xref: /freebsd/sys/netinet/tcp_syncache.c (revision 4f52dfbb8d6c4d446500c5b097e3806ec219fbd4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_pcbgroup.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/hash.h>
46 #include <sys/refcount.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/proc.h>		/* for proc0 declaration */
55 #include <sys/random.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/ucred.h>
60 
61 #include <sys/md5.h>
62 #include <crypto/siphash/siphash.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/in_pcb.h>
76 #include <netinet/ip_var.h>
77 #include <netinet/ip_options.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet/icmp6.h>
81 #include <netinet6/nd6.h>
82 #include <netinet6/ip6_var.h>
83 #include <netinet6/in6_pcb.h>
84 #endif
85 #include <netinet/tcp.h>
86 #include <netinet/tcp_fastopen.h>
87 #include <netinet/tcp_fsm.h>
88 #include <netinet/tcp_seq.h>
89 #include <netinet/tcp_timer.h>
90 #include <netinet/tcp_var.h>
91 #include <netinet/tcp_syncache.h>
92 #ifdef INET6
93 #include <netinet6/tcp6_var.h>
94 #endif
95 #ifdef TCP_OFFLOAD
96 #include <netinet/toecore.h>
97 #endif
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 static VNET_DEFINE(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
133 		    const struct mbuf *);
134 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
135 		    struct mbuf *m);
136 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
137 		    int docallout);
138 static void	 syncache_timer(void *);
139 
140 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
141 		    uint8_t *, uintptr_t);
142 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
143 static struct syncache
144 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
145 		    struct syncache *, struct tcphdr *, struct tcpopt *,
146 		    struct socket *);
147 static void	 syncookie_reseed(void *);
148 #ifdef INVARIANTS
149 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
150 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
151 		    struct socket *lso);
152 #endif
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
157  * the odds are that the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		3
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
166 #define	V_tcp_syncache			VNET(tcp_syncache)
167 
168 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
169     "TCP SYN cache");
170 
171 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
172     &VNET_NAME(tcp_syncache.bucket_limit), 0,
173     "Per-bucket hash limit for syncache");
174 
175 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
176     &VNET_NAME(tcp_syncache.cache_limit), 0,
177     "Overall entry limit for syncache");
178 
179 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
180     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.hashsize), 0,
184     "Size of TCP syncache hashtable");
185 
186 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
188     "Limit on SYN/ACK retransmissions");
189 
190 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
191 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
192     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
193     "Send reset on socket allocation failure");
194 
195 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
196 
197 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
198 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
199 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
200 
201 /*
202  * Requires the syncache entry to be already removed from the bucket list.
203  */
204 static void
205 syncache_free(struct syncache *sc)
206 {
207 
208 	if (sc->sc_ipopts)
209 		(void) m_free(sc->sc_ipopts);
210 	if (sc->sc_cred)
211 		crfree(sc->sc_cred);
212 #ifdef MAC
213 	mac_syncache_destroy(&sc->sc_label);
214 #endif
215 
216 	uma_zfree(V_tcp_syncache.zone, sc);
217 }
218 
219 void
220 syncache_init(void)
221 {
222 	int i;
223 
224 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
225 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
226 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
227 	V_tcp_syncache.hash_secret = arc4random();
228 
229 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
230 	    &V_tcp_syncache.hashsize);
231 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
232 	    &V_tcp_syncache.bucket_limit);
233 	if (!powerof2(V_tcp_syncache.hashsize) ||
234 	    V_tcp_syncache.hashsize == 0) {
235 		printf("WARNING: syncache hash size is not a power of 2.\n");
236 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
237 	}
238 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
239 
240 	/* Set limits. */
241 	V_tcp_syncache.cache_limit =
242 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
243 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
244 	    &V_tcp_syncache.cache_limit);
245 
246 	/* Allocate the hash table. */
247 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
248 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
249 
250 #ifdef VIMAGE
251 	V_tcp_syncache.vnet = curvnet;
252 #endif
253 
254 	/* Initialize the hash buckets. */
255 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
256 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
257 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
258 			 NULL, MTX_DEF);
259 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
260 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
261 		V_tcp_syncache.hashbase[i].sch_length = 0;
262 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
263 		V_tcp_syncache.hashbase[i].sch_last_overflow =
264 		    -(SYNCOOKIE_LIFETIME + 1);
265 	}
266 
267 	/* Create the syncache entry zone. */
268 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
270 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
271 	    V_tcp_syncache.cache_limit);
272 
273 	/* Start the SYN cookie reseeder callout. */
274 	callout_init(&V_tcp_syncache.secret.reseed, 1);
275 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
276 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
277 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
278 	    syncookie_reseed, &V_tcp_syncache);
279 }
280 
281 #ifdef VIMAGE
282 void
283 syncache_destroy(void)
284 {
285 	struct syncache_head *sch;
286 	struct syncache *sc, *nsc;
287 	int i;
288 
289 	/*
290 	 * Stop the re-seed timer before freeing resources.  No need to
291 	 * possibly schedule it another time.
292 	 */
293 	callout_drain(&V_tcp_syncache.secret.reseed);
294 
295 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
296 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
297 
298 		sch = &V_tcp_syncache.hashbase[i];
299 		callout_drain(&sch->sch_timer);
300 
301 		SCH_LOCK(sch);
302 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
303 			syncache_drop(sc, sch);
304 		SCH_UNLOCK(sch);
305 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
306 		    ("%s: sch->sch_bucket not empty", __func__));
307 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
308 		    __func__, sch->sch_length));
309 		mtx_destroy(&sch->sch_mtx);
310 	}
311 
312 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
313 	    ("%s: cache_count not 0", __func__));
314 
315 	/* Free the allocated global resources. */
316 	uma_zdestroy(V_tcp_syncache.zone);
317 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
318 }
319 #endif
320 
321 /*
322  * Inserts a syncache entry into the specified bucket row.
323  * Locks and unlocks the syncache_head autonomously.
324  */
325 static void
326 syncache_insert(struct syncache *sc, struct syncache_head *sch)
327 {
328 	struct syncache *sc2;
329 
330 	SCH_LOCK(sch);
331 
332 	/*
333 	 * Make sure that we don't overflow the per-bucket limit.
334 	 * If the bucket is full, toss the oldest element.
335 	 */
336 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
337 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
338 			("sch->sch_length incorrect"));
339 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
340 		sch->sch_last_overflow = time_uptime;
341 		syncache_drop(sc2, sch);
342 		TCPSTAT_INC(tcps_sc_bucketoverflow);
343 	}
344 
345 	/* Put it into the bucket. */
346 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
347 	sch->sch_length++;
348 
349 #ifdef TCP_OFFLOAD
350 	if (ADDED_BY_TOE(sc)) {
351 		struct toedev *tod = sc->sc_tod;
352 
353 		tod->tod_syncache_added(tod, sc->sc_todctx);
354 	}
355 #endif
356 
357 	/* Reinitialize the bucket row's timer. */
358 	if (sch->sch_length == 1)
359 		sch->sch_nextc = ticks + INT_MAX;
360 	syncache_timeout(sc, sch, 1);
361 
362 	SCH_UNLOCK(sch);
363 
364 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
365 	TCPSTAT_INC(tcps_sc_added);
366 }
367 
368 /*
369  * Remove and free entry from syncache bucket row.
370  * Expects locked syncache head.
371  */
372 static void
373 syncache_drop(struct syncache *sc, struct syncache_head *sch)
374 {
375 
376 	SCH_LOCK_ASSERT(sch);
377 
378 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
379 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
380 	sch->sch_length--;
381 
382 #ifdef TCP_OFFLOAD
383 	if (ADDED_BY_TOE(sc)) {
384 		struct toedev *tod = sc->sc_tod;
385 
386 		tod->tod_syncache_removed(tod, sc->sc_todctx);
387 	}
388 #endif
389 
390 	syncache_free(sc);
391 }
392 
393 /*
394  * Engage/reengage time on bucket row.
395  */
396 static void
397 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
398 {
399 	sc->sc_rxttime = ticks +
400 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
401 	sc->sc_rxmits++;
402 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
403 		sch->sch_nextc = sc->sc_rxttime;
404 		if (docallout)
405 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
406 			    syncache_timer, (void *)sch);
407 	}
408 }
409 
410 /*
411  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
412  * If we have retransmitted an entry the maximum number of times, expire it.
413  * One separate timer for each bucket row.
414  */
415 static void
416 syncache_timer(void *xsch)
417 {
418 	struct syncache_head *sch = (struct syncache_head *)xsch;
419 	struct syncache *sc, *nsc;
420 	int tick = ticks;
421 	char *s;
422 
423 	CURVNET_SET(sch->sch_sc->vnet);
424 
425 	/* NB: syncache_head has already been locked by the callout. */
426 	SCH_LOCK_ASSERT(sch);
427 
428 	/*
429 	 * In the following cycle we may remove some entries and/or
430 	 * advance some timeouts, so re-initialize the bucket timer.
431 	 */
432 	sch->sch_nextc = tick + INT_MAX;
433 
434 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
435 		/*
436 		 * We do not check if the listen socket still exists
437 		 * and accept the case where the listen socket may be
438 		 * gone by the time we resend the SYN/ACK.  We do
439 		 * not expect this to happens often. If it does,
440 		 * then the RST will be sent by the time the remote
441 		 * host does the SYN/ACK->ACK.
442 		 */
443 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
444 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
445 				sch->sch_nextc = sc->sc_rxttime;
446 			continue;
447 		}
448 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
449 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
450 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
451 				    "giving up and removing syncache entry\n",
452 				    s, __func__);
453 				free(s, M_TCPLOG);
454 			}
455 			syncache_drop(sc, sch);
456 			TCPSTAT_INC(tcps_sc_stale);
457 			continue;
458 		}
459 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
460 			log(LOG_DEBUG, "%s; %s: Response timeout, "
461 			    "retransmitting (%u) SYN|ACK\n",
462 			    s, __func__, sc->sc_rxmits);
463 			free(s, M_TCPLOG);
464 		}
465 
466 		syncache_respond(sc, sch, 1, NULL);
467 		TCPSTAT_INC(tcps_sc_retransmitted);
468 		syncache_timeout(sc, sch, 0);
469 	}
470 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
471 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
472 			syncache_timer, (void *)(sch));
473 	CURVNET_RESTORE();
474 }
475 
476 /*
477  * Find an entry in the syncache.
478  * Returns always with locked syncache_head plus a matching entry or NULL.
479  */
480 static struct syncache *
481 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
482 {
483 	struct syncache *sc;
484 	struct syncache_head *sch;
485 	uint32_t hash;
486 
487 	/*
488 	 * The hash is built on foreign port + local port + foreign address.
489 	 * We rely on the fact that struct in_conninfo starts with 16 bits
490 	 * of foreign port, then 16 bits of local port then followed by 128
491 	 * bits of foreign address.  In case of IPv4 address, the first 3
492 	 * 32-bit words of the address always are zeroes.
493 	 */
494 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
495 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
496 
497 	sch = &V_tcp_syncache.hashbase[hash];
498 	*schp = sch;
499 	SCH_LOCK(sch);
500 
501 	/* Circle through bucket row to find matching entry. */
502 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
503 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
504 		    sizeof(struct in_endpoints)) == 0)
505 			break;
506 
507 	return (sc);	/* Always returns with locked sch. */
508 }
509 
510 /*
511  * This function is called when we get a RST for a
512  * non-existent connection, so that we can see if the
513  * connection is in the syn cache.  If it is, zap it.
514  */
515 void
516 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
517 {
518 	struct syncache *sc;
519 	struct syncache_head *sch;
520 	char *s = NULL;
521 
522 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
523 	SCH_LOCK_ASSERT(sch);
524 
525 	/*
526 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
527 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
528 	 */
529 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
530 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
531 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
532 			    "FIN flag set, segment ignored\n", s, __func__);
533 		TCPSTAT_INC(tcps_badrst);
534 		goto done;
535 	}
536 
537 	/*
538 	 * No corresponding connection was found in syncache.
539 	 * If syncookies are enabled and possibly exclusively
540 	 * used, or we are under memory pressure, a valid RST
541 	 * may not find a syncache entry.  In that case we're
542 	 * done and no SYN|ACK retransmissions will happen.
543 	 * Otherwise the RST was misdirected or spoofed.
544 	 */
545 	if (sc == NULL) {
546 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
547 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
548 			    "syncache entry (possibly syncookie only), "
549 			    "segment ignored\n", s, __func__);
550 		TCPSTAT_INC(tcps_badrst);
551 		goto done;
552 	}
553 
554 	/*
555 	 * If the RST bit is set, check the sequence number to see
556 	 * if this is a valid reset segment.
557 	 * RFC 793 page 37:
558 	 *   In all states except SYN-SENT, all reset (RST) segments
559 	 *   are validated by checking their SEQ-fields.  A reset is
560 	 *   valid if its sequence number is in the window.
561 	 *
562 	 *   The sequence number in the reset segment is normally an
563 	 *   echo of our outgoing acknowlegement numbers, but some hosts
564 	 *   send a reset with the sequence number at the rightmost edge
565 	 *   of our receive window, and we have to handle this case.
566 	 */
567 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
568 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
569 		syncache_drop(sc, sch);
570 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
571 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
572 			    "connection attempt aborted by remote endpoint\n",
573 			    s, __func__);
574 		TCPSTAT_INC(tcps_sc_reset);
575 	} else {
576 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
577 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
578 			    "IRS %u (+WND %u), segment ignored\n",
579 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
580 		TCPSTAT_INC(tcps_badrst);
581 	}
582 
583 done:
584 	if (s != NULL)
585 		free(s, M_TCPLOG);
586 	SCH_UNLOCK(sch);
587 }
588 
589 void
590 syncache_badack(struct in_conninfo *inc)
591 {
592 	struct syncache *sc;
593 	struct syncache_head *sch;
594 
595 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
596 	SCH_LOCK_ASSERT(sch);
597 	if (sc != NULL) {
598 		syncache_drop(sc, sch);
599 		TCPSTAT_INC(tcps_sc_badack);
600 	}
601 	SCH_UNLOCK(sch);
602 }
603 
604 void
605 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq)
606 {
607 	struct syncache *sc;
608 	struct syncache_head *sch;
609 
610 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
611 	SCH_LOCK_ASSERT(sch);
612 	if (sc == NULL)
613 		goto done;
614 
615 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
616 	if (ntohl(th_seq) != sc->sc_iss)
617 		goto done;
618 
619 	/*
620 	 * If we've rertransmitted 3 times and this is our second error,
621 	 * we remove the entry.  Otherwise, we allow it to continue on.
622 	 * This prevents us from incorrectly nuking an entry during a
623 	 * spurious network outage.
624 	 *
625 	 * See tcp_notify().
626 	 */
627 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
628 		sc->sc_flags |= SCF_UNREACH;
629 		goto done;
630 	}
631 	syncache_drop(sc, sch);
632 	TCPSTAT_INC(tcps_sc_unreach);
633 done:
634 	SCH_UNLOCK(sch);
635 }
636 
637 /*
638  * Build a new TCP socket structure from a syncache entry.
639  *
640  * On success return the newly created socket with its underlying inp locked.
641  */
642 static struct socket *
643 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
644 {
645 	struct tcp_function_block *blk;
646 	struct inpcb *inp = NULL;
647 	struct socket *so;
648 	struct tcpcb *tp;
649 	int error;
650 	char *s;
651 
652 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
653 
654 	/*
655 	 * Ok, create the full blown connection, and set things up
656 	 * as they would have been set up if we had created the
657 	 * connection when the SYN arrived.  If we can't create
658 	 * the connection, abort it.
659 	 */
660 	so = sonewconn(lso, 0);
661 	if (so == NULL) {
662 		/*
663 		 * Drop the connection; we will either send a RST or
664 		 * have the peer retransmit its SYN again after its
665 		 * RTO and try again.
666 		 */
667 		TCPSTAT_INC(tcps_listendrop);
668 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
669 			log(LOG_DEBUG, "%s; %s: Socket create failed "
670 			    "due to limits or memory shortage\n",
671 			    s, __func__);
672 			free(s, M_TCPLOG);
673 		}
674 		goto abort2;
675 	}
676 #ifdef MAC
677 	mac_socketpeer_set_from_mbuf(m, so);
678 #endif
679 
680 	inp = sotoinpcb(so);
681 	inp->inp_inc.inc_fibnum = so->so_fibnum;
682 	INP_WLOCK(inp);
683 	/*
684 	 * Exclusive pcbinfo lock is not required in syncache socket case even
685 	 * if two inpcb locks can be acquired simultaneously:
686 	 *  - the inpcb in LISTEN state,
687 	 *  - the newly created inp.
688 	 *
689 	 * In this case, an inp cannot be at same time in LISTEN state and
690 	 * just created by an accept() call.
691 	 */
692 	INP_HASH_WLOCK(&V_tcbinfo);
693 
694 	/* Insert new socket into PCB hash list. */
695 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
696 #ifdef INET6
697 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
698 		inp->inp_vflag &= ~INP_IPV4;
699 		inp->inp_vflag |= INP_IPV6;
700 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
701 	} else {
702 		inp->inp_vflag &= ~INP_IPV6;
703 		inp->inp_vflag |= INP_IPV4;
704 #endif
705 		inp->inp_laddr = sc->sc_inc.inc_laddr;
706 #ifdef INET6
707 	}
708 #endif
709 
710 	/*
711 	 * If there's an mbuf and it has a flowid, then let's initialise the
712 	 * inp with that particular flowid.
713 	 */
714 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
715 		inp->inp_flowid = m->m_pkthdr.flowid;
716 		inp->inp_flowtype = M_HASHTYPE_GET(m);
717 	}
718 
719 	/*
720 	 * Install in the reservation hash table for now, but don't yet
721 	 * install a connection group since the full 4-tuple isn't yet
722 	 * configured.
723 	 */
724 	inp->inp_lport = sc->sc_inc.inc_lport;
725 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
726 		/*
727 		 * Undo the assignments above if we failed to
728 		 * put the PCB on the hash lists.
729 		 */
730 #ifdef INET6
731 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
732 			inp->in6p_laddr = in6addr_any;
733 		else
734 #endif
735 			inp->inp_laddr.s_addr = INADDR_ANY;
736 		inp->inp_lport = 0;
737 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
738 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
739 			    "with error %i\n",
740 			    s, __func__, error);
741 			free(s, M_TCPLOG);
742 		}
743 		INP_HASH_WUNLOCK(&V_tcbinfo);
744 		goto abort;
745 	}
746 #ifdef INET6
747 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
748 		struct inpcb *oinp = sotoinpcb(lso);
749 		struct in6_addr laddr6;
750 		struct sockaddr_in6 sin6;
751 		/*
752 		 * Inherit socket options from the listening socket.
753 		 * Note that in6p_inputopts are not (and should not be)
754 		 * copied, since it stores previously received options and is
755 		 * used to detect if each new option is different than the
756 		 * previous one and hence should be passed to a user.
757 		 * If we copied in6p_inputopts, a user would not be able to
758 		 * receive options just after calling the accept system call.
759 		 */
760 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
761 		if (oinp->in6p_outputopts)
762 			inp->in6p_outputopts =
763 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
764 
765 		sin6.sin6_family = AF_INET6;
766 		sin6.sin6_len = sizeof(sin6);
767 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
768 		sin6.sin6_port = sc->sc_inc.inc_fport;
769 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
770 		laddr6 = inp->in6p_laddr;
771 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
772 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
773 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
774 		    thread0.td_ucred, m)) != 0) {
775 			inp->in6p_laddr = laddr6;
776 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
777 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
778 				    "with error %i\n",
779 				    s, __func__, error);
780 				free(s, M_TCPLOG);
781 			}
782 			INP_HASH_WUNLOCK(&V_tcbinfo);
783 			goto abort;
784 		}
785 		/* Override flowlabel from in6_pcbconnect. */
786 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
787 		inp->inp_flow |= sc->sc_flowlabel;
788 	}
789 #endif /* INET6 */
790 #if defined(INET) && defined(INET6)
791 	else
792 #endif
793 #ifdef INET
794 	{
795 		struct in_addr laddr;
796 		struct sockaddr_in sin;
797 
798 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
799 
800 		if (inp->inp_options == NULL) {
801 			inp->inp_options = sc->sc_ipopts;
802 			sc->sc_ipopts = NULL;
803 		}
804 
805 		sin.sin_family = AF_INET;
806 		sin.sin_len = sizeof(sin);
807 		sin.sin_addr = sc->sc_inc.inc_faddr;
808 		sin.sin_port = sc->sc_inc.inc_fport;
809 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
810 		laddr = inp->inp_laddr;
811 		if (inp->inp_laddr.s_addr == INADDR_ANY)
812 			inp->inp_laddr = sc->sc_inc.inc_laddr;
813 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
814 		    thread0.td_ucred, m)) != 0) {
815 			inp->inp_laddr = laddr;
816 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
817 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
818 				    "with error %i\n",
819 				    s, __func__, error);
820 				free(s, M_TCPLOG);
821 			}
822 			INP_HASH_WUNLOCK(&V_tcbinfo);
823 			goto abort;
824 		}
825 	}
826 #endif /* INET */
827 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
828 	/* Copy old policy into new socket's. */
829 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
830 		printf("syncache_socket: could not copy policy\n");
831 #endif
832 	INP_HASH_WUNLOCK(&V_tcbinfo);
833 	tp = intotcpcb(inp);
834 	tcp_state_change(tp, TCPS_SYN_RECEIVED);
835 	tp->iss = sc->sc_iss;
836 	tp->irs = sc->sc_irs;
837 	tcp_rcvseqinit(tp);
838 	tcp_sendseqinit(tp);
839 	blk = sototcpcb(lso)->t_fb;
840 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
841 		/*
842 		 * Our parents t_fb was not the default,
843 		 * we need to release our ref on tp->t_fb and
844 		 * pickup one on the new entry.
845 		 */
846 		struct tcp_function_block *rblk;
847 
848 		rblk = find_and_ref_tcp_fb(blk);
849 		KASSERT(rblk != NULL,
850 		    ("cannot find blk %p out of syncache?", blk));
851 		if (tp->t_fb->tfb_tcp_fb_fini)
852 			(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
853 		refcount_release(&tp->t_fb->tfb_refcnt);
854 		tp->t_fb = rblk;
855 		/*
856 		 * XXXrrs this is quite dangerous, it is possible
857 		 * for the new function to fail to init. We also
858 		 * are not asking if the handoff_is_ok though at
859 		 * the very start thats probalbly ok.
860 		 */
861 		if (tp->t_fb->tfb_tcp_fb_init) {
862 			(*tp->t_fb->tfb_tcp_fb_init)(tp);
863 		}
864 	}
865 	tp->snd_wl1 = sc->sc_irs;
866 	tp->snd_max = tp->iss + 1;
867 	tp->snd_nxt = tp->iss + 1;
868 	tp->rcv_up = sc->sc_irs + 1;
869 	tp->rcv_wnd = sc->sc_wnd;
870 	tp->rcv_adv += tp->rcv_wnd;
871 	tp->last_ack_sent = tp->rcv_nxt;
872 
873 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
874 	if (sc->sc_flags & SCF_NOOPT)
875 		tp->t_flags |= TF_NOOPT;
876 	else {
877 		if (sc->sc_flags & SCF_WINSCALE) {
878 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
879 			tp->snd_scale = sc->sc_requested_s_scale;
880 			tp->request_r_scale = sc->sc_requested_r_scale;
881 		}
882 		if (sc->sc_flags & SCF_TIMESTAMP) {
883 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
884 			tp->ts_recent = sc->sc_tsreflect;
885 			tp->ts_recent_age = tcp_ts_getticks();
886 			tp->ts_offset = sc->sc_tsoff;
887 		}
888 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
889 		if (sc->sc_flags & SCF_SIGNATURE)
890 			tp->t_flags |= TF_SIGNATURE;
891 #endif
892 		if (sc->sc_flags & SCF_SACK)
893 			tp->t_flags |= TF_SACK_PERMIT;
894 	}
895 
896 	if (sc->sc_flags & SCF_ECN)
897 		tp->t_flags |= TF_ECN_PERMIT;
898 
899 	/*
900 	 * Set up MSS and get cached values from tcp_hostcache.
901 	 * This might overwrite some of the defaults we just set.
902 	 */
903 	tcp_mss(tp, sc->sc_peer_mss);
904 
905 	/*
906 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
907 	 * limited to one segment in cc_conn_init().
908 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
909 	 */
910 	if (sc->sc_rxmits > 1)
911 		tp->snd_cwnd = 1;
912 
913 #ifdef TCP_OFFLOAD
914 	/*
915 	 * Allow a TOE driver to install its hooks.  Note that we hold the
916 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
917 	 * new connection before the TOE driver has done its thing.
918 	 */
919 	if (ADDED_BY_TOE(sc)) {
920 		struct toedev *tod = sc->sc_tod;
921 
922 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
923 	}
924 #endif
925 	/*
926 	 * Copy and activate timers.
927 	 */
928 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
929 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
930 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
931 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
932 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
933 
934 	TCPSTAT_INC(tcps_accepts);
935 	return (so);
936 
937 abort:
938 	INP_WUNLOCK(inp);
939 abort2:
940 	if (so != NULL)
941 		soabort(so);
942 	return (NULL);
943 }
944 
945 /*
946  * This function gets called when we receive an ACK for a
947  * socket in the LISTEN state.  We look up the connection
948  * in the syncache, and if its there, we pull it out of
949  * the cache and turn it into a full-blown connection in
950  * the SYN-RECEIVED state.
951  *
952  * On syncache_socket() success the newly created socket
953  * has its underlying inp locked.
954  */
955 int
956 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
957     struct socket **lsop, struct mbuf *m)
958 {
959 	struct syncache *sc;
960 	struct syncache_head *sch;
961 	struct syncache scs;
962 	char *s;
963 
964 	/*
965 	 * Global TCP locks are held because we manipulate the PCB lists
966 	 * and create a new socket.
967 	 */
968 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
969 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
970 	    ("%s: can handle only ACK", __func__));
971 
972 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
973 	SCH_LOCK_ASSERT(sch);
974 
975 #ifdef INVARIANTS
976 	/*
977 	 * Test code for syncookies comparing the syncache stored
978 	 * values with the reconstructed values from the cookie.
979 	 */
980 	if (sc != NULL)
981 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
982 #endif
983 
984 	if (sc == NULL) {
985 		/*
986 		 * There is no syncache entry, so see if this ACK is
987 		 * a returning syncookie.  To do this, first:
988 		 *  A. Check if syncookies are used in case of syncache
989 		 *     overflows
990 		 *  B. See if this socket has had a syncache entry dropped in
991 		 *     the recent past. We don't want to accept a bogus
992 		 *     syncookie if we've never received a SYN or accept it
993 		 *     twice.
994 		 *  C. check that the syncookie is valid.  If it is, then
995 		 *     cobble up a fake syncache entry, and return.
996 		 */
997 		if (!V_tcp_syncookies) {
998 			SCH_UNLOCK(sch);
999 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1000 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1001 				    "segment rejected (syncookies disabled)\n",
1002 				    s, __func__);
1003 			goto failed;
1004 		}
1005 		if (!V_tcp_syncookiesonly &&
1006 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1007 			SCH_UNLOCK(sch);
1008 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1009 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1010 				    "segment rejected (no syncache entry)\n",
1011 				    s, __func__);
1012 			goto failed;
1013 		}
1014 		bzero(&scs, sizeof(scs));
1015 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
1016 		SCH_UNLOCK(sch);
1017 		if (sc == NULL) {
1018 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1019 				log(LOG_DEBUG, "%s; %s: Segment failed "
1020 				    "SYNCOOKIE authentication, segment rejected "
1021 				    "(probably spoofed)\n", s, __func__);
1022 			goto failed;
1023 		}
1024 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1025 		/* If received ACK has MD5 signature, check it. */
1026 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1027 		    (!TCPMD5_ENABLED() ||
1028 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1029 			/* Drop the ACK. */
1030 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1031 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1032 				    "MD5 signature doesn't match.\n",
1033 				    s, __func__);
1034 				free(s, M_TCPLOG);
1035 			}
1036 			TCPSTAT_INC(tcps_sig_err_sigopt);
1037 			return (-1); /* Do not send RST */
1038 		}
1039 #endif /* TCP_SIGNATURE */
1040 	} else {
1041 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1042 		/*
1043 		 * If listening socket requested TCP digests, check that
1044 		 * received ACK has signature and it is correct.
1045 		 * If not, drop the ACK and leave sc entry in th cache,
1046 		 * because SYN was received with correct signature.
1047 		 */
1048 		if (sc->sc_flags & SCF_SIGNATURE) {
1049 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1050 				/* No signature */
1051 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1052 				SCH_UNLOCK(sch);
1053 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1054 					log(LOG_DEBUG, "%s; %s: Segment "
1055 					    "rejected, MD5 signature wasn't "
1056 					    "provided.\n", s, __func__);
1057 					free(s, M_TCPLOG);
1058 				}
1059 				return (-1); /* Do not send RST */
1060 			}
1061 			if (!TCPMD5_ENABLED() ||
1062 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1063 				/* Doesn't match or no SA */
1064 				SCH_UNLOCK(sch);
1065 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1066 					log(LOG_DEBUG, "%s; %s: Segment "
1067 					    "rejected, MD5 signature doesn't "
1068 					    "match.\n", s, __func__);
1069 					free(s, M_TCPLOG);
1070 				}
1071 				return (-1); /* Do not send RST */
1072 			}
1073 		}
1074 #endif /* TCP_SIGNATURE */
1075 		/*
1076 		 * Pull out the entry to unlock the bucket row.
1077 		 *
1078 		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1079 		 * tcp_state_change().  The tcpcb is not existent at this
1080 		 * moment.  A new one will be allocated via syncache_socket->
1081 		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1082 		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1083 		 */
1084 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1085 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1086 		sch->sch_length--;
1087 #ifdef TCP_OFFLOAD
1088 		if (ADDED_BY_TOE(sc)) {
1089 			struct toedev *tod = sc->sc_tod;
1090 
1091 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1092 		}
1093 #endif
1094 		SCH_UNLOCK(sch);
1095 	}
1096 
1097 	/*
1098 	 * Segment validation:
1099 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1100 	 */
1101 	if (th->th_ack != sc->sc_iss + 1) {
1102 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1103 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1104 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1105 		goto failed;
1106 	}
1107 
1108 	/*
1109 	 * The SEQ must fall in the window starting at the received
1110 	 * initial receive sequence number + 1 (the SYN).
1111 	 */
1112 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1113 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1114 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1115 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1116 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1117 		goto failed;
1118 	}
1119 
1120 	/*
1121 	 * If timestamps were not negotiated during SYN/ACK they
1122 	 * must not appear on any segment during this session.
1123 	 */
1124 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1125 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1126 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1127 			    "segment rejected\n", s, __func__);
1128 		goto failed;
1129 	}
1130 
1131 	/*
1132 	 * If timestamps were negotiated during SYN/ACK they should
1133 	 * appear on every segment during this session.
1134 	 * XXXAO: This is only informal as there have been unverified
1135 	 * reports of non-compliants stacks.
1136 	 */
1137 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1138 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1139 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1140 			    "no action\n", s, __func__);
1141 			free(s, M_TCPLOG);
1142 			s = NULL;
1143 		}
1144 	}
1145 
1146 	/*
1147 	 * If timestamps were negotiated, the reflected timestamp
1148 	 * must be equal to what we actually sent in the SYN|ACK
1149 	 * except in the case of 0. Some boxes are known for sending
1150 	 * broken timestamp replies during the 3whs (and potentially
1151 	 * during the connection also).
1152 	 *
1153 	 * Accept the final ACK of 3whs with reflected timestamp of 0
1154 	 * instead of sending a RST and deleting the syncache entry.
1155 	 */
1156 	if ((to->to_flags & TOF_TS) && to->to_tsecr &&
1157 	    to->to_tsecr != sc->sc_ts) {
1158 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1159 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1160 			    "segment rejected\n",
1161 			    s, __func__, to->to_tsecr, sc->sc_ts);
1162 		goto failed;
1163 	}
1164 
1165 	*lsop = syncache_socket(sc, *lsop, m);
1166 
1167 	if (*lsop == NULL)
1168 		TCPSTAT_INC(tcps_sc_aborted);
1169 	else
1170 		TCPSTAT_INC(tcps_sc_completed);
1171 
1172 /* how do we find the inp for the new socket? */
1173 	if (sc != &scs)
1174 		syncache_free(sc);
1175 	return (1);
1176 failed:
1177 	if (sc != NULL && sc != &scs)
1178 		syncache_free(sc);
1179 	if (s != NULL)
1180 		free(s, M_TCPLOG);
1181 	*lsop = NULL;
1182 	return (0);
1183 }
1184 
1185 static void
1186 syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1187     uint64_t response_cookie)
1188 {
1189 	struct inpcb *inp;
1190 	struct tcpcb *tp;
1191 	unsigned int *pending_counter;
1192 
1193 	/*
1194 	 * Global TCP locks are held because we manipulate the PCB lists
1195 	 * and create a new socket.
1196 	 */
1197 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1198 
1199 	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1200 	*lsop = syncache_socket(sc, *lsop, m);
1201 	if (*lsop == NULL) {
1202 		TCPSTAT_INC(tcps_sc_aborted);
1203 		atomic_subtract_int(pending_counter, 1);
1204 	} else {
1205 		soisconnected(*lsop);
1206 		inp = sotoinpcb(*lsop);
1207 		tp = intotcpcb(inp);
1208 		tp->t_flags |= TF_FASTOPEN;
1209 		tp->t_tfo_cookie.server = response_cookie;
1210 		tp->snd_max = tp->iss;
1211 		tp->snd_nxt = tp->iss;
1212 		tp->t_tfo_pending = pending_counter;
1213 		TCPSTAT_INC(tcps_sc_completed);
1214 	}
1215 }
1216 
1217 /*
1218  * Given a LISTEN socket and an inbound SYN request, add
1219  * this to the syn cache, and send back a segment:
1220  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1221  * to the source.
1222  *
1223  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1224  * Doing so would require that we hold onto the data and deliver it
1225  * to the application.  However, if we are the target of a SYN-flood
1226  * DoS attack, an attacker could send data which would eventually
1227  * consume all available buffer space if it were ACKed.  By not ACKing
1228  * the data, we avoid this DoS scenario.
1229  *
1230  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1231  * cookie is processed and a new socket is created.  In this case, any data
1232  * accompanying the SYN will be queued to the socket by tcp_input() and will
1233  * be ACKed either when the application sends response data or the delayed
1234  * ACK timer expires, whichever comes first.
1235  */
1236 int
1237 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1238     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1239     void *todctx)
1240 {
1241 	struct tcpcb *tp;
1242 	struct socket *so;
1243 	struct syncache *sc = NULL;
1244 	struct syncache_head *sch;
1245 	struct mbuf *ipopts = NULL;
1246 	u_int ltflags;
1247 	int win, ip_ttl, ip_tos;
1248 	char *s;
1249 	int rv = 0;
1250 #ifdef INET6
1251 	int autoflowlabel = 0;
1252 #endif
1253 #ifdef MAC
1254 	struct label *maclabel;
1255 #endif
1256 	struct syncache scs;
1257 	struct ucred *cred;
1258 	uint64_t tfo_response_cookie;
1259 	unsigned int *tfo_pending = NULL;
1260 	int tfo_cookie_valid = 0;
1261 	int tfo_response_cookie_valid = 0;
1262 
1263 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1264 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1265 	    ("%s: unexpected tcp flags", __func__));
1266 
1267 	/*
1268 	 * Combine all so/tp operations very early to drop the INP lock as
1269 	 * soon as possible.
1270 	 */
1271 	so = *lsop;
1272 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1273 	tp = sototcpcb(so);
1274 	cred = crhold(so->so_cred);
1275 
1276 #ifdef INET6
1277 	if ((inc->inc_flags & INC_ISIPV6) &&
1278 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1279 		autoflowlabel = 1;
1280 #endif
1281 	ip_ttl = inp->inp_ip_ttl;
1282 	ip_tos = inp->inp_ip_tos;
1283 	win = so->sol_sbrcv_hiwat;
1284 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1285 
1286 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1287 	    (tp->t_tfo_pending != NULL) &&
1288 	    (to->to_flags & TOF_FASTOPEN)) {
1289 		/*
1290 		 * Limit the number of pending TFO connections to
1291 		 * approximately half of the queue limit.  This prevents TFO
1292 		 * SYN floods from starving the service by filling the
1293 		 * listen queue with bogus TFO connections.
1294 		 */
1295 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1296 		    (so->sol_qlimit / 2)) {
1297 			int result;
1298 
1299 			result = tcp_fastopen_check_cookie(inc,
1300 			    to->to_tfo_cookie, to->to_tfo_len,
1301 			    &tfo_response_cookie);
1302 			tfo_cookie_valid = (result > 0);
1303 			tfo_response_cookie_valid = (result >= 0);
1304 		}
1305 
1306 		/*
1307 		 * Remember the TFO pending counter as it will have to be
1308 		 * decremented below if we don't make it to syncache_tfo_expand().
1309 		 */
1310 		tfo_pending = tp->t_tfo_pending;
1311 	}
1312 
1313 	/* By the time we drop the lock these should no longer be used. */
1314 	so = NULL;
1315 	tp = NULL;
1316 
1317 #ifdef MAC
1318 	if (mac_syncache_init(&maclabel) != 0) {
1319 		INP_WUNLOCK(inp);
1320 		goto done;
1321 	} else
1322 		mac_syncache_create(maclabel, inp);
1323 #endif
1324 	if (!tfo_cookie_valid)
1325 		INP_WUNLOCK(inp);
1326 
1327 	/*
1328 	 * Remember the IP options, if any.
1329 	 */
1330 #ifdef INET6
1331 	if (!(inc->inc_flags & INC_ISIPV6))
1332 #endif
1333 #ifdef INET
1334 		ipopts = (m) ? ip_srcroute(m) : NULL;
1335 #else
1336 		ipopts = NULL;
1337 #endif
1338 
1339 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1340 	/*
1341 	 * If listening socket requested TCP digests, check that received
1342 	 * SYN has signature and it is correct. If signature doesn't match
1343 	 * or TCP_SIGNATURE support isn't enabled, drop the packet.
1344 	 */
1345 	if (ltflags & TF_SIGNATURE) {
1346 		if ((to->to_flags & TOF_SIGNATURE) == 0) {
1347 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1348 			goto done;
1349 		}
1350 		if (!TCPMD5_ENABLED() ||
1351 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1352 			goto done;
1353 	}
1354 #endif	/* TCP_SIGNATURE */
1355 	/*
1356 	 * See if we already have an entry for this connection.
1357 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1358 	 *
1359 	 * XXX: should the syncache be re-initialized with the contents
1360 	 * of the new SYN here (which may have different options?)
1361 	 *
1362 	 * XXX: We do not check the sequence number to see if this is a
1363 	 * real retransmit or a new connection attempt.  The question is
1364 	 * how to handle such a case; either ignore it as spoofed, or
1365 	 * drop the current entry and create a new one?
1366 	 */
1367 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1368 	SCH_LOCK_ASSERT(sch);
1369 	if (sc != NULL) {
1370 		if (tfo_cookie_valid)
1371 			INP_WUNLOCK(inp);
1372 		TCPSTAT_INC(tcps_sc_dupsyn);
1373 		if (ipopts) {
1374 			/*
1375 			 * If we were remembering a previous source route,
1376 			 * forget it and use the new one we've been given.
1377 			 */
1378 			if (sc->sc_ipopts)
1379 				(void) m_free(sc->sc_ipopts);
1380 			sc->sc_ipopts = ipopts;
1381 		}
1382 		/*
1383 		 * Update timestamp if present.
1384 		 */
1385 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1386 			sc->sc_tsreflect = to->to_tsval;
1387 		else
1388 			sc->sc_flags &= ~SCF_TIMESTAMP;
1389 #ifdef MAC
1390 		/*
1391 		 * Since we have already unconditionally allocated label
1392 		 * storage, free it up.  The syncache entry will already
1393 		 * have an initialized label we can use.
1394 		 */
1395 		mac_syncache_destroy(&maclabel);
1396 #endif
1397 		/* Retransmit SYN|ACK and reset retransmit count. */
1398 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1399 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1400 			    "resetting timer and retransmitting SYN|ACK\n",
1401 			    s, __func__);
1402 			free(s, M_TCPLOG);
1403 		}
1404 		if (syncache_respond(sc, sch, 1, m) == 0) {
1405 			sc->sc_rxmits = 0;
1406 			syncache_timeout(sc, sch, 1);
1407 			TCPSTAT_INC(tcps_sndacks);
1408 			TCPSTAT_INC(tcps_sndtotal);
1409 		}
1410 		SCH_UNLOCK(sch);
1411 		goto done;
1412 	}
1413 
1414 	if (tfo_cookie_valid) {
1415 		bzero(&scs, sizeof(scs));
1416 		sc = &scs;
1417 		goto skip_alloc;
1418 	}
1419 
1420 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1421 	if (sc == NULL) {
1422 		/*
1423 		 * The zone allocator couldn't provide more entries.
1424 		 * Treat this as if the cache was full; drop the oldest
1425 		 * entry and insert the new one.
1426 		 */
1427 		TCPSTAT_INC(tcps_sc_zonefail);
1428 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1429 			sch->sch_last_overflow = time_uptime;
1430 			syncache_drop(sc, sch);
1431 		}
1432 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1433 		if (sc == NULL) {
1434 			if (V_tcp_syncookies) {
1435 				bzero(&scs, sizeof(scs));
1436 				sc = &scs;
1437 			} else {
1438 				SCH_UNLOCK(sch);
1439 				if (ipopts)
1440 					(void) m_free(ipopts);
1441 				goto done;
1442 			}
1443 		}
1444 	}
1445 
1446 skip_alloc:
1447 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1448 		sc->sc_tfo_cookie = &tfo_response_cookie;
1449 
1450 	/*
1451 	 * Fill in the syncache values.
1452 	 */
1453 #ifdef MAC
1454 	sc->sc_label = maclabel;
1455 #endif
1456 	sc->sc_cred = cred;
1457 	cred = NULL;
1458 	sc->sc_ipopts = ipopts;
1459 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1460 #ifdef INET6
1461 	if (!(inc->inc_flags & INC_ISIPV6))
1462 #endif
1463 	{
1464 		sc->sc_ip_tos = ip_tos;
1465 		sc->sc_ip_ttl = ip_ttl;
1466 	}
1467 #ifdef TCP_OFFLOAD
1468 	sc->sc_tod = tod;
1469 	sc->sc_todctx = todctx;
1470 #endif
1471 	sc->sc_irs = th->th_seq;
1472 	sc->sc_iss = arc4random();
1473 	sc->sc_flags = 0;
1474 	sc->sc_flowlabel = 0;
1475 
1476 	/*
1477 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1478 	 * win was derived from socket earlier in the function.
1479 	 */
1480 	win = imax(win, 0);
1481 	win = imin(win, TCP_MAXWIN);
1482 	sc->sc_wnd = win;
1483 
1484 	if (V_tcp_do_rfc1323) {
1485 		/*
1486 		 * A timestamp received in a SYN makes
1487 		 * it ok to send timestamp requests and replies.
1488 		 */
1489 		if (to->to_flags & TOF_TS) {
1490 			sc->sc_tsreflect = to->to_tsval;
1491 			sc->sc_ts = tcp_ts_getticks();
1492 			sc->sc_flags |= SCF_TIMESTAMP;
1493 		}
1494 		if (to->to_flags & TOF_SCALE) {
1495 			int wscale = 0;
1496 
1497 			/*
1498 			 * Pick the smallest possible scaling factor that
1499 			 * will still allow us to scale up to sb_max, aka
1500 			 * kern.ipc.maxsockbuf.
1501 			 *
1502 			 * We do this because there are broken firewalls that
1503 			 * will corrupt the window scale option, leading to
1504 			 * the other endpoint believing that our advertised
1505 			 * window is unscaled.  At scale factors larger than
1506 			 * 5 the unscaled window will drop below 1500 bytes,
1507 			 * leading to serious problems when traversing these
1508 			 * broken firewalls.
1509 			 *
1510 			 * With the default maxsockbuf of 256K, a scale factor
1511 			 * of 3 will be chosen by this algorithm.  Those who
1512 			 * choose a larger maxsockbuf should watch out
1513 			 * for the compatibility problems mentioned above.
1514 			 *
1515 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1516 			 * or <SYN,ACK>) segment itself is never scaled.
1517 			 */
1518 			while (wscale < TCP_MAX_WINSHIFT &&
1519 			    (TCP_MAXWIN << wscale) < sb_max)
1520 				wscale++;
1521 			sc->sc_requested_r_scale = wscale;
1522 			sc->sc_requested_s_scale = to->to_wscale;
1523 			sc->sc_flags |= SCF_WINSCALE;
1524 		}
1525 	}
1526 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1527 	/*
1528 	 * If listening socket requested TCP digests, flag this in the
1529 	 * syncache so that syncache_respond() will do the right thing
1530 	 * with the SYN+ACK.
1531 	 */
1532 	if (ltflags & TF_SIGNATURE)
1533 		sc->sc_flags |= SCF_SIGNATURE;
1534 #endif	/* TCP_SIGNATURE */
1535 	if (to->to_flags & TOF_SACKPERM)
1536 		sc->sc_flags |= SCF_SACK;
1537 	if (to->to_flags & TOF_MSS)
1538 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1539 	if (ltflags & TF_NOOPT)
1540 		sc->sc_flags |= SCF_NOOPT;
1541 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1542 		sc->sc_flags |= SCF_ECN;
1543 
1544 	if (V_tcp_syncookies)
1545 		sc->sc_iss = syncookie_generate(sch, sc);
1546 #ifdef INET6
1547 	if (autoflowlabel) {
1548 		if (V_tcp_syncookies)
1549 			sc->sc_flowlabel = sc->sc_iss;
1550 		else
1551 			sc->sc_flowlabel = ip6_randomflowlabel();
1552 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1553 	}
1554 #endif
1555 	SCH_UNLOCK(sch);
1556 
1557 	if (tfo_cookie_valid) {
1558 		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1559 		/* INP_WUNLOCK(inp) will be performed by the caller */
1560 		rv = 1;
1561 		goto tfo_expanded;
1562 	}
1563 
1564 	/*
1565 	 * Do a standard 3-way handshake.
1566 	 */
1567 	if (syncache_respond(sc, sch, 0, m) == 0) {
1568 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1569 			syncache_free(sc);
1570 		else if (sc != &scs)
1571 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1572 		TCPSTAT_INC(tcps_sndacks);
1573 		TCPSTAT_INC(tcps_sndtotal);
1574 	} else {
1575 		if (sc != &scs)
1576 			syncache_free(sc);
1577 		TCPSTAT_INC(tcps_sc_dropped);
1578 	}
1579 
1580 done:
1581 	if (m) {
1582 		*lsop = NULL;
1583 		m_freem(m);
1584 	}
1585 	/*
1586 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1587 	 * result in a new socket was processed and the associated pending
1588 	 * counter has not yet been decremented.  All such TFO processing paths
1589 	 * transit this point.
1590 	 */
1591 	if (tfo_pending != NULL)
1592 		tcp_fastopen_decrement_counter(tfo_pending);
1593 
1594 tfo_expanded:
1595 	if (cred != NULL)
1596 		crfree(cred);
1597 #ifdef MAC
1598 	if (sc == &scs)
1599 		mac_syncache_destroy(&maclabel);
1600 #endif
1601 	return (rv);
1602 }
1603 
1604 /*
1605  * Send SYN|ACK to the peer.  Either in response to the peer's SYN,
1606  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1607  */
1608 static int
1609 syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1610     const struct mbuf *m0)
1611 {
1612 	struct ip *ip = NULL;
1613 	struct mbuf *m;
1614 	struct tcphdr *th = NULL;
1615 	int optlen, error = 0;	/* Make compiler happy */
1616 	u_int16_t hlen, tlen, mssopt;
1617 	struct tcpopt to;
1618 #ifdef INET6
1619 	struct ip6_hdr *ip6 = NULL;
1620 #endif
1621 	hlen =
1622 #ifdef INET6
1623 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1624 #endif
1625 		sizeof(struct ip);
1626 	tlen = hlen + sizeof(struct tcphdr);
1627 
1628 	/* Determine MSS we advertize to other end of connection. */
1629 	mssopt = max(tcp_mssopt(&sc->sc_inc), V_tcp_minmss);
1630 
1631 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1632 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1633 	    ("syncache: mbuf too small"));
1634 
1635 	/* Create the IP+TCP header from scratch. */
1636 	m = m_gethdr(M_NOWAIT, MT_DATA);
1637 	if (m == NULL)
1638 		return (ENOBUFS);
1639 #ifdef MAC
1640 	mac_syncache_create_mbuf(sc->sc_label, m);
1641 #endif
1642 	m->m_data += max_linkhdr;
1643 	m->m_len = tlen;
1644 	m->m_pkthdr.len = tlen;
1645 	m->m_pkthdr.rcvif = NULL;
1646 
1647 #ifdef INET6
1648 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1649 		ip6 = mtod(m, struct ip6_hdr *);
1650 		ip6->ip6_vfc = IPV6_VERSION;
1651 		ip6->ip6_nxt = IPPROTO_TCP;
1652 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1653 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1654 		ip6->ip6_plen = htons(tlen - hlen);
1655 		/* ip6_hlim is set after checksum */
1656 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1657 		ip6->ip6_flow |= sc->sc_flowlabel;
1658 
1659 		th = (struct tcphdr *)(ip6 + 1);
1660 	}
1661 #endif
1662 #if defined(INET6) && defined(INET)
1663 	else
1664 #endif
1665 #ifdef INET
1666 	{
1667 		ip = mtod(m, struct ip *);
1668 		ip->ip_v = IPVERSION;
1669 		ip->ip_hl = sizeof(struct ip) >> 2;
1670 		ip->ip_len = htons(tlen);
1671 		ip->ip_id = 0;
1672 		ip->ip_off = 0;
1673 		ip->ip_sum = 0;
1674 		ip->ip_p = IPPROTO_TCP;
1675 		ip->ip_src = sc->sc_inc.inc_laddr;
1676 		ip->ip_dst = sc->sc_inc.inc_faddr;
1677 		ip->ip_ttl = sc->sc_ip_ttl;
1678 		ip->ip_tos = sc->sc_ip_tos;
1679 
1680 		/*
1681 		 * See if we should do MTU discovery.  Route lookups are
1682 		 * expensive, so we will only unset the DF bit if:
1683 		 *
1684 		 *	1) path_mtu_discovery is disabled
1685 		 *	2) the SCF_UNREACH flag has been set
1686 		 */
1687 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1688 		       ip->ip_off |= htons(IP_DF);
1689 
1690 		th = (struct tcphdr *)(ip + 1);
1691 	}
1692 #endif /* INET */
1693 	th->th_sport = sc->sc_inc.inc_lport;
1694 	th->th_dport = sc->sc_inc.inc_fport;
1695 
1696 	th->th_seq = htonl(sc->sc_iss);
1697 	th->th_ack = htonl(sc->sc_irs + 1);
1698 	th->th_off = sizeof(struct tcphdr) >> 2;
1699 	th->th_x2 = 0;
1700 	th->th_flags = TH_SYN|TH_ACK;
1701 	th->th_win = htons(sc->sc_wnd);
1702 	th->th_urp = 0;
1703 
1704 	if (sc->sc_flags & SCF_ECN) {
1705 		th->th_flags |= TH_ECE;
1706 		TCPSTAT_INC(tcps_ecn_shs);
1707 	}
1708 
1709 	/* Tack on the TCP options. */
1710 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1711 		to.to_flags = 0;
1712 
1713 		to.to_mss = mssopt;
1714 		to.to_flags = TOF_MSS;
1715 		if (sc->sc_flags & SCF_WINSCALE) {
1716 			to.to_wscale = sc->sc_requested_r_scale;
1717 			to.to_flags |= TOF_SCALE;
1718 		}
1719 		if (sc->sc_flags & SCF_TIMESTAMP) {
1720 			/* Virgin timestamp or TCP cookie enhanced one. */
1721 			to.to_tsval = sc->sc_ts;
1722 			to.to_tsecr = sc->sc_tsreflect;
1723 			to.to_flags |= TOF_TS;
1724 		}
1725 		if (sc->sc_flags & SCF_SACK)
1726 			to.to_flags |= TOF_SACKPERM;
1727 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1728 		if (sc->sc_flags & SCF_SIGNATURE)
1729 			to.to_flags |= TOF_SIGNATURE;
1730 #endif
1731 		if (sc->sc_tfo_cookie) {
1732 			to.to_flags |= TOF_FASTOPEN;
1733 			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1734 			to.to_tfo_cookie = sc->sc_tfo_cookie;
1735 			/* don't send cookie again when retransmitting response */
1736 			sc->sc_tfo_cookie = NULL;
1737 		}
1738 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1739 
1740 		/* Adjust headers by option size. */
1741 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1742 		m->m_len += optlen;
1743 		m->m_pkthdr.len += optlen;
1744 #ifdef INET6
1745 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1746 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1747 		else
1748 #endif
1749 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1750 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1751 		if (sc->sc_flags & SCF_SIGNATURE) {
1752 			KASSERT(to.to_flags & TOF_SIGNATURE,
1753 			    ("tcp_addoptions() didn't set tcp_signature"));
1754 
1755 			/* NOTE: to.to_signature is inside of mbuf */
1756 			if (!TCPMD5_ENABLED() ||
1757 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1758 				m_freem(m);
1759 				return (EACCES);
1760 			}
1761 		}
1762 #endif
1763 	} else
1764 		optlen = 0;
1765 
1766 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1767 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1768 	/*
1769 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1770 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1771 	 * to SYN|ACK due to lack of inp here.
1772 	 */
1773 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1774 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1775 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1776 	}
1777 #ifdef INET6
1778 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1779 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1780 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1781 		    IPPROTO_TCP, 0);
1782 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1783 #ifdef TCP_OFFLOAD
1784 		if (ADDED_BY_TOE(sc)) {
1785 			struct toedev *tod = sc->sc_tod;
1786 
1787 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1788 
1789 			return (error);
1790 		}
1791 #endif
1792 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1793 	}
1794 #endif
1795 #if defined(INET6) && defined(INET)
1796 	else
1797 #endif
1798 #ifdef INET
1799 	{
1800 		m->m_pkthdr.csum_flags = CSUM_TCP;
1801 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1802 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1803 #ifdef TCP_OFFLOAD
1804 		if (ADDED_BY_TOE(sc)) {
1805 			struct toedev *tod = sc->sc_tod;
1806 
1807 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1808 
1809 			return (error);
1810 		}
1811 #endif
1812 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1813 	}
1814 #endif
1815 	return (error);
1816 }
1817 
1818 /*
1819  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1820  * that exceed the capacity of the syncache by avoiding the storage of any
1821  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1822  * attacks where the attacker does not have access to our responses.
1823  *
1824  * Syncookies encode and include all necessary information about the
1825  * connection setup within the SYN|ACK that we send back.  That way we
1826  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1827  * (if ever).  Normally the syncache and syncookies are running in parallel
1828  * with the latter taking over when the former is exhausted.  When matching
1829  * syncache entry is found the syncookie is ignored.
1830  *
1831  * The only reliable information persisting the 3WHS is our initial sequence
1832  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1833  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1834  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1835  * returns and signifies a legitimate connection if it matches the ACK.
1836  *
1837  * The available space of 32 bits to store the hash and to encode the SYN
1838  * option information is very tight and we should have at least 24 bits for
1839  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1840  *
1841  * SYN option information we have to encode to fully restore a connection:
1842  * MSS: is imporant to chose an optimal segment size to avoid IP level
1843  *   fragmentation along the path.  The common MSS values can be encoded
1844  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1845  *   in the table leading to a slight increase in packetization overhead.
1846  * WSCALE: is necessary to allow large windows to be used for high delay-
1847  *   bandwidth product links.  Not scaling the window when it was initially
1848  *   negotiated is bad for performance as lack of scaling further decreases
1849  *   the apparent available send window.  We only need to encode the WSCALE
1850  *   we received from the remote end.  Our end can be recalculated at any
1851  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1852  *   Uncommon values are captured by the next lower value in the table
1853  *   making us under-estimate the available window size halving our
1854  *   theoretically possible maximum throughput for that connection.
1855  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1856  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1857  *   that are included in all segments on a connection.  We enable them when
1858  *   the ACK has them.
1859  *
1860  * Security of syncookies and attack vectors:
1861  *
1862  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1863  * together with the gloabl secret to make it unique per connection attempt.
1864  * Thus any change of any of those parameters results in a different MAC output
1865  * in an unpredictable way unless a collision is encountered.  24 bits of the
1866  * MAC are embedded into the ISS.
1867  *
1868  * To prevent replay attacks two rotating global secrets are updated with a
1869  * new random value every 15 seconds.  The life-time of a syncookie is thus
1870  * 15-30 seconds.
1871  *
1872  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1873  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1874  * text attack by varying and testing the all parameters under his control.
1875  * The strength depends on the size and randomness of the secret, and the
1876  * cryptographic security of the MAC function.  Due to the constant updating
1877  * of the secret the attacker has at most 29.999 seconds to find the secret
1878  * and launch spoofed connections.  After that he has to start all over again.
1879  *
1880  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1881  * size an average of 4,823 attempts are required for a 50% chance of success
1882  * to spoof a single syncookie (birthday collision paradox).  However the
1883  * attacker is blind and doesn't know if one of his attempts succeeded unless
1884  * he has a side channel to interfere success from.  A single connection setup
1885  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1886  * This many attempts are required for each one blind spoofed connection.  For
1887  * every additional spoofed connection he has to launch another N attempts.
1888  * Thus for a sustained rate 100 spoofed connections per second approximately
1889  * 1,800,000 packets per second would have to be sent.
1890  *
1891  * NB: The MAC function should be fast so that it doesn't become a CPU
1892  * exhaustion attack vector itself.
1893  *
1894  * References:
1895  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1896  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1897  *   http://cr.yp.to/syncookies.html    (overview)
1898  *   http://cr.yp.to/syncookies/archive (details)
1899  *
1900  *
1901  * Schematic construction of a syncookie enabled Initial Sequence Number:
1902  *  0        1         2         3
1903  *  12345678901234567890123456789012
1904  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1905  *
1906  *  x 24 MAC (truncated)
1907  *  W  3 Send Window Scale index
1908  *  M  3 MSS index
1909  *  S  1 SACK permitted
1910  *  P  1 Odd/even secret
1911  */
1912 
1913 /*
1914  * Distribution and probability of certain MSS values.  Those in between are
1915  * rounded down to the next lower one.
1916  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1917  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1918  */
1919 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1920 
1921 /*
1922  * Distribution and probability of certain WSCALE values.  We have to map the
1923  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1924  * bits based on prevalence of certain values.  Where we don't have an exact
1925  * match for are rounded down to the next lower one letting us under-estimate
1926  * the true available window.  At the moment this would happen only for the
1927  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1928  * and window size).  The absence of the WSCALE option (no scaling in either
1929  * direction) is encoded with index zero.
1930  * [WSCALE values histograms, Allman, 2012]
1931  *                            X 10 10 35  5  6 14 10%   by host
1932  *                            X 11  4  5  5 18 49  3%   by connections
1933  */
1934 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1935 
1936 /*
1937  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1938  * and good cryptographic properties.
1939  */
1940 static uint32_t
1941 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1942     uint8_t *secbits, uintptr_t secmod)
1943 {
1944 	SIPHASH_CTX ctx;
1945 	uint32_t siphash[2];
1946 
1947 	SipHash24_Init(&ctx);
1948 	SipHash_SetKey(&ctx, secbits);
1949 	switch (inc->inc_flags & INC_ISIPV6) {
1950 #ifdef INET
1951 	case 0:
1952 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1953 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1954 		break;
1955 #endif
1956 #ifdef INET6
1957 	case INC_ISIPV6:
1958 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1959 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1960 		break;
1961 #endif
1962 	}
1963 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1964 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1965 	SipHash_Update(&ctx, &irs, sizeof(irs));
1966 	SipHash_Update(&ctx, &flags, sizeof(flags));
1967 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1968 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1969 
1970 	return (siphash[0] ^ siphash[1]);
1971 }
1972 
1973 static tcp_seq
1974 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1975 {
1976 	u_int i, secbit, wscale;
1977 	uint32_t iss, hash;
1978 	uint8_t *secbits;
1979 	union syncookie cookie;
1980 
1981 	SCH_LOCK_ASSERT(sch);
1982 
1983 	cookie.cookie = 0;
1984 
1985 	/* Map our computed MSS into the 3-bit index. */
1986 	for (i = nitems(tcp_sc_msstab) - 1;
1987 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
1988 	     i--)
1989 		;
1990 	cookie.flags.mss_idx = i;
1991 
1992 	/*
1993 	 * Map the send window scale into the 3-bit index but only if
1994 	 * the wscale option was received.
1995 	 */
1996 	if (sc->sc_flags & SCF_WINSCALE) {
1997 		wscale = sc->sc_requested_s_scale;
1998 		for (i = nitems(tcp_sc_wstab) - 1;
1999 		    tcp_sc_wstab[i] > wscale && i > 0;
2000 		     i--)
2001 			;
2002 		cookie.flags.wscale_idx = i;
2003 	}
2004 
2005 	/* Can we do SACK? */
2006 	if (sc->sc_flags & SCF_SACK)
2007 		cookie.flags.sack_ok = 1;
2008 
2009 	/* Which of the two secrets to use. */
2010 	secbit = sch->sch_sc->secret.oddeven & 0x1;
2011 	cookie.flags.odd_even = secbit;
2012 
2013 	secbits = sch->sch_sc->secret.key[secbit];
2014 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2015 	    (uintptr_t)sch);
2016 
2017 	/*
2018 	 * Put the flags into the hash and XOR them to get better ISS number
2019 	 * variance.  This doesn't enhance the cryptographic strength and is
2020 	 * done to prevent the 8 cookie bits from showing up directly on the
2021 	 * wire.
2022 	 */
2023 	iss = hash & ~0xff;
2024 	iss |= cookie.cookie ^ (hash >> 24);
2025 
2026 	/* Randomize the timestamp. */
2027 	if (sc->sc_flags & SCF_TIMESTAMP) {
2028 		sc->sc_ts = arc4random();
2029 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
2030 	}
2031 
2032 	TCPSTAT_INC(tcps_sc_sendcookie);
2033 	return (iss);
2034 }
2035 
2036 static struct syncache *
2037 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2038     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2039     struct socket *lso)
2040 {
2041 	uint32_t hash;
2042 	uint8_t *secbits;
2043 	tcp_seq ack, seq;
2044 	int wnd, wscale = 0;
2045 	union syncookie cookie;
2046 
2047 	SCH_LOCK_ASSERT(sch);
2048 
2049 	/*
2050 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2051 	 * advances.
2052 	 */
2053 	ack = th->th_ack - 1;
2054 	seq = th->th_seq - 1;
2055 
2056 	/*
2057 	 * Unpack the flags containing enough information to restore the
2058 	 * connection.
2059 	 */
2060 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2061 
2062 	/* Which of the two secrets to use. */
2063 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
2064 
2065 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2066 
2067 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2068 	if ((ack & ~0xff) != (hash & ~0xff))
2069 		return (NULL);
2070 
2071 	/* Fill in the syncache values. */
2072 	sc->sc_flags = 0;
2073 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2074 	sc->sc_ipopts = NULL;
2075 
2076 	sc->sc_irs = seq;
2077 	sc->sc_iss = ack;
2078 
2079 	switch (inc->inc_flags & INC_ISIPV6) {
2080 #ifdef INET
2081 	case 0:
2082 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2083 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2084 		break;
2085 #endif
2086 #ifdef INET6
2087 	case INC_ISIPV6:
2088 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2089 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2090 		break;
2091 #endif
2092 	}
2093 
2094 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2095 
2096 	/* We can simply recompute receive window scale we sent earlier. */
2097 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2098 		wscale++;
2099 
2100 	/* Only use wscale if it was enabled in the orignal SYN. */
2101 	if (cookie.flags.wscale_idx > 0) {
2102 		sc->sc_requested_r_scale = wscale;
2103 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2104 		sc->sc_flags |= SCF_WINSCALE;
2105 	}
2106 
2107 	wnd = lso->sol_sbrcv_hiwat;
2108 	wnd = imax(wnd, 0);
2109 	wnd = imin(wnd, TCP_MAXWIN);
2110 	sc->sc_wnd = wnd;
2111 
2112 	if (cookie.flags.sack_ok)
2113 		sc->sc_flags |= SCF_SACK;
2114 
2115 	if (to->to_flags & TOF_TS) {
2116 		sc->sc_flags |= SCF_TIMESTAMP;
2117 		sc->sc_tsreflect = to->to_tsval;
2118 		sc->sc_ts = to->to_tsecr;
2119 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2120 	}
2121 
2122 	if (to->to_flags & TOF_SIGNATURE)
2123 		sc->sc_flags |= SCF_SIGNATURE;
2124 
2125 	sc->sc_rxmits = 0;
2126 
2127 	TCPSTAT_INC(tcps_sc_recvcookie);
2128 	return (sc);
2129 }
2130 
2131 #ifdef INVARIANTS
2132 static int
2133 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2134     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2135     struct socket *lso)
2136 {
2137 	struct syncache scs, *scx;
2138 	char *s;
2139 
2140 	bzero(&scs, sizeof(scs));
2141 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2142 
2143 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2144 		return (0);
2145 
2146 	if (scx != NULL) {
2147 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2148 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2149 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2150 
2151 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2152 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2153 			    s, __func__, sc->sc_requested_r_scale,
2154 			    scx->sc_requested_r_scale);
2155 
2156 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2157 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2158 			    s, __func__, sc->sc_requested_s_scale,
2159 			    scx->sc_requested_s_scale);
2160 
2161 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2162 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2163 	}
2164 
2165 	if (s != NULL)
2166 		free(s, M_TCPLOG);
2167 	return (0);
2168 }
2169 #endif /* INVARIANTS */
2170 
2171 static void
2172 syncookie_reseed(void *arg)
2173 {
2174 	struct tcp_syncache *sc = arg;
2175 	uint8_t *secbits;
2176 	int secbit;
2177 
2178 	/*
2179 	 * Reseeding the secret doesn't have to be protected by a lock.
2180 	 * It only must be ensured that the new random values are visible
2181 	 * to all CPUs in a SMP environment.  The atomic with release
2182 	 * semantics ensures that.
2183 	 */
2184 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2185 	secbits = sc->secret.key[secbit];
2186 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2187 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2188 
2189 	/* Reschedule ourself. */
2190 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2191 }
2192 
2193 /*
2194  * Exports the syncache entries to userland so that netstat can display
2195  * them alongside the other sockets.  This function is intended to be
2196  * called only from tcp_pcblist.
2197  *
2198  * Due to concurrency on an active system, the number of pcbs exported
2199  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2200  * amount of space the caller allocated for this function to use.
2201  */
2202 int
2203 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2204 {
2205 	struct xtcpcb xt;
2206 	struct syncache *sc;
2207 	struct syncache_head *sch;
2208 	int count, error, i;
2209 
2210 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2211 		sch = &V_tcp_syncache.hashbase[i];
2212 		SCH_LOCK(sch);
2213 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2214 			if (count >= max_pcbs) {
2215 				SCH_UNLOCK(sch);
2216 				goto exit;
2217 			}
2218 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2219 				continue;
2220 			bzero(&xt, sizeof(xt));
2221 			xt.xt_len = sizeof(xt);
2222 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2223 				xt.xt_inp.inp_vflag = INP_IPV6;
2224 			else
2225 				xt.xt_inp.inp_vflag = INP_IPV4;
2226 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2227 			    sizeof (struct in_conninfo));
2228 			xt.t_state = TCPS_SYN_RECEIVED;
2229 			xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2230 			xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2231 			xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2232 			xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2233 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2234 			if (error) {
2235 				SCH_UNLOCK(sch);
2236 				goto exit;
2237 			}
2238 			count++;
2239 		}
2240 		SCH_UNLOCK(sch);
2241 	}
2242 exit:
2243 	*pcbs_exported = count;
2244 	return error;
2245 }
2246