sc->sc_requested_r_scale;
800 		}
801 		if (sc->sc_flags & SCF_TIMESTAMP) {
802 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
803 			tp->ts_recent = sc->sc_tsreflect;
804 			tp->ts_recent_age = ticks;
805 			tp->ts_offset = sc->sc_tsoff;
806 		}
807 #ifdef TCP_SIGNATURE
808 		if (sc->sc_flags & SCF_SIGNATURE)
809 			tp->t_flags |= TF_SIGNATURE;
810 #endif
811 		if (sc->sc_flags & SCF_SACK)
812 			tp->t_flags |= TF_SACK_PERMIT;
813 	}
814 
815 	if (sc->sc_flags & SCF_ECN)
816 		tp->t_flags |= TF_ECN_PERMIT;
817 
818 	/*
819 	 * Set up MSS and get cached values from tcp_hostcache.
820 	 * This might overwrite some of the defaults we just set.
821 	 */
822 	tcp_mss(tp, sc->sc_peer_mss);
823 
824 	/*
825 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
826 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
827 	 */
828 	if (sc->sc_rxmits > 1)
829 		tp->snd_cwnd = tp->t_maxseg;
830 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
831 
832 	INP_WUNLOCK(inp);
833 
834 	TCPSTAT_INC(tcps_accepts);
835 	return (so);
836 
837 abort:
838 	INP_WUNLOCK(inp);
839 abort2:
840 	if (so != NULL)
841 		soabort(so);
842 	return (NULL);
843 }
844 
845 /*
846  * This function gets called when we receive an ACK for a
847  * socket in the LISTEN state.  We look up the connection
848  * in the syncache, and if its there, we pull it out of
849  * the cache and turn it into a full-blown connection in
850  * the SYN-RECEIVED state.
851  */
852 int
853 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
854     struct socket **lsop, struct mbuf *m)
855 {
856 	struct syncache *sc;
857 	struct syncache_head *sch;
858 	struct syncache scs;
859 	char *s;
860 
861 	/*
862 	 * Global TCP locks are held because we manipulate the PCB lists
863 	 * and create a new socket.
864 	 */
865 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
866 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
867 	    ("%s: can handle only ACK", __func__));
868 
869 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
870 	SCH_LOCK_ASSERT(sch);
871 	if (sc == NULL) {
872 		/*
873 		 * There is no syncache entry, so see if this ACK is
874 		 * a returning syncookie.  To do this, first:
875 		 *  A. See if this socket has had a syncache entry dropped in
876 		 *     the past.  We don't want to accept a bogus syncookie
877 		 *     if we've never received a SYN.
878 		 *  B. check that the syncookie is valid.  If it is, then
879 		 *     cobble up a fake syncache entry, and return.
880 		 */
881 		if (!V_tcp_syncookies) {
882 			SCH_UNLOCK(sch);
883 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
884 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
885 				    "segment rejected (syncookies disabled)\n",
886 				    s, __func__);
887 			goto failed;
888 		}
889 		bzero(&scs, sizeof(scs));
890 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
891 		SCH_UNLOCK(sch);
892 		if (sc == NULL) {
893 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
894 				log(LOG_DEBUG, "%s; %s: Segment failed "
895 				    "SYNCOOKIE authentication, segment rejected "
896 				    "(probably spoofed)\n", s, __func__);
897 			goto failed;
898 		}
899 	} else {
900 		/* Pull out the entry to unlock the bucket row. */
901 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
902 		sch->sch_length--;
903 		V_tcp_syncache.cache_count--;
904 		SCH_UNLOCK(sch);
905 	}
906 
907 	/*
908 	 * Segment validation:
909 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
910 	 */
911 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
912 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
913 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
914 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
915 		goto failed;
916 	}
917 
918 	/*
919 	 * The SEQ must fall in the window starting at the received
920 	 * initial receive sequence number + 1 (the SYN).
921 	 */
922 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
923 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
924 	    !TOEPCB_ISSET(sc)) {
925 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
926 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
927 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
928 		goto failed;
929 	}
930 
931 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
932 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
933 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
934 			    "segment rejected\n", s, __func__);
935 		goto failed;
936 	}
937 	/*
938 	 * If timestamps were negotiated the reflected timestamp
939 	 * must be equal to what we actually sent in the SYN|ACK.
940 	 */
941 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
942 	    !TOEPCB_ISSET(sc)) {
943 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
944 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
945 			    "segment rejected\n",
946 			    s, __func__, to->to_tsecr, sc->sc_ts);
947 		goto failed;
948 	}
949 
950 	*lsop = syncache_socket(sc, *lsop, m);
951 
952 	if (*lsop == NULL)
953 		TCPSTAT_INC(tcps_sc_aborted);
954 	else
955 		TCPSTAT_INC(tcps_sc_completed);
956 
957 /* how do we find the inp for the new socket? */
958 	if (sc != &scs)
959 		syncache_free(sc);
960 	return (1);
961 failed:
962 	if (sc != NULL && sc != &scs)
963 		syncache_free(sc);
964 	if (s != NULL)
965 		free(s, M_TCPLOG);
966 	*lsop = NULL;
967 	return (0);
968 }
969 
970 int
971 tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
972     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
973 {
974 	struct tcpopt to;
975 	int rc;
976 
977 	bzero(&to, sizeof(struct tcpopt));
978 	to.to_mss = toeo->to_mss;
979 	to.to_wscale = toeo->to_wscale;
980 	to.to_flags = toeo->to_flags;
981 
982 	INP_INFO_WLOCK(&V_tcbinfo);
983 	rc = syncache_expand(inc, &to, th, lsop, m);
984 	INP_INFO_WUNLOCK(&V_tcbinfo);
985 
986 	return (rc);
987 }
988 
989 /*
990  * Given a LISTEN socket and an inbound SYN request, add
991  * this to the syn cache, and send back a segment:
992  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
993  * to the source.
994  *
995  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
996  * Doing so would require that we hold onto the data and deliver it
997  * to the application.  However, if we are the target of a SYN-flood
998  * DoS attack, an attacker could send data which would eventually
999  * consume all available buffer space if it were ACKed.  By not ACKing
1000  * the data, we avoid this DoS scenario.
1001  */
1002 static void
1003 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1004     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
1005     struct toe_usrreqs *tu, void *toepcb)
1006 {
1007 	struct tcpcb *tp;
1008 	struct socket *so;
1009 	struct syncache *sc = NULL;
1010 	struct syncache_head *sch;
1011 	struct mbuf *ipopts = NULL;
1012 	u_int32_t flowtmp;
1013 	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
1014 	char *s;
1015 #ifdef INET6
1016 	int autoflowlabel = 0;
1017 #endif
1018 #ifdef MAC
1019 	struct label *maclabel;
1020 #endif
1021 	struct syncache scs;
1022 	struct ucred *cred;
1023 
1024 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1025 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1026 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1027 	    ("%s: unexpected tcp flags", __func__));
1028 
1029 	/*
1030 	 * Combine all so/tp operations very early to drop the INP lock as
1031 	 * soon as possible.
1032 	 */
1033 	so = *lsop;
1034 	tp = sototcpcb(so);
1035 	cred = crhold(so->so_cred);
1036 
1037 #ifdef INET6
1038 	if ((inc->inc_flags & INC_ISIPV6) &&
1039 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1040 		autoflowlabel = 1;
1041 #endif
1042 	ip_ttl = inp->inp_ip_ttl;
1043 	ip_tos = inp->inp_ip_tos;
1044 	win = sbspace(&so->so_rcv);
1045 	sb_hiwat = so->so_rcv.sb_hiwat;
1046 	noopt = (tp->t_flags & TF_NOOPT);
1047 
1048 	/* By the time we drop the lock these should no longer be used. */
1049 	so = NULL;
1050 	tp = NULL;
1051 
1052 #ifdef MAC
1053 	if (mac_syncache_init(&maclabel) != 0) {
1054 		INP_WUNLOCK(inp);
1055 		INP_INFO_WUNLOCK(&V_tcbinfo);
1056 		goto done;
1057 	} else
1058 		mac_syncache_create(maclabel, inp);
1059 #endif
1060 	INP_WUNLOCK(inp);
1061 	INP_INFO_WUNLOCK(&V_tcbinfo);
1062 
1063 	/*
1064 	 * Remember the IP options, if any.
1065 	 */
1066 #ifdef INET6
1067 	if (!(inc->inc_flags & INC_ISIPV6))
1068 #endif
1069 		ipopts = (m) ? ip_srcroute(m) : NULL;
1070 
1071 	/*
1072 	 * See if we already have an entry for this connection.
1073 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1074 	 *
1075 	 * XXX: should the syncache be re-initialized with the contents
1076 	 * of the new SYN here (which may have different options?)
1077 	 *
1078 	 * XXX: We do not check the sequence number to see if this is a
1079 	 * real retransmit or a new connection attempt.  The question is
1080 	 * how to handle such a case; either ignore it as spoofed, or
1081 	 * drop the current entry and create a new one?
1082 	 */
1083 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1084 	SCH_LOCK_ASSERT(sch);
1085 	if (sc != NULL) {
1086 #ifndef TCP_OFFLOAD_DISABLE
1087 		if (sc->sc_tu)
1088 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1089 			    sc->sc_toepcb);
1090 #endif
1091 		TCPSTAT_INC(tcps_sc_dupsyn);
1092 		if (ipopts) {
1093 			/*
1094 			 * If we were remembering a previous source route,
1095 			 * forget it and use the new one we've been given.
1096 			 */
1097 			if (sc->sc_ipopts)
1098 				(void) m_free(sc->sc_ipopts);
1099 			sc->sc_ipopts = ipopts;
1100 		}
1101 		/*
1102 		 * Update timestamp if present.
1103 		 */
1104 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1105 			sc->sc_tsreflect = to->to_tsval;
1106 		else
1107 			sc->sc_flags &= ~SCF_TIMESTAMP;
1108 #ifdef MAC
1109 		/*
1110 		 * Since we have already unconditionally allocated label
1111 		 * storage, free it up.  The syncache entry will already
1112 		 * have an initialized label we can use.
1113 		 */
1114 		mac_syncache_destroy(&maclabel);
1115 #endif
1116 		/* Retransmit SYN|ACK and reset retransmit count. */
1117 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1118 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1119 			    "resetting timer and retransmitting SYN|ACK\n",
1120 			    s, __func__);
1121 			free(s, M_TCPLOG);
1122 		}
1123 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1124 			sc->sc_rxmits = 0;
1125 			syncache_timeout(sc, sch, 1);
1126 			TCPSTAT_INC(tcps_sndacks);
1127 			TCPSTAT_INC(tcps_sndtotal);
1128 		}
1129 		SCH_UNLOCK(sch);
1130 		goto done;
1131 	}
1132 
1133 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1134 	if (sc == NULL) {
1135 		/*
1136 		 * The zone allocator couldn't provide more entries.
1137 		 * Treat this as if the cache was full; drop the oldest
1138 		 * entry and insert the new one.
1139 		 */
1140 		TCPSTAT_INC(tcps_sc_zonefail);
1141 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1142 			syncache_drop(sc, sch);
1143 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1144 		if (sc == NULL) {
1145 			if (V_tcp_syncookies) {
1146 				bzero(&scs, sizeof(scs));
1147 				sc = &scs;
1148 			} else {
1149 				SCH_UNLOCK(sch);
1150 				if (ipopts)
1151 					(void) m_free(ipopts);
1152 				goto done;
1153 			}
1154 		}
1155 	}
1156 
1157 	/*
1158 	 * Fill in the syncache values.
1159 	 */
1160 #ifdef MAC
1161 	sc->sc_label = maclabel;
1162 #endif
1163 	sc->sc_cred = cred;
1164 	cred = NULL;
1165 	sc->sc_ipopts = ipopts;
1166 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1167 #ifdef INET6
1168 	if (!(inc->inc_flags & INC_ISIPV6))
1169 #endif
1170 	{
1171 		sc->sc_ip_tos = ip_tos;
1172 		sc->sc_ip_ttl = ip_ttl;
1173 	}
1174 #ifndef TCP_OFFLOAD_DISABLE
1175 	sc->sc_tu = tu;
1176 	sc->sc_toepcb = toepcb;
1177 #endif
1178 	sc->sc_irs = th->th_seq;
1179 	sc->sc_iss = arc4random();
1180 	sc->sc_flags = 0;
1181 	sc->sc_flowlabel = 0;
1182 
1183 	/*
1184 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1185 	 * win was derived from socket earlier in the function.
1186 	 */
1187 	win = imax(win, 0);
1188 	win = imin(win, TCP_MAXWIN);
1189 	sc->sc_wnd = win;
1190 
1191 	if (V_tcp_do_rfc1323) {
1192 		/*
1193 		 * A timestamp received in a SYN makes
1194 		 * it ok to send timestamp requests and replies.
1195 		 */
1196 		if (to->to_flags & TOF_TS) {
1197 			sc->sc_tsreflect = to->to_tsval;
1198 			sc->sc_ts = ticks;
1199 			sc->sc_flags |= SCF_TIMESTAMP;
1200 		}
1201 		if (to->to_flags & TOF_SCALE) {
1202 			int wscale = 0;
1203 
1204 			/*
1205 			 * Pick the smallest possible scaling factor that
1206 			 * will still allow us to scale up to sb_max, aka
1207 			 * kern.ipc.maxsockbuf.
1208 			 *
1209 			 * We do this because there are broken firewalls that
1210 			 * will corrupt the window scale option, leading to
1211 			 * the other endpoint believing that our advertised
1212 			 * window is unscaled.  At scale factors larger than
1213 			 * 5 the unscaled window will drop below 1500 bytes,
1214 			 * leading to serious problems when traversing these
1215 			 * broken firewalls.
1216 			 *
1217 			 * With the default maxsockbuf of 256K, a scale factor
1218 			 * of 3 will be chosen by this algorithm.  Those who
1219 			 * choose a larger maxsockbuf should watch out
1220 			 * for the compatiblity problems mentioned above.
1221 			 *
1222 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1223 			 * or <SYN,ACK>) segment itself is never scaled.
1224 			 */
1225 			while (wscale < TCP_MAX_WINSHIFT &&
1226 			    (TCP_MAXWIN << wscale) < sb_max)
1227 				wscale++;
1228 			sc->sc_requested_r_scale = wscale;
1229 			sc->sc_requested_s_scale = to->to_wscale;
1230 			sc->sc_flags |= SCF_WINSCALE;
1231 		}
1232 	}
1233 #ifdef TCP_SIGNATURE
1234 	/*
1235 	 * If listening socket requested TCP digests, and received SYN
1236 	 * contains the option, flag this in the syncache so that
1237 	 * syncache_respond() will do the right thing with the SYN+ACK.
1238 	 * XXX: Currently we always record the option by default and will
1239 	 * attempt to use it in syncache_respond().
1240 	 */
1241 	if (to->to_flags & TOF_SIGNATURE)
1242 		sc->sc_flags |= SCF_SIGNATURE;
1243 #endif
1244 	if (to->to_flags & TOF_SACKPERM)
1245 		sc->sc_flags |= SCF_SACK;
1246 	if (to->to_flags & TOF_MSS)
1247 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1248 	if (noopt)
1249 		sc->sc_flags |= SCF_NOOPT;
1250 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1251 		sc->sc_flags |= SCF_ECN;
1252 
1253 	if (V_tcp_syncookies) {
1254 		syncookie_generate(sch, sc, &flowtmp);
1255 #ifdef INET6
1256 		if (autoflowlabel)
1257 			sc->sc_flowlabel = flowtmp;
1258 #endif
1259 	} else {
1260 #ifdef INET6
1261 		if (autoflowlabel)
1262 			sc->sc_flowlabel =
1263 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1264 #endif
1265 	}
1266 	SCH_UNLOCK(sch);
1267 
1268 	/*
1269 	 * Do a standard 3-way handshake.
1270 	 */
1271 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1272 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1273 			syncache_free(sc);
1274 		else if (sc != &scs)
1275 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1276 		TCPSTAT_INC(tcps_sndacks);
1277 		TCPSTAT_INC(tcps_sndtotal);
1278 	} else {
1279 		if (sc != &scs)
1280 			syncache_free(sc);
1281 		TCPSTAT_INC(tcps_sc_dropped);
1282 	}
1283 
1284 done:
1285 	if (cred != NULL)
1286 		crfree(cred);
1287 #ifdef MAC
1288 	if (sc == &scs)
1289 		mac_syncache_destroy(&maclabel);
1290 #endif
1291 	if (m) {
1292 
1293 		*lsop = NULL;
1294 		m_freem(m);
1295 	}
1296 }
1297 
1298 static int
1299 syncache_respond(struct syncache *sc)
1300 {
1301 	struct ip *ip = NULL;
1302 	struct mbuf *m;
1303 	struct tcphdr *th;
1304 	int optlen, error;
1305 	u_int16_t hlen, tlen, mssopt;
1306 	struct tcpopt to;
1307 #ifdef INET6
1308 	struct ip6_hdr *ip6 = NULL;
1309 #endif
1310 
1311 	hlen =
1312 #ifdef INET6
1313 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1314 #endif
1315 		sizeof(struct ip);
1316 	tlen = hlen + sizeof(struct tcphdr);
1317 
1318 	/* Determine MSS we advertize to other end of connection. */
1319 	mssopt = tcp_mssopt(&sc->sc_inc);
1320 	if (sc->sc_peer_mss)
1321 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1322 
1323 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1324 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1325 	    ("syncache: mbuf too small"));
1326 
1327 	/* Create the IP+TCP header from scratch. */
1328 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1329 	if (m == NULL)
1330 		return (ENOBUFS);
1331 #ifdef MAC
1332 	mac_syncache_create_mbuf(sc->sc_label, m);
1333 #endif
1334 	m->m_data += max_linkhdr;
1335 	m->m_len = tlen;
1336 	m->m_pkthdr.len = tlen;
1337 	m->m_pkthdr.rcvif = NULL;
1338 
1339 #ifdef INET6
1340 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1341 		ip6 = mtod(m, struct ip6_hdr *);
1342 		ip6->ip6_vfc = IPV6_VERSION;
1343 		ip6->ip6_nxt = IPPROTO_TCP;
1344 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1345 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1346 		ip6->ip6_plen = htons(tlen - hlen);
1347 		/* ip6_hlim is set after checksum */
1348 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1349 		ip6->ip6_flow |= sc->sc_flowlabel;
1350 
1351 		th = (struct tcphdr *)(ip6 + 1);
1352 	} else
1353 #endif
1354 	{
1355 		ip = mtod(m, struct ip *);
1356 		ip->ip_v = IPVERSION;
1357 		ip->ip_hl = sizeof(struct ip) >> 2;
1358 		ip->ip_len = tlen;
1359 		ip->ip_id = 0;
1360 		ip->ip_off = 0;
1361 		ip->ip_sum = 0;
1362 		ip->ip_p = IPPROTO_TCP;
1363 		ip->ip_src = sc->sc_inc.inc_laddr;
1364 		ip->ip_dst = sc->sc_inc.inc_faddr;
1365 		ip->ip_ttl = sc->sc_ip_ttl;
1366 		ip->ip_tos = sc->sc_ip_tos;
1367 
1368 		/*
1369 		 * See if we should do MTU discovery.  Route lookups are
1370 		 * expensive, so we will only unset the DF bit if:
1371 		 *
1372 		 *	1) path_mtu_discovery is disabled
1373 		 *	2) the SCF_UNREACH flag has been set
1374 		 */
1375 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1376 		       ip->ip_off |= IP_DF;
1377 
1378 		th = (struct tcphdr *)(ip + 1);
1379 	}
1380 	th->th_sport = sc->sc_inc.inc_lport;
1381 	th->th_dport = sc->sc_inc.inc_fport;
1382 
1383 	th->th_seq = htonl(sc->sc_iss);
1384 	th->th_ack = htonl(sc->sc_irs + 1);
1385 	th->th_off = sizeof(struct tcphdr) >> 2;
1386 	th->th_x2 = 0;
1387 	th->th_flags = TH_SYN|TH_ACK;
1388 	th->th_win = htons(sc->sc_wnd);
1389 	th->th_urp = 0;
1390 
1391 	if (sc->sc_flags & SCF_ECN) {
1392 		th->th_flags |= TH_ECE;
1393 		TCPSTAT_INC(tcps_ecn_shs);
1394 	}
1395 
1396 	/* Tack on the TCP options. */
1397 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1398 		to.to_flags = 0;
1399 
1400 		to.to_mss = mssopt;
1401 		to.to_flags = TOF_MSS;
1402 		if (sc->sc_flags & SCF_WINSCALE) {
1403 			to.to_wscale = sc->sc_requested_r_scale;
1404 			to.to_flags |= TOF_SCALE;
1405 		}
1406 		if (sc->sc_flags & SCF_TIMESTAMP) {
1407 			/* Virgin timestamp or TCP cookie enhanced one. */
1408 			to.to_tsval = sc->sc_ts;
1409 			to.to_tsecr = sc->sc_tsreflect;
1410 			to.to_flags |= TOF_TS;
1411 		}
1412 		if (sc->sc_flags & SCF_SACK)
1413 			to.to_flags |= TOF_SACKPERM;
1414 #ifdef TCP_SIGNATURE
1415 		if (sc->sc_flags & SCF_SIGNATURE)
1416 			to.to_flags |= TOF_SIGNATURE;
1417 #endif
1418 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1419 
1420 		/* Adjust headers by option size. */
1421 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1422 		m->m_len += optlen;
1423 		m->m_pkthdr.len += optlen;
1424 
1425 #ifdef TCP_SIGNATURE
1426 		if (sc->sc_flags & SCF_SIGNATURE)
1427 			tcp_signature_compute(m, 0, 0, optlen,
1428 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1429 #endif
1430 #ifdef INET6
1431 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1432 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1433 		else
1434 #endif
1435 			ip->ip_len += optlen;
1436 	} else
1437 		optlen = 0;
1438 
1439 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1440 #ifdef INET6
1441 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1442 		th->th_sum = 0;
1443 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1444 				       tlen + optlen - hlen);
1445 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1446 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1447 	} else
1448 #endif
1449 	{
1450 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1451 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1452 		m->m_pkthdr.csum_flags = CSUM_TCP;
1453 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1454 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1455 	}
1456 	return (error);
1457 }
1458 
1459 void
1460 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1461     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1462 {
1463 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1464 }
1465 
1466 void
1467 tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1468     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1469     struct toe_usrreqs *tu, void *toepcb)
1470 {
1471 	struct tcpopt to;
1472 
1473 	bzero(&to, sizeof(struct tcpopt));
1474 	to.to_mss = toeo->to_mss;
1475 	to.to_wscale = toeo->to_wscale;
1476 	to.to_flags = toeo->to_flags;
1477 
1478 	INP_INFO_WLOCK(&V_tcbinfo);
1479 	INP_WLOCK(inp);
1480 
1481 	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1482 }
1483 
1484 /*
1485  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1486  * receive and to be able to handle SYN floods from bogus source addresses
1487  * (where we will never receive any reply).  SYN floods try to exhaust all
1488  * our memory and available slots in the SYN cache table to cause a denial
1489  * of service to legitimate users of the local host.
1490  *
1491  * The idea of SYN cookies is to encode and include all necessary information
1492  * about the connection setup state within the SYN-ACK we send back and thus
1493  * to get along without keeping any local state until the ACK to the SYN-ACK
1494  * arrives (if ever).  Everything we need to know should be available from
1495  * the information we encoded in the SYN-ACK.
1496  *
1497  * More information about the theory behind SYN cookies and its first
1498  * discussion and specification can be found at:
1499  *  http://cr.yp.to/syncookies.html    (overview)
1500  *  http://cr.yp.to/syncookies/archive (gory details)
1501  *
1502  * This implementation extends the orginal idea and first implementation
1503  * of FreeBSD by using not only the initial sequence number field to store
1504  * information but also the timestamp field if present.  This way we can
1505  * keep track of the entire state we need to know to recreate the session in
1506  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1507  * these days.  For those that do not we still have to live with the known
1508  * shortcomings of the ISN only SYN cookies.
1509  *
1510  * Cookie layers:
1511  *
1512  * Initial sequence number we send:
1513  * 31|................................|0
1514  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1515  *    D = MD5 Digest (first dword)
1516  *    M = MSS index
1517  *    R = Rotation of secret
1518  *    P = Odd or Even secret
1519  *
1520  * The MD5 Digest is computed with over following parameters:
1521  *  a) randomly rotated secret
1522  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1523  *  c) the received initial sequence number from remote host
1524  *  d) the rotation offset and odd/even bit
1525  *
1526  * Timestamp we send:
1527  * 31|................................|0
1528  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1529  *    D = MD5 Digest (third dword) (only as filler)
1530  *    S = Requested send window scale
1531  *    R = Requested receive window scale
1532  *    A = SACK allowed
1533  *    5 = TCP-MD5 enabled (not implemented yet)
1534  *    XORed with MD5 Digest (forth dword)
1535  *
1536  * The timestamp isn't cryptographically secure and doesn't need to be.
1537  * The double use of the MD5 digest dwords ties it to a specific remote/
1538  * local host/port, remote initial sequence number and our local time
1539  * limited secret.  A received timestamp is reverted (XORed) and then
1540  * the contained MD5 dword is compared to the computed one to ensure the
1541  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1542  * have been tampered with but this isn't different from supplying bogus
1543  * values in the SYN in the first place.
1544  *
1545  * Some problems with SYN cookies remain however:
1546  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1547  * original SYN was accepted, the connection is established.  The second
1548  * SYN is inflight, and if it arrives with an ISN that falls within the
1549  * receive window, the connection is killed.
1550  *
1551  * Notes:
1552  * A heuristic to determine when to accept syn cookies is not necessary.
1553  * An ACK flood would cause the syncookie verification to be attempted,
1554  * but a SYN flood causes syncookies to be generated.  Both are of equal
1555  * cost, so there's no point in trying to optimize the ACK flood case.
1556  * Also, if you don't process certain ACKs for some reason, then all someone
1557  * would have to do is launch a SYN and ACK flood at the same time, which
1558  * would stop cookie verification and defeat the entire purpose of syncookies.
1559  */
1560 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1561 
1562 static void
1563 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1564     u_int32_t *flowlabel)
1565 {
1566 	MD5_CTX ctx;
1567 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1568 	u_int32_t data;
1569 	u_int32_t *secbits;
1570 	u_int off, pmss, mss;
1571 	int i;
1572 
1573 	SCH_LOCK_ASSERT(sch);
1574 
1575 	/* Which of the two secrets to use. */
1576 	secbits = sch->sch_oddeven ?
1577 			sch->sch_secbits_odd : sch->sch_secbits_even;
1578 
1579 	/* Reseed secret if too old. */
1580 	if (sch->sch_reseed < time_uptime) {
1581 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1582 		secbits = sch->sch_oddeven ?
1583 				sch->sch_secbits_odd : sch->sch_secbits_even;
1584 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1585 			secbits[i] = arc4random();
1586 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1587 	}
1588 
1589 	/* Secret rotation offset. */
1590 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1591 
1592 	/* Maximum segment size calculation. */
1593 	pmss =
1594 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1595 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1596 		if (tcp_sc_msstab[mss] <= pmss)
1597 			break;
1598 
1599 	/* Fold parameters and MD5 digest into the ISN we will send. */
1600 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1601 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1602 	data |= mss << 4;	/* mss, 3 bits */
1603 
1604 	MD5Init(&ctx);
1605 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1606 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1607 	MD5Update(&ctx, secbits, off);
1608 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1609 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1610 	MD5Update(&ctx, &data, sizeof(data));
1611 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1612 
1613 	data |= (md5_buffer[0] << 7);
1614 	sc->sc_iss = data;
1615 
1616 #ifdef INET6
1617 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1618 #endif
1619 
1620 	/* Additional parameters are stored in the timestamp if present. */
1621 	if (sc->sc_flags & SCF_TIMESTAMP) {
1622 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1623 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1624 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1625 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1626 		data |= md5_buffer[2] << 10;		/* more digest bits */
1627 		data ^= md5_buffer[3];
1628 		sc->sc_ts = data;
1629 		sc->sc_tsoff = data - ticks;		/* after XOR */
1630 	}
1631 
1632 	TCPSTAT_INC(tcps_sc_sendcookie);
1633 }
1634 
1635 static struct syncache *
1636 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1637     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1638     struct socket *so)
1639 {
1640 	MD5_CTX ctx;
1641 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1642 	u_int32_t data = 0;
1643 	u_int32_t *secbits;
1644 	tcp_seq ack, seq;
1645 	int off, mss, wnd, flags;
1646 
1647 	SCH_LOCK_ASSERT(sch);
1648 
1649 	/*
1650 	 * Pull information out of SYN-ACK/ACK and
1651 	 * revert sequence number advances.
1652 	 */
1653 	ack = th->th_ack - 1;
1654 	seq = th->th_seq - 1;
1655 	off = (ack >> 1) & 0x7;
1656 	mss = (ack >> 4) & 0x7;
1657 	flags = ack & 0x7f;
1658 
1659 	/* Which of the two secrets to use. */
1660 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1661 
1662 	/*
1663 	 * The secret wasn't updated for the lifetime of a syncookie,
1664 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1665 	 */
1666 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1667 		return (NULL);
1668 	}
1669 
1670 	/* Recompute the digest so we can compare it. */
1671 	MD5Init(&ctx);
1672 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1673 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1674 	MD5Update(&ctx, secbits, off);
1675 	MD5Update(&ctx, inc, sizeof(*inc));
1676 	MD5Update(&ctx, &seq, sizeof(seq));
1677 	MD5Update(&ctx, &flags, sizeof(flags));
1678 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1679 
1680 	/* Does the digest part of or ACK'ed ISS match? */
1681 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1682 		return (NULL);
1683 
1684 	/* Does the digest part of our reflected timestamp match? */
1685 	if (to->to_flags & TOF_TS) {
1686 		data = md5_buffer[3] ^ to->to_tsecr;
1687 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1688 			return (NULL);
1689 	}
1690 
1691 	/* Fill in the syncache values. */
1692 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1693 	sc->sc_ipopts = NULL;
1694 
1695 	sc->sc_irs = seq;
1696 	sc->sc_iss = ack;
1697 
1698 #ifdef INET6
1699 	if (inc->inc_flags & INC_ISIPV6) {
1700 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1701 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1702 	} else
1703 #endif
1704 	{
1705 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1706 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1707 	}
1708 
1709 	/* Additional parameters that were encoded in the timestamp. */
1710 	if (data) {
1711 		sc->sc_flags |= SCF_TIMESTAMP;
1712 		sc->sc_tsreflect = to->to_tsval;
1713 		sc->sc_ts = to->to_tsecr;
1714 		sc->sc_tsoff = to->to_tsecr - ticks;
1715 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1716 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1717 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1718 		    TCP_MAX_WINSHIFT);
1719 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1720 		    TCP_MAX_WINSHIFT);
1721 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1722 			sc->sc_flags |= SCF_WINSCALE;
1723 	} else
1724 		sc->sc_flags |= SCF_NOOPT;
1725 
1726 	wnd = sbspace(&so->so_rcv);
1727 	wnd = imax(wnd, 0);
1728 	wnd = imin(wnd, TCP_MAXWIN);
1729 	sc->sc_wnd = wnd;
1730 
1731 	sc->sc_rxmits = 0;
1732 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1733 
1734 	TCPSTAT_INC(tcps_sc_recvcookie);
1735 	return (sc);
1736 }
1737 
1738 /*
1739  * Returns the current number of syncache entries.  This number
1740  * will probably change before you get around to calling
1741  * syncache_pcblist.
1742  */
1743 
1744 int
1745 syncache_pcbcount(void)
1746 {
1747 	struct syncache_head *sch;
1748 	int count, i;
1749 
1750 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1751 		/* No need to lock for a read. */
1752 		sch = &V_tcp_syncache.hashbase[i];
1753 		count += sch->sch_length;
1754 	}
1755 	return count;
1756 }
1757 
1758 /*
1759  * Exports the syncache entries to userland so that netstat can display
1760  * them alongside the other sockets.  This function is intended to be
1761  * called only from tcp_pcblist.
1762  *
1763  * Due to concurrency on an active system, the number of pcbs exported
1764  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1765  * amount of space the caller allocated for this function to use.
1766  */
1767 int
1768 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1769 {
1770 	struct xtcpcb xt;
1771 	struct syncache *sc;
1772 	struct syncache_head *sch;
1773 	int count, error, i;
1774 
1775 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1776 		sch = &V_tcp_syncache.hashbase[i];
1777 		SCH_LOCK(sch);
1778 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1779 			if (count >= max_pcbs) {
1780 				SCH_UNLOCK(sch);
1781 				goto exit;
1782 			}
1783 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1784 				continue;
1785 			bzero(&xt, sizeof(xt));
1786 			xt.xt_len = sizeof(xt);
1787 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1788 				xt.xt_inp.inp_vflag = INP_IPV6;
1789 			else
1790 				xt.xt_inp.inp_vflag = INP_IPV4;
1791 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1792 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1793 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1794 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1795 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1796 			xt.xt_socket.so_type = SOCK_STREAM;
1797 			xt.xt_socket.so_state = SS_ISCONNECTING;
1798 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1799 			if (error) {
1800 				SCH_UNLOCK(sch);
1801 				goto exit;
1802 			}
1803 			count++;
1804 		}
1805 		SCH_UNLOCK(sch);
1806 	}
1807 exit:
1808 	*pcbs_exported = count;
1809 	return error;
1810 }
1811