xref: /freebsd/sys/netinet/tcp_syncache.c (revision 3f0164abf32b9b761e0a2cb4bdca3a8b84f156d4)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program. [2001 McAfee, Inc.]
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/proc.h>		/* for proc0 declaration */
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/ucred.h>
56 
57 #include <sys/md5.h>
58 #include <crypto/siphash/siphash.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/if.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_var.h>
70 #include <netinet/in_pcb.h>
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #include <netinet/icmp6.h>
76 #include <netinet6/nd6.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/in6_pcb.h>
79 #endif
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #ifdef TCP_OFFLOAD
90 #include <netinet/toecore.h>
91 #endif
92 
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #ifdef INET6
96 #include <netipsec/ipsec6.h>
97 #endif
98 #include <netipsec/key.h>
99 #endif /*IPSEC*/
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static VNET_DEFINE(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 #ifdef TCP_OFFLOAD
118 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119 #endif
120 
121 static void	 syncache_drop(struct syncache *, struct syncache_head *);
122 static void	 syncache_free(struct syncache *);
123 static void	 syncache_insert(struct syncache *, struct syncache_head *);
124 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
125 static int	 syncache_respond(struct syncache *);
126 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127 		    struct mbuf *m);
128 static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
129 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
130 		    int docallout);
131 static void	 syncache_timer(void *);
132 
133 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
134 		    uint8_t *, uintptr_t);
135 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
136 static struct syncache
137 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
138 		    struct syncache *, struct tcphdr *, struct tcpopt *,
139 		    struct socket *);
140 static void	 syncookie_reseed(void *);
141 #ifdef INVARIANTS
142 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
143 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
144 		    struct socket *lso);
145 #endif
146 
147 /*
148  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
149  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
150  * the odds are that the user has given up attempting to connect by then.
151  */
152 #define SYNCACHE_MAXREXMTS		3
153 
154 /* Arbitrary values */
155 #define TCP_SYNCACHE_HASHSIZE		512
156 #define TCP_SYNCACHE_BUCKETLIMIT	30
157 
158 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
159 #define	V_tcp_syncache			VNET(tcp_syncache)
160 
161 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
162     "TCP SYN cache");
163 
164 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
165     &VNET_NAME(tcp_syncache.bucket_limit), 0,
166     "Per-bucket hash limit for syncache");
167 
168 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
169     &VNET_NAME(tcp_syncache.cache_limit), 0,
170     "Overall entry limit for syncache");
171 
172 SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
173     NULL, 0, &syncache_sysctl_count, "IU",
174     "Current number of entries in syncache");
175 
176 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
177     &VNET_NAME(tcp_syncache.hashsize), 0,
178     "Size of TCP syncache hashtable");
179 
180 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
181     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
182     "Limit on SYN/ACK retransmissions");
183 
184 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
186     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
187     "Send reset on socket allocation failure");
188 
189 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
190 
191 #define SYNCACHE_HASH(inc, mask)					\
192 	((V_tcp_syncache.hash_secret ^					\
193 	  (inc)->inc_faddr.s_addr ^					\
194 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
195 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
196 
197 #define SYNCACHE_HASH6(inc, mask)					\
198 	((V_tcp_syncache.hash_secret ^					\
199 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
200 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
201 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
202 
203 #define ENDPTS_EQ(a, b) (						\
204 	(a)->ie_fport == (b)->ie_fport &&				\
205 	(a)->ie_lport == (b)->ie_lport &&				\
206 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
207 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
208 )
209 
210 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
211 
212 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
213 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
214 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
215 
216 /*
217  * Requires the syncache entry to be already removed from the bucket list.
218  */
219 static void
220 syncache_free(struct syncache *sc)
221 {
222 
223 	if (sc->sc_ipopts)
224 		(void) m_free(sc->sc_ipopts);
225 	if (sc->sc_cred)
226 		crfree(sc->sc_cred);
227 #ifdef MAC
228 	mac_syncache_destroy(&sc->sc_label);
229 #endif
230 
231 	uma_zfree(V_tcp_syncache.zone, sc);
232 }
233 
234 void
235 syncache_init(void)
236 {
237 	int i;
238 
239 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
241 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
242 	V_tcp_syncache.hash_secret = arc4random();
243 
244 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
245 	    &V_tcp_syncache.hashsize);
246 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
247 	    &V_tcp_syncache.bucket_limit);
248 	if (!powerof2(V_tcp_syncache.hashsize) ||
249 	    V_tcp_syncache.hashsize == 0) {
250 		printf("WARNING: syncache hash size is not a power of 2.\n");
251 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
252 	}
253 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
254 
255 	/* Set limits. */
256 	V_tcp_syncache.cache_limit =
257 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
258 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
259 	    &V_tcp_syncache.cache_limit);
260 
261 	/* Allocate the hash table. */
262 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
263 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
264 
265 #ifdef VIMAGE
266 	V_tcp_syncache.vnet = curvnet;
267 #endif
268 
269 	/* Initialize the hash buckets. */
270 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
271 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
272 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
273 			 NULL, MTX_DEF);
274 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
275 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
276 		V_tcp_syncache.hashbase[i].sch_length = 0;
277 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
278 	}
279 
280 	/* Create the syncache entry zone. */
281 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
282 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
283 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
284 	    V_tcp_syncache.cache_limit);
285 
286 	/* Start the SYN cookie reseeder callout. */
287 	callout_init(&V_tcp_syncache.secret.reseed, 1);
288 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
289 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
290 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
291 	    syncookie_reseed, &V_tcp_syncache);
292 }
293 
294 #ifdef VIMAGE
295 void
296 syncache_destroy(void)
297 {
298 	struct syncache_head *sch;
299 	struct syncache *sc, *nsc;
300 	int i;
301 
302 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
303 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
304 
305 		sch = &V_tcp_syncache.hashbase[i];
306 		callout_drain(&sch->sch_timer);
307 
308 		SCH_LOCK(sch);
309 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
310 			syncache_drop(sc, sch);
311 		SCH_UNLOCK(sch);
312 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
313 		    ("%s: sch->sch_bucket not empty", __func__));
314 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
315 		    __func__, sch->sch_length));
316 		mtx_destroy(&sch->sch_mtx);
317 	}
318 
319 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
320 	    ("%s: cache_count not 0", __func__));
321 
322 	/* Free the allocated global resources. */
323 	uma_zdestroy(V_tcp_syncache.zone);
324 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
325 
326 	callout_drain(&V_tcp_syncache.secret.reseed);
327 }
328 #endif
329 
330 static int
331 syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
332 {
333 	int count;
334 
335 	count = uma_zone_get_cur(V_tcp_syncache.zone);
336 	return (sysctl_handle_int(oidp, &count, 0, req));
337 }
338 
339 /*
340  * Inserts a syncache entry into the specified bucket row.
341  * Locks and unlocks the syncache_head autonomously.
342  */
343 static void
344 syncache_insert(struct syncache *sc, struct syncache_head *sch)
345 {
346 	struct syncache *sc2;
347 
348 	SCH_LOCK(sch);
349 
350 	/*
351 	 * Make sure that we don't overflow the per-bucket limit.
352 	 * If the bucket is full, toss the oldest element.
353 	 */
354 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
355 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
356 			("sch->sch_length incorrect"));
357 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
358 		syncache_drop(sc2, sch);
359 		TCPSTAT_INC(tcps_sc_bucketoverflow);
360 	}
361 
362 	/* Put it into the bucket. */
363 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
364 	sch->sch_length++;
365 
366 #ifdef TCP_OFFLOAD
367 	if (ADDED_BY_TOE(sc)) {
368 		struct toedev *tod = sc->sc_tod;
369 
370 		tod->tod_syncache_added(tod, sc->sc_todctx);
371 	}
372 #endif
373 
374 	/* Reinitialize the bucket row's timer. */
375 	if (sch->sch_length == 1)
376 		sch->sch_nextc = ticks + INT_MAX;
377 	syncache_timeout(sc, sch, 1);
378 
379 	SCH_UNLOCK(sch);
380 
381 	TCPSTAT_INC(tcps_sc_added);
382 }
383 
384 /*
385  * Remove and free entry from syncache bucket row.
386  * Expects locked syncache head.
387  */
388 static void
389 syncache_drop(struct syncache *sc, struct syncache_head *sch)
390 {
391 
392 	SCH_LOCK_ASSERT(sch);
393 
394 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
395 	sch->sch_length--;
396 
397 #ifdef TCP_OFFLOAD
398 	if (ADDED_BY_TOE(sc)) {
399 		struct toedev *tod = sc->sc_tod;
400 
401 		tod->tod_syncache_removed(tod, sc->sc_todctx);
402 	}
403 #endif
404 
405 	syncache_free(sc);
406 }
407 
408 /*
409  * Engage/reengage time on bucket row.
410  */
411 static void
412 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
413 {
414 	sc->sc_rxttime = ticks +
415 		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
416 	sc->sc_rxmits++;
417 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
418 		sch->sch_nextc = sc->sc_rxttime;
419 		if (docallout)
420 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
421 			    syncache_timer, (void *)sch);
422 	}
423 }
424 
425 /*
426  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
427  * If we have retransmitted an entry the maximum number of times, expire it.
428  * One separate timer for each bucket row.
429  */
430 static void
431 syncache_timer(void *xsch)
432 {
433 	struct syncache_head *sch = (struct syncache_head *)xsch;
434 	struct syncache *sc, *nsc;
435 	int tick = ticks;
436 	char *s;
437 
438 	CURVNET_SET(sch->sch_sc->vnet);
439 
440 	/* NB: syncache_head has already been locked by the callout. */
441 	SCH_LOCK_ASSERT(sch);
442 
443 	/*
444 	 * In the following cycle we may remove some entries and/or
445 	 * advance some timeouts, so re-initialize the bucket timer.
446 	 */
447 	sch->sch_nextc = tick + INT_MAX;
448 
449 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
450 		/*
451 		 * We do not check if the listen socket still exists
452 		 * and accept the case where the listen socket may be
453 		 * gone by the time we resend the SYN/ACK.  We do
454 		 * not expect this to happens often. If it does,
455 		 * then the RST will be sent by the time the remote
456 		 * host does the SYN/ACK->ACK.
457 		 */
458 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
459 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
460 				sch->sch_nextc = sc->sc_rxttime;
461 			continue;
462 		}
463 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
464 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
465 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
466 				    "giving up and removing syncache entry\n",
467 				    s, __func__);
468 				free(s, M_TCPLOG);
469 			}
470 			syncache_drop(sc, sch);
471 			TCPSTAT_INC(tcps_sc_stale);
472 			continue;
473 		}
474 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
475 			log(LOG_DEBUG, "%s; %s: Response timeout, "
476 			    "retransmitting (%u) SYN|ACK\n",
477 			    s, __func__, sc->sc_rxmits);
478 			free(s, M_TCPLOG);
479 		}
480 
481 		(void) syncache_respond(sc);
482 		TCPSTAT_INC(tcps_sc_retransmitted);
483 		syncache_timeout(sc, sch, 0);
484 	}
485 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
486 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
487 			syncache_timer, (void *)(sch));
488 	CURVNET_RESTORE();
489 }
490 
491 /*
492  * Find an entry in the syncache.
493  * Returns always with locked syncache_head plus a matching entry or NULL.
494  */
495 struct syncache *
496 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
497 {
498 	struct syncache *sc;
499 	struct syncache_head *sch;
500 
501 #ifdef INET6
502 	if (inc->inc_flags & INC_ISIPV6) {
503 		sch = &V_tcp_syncache.hashbase[
504 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
505 		*schp = sch;
506 
507 		SCH_LOCK(sch);
508 
509 		/* Circle through bucket row to find matching entry. */
510 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
511 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
512 				return (sc);
513 		}
514 	} else
515 #endif
516 	{
517 		sch = &V_tcp_syncache.hashbase[
518 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
519 		*schp = sch;
520 
521 		SCH_LOCK(sch);
522 
523 		/* Circle through bucket row to find matching entry. */
524 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
525 #ifdef INET6
526 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
527 				continue;
528 #endif
529 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
530 				return (sc);
531 		}
532 	}
533 	SCH_LOCK_ASSERT(*schp);
534 	return (NULL);			/* always returns with locked sch */
535 }
536 
537 /*
538  * This function is called when we get a RST for a
539  * non-existent connection, so that we can see if the
540  * connection is in the syn cache.  If it is, zap it.
541  */
542 void
543 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
544 {
545 	struct syncache *sc;
546 	struct syncache_head *sch;
547 	char *s = NULL;
548 
549 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
550 	SCH_LOCK_ASSERT(sch);
551 
552 	/*
553 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
554 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
555 	 */
556 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
557 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
558 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
559 			    "FIN flag set, segment ignored\n", s, __func__);
560 		TCPSTAT_INC(tcps_badrst);
561 		goto done;
562 	}
563 
564 	/*
565 	 * No corresponding connection was found in syncache.
566 	 * If syncookies are enabled and possibly exclusively
567 	 * used, or we are under memory pressure, a valid RST
568 	 * may not find a syncache entry.  In that case we're
569 	 * done and no SYN|ACK retransmissions will happen.
570 	 * Otherwise the RST was misdirected or spoofed.
571 	 */
572 	if (sc == NULL) {
573 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
574 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
575 			    "syncache entry (possibly syncookie only), "
576 			    "segment ignored\n", s, __func__);
577 		TCPSTAT_INC(tcps_badrst);
578 		goto done;
579 	}
580 
581 	/*
582 	 * If the RST bit is set, check the sequence number to see
583 	 * if this is a valid reset segment.
584 	 * RFC 793 page 37:
585 	 *   In all states except SYN-SENT, all reset (RST) segments
586 	 *   are validated by checking their SEQ-fields.  A reset is
587 	 *   valid if its sequence number is in the window.
588 	 *
589 	 *   The sequence number in the reset segment is normally an
590 	 *   echo of our outgoing acknowlegement numbers, but some hosts
591 	 *   send a reset with the sequence number at the rightmost edge
592 	 *   of our receive window, and we have to handle this case.
593 	 */
594 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
595 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
596 		syncache_drop(sc, sch);
597 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
598 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
599 			    "connection attempt aborted by remote endpoint\n",
600 			    s, __func__);
601 		TCPSTAT_INC(tcps_sc_reset);
602 	} else {
603 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
604 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
605 			    "IRS %u (+WND %u), segment ignored\n",
606 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
607 		TCPSTAT_INC(tcps_badrst);
608 	}
609 
610 done:
611 	if (s != NULL)
612 		free(s, M_TCPLOG);
613 	SCH_UNLOCK(sch);
614 }
615 
616 void
617 syncache_badack(struct in_conninfo *inc)
618 {
619 	struct syncache *sc;
620 	struct syncache_head *sch;
621 
622 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
623 	SCH_LOCK_ASSERT(sch);
624 	if (sc != NULL) {
625 		syncache_drop(sc, sch);
626 		TCPSTAT_INC(tcps_sc_badack);
627 	}
628 	SCH_UNLOCK(sch);
629 }
630 
631 void
632 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
633 {
634 	struct syncache *sc;
635 	struct syncache_head *sch;
636 
637 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
638 	SCH_LOCK_ASSERT(sch);
639 	if (sc == NULL)
640 		goto done;
641 
642 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
643 	if (ntohl(th->th_seq) != sc->sc_iss)
644 		goto done;
645 
646 	/*
647 	 * If we've rertransmitted 3 times and this is our second error,
648 	 * we remove the entry.  Otherwise, we allow it to continue on.
649 	 * This prevents us from incorrectly nuking an entry during a
650 	 * spurious network outage.
651 	 *
652 	 * See tcp_notify().
653 	 */
654 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
655 		sc->sc_flags |= SCF_UNREACH;
656 		goto done;
657 	}
658 	syncache_drop(sc, sch);
659 	TCPSTAT_INC(tcps_sc_unreach);
660 done:
661 	SCH_UNLOCK(sch);
662 }
663 
664 /*
665  * Build a new TCP socket structure from a syncache entry.
666  */
667 static struct socket *
668 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
669 {
670 	struct inpcb *inp = NULL;
671 	struct socket *so;
672 	struct tcpcb *tp;
673 	int error;
674 	char *s;
675 
676 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
677 
678 	/*
679 	 * Ok, create the full blown connection, and set things up
680 	 * as they would have been set up if we had created the
681 	 * connection when the SYN arrived.  If we can't create
682 	 * the connection, abort it.
683 	 */
684 	so = sonewconn(lso, SS_ISCONNECTED);
685 	if (so == NULL) {
686 		/*
687 		 * Drop the connection; we will either send a RST or
688 		 * have the peer retransmit its SYN again after its
689 		 * RTO and try again.
690 		 */
691 		TCPSTAT_INC(tcps_listendrop);
692 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
693 			log(LOG_DEBUG, "%s; %s: Socket create failed "
694 			    "due to limits or memory shortage\n",
695 			    s, __func__);
696 			free(s, M_TCPLOG);
697 		}
698 		goto abort2;
699 	}
700 #ifdef MAC
701 	mac_socketpeer_set_from_mbuf(m, so);
702 #endif
703 
704 	inp = sotoinpcb(so);
705 	inp->inp_inc.inc_fibnum = so->so_fibnum;
706 	INP_WLOCK(inp);
707 	INP_HASH_WLOCK(&V_tcbinfo);
708 
709 	/* Insert new socket into PCB hash list. */
710 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
711 #ifdef INET6
712 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
713 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
714 	} else {
715 		inp->inp_vflag &= ~INP_IPV6;
716 		inp->inp_vflag |= INP_IPV4;
717 #endif
718 		inp->inp_laddr = sc->sc_inc.inc_laddr;
719 #ifdef INET6
720 	}
721 #endif
722 
723 	/*
724 	 * Install in the reservation hash table for now, but don't yet
725 	 * install a connection group since the full 4-tuple isn't yet
726 	 * configured.
727 	 */
728 	inp->inp_lport = sc->sc_inc.inc_lport;
729 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
730 		/*
731 		 * Undo the assignments above if we failed to
732 		 * put the PCB on the hash lists.
733 		 */
734 #ifdef INET6
735 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
736 			inp->in6p_laddr = in6addr_any;
737 		else
738 #endif
739 			inp->inp_laddr.s_addr = INADDR_ANY;
740 		inp->inp_lport = 0;
741 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
742 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
743 			    "with error %i\n",
744 			    s, __func__, error);
745 			free(s, M_TCPLOG);
746 		}
747 		INP_HASH_WUNLOCK(&V_tcbinfo);
748 		goto abort;
749 	}
750 #ifdef IPSEC
751 	/* Copy old policy into new socket's. */
752 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
753 		printf("syncache_socket: could not copy policy\n");
754 #endif
755 #ifdef INET6
756 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
757 		struct inpcb *oinp = sotoinpcb(lso);
758 		struct in6_addr laddr6;
759 		struct sockaddr_in6 sin6;
760 		/*
761 		 * Inherit socket options from the listening socket.
762 		 * Note that in6p_inputopts are not (and should not be)
763 		 * copied, since it stores previously received options and is
764 		 * used to detect if each new option is different than the
765 		 * previous one and hence should be passed to a user.
766 		 * If we copied in6p_inputopts, a user would not be able to
767 		 * receive options just after calling the accept system call.
768 		 */
769 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
770 		if (oinp->in6p_outputopts)
771 			inp->in6p_outputopts =
772 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
773 
774 		sin6.sin6_family = AF_INET6;
775 		sin6.sin6_len = sizeof(sin6);
776 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
777 		sin6.sin6_port = sc->sc_inc.inc_fport;
778 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
779 		laddr6 = inp->in6p_laddr;
780 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
781 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
782 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
783 		    thread0.td_ucred, m)) != 0) {
784 			inp->in6p_laddr = laddr6;
785 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
786 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
787 				    "with error %i\n",
788 				    s, __func__, error);
789 				free(s, M_TCPLOG);
790 			}
791 			INP_HASH_WUNLOCK(&V_tcbinfo);
792 			goto abort;
793 		}
794 		/* Override flowlabel from in6_pcbconnect. */
795 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
796 		inp->inp_flow |= sc->sc_flowlabel;
797 	}
798 #endif /* INET6 */
799 #if defined(INET) && defined(INET6)
800 	else
801 #endif
802 #ifdef INET
803 	{
804 		struct in_addr laddr;
805 		struct sockaddr_in sin;
806 
807 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
808 
809 		if (inp->inp_options == NULL) {
810 			inp->inp_options = sc->sc_ipopts;
811 			sc->sc_ipopts = NULL;
812 		}
813 
814 		sin.sin_family = AF_INET;
815 		sin.sin_len = sizeof(sin);
816 		sin.sin_addr = sc->sc_inc.inc_faddr;
817 		sin.sin_port = sc->sc_inc.inc_fport;
818 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
819 		laddr = inp->inp_laddr;
820 		if (inp->inp_laddr.s_addr == INADDR_ANY)
821 			inp->inp_laddr = sc->sc_inc.inc_laddr;
822 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
823 		    thread0.td_ucred, m)) != 0) {
824 			inp->inp_laddr = laddr;
825 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
826 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
827 				    "with error %i\n",
828 				    s, __func__, error);
829 				free(s, M_TCPLOG);
830 			}
831 			INP_HASH_WUNLOCK(&V_tcbinfo);
832 			goto abort;
833 		}
834 	}
835 #endif /* INET */
836 	INP_HASH_WUNLOCK(&V_tcbinfo);
837 	tp = intotcpcb(inp);
838 	tp->t_state = TCPS_SYN_RECEIVED;
839 	tp->iss = sc->sc_iss;
840 	tp->irs = sc->sc_irs;
841 	tcp_rcvseqinit(tp);
842 	tcp_sendseqinit(tp);
843 	tp->snd_wl1 = sc->sc_irs;
844 	tp->snd_max = tp->iss + 1;
845 	tp->snd_nxt = tp->iss + 1;
846 	tp->rcv_up = sc->sc_irs + 1;
847 	tp->rcv_wnd = sc->sc_wnd;
848 	tp->rcv_adv += tp->rcv_wnd;
849 	tp->last_ack_sent = tp->rcv_nxt;
850 
851 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
852 	if (sc->sc_flags & SCF_NOOPT)
853 		tp->t_flags |= TF_NOOPT;
854 	else {
855 		if (sc->sc_flags & SCF_WINSCALE) {
856 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
857 			tp->snd_scale = sc->sc_requested_s_scale;
858 			tp->request_r_scale = sc->sc_requested_r_scale;
859 		}
860 		if (sc->sc_flags & SCF_TIMESTAMP) {
861 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
862 			tp->ts_recent = sc->sc_tsreflect;
863 			tp->ts_recent_age = tcp_ts_getticks();
864 			tp->ts_offset = sc->sc_tsoff;
865 		}
866 #ifdef TCP_SIGNATURE
867 		if (sc->sc_flags & SCF_SIGNATURE)
868 			tp->t_flags |= TF_SIGNATURE;
869 #endif
870 		if (sc->sc_flags & SCF_SACK)
871 			tp->t_flags |= TF_SACK_PERMIT;
872 	}
873 
874 	if (sc->sc_flags & SCF_ECN)
875 		tp->t_flags |= TF_ECN_PERMIT;
876 
877 	/*
878 	 * Set up MSS and get cached values from tcp_hostcache.
879 	 * This might overwrite some of the defaults we just set.
880 	 */
881 	tcp_mss(tp, sc->sc_peer_mss);
882 
883 	/*
884 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
885 	 * limited to one segment in cc_conn_init().
886 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
887 	 */
888 	if (sc->sc_rxmits > 1)
889 		tp->snd_cwnd = 1;
890 
891 #ifdef TCP_OFFLOAD
892 	/*
893 	 * Allow a TOE driver to install its hooks.  Note that we hold the
894 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
895 	 * new connection before the TOE driver has done its thing.
896 	 */
897 	if (ADDED_BY_TOE(sc)) {
898 		struct toedev *tod = sc->sc_tod;
899 
900 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
901 	}
902 #endif
903 	/*
904 	 * Copy and activate timers.
905 	 */
906 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
907 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
908 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
909 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
910 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
911 
912 	INP_WUNLOCK(inp);
913 
914 	TCPSTAT_INC(tcps_accepts);
915 	return (so);
916 
917 abort:
918 	INP_WUNLOCK(inp);
919 abort2:
920 	if (so != NULL)
921 		soabort(so);
922 	return (NULL);
923 }
924 
925 /*
926  * This function gets called when we receive an ACK for a
927  * socket in the LISTEN state.  We look up the connection
928  * in the syncache, and if its there, we pull it out of
929  * the cache and turn it into a full-blown connection in
930  * the SYN-RECEIVED state.
931  */
932 int
933 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
934     struct socket **lsop, struct mbuf *m)
935 {
936 	struct syncache *sc;
937 	struct syncache_head *sch;
938 	struct syncache scs;
939 	char *s;
940 
941 	/*
942 	 * Global TCP locks are held because we manipulate the PCB lists
943 	 * and create a new socket.
944 	 */
945 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
946 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
947 	    ("%s: can handle only ACK", __func__));
948 
949 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
950 	SCH_LOCK_ASSERT(sch);
951 
952 #ifdef INVARIANTS
953 	/*
954 	 * Test code for syncookies comparing the syncache stored
955 	 * values with the reconstructed values from the cookie.
956 	 */
957 	if (sc != NULL)
958 		syncookie_cmp(inc, sch, sc, th, to, *lsop);
959 #endif
960 
961 	if (sc == NULL) {
962 		/*
963 		 * There is no syncache entry, so see if this ACK is
964 		 * a returning syncookie.  To do this, first:
965 		 *  A. See if this socket has had a syncache entry dropped in
966 		 *     the past.  We don't want to accept a bogus syncookie
967 		 *     if we've never received a SYN.
968 		 *  B. check that the syncookie is valid.  If it is, then
969 		 *     cobble up a fake syncache entry, and return.
970 		 */
971 		if (!V_tcp_syncookies) {
972 			SCH_UNLOCK(sch);
973 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
974 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
975 				    "segment rejected (syncookies disabled)\n",
976 				    s, __func__);
977 			goto failed;
978 		}
979 		bzero(&scs, sizeof(scs));
980 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
981 		SCH_UNLOCK(sch);
982 		if (sc == NULL) {
983 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
984 				log(LOG_DEBUG, "%s; %s: Segment failed "
985 				    "SYNCOOKIE authentication, segment rejected "
986 				    "(probably spoofed)\n", s, __func__);
987 			goto failed;
988 		}
989 	} else {
990 		/* Pull out the entry to unlock the bucket row. */
991 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
992 		sch->sch_length--;
993 #ifdef TCP_OFFLOAD
994 		if (ADDED_BY_TOE(sc)) {
995 			struct toedev *tod = sc->sc_tod;
996 
997 			tod->tod_syncache_removed(tod, sc->sc_todctx);
998 		}
999 #endif
1000 		SCH_UNLOCK(sch);
1001 	}
1002 
1003 	/*
1004 	 * Segment validation:
1005 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1006 	 */
1007 	if (th->th_ack != sc->sc_iss + 1) {
1008 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1009 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1010 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1011 		goto failed;
1012 	}
1013 
1014 	/*
1015 	 * The SEQ must fall in the window starting at the received
1016 	 * initial receive sequence number + 1 (the SYN).
1017 	 */
1018 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1019 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1020 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1021 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1022 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1023 		goto failed;
1024 	}
1025 
1026 	/*
1027 	 * If timestamps were not negotiated during SYN/ACK they
1028 	 * must not appear on any segment during this session.
1029 	 */
1030 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1031 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1032 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1033 			    "segment rejected\n", s, __func__);
1034 		goto failed;
1035 	}
1036 
1037 	/*
1038 	 * If timestamps were negotiated during SYN/ACK they should
1039 	 * appear on every segment during this session.
1040 	 * XXXAO: This is only informal as there have been unverified
1041 	 * reports of non-compliants stacks.
1042 	 */
1043 	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1044 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1045 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1046 			    "no action\n", s, __func__);
1047 			free(s, M_TCPLOG);
1048 			s = NULL;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * If timestamps were negotiated the reflected timestamp
1054 	 * must be equal to what we actually sent in the SYN|ACK.
1055 	 */
1056 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1057 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1058 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1059 			    "segment rejected\n",
1060 			    s, __func__, to->to_tsecr, sc->sc_ts);
1061 		goto failed;
1062 	}
1063 
1064 	*lsop = syncache_socket(sc, *lsop, m);
1065 
1066 	if (*lsop == NULL)
1067 		TCPSTAT_INC(tcps_sc_aborted);
1068 	else
1069 		TCPSTAT_INC(tcps_sc_completed);
1070 
1071 /* how do we find the inp for the new socket? */
1072 	if (sc != &scs)
1073 		syncache_free(sc);
1074 	return (1);
1075 failed:
1076 	if (sc != NULL && sc != &scs)
1077 		syncache_free(sc);
1078 	if (s != NULL)
1079 		free(s, M_TCPLOG);
1080 	*lsop = NULL;
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Given a LISTEN socket and an inbound SYN request, add
1086  * this to the syn cache, and send back a segment:
1087  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1088  * to the source.
1089  *
1090  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1091  * Doing so would require that we hold onto the data and deliver it
1092  * to the application.  However, if we are the target of a SYN-flood
1093  * DoS attack, an attacker could send data which would eventually
1094  * consume all available buffer space if it were ACKed.  By not ACKing
1095  * the data, we avoid this DoS scenario.
1096  */
1097 void
1098 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1099     struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1100     void *todctx)
1101 {
1102 	struct tcpcb *tp;
1103 	struct socket *so;
1104 	struct syncache *sc = NULL;
1105 	struct syncache_head *sch;
1106 	struct mbuf *ipopts = NULL;
1107 	u_int ltflags;
1108 	int win, sb_hiwat, ip_ttl, ip_tos;
1109 	char *s;
1110 #ifdef INET6
1111 	int autoflowlabel = 0;
1112 #endif
1113 #ifdef MAC
1114 	struct label *maclabel;
1115 #endif
1116 	struct syncache scs;
1117 	struct ucred *cred;
1118 
1119 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1120 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1121 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1122 	    ("%s: unexpected tcp flags", __func__));
1123 
1124 	/*
1125 	 * Combine all so/tp operations very early to drop the INP lock as
1126 	 * soon as possible.
1127 	 */
1128 	so = *lsop;
1129 	tp = sototcpcb(so);
1130 	cred = crhold(so->so_cred);
1131 
1132 #ifdef INET6
1133 	if ((inc->inc_flags & INC_ISIPV6) &&
1134 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1135 		autoflowlabel = 1;
1136 #endif
1137 	ip_ttl = inp->inp_ip_ttl;
1138 	ip_tos = inp->inp_ip_tos;
1139 	win = sbspace(&so->so_rcv);
1140 	sb_hiwat = so->so_rcv.sb_hiwat;
1141 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1142 
1143 	/* By the time we drop the lock these should no longer be used. */
1144 	so = NULL;
1145 	tp = NULL;
1146 
1147 #ifdef MAC
1148 	if (mac_syncache_init(&maclabel) != 0) {
1149 		INP_WUNLOCK(inp);
1150 		INP_INFO_WUNLOCK(&V_tcbinfo);
1151 		goto done;
1152 	} else
1153 		mac_syncache_create(maclabel, inp);
1154 #endif
1155 	INP_WUNLOCK(inp);
1156 	INP_INFO_WUNLOCK(&V_tcbinfo);
1157 
1158 	/*
1159 	 * Remember the IP options, if any.
1160 	 */
1161 #ifdef INET6
1162 	if (!(inc->inc_flags & INC_ISIPV6))
1163 #endif
1164 #ifdef INET
1165 		ipopts = (m) ? ip_srcroute(m) : NULL;
1166 #else
1167 		ipopts = NULL;
1168 #endif
1169 
1170 	/*
1171 	 * See if we already have an entry for this connection.
1172 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1173 	 *
1174 	 * XXX: should the syncache be re-initialized with the contents
1175 	 * of the new SYN here (which may have different options?)
1176 	 *
1177 	 * XXX: We do not check the sequence number to see if this is a
1178 	 * real retransmit or a new connection attempt.  The question is
1179 	 * how to handle such a case; either ignore it as spoofed, or
1180 	 * drop the current entry and create a new one?
1181 	 */
1182 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1183 	SCH_LOCK_ASSERT(sch);
1184 	if (sc != NULL) {
1185 		TCPSTAT_INC(tcps_sc_dupsyn);
1186 		if (ipopts) {
1187 			/*
1188 			 * If we were remembering a previous source route,
1189 			 * forget it and use the new one we've been given.
1190 			 */
1191 			if (sc->sc_ipopts)
1192 				(void) m_free(sc->sc_ipopts);
1193 			sc->sc_ipopts = ipopts;
1194 		}
1195 		/*
1196 		 * Update timestamp if present.
1197 		 */
1198 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1199 			sc->sc_tsreflect = to->to_tsval;
1200 		else
1201 			sc->sc_flags &= ~SCF_TIMESTAMP;
1202 #ifdef MAC
1203 		/*
1204 		 * Since we have already unconditionally allocated label
1205 		 * storage, free it up.  The syncache entry will already
1206 		 * have an initialized label we can use.
1207 		 */
1208 		mac_syncache_destroy(&maclabel);
1209 #endif
1210 		/* Retransmit SYN|ACK and reset retransmit count. */
1211 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1212 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1213 			    "resetting timer and retransmitting SYN|ACK\n",
1214 			    s, __func__);
1215 			free(s, M_TCPLOG);
1216 		}
1217 		if (syncache_respond(sc) == 0) {
1218 			sc->sc_rxmits = 0;
1219 			syncache_timeout(sc, sch, 1);
1220 			TCPSTAT_INC(tcps_sndacks);
1221 			TCPSTAT_INC(tcps_sndtotal);
1222 		}
1223 		SCH_UNLOCK(sch);
1224 		goto done;
1225 	}
1226 
1227 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1228 	if (sc == NULL) {
1229 		/*
1230 		 * The zone allocator couldn't provide more entries.
1231 		 * Treat this as if the cache was full; drop the oldest
1232 		 * entry and insert the new one.
1233 		 */
1234 		TCPSTAT_INC(tcps_sc_zonefail);
1235 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1236 			syncache_drop(sc, sch);
1237 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1238 		if (sc == NULL) {
1239 			if (V_tcp_syncookies) {
1240 				bzero(&scs, sizeof(scs));
1241 				sc = &scs;
1242 			} else {
1243 				SCH_UNLOCK(sch);
1244 				if (ipopts)
1245 					(void) m_free(ipopts);
1246 				goto done;
1247 			}
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * Fill in the syncache values.
1253 	 */
1254 #ifdef MAC
1255 	sc->sc_label = maclabel;
1256 #endif
1257 	sc->sc_cred = cred;
1258 	cred = NULL;
1259 	sc->sc_ipopts = ipopts;
1260 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1261 #ifdef INET6
1262 	if (!(inc->inc_flags & INC_ISIPV6))
1263 #endif
1264 	{
1265 		sc->sc_ip_tos = ip_tos;
1266 		sc->sc_ip_ttl = ip_ttl;
1267 	}
1268 #ifdef TCP_OFFLOAD
1269 	sc->sc_tod = tod;
1270 	sc->sc_todctx = todctx;
1271 #endif
1272 	sc->sc_irs = th->th_seq;
1273 	sc->sc_iss = arc4random();
1274 	sc->sc_flags = 0;
1275 	sc->sc_flowlabel = 0;
1276 
1277 	/*
1278 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1279 	 * win was derived from socket earlier in the function.
1280 	 */
1281 	win = imax(win, 0);
1282 	win = imin(win, TCP_MAXWIN);
1283 	sc->sc_wnd = win;
1284 
1285 	if (V_tcp_do_rfc1323) {
1286 		/*
1287 		 * A timestamp received in a SYN makes
1288 		 * it ok to send timestamp requests and replies.
1289 		 */
1290 		if (to->to_flags & TOF_TS) {
1291 			sc->sc_tsreflect = to->to_tsval;
1292 			sc->sc_ts = tcp_ts_getticks();
1293 			sc->sc_flags |= SCF_TIMESTAMP;
1294 		}
1295 		if (to->to_flags & TOF_SCALE) {
1296 			int wscale = 0;
1297 
1298 			/*
1299 			 * Pick the smallest possible scaling factor that
1300 			 * will still allow us to scale up to sb_max, aka
1301 			 * kern.ipc.maxsockbuf.
1302 			 *
1303 			 * We do this because there are broken firewalls that
1304 			 * will corrupt the window scale option, leading to
1305 			 * the other endpoint believing that our advertised
1306 			 * window is unscaled.  At scale factors larger than
1307 			 * 5 the unscaled window will drop below 1500 bytes,
1308 			 * leading to serious problems when traversing these
1309 			 * broken firewalls.
1310 			 *
1311 			 * With the default maxsockbuf of 256K, a scale factor
1312 			 * of 3 will be chosen by this algorithm.  Those who
1313 			 * choose a larger maxsockbuf should watch out
1314 			 * for the compatiblity problems mentioned above.
1315 			 *
1316 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1317 			 * or <SYN,ACK>) segment itself is never scaled.
1318 			 */
1319 			while (wscale < TCP_MAX_WINSHIFT &&
1320 			    (TCP_MAXWIN << wscale) < sb_max)
1321 				wscale++;
1322 			sc->sc_requested_r_scale = wscale;
1323 			sc->sc_requested_s_scale = to->to_wscale;
1324 			sc->sc_flags |= SCF_WINSCALE;
1325 		}
1326 	}
1327 #ifdef TCP_SIGNATURE
1328 	/*
1329 	 * If listening socket requested TCP digests, and received SYN
1330 	 * contains the option, flag this in the syncache so that
1331 	 * syncache_respond() will do the right thing with the SYN+ACK.
1332 	 * XXX: Currently we always record the option by default and will
1333 	 * attempt to use it in syncache_respond().
1334 	 */
1335 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1336 		sc->sc_flags |= SCF_SIGNATURE;
1337 #endif
1338 	if (to->to_flags & TOF_SACKPERM)
1339 		sc->sc_flags |= SCF_SACK;
1340 	if (to->to_flags & TOF_MSS)
1341 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1342 	if (ltflags & TF_NOOPT)
1343 		sc->sc_flags |= SCF_NOOPT;
1344 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1345 		sc->sc_flags |= SCF_ECN;
1346 
1347 	if (V_tcp_syncookies)
1348 		sc->sc_iss = syncookie_generate(sch, sc);
1349 #ifdef INET6
1350 	if (autoflowlabel) {
1351 		if (V_tcp_syncookies)
1352 			sc->sc_flowlabel = sc->sc_iss;
1353 		else
1354 			sc->sc_flowlabel = ip6_randomflowlabel();
1355 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1356 	}
1357 #endif
1358 	SCH_UNLOCK(sch);
1359 
1360 	/*
1361 	 * Do a standard 3-way handshake.
1362 	 */
1363 	if (syncache_respond(sc) == 0) {
1364 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1365 			syncache_free(sc);
1366 		else if (sc != &scs)
1367 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1368 		TCPSTAT_INC(tcps_sndacks);
1369 		TCPSTAT_INC(tcps_sndtotal);
1370 	} else {
1371 		if (sc != &scs)
1372 			syncache_free(sc);
1373 		TCPSTAT_INC(tcps_sc_dropped);
1374 	}
1375 
1376 done:
1377 	if (cred != NULL)
1378 		crfree(cred);
1379 #ifdef MAC
1380 	if (sc == &scs)
1381 		mac_syncache_destroy(&maclabel);
1382 #endif
1383 	if (m) {
1384 
1385 		*lsop = NULL;
1386 		m_freem(m);
1387 	}
1388 }
1389 
1390 static int
1391 syncache_respond(struct syncache *sc)
1392 {
1393 	struct ip *ip = NULL;
1394 	struct mbuf *m;
1395 	struct tcphdr *th = NULL;
1396 	int optlen, error = 0;	/* Make compiler happy */
1397 	u_int16_t hlen, tlen, mssopt;
1398 	struct tcpopt to;
1399 #ifdef INET6
1400 	struct ip6_hdr *ip6 = NULL;
1401 #endif
1402 
1403 	hlen =
1404 #ifdef INET6
1405 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1406 #endif
1407 		sizeof(struct ip);
1408 	tlen = hlen + sizeof(struct tcphdr);
1409 
1410 	/* Determine MSS we advertize to other end of connection. */
1411 	mssopt = tcp_mssopt(&sc->sc_inc);
1412 	if (sc->sc_peer_mss)
1413 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1414 
1415 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1416 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1417 	    ("syncache: mbuf too small"));
1418 
1419 	/* Create the IP+TCP header from scratch. */
1420 	m = m_gethdr(M_NOWAIT, MT_DATA);
1421 	if (m == NULL)
1422 		return (ENOBUFS);
1423 #ifdef MAC
1424 	mac_syncache_create_mbuf(sc->sc_label, m);
1425 #endif
1426 	m->m_data += max_linkhdr;
1427 	m->m_len = tlen;
1428 	m->m_pkthdr.len = tlen;
1429 	m->m_pkthdr.rcvif = NULL;
1430 
1431 #ifdef INET6
1432 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1433 		ip6 = mtod(m, struct ip6_hdr *);
1434 		ip6->ip6_vfc = IPV6_VERSION;
1435 		ip6->ip6_nxt = IPPROTO_TCP;
1436 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1437 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1438 		ip6->ip6_plen = htons(tlen - hlen);
1439 		/* ip6_hlim is set after checksum */
1440 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1441 		ip6->ip6_flow |= sc->sc_flowlabel;
1442 
1443 		th = (struct tcphdr *)(ip6 + 1);
1444 	}
1445 #endif
1446 #if defined(INET6) && defined(INET)
1447 	else
1448 #endif
1449 #ifdef INET
1450 	{
1451 		ip = mtod(m, struct ip *);
1452 		ip->ip_v = IPVERSION;
1453 		ip->ip_hl = sizeof(struct ip) >> 2;
1454 		ip->ip_len = htons(tlen);
1455 		ip->ip_id = 0;
1456 		ip->ip_off = 0;
1457 		ip->ip_sum = 0;
1458 		ip->ip_p = IPPROTO_TCP;
1459 		ip->ip_src = sc->sc_inc.inc_laddr;
1460 		ip->ip_dst = sc->sc_inc.inc_faddr;
1461 		ip->ip_ttl = sc->sc_ip_ttl;
1462 		ip->ip_tos = sc->sc_ip_tos;
1463 
1464 		/*
1465 		 * See if we should do MTU discovery.  Route lookups are
1466 		 * expensive, so we will only unset the DF bit if:
1467 		 *
1468 		 *	1) path_mtu_discovery is disabled
1469 		 *	2) the SCF_UNREACH flag has been set
1470 		 */
1471 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1472 		       ip->ip_off |= htons(IP_DF);
1473 
1474 		th = (struct tcphdr *)(ip + 1);
1475 	}
1476 #endif /* INET */
1477 	th->th_sport = sc->sc_inc.inc_lport;
1478 	th->th_dport = sc->sc_inc.inc_fport;
1479 
1480 	th->th_seq = htonl(sc->sc_iss);
1481 	th->th_ack = htonl(sc->sc_irs + 1);
1482 	th->th_off = sizeof(struct tcphdr) >> 2;
1483 	th->th_x2 = 0;
1484 	th->th_flags = TH_SYN|TH_ACK;
1485 	th->th_win = htons(sc->sc_wnd);
1486 	th->th_urp = 0;
1487 
1488 	if (sc->sc_flags & SCF_ECN) {
1489 		th->th_flags |= TH_ECE;
1490 		TCPSTAT_INC(tcps_ecn_shs);
1491 	}
1492 
1493 	/* Tack on the TCP options. */
1494 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1495 		to.to_flags = 0;
1496 
1497 		to.to_mss = mssopt;
1498 		to.to_flags = TOF_MSS;
1499 		if (sc->sc_flags & SCF_WINSCALE) {
1500 			to.to_wscale = sc->sc_requested_r_scale;
1501 			to.to_flags |= TOF_SCALE;
1502 		}
1503 		if (sc->sc_flags & SCF_TIMESTAMP) {
1504 			/* Virgin timestamp or TCP cookie enhanced one. */
1505 			to.to_tsval = sc->sc_ts;
1506 			to.to_tsecr = sc->sc_tsreflect;
1507 			to.to_flags |= TOF_TS;
1508 		}
1509 		if (sc->sc_flags & SCF_SACK)
1510 			to.to_flags |= TOF_SACKPERM;
1511 #ifdef TCP_SIGNATURE
1512 		if (sc->sc_flags & SCF_SIGNATURE)
1513 			to.to_flags |= TOF_SIGNATURE;
1514 #endif
1515 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1516 
1517 		/* Adjust headers by option size. */
1518 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1519 		m->m_len += optlen;
1520 		m->m_pkthdr.len += optlen;
1521 
1522 #ifdef TCP_SIGNATURE
1523 		if (sc->sc_flags & SCF_SIGNATURE)
1524 			tcp_signature_compute(m, 0, 0, optlen,
1525 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1526 #endif
1527 #ifdef INET6
1528 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1529 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1530 		else
1531 #endif
1532 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1533 	} else
1534 		optlen = 0;
1535 
1536 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1537 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1538 #ifdef INET6
1539 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1540 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1541 		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1542 		    IPPROTO_TCP, 0);
1543 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1544 #ifdef TCP_OFFLOAD
1545 		if (ADDED_BY_TOE(sc)) {
1546 			struct toedev *tod = sc->sc_tod;
1547 
1548 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1549 
1550 			return (error);
1551 		}
1552 #endif
1553 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1554 	}
1555 #endif
1556 #if defined(INET6) && defined(INET)
1557 	else
1558 #endif
1559 #ifdef INET
1560 	{
1561 		m->m_pkthdr.csum_flags = CSUM_TCP;
1562 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1563 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1564 #ifdef TCP_OFFLOAD
1565 		if (ADDED_BY_TOE(sc)) {
1566 			struct toedev *tod = sc->sc_tod;
1567 
1568 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1569 
1570 			return (error);
1571 		}
1572 #endif
1573 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1574 	}
1575 #endif
1576 	return (error);
1577 }
1578 
1579 /*
1580  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1581  * that exceed the capacity of the syncache by avoiding the storage of any
1582  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1583  * attacks where the attacker does not have access to our responses.
1584  *
1585  * Syncookies encode and include all necessary information about the
1586  * connection setup within the SYN|ACK that we send back.  That way we
1587  * can avoid keeping any local state until the ACK to our SYN|ACK returns
1588  * (if ever).  Normally the syncache and syncookies are running in parallel
1589  * with the latter taking over when the former is exhausted.  When matching
1590  * syncache entry is found the syncookie is ignored.
1591  *
1592  * The only reliable information persisting the 3WHS is our inital sequence
1593  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1594  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1595  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1596  * returns and signifies a legitimate connection if it matches the ACK.
1597  *
1598  * The available space of 32 bits to store the hash and to encode the SYN
1599  * option information is very tight and we should have at least 24 bits for
1600  * the MAC to keep the number of guesses by blind spoofing reasonably high.
1601  *
1602  * SYN option information we have to encode to fully restore a connection:
1603  * MSS: is imporant to chose an optimal segment size to avoid IP level
1604  *   fragmentation along the path.  The common MSS values can be encoded
1605  *   in a 3-bit table.  Uncommon values are captured by the next lower value
1606  *   in the table leading to a slight increase in packetization overhead.
1607  * WSCALE: is necessary to allow large windows to be used for high delay-
1608  *   bandwidth product links.  Not scaling the window when it was initially
1609  *   negotiated is bad for performance as lack of scaling further decreases
1610  *   the apparent available send window.  We only need to encode the WSCALE
1611  *   we received from the remote end.  Our end can be recalculated at any
1612  *   time.  The common WSCALE values can be encoded in a 3-bit table.
1613  *   Uncommon values are captured by the next lower value in the table
1614  *   making us under-estimate the available window size halving our
1615  *   theoretically possible maximum throughput for that connection.
1616  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1617  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1618  *   that are included in all segments on a connection.  We enable them when
1619  *   the ACK has them.
1620  *
1621  * Security of syncookies and attack vectors:
1622  *
1623  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1624  * together with the gloabl secret to make it unique per connection attempt.
1625  * Thus any change of any of those parameters results in a different MAC output
1626  * in an unpredictable way unless a collision is encountered.  24 bits of the
1627  * MAC are embedded into the ISS.
1628  *
1629  * To prevent replay attacks two rotating global secrets are updated with a
1630  * new random value every 15 seconds.  The life-time of a syncookie is thus
1631  * 15-30 seconds.
1632  *
1633  * Vector 1: Attacking the secret.  This requires finding a weakness in the
1634  * MAC itself or the way it is used here.  The attacker can do a chosen plain
1635  * text attack by varying and testing the all parameters under his control.
1636  * The strength depends on the size and randomness of the secret, and the
1637  * cryptographic security of the MAC function.  Due to the constant updating
1638  * of the secret the attacker has at most 29.999 seconds to find the secret
1639  * and launch spoofed connections.  After that he has to start all over again.
1640  *
1641  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1642  * size an average of 4,823 attempts are required for a 50% chance of success
1643  * to spoof a single syncookie (birthday collision paradox).  However the
1644  * attacker is blind and doesn't know if one of his attempts succeeded unless
1645  * he has a side channel to interfere success from.  A single connection setup
1646  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1647  * This many attempts are required for each one blind spoofed connection.  For
1648  * every additional spoofed connection he has to launch another N attempts.
1649  * Thus for a sustained rate 100 spoofed connections per second approximately
1650  * 1,800,000 packets per second would have to be sent.
1651  *
1652  * NB: The MAC function should be fast so that it doesn't become a CPU
1653  * exhaustion attack vector itself.
1654  *
1655  * References:
1656  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1657  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1658  *   http://cr.yp.to/syncookies.html    (overview)
1659  *   http://cr.yp.to/syncookies/archive (details)
1660  *
1661  *
1662  * Schematic construction of a syncookie enabled Initial Sequence Number:
1663  *  0        1         2         3
1664  *  12345678901234567890123456789012
1665  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1666  *
1667  *  x 24 MAC (truncated)
1668  *  W  3 Send Window Scale index
1669  *  M  3 MSS index
1670  *  S  1 SACK permitted
1671  *  P  1 Odd/even secret
1672  */
1673 
1674 /*
1675  * Distribution and probability of certain MSS values.  Those in between are
1676  * rounded down to the next lower one.
1677  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1678  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1679  */
1680 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1681 
1682 /*
1683  * Distribution and probability of certain WSCALE values.  We have to map the
1684  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1685  * bits based on prevalence of certain values.  Where we don't have an exact
1686  * match for are rounded down to the next lower one letting us under-estimate
1687  * the true available window.  At the moment this would happen only for the
1688  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1689  * and window size).  The absence of the WSCALE option (no scaling in either
1690  * direction) is encoded with index zero.
1691  * [WSCALE values histograms, Allman, 2012]
1692  *                            X 10 10 35  5  6 14 10%   by host
1693  *                            X 11  4  5  5 18 49  3%   by connections
1694  */
1695 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1696 
1697 /*
1698  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1699  * and good cryptographic properties.
1700  */
1701 static uint32_t
1702 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1703     uint8_t *secbits, uintptr_t secmod)
1704 {
1705 	SIPHASH_CTX ctx;
1706 	uint32_t siphash[2];
1707 
1708 	SipHash24_Init(&ctx);
1709 	SipHash_SetKey(&ctx, secbits);
1710 	switch (inc->inc_flags & INC_ISIPV6) {
1711 #ifdef INET
1712 	case 0:
1713 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1714 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1715 		break;
1716 #endif
1717 #ifdef INET6
1718 	case INC_ISIPV6:
1719 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1720 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1721 		break;
1722 #endif
1723 	}
1724 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1725 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1726 	SipHash_Update(&ctx, &flags, sizeof(flags));
1727 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1728 	SipHash_Final((u_int8_t *)&siphash, &ctx);
1729 
1730 	return (siphash[0] ^ siphash[1]);
1731 }
1732 
1733 static tcp_seq
1734 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1735 {
1736 	u_int i, mss, secbit, wscale;
1737 	uint32_t iss, hash;
1738 	uint8_t *secbits;
1739 	union syncookie cookie;
1740 
1741 	SCH_LOCK_ASSERT(sch);
1742 
1743 	cookie.cookie = 0;
1744 
1745 	/* Map our computed MSS into the 3-bit index. */
1746 	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1747 	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1748 	     tcp_sc_msstab[i] > mss && i > 0;
1749 	     i--)
1750 		;
1751 	cookie.flags.mss_idx = i;
1752 
1753 	/*
1754 	 * Map the send window scale into the 3-bit index but only if
1755 	 * the wscale option was received.
1756 	 */
1757 	if (sc->sc_flags & SCF_WINSCALE) {
1758 		wscale = sc->sc_requested_s_scale;
1759 		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1760 		     tcp_sc_wstab[i] > wscale && i > 0;
1761 		     i--)
1762 			;
1763 		cookie.flags.wscale_idx = i;
1764 	}
1765 
1766 	/* Can we do SACK? */
1767 	if (sc->sc_flags & SCF_SACK)
1768 		cookie.flags.sack_ok = 1;
1769 
1770 	/* Which of the two secrets to use. */
1771 	secbit = sch->sch_sc->secret.oddeven & 0x1;
1772 	cookie.flags.odd_even = secbit;
1773 
1774 	secbits = sch->sch_sc->secret.key[secbit];
1775 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1776 	    (uintptr_t)sch);
1777 
1778 	/*
1779 	 * Put the flags into the hash and XOR them to get better ISS number
1780 	 * variance.  This doesn't enhance the cryptographic strength and is
1781 	 * done to prevent the 8 cookie bits from showing up directly on the
1782 	 * wire.
1783 	 */
1784 	iss = hash & ~0xff;
1785 	iss |= cookie.cookie ^ (hash >> 24);
1786 
1787 	/* Randomize the timestamp. */
1788 	if (sc->sc_flags & SCF_TIMESTAMP) {
1789 		sc->sc_ts = arc4random();
1790 		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1791 	}
1792 
1793 	TCPSTAT_INC(tcps_sc_sendcookie);
1794 	return (iss);
1795 }
1796 
1797 static struct syncache *
1798 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1799     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1800     struct socket *lso)
1801 {
1802 	uint32_t hash;
1803 	uint8_t *secbits;
1804 	tcp_seq ack, seq;
1805 	int wnd, wscale = 0;
1806 	union syncookie cookie;
1807 
1808 	SCH_LOCK_ASSERT(sch);
1809 
1810 	/*
1811 	 * Pull information out of SYN-ACK/ACK and revert sequence number
1812 	 * advances.
1813 	 */
1814 	ack = th->th_ack - 1;
1815 	seq = th->th_seq - 1;
1816 
1817 	/*
1818 	 * Unpack the flags containing enough information to restore the
1819 	 * connection.
1820 	 */
1821 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1822 
1823 	/* Which of the two secrets to use. */
1824 	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1825 
1826 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1827 
1828 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1829 	if ((ack & ~0xff) != (hash & ~0xff))
1830 		return (NULL);
1831 
1832 	/* Fill in the syncache values. */
1833 	sc->sc_flags = 0;
1834 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1835 	sc->sc_ipopts = NULL;
1836 
1837 	sc->sc_irs = seq;
1838 	sc->sc_iss = ack;
1839 
1840 	switch (inc->inc_flags & INC_ISIPV6) {
1841 #ifdef INET
1842 	case 0:
1843 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1844 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1845 		break;
1846 #endif
1847 #ifdef INET6
1848 	case INC_ISIPV6:
1849 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1850 			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1851 		break;
1852 #endif
1853 	}
1854 
1855 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1856 
1857 	/* We can simply recompute receive window scale we sent earlier. */
1858 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1859 		wscale++;
1860 
1861 	/* Only use wscale if it was enabled in the orignal SYN. */
1862 	if (cookie.flags.wscale_idx > 0) {
1863 		sc->sc_requested_r_scale = wscale;
1864 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1865 		sc->sc_flags |= SCF_WINSCALE;
1866 	}
1867 
1868 	wnd = sbspace(&lso->so_rcv);
1869 	wnd = imax(wnd, 0);
1870 	wnd = imin(wnd, TCP_MAXWIN);
1871 	sc->sc_wnd = wnd;
1872 
1873 	if (cookie.flags.sack_ok)
1874 		sc->sc_flags |= SCF_SACK;
1875 
1876 	if (to->to_flags & TOF_TS) {
1877 		sc->sc_flags |= SCF_TIMESTAMP;
1878 		sc->sc_tsreflect = to->to_tsval;
1879 		sc->sc_ts = to->to_tsecr;
1880 		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1881 	}
1882 
1883 	if (to->to_flags & TOF_SIGNATURE)
1884 		sc->sc_flags |= SCF_SIGNATURE;
1885 
1886 	sc->sc_rxmits = 0;
1887 
1888 	TCPSTAT_INC(tcps_sc_recvcookie);
1889 	return (sc);
1890 }
1891 
1892 #ifdef INVARIANTS
1893 static int
1894 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1895     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1896     struct socket *lso)
1897 {
1898 	struct syncache scs, *scx;
1899 	char *s;
1900 
1901 	bzero(&scs, sizeof(scs));
1902 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1903 
1904 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1905 		return (0);
1906 
1907 	if (scx != NULL) {
1908 		if (sc->sc_peer_mss != scx->sc_peer_mss)
1909 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1910 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1911 
1912 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1913 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1914 			    s, __func__, sc->sc_requested_r_scale,
1915 			    scx->sc_requested_r_scale);
1916 
1917 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1918 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1919 			    s, __func__, sc->sc_requested_s_scale,
1920 			    scx->sc_requested_s_scale);
1921 
1922 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1923 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1924 	}
1925 
1926 	if (s != NULL)
1927 		free(s, M_TCPLOG);
1928 	return (0);
1929 }
1930 #endif /* INVARIANTS */
1931 
1932 static void
1933 syncookie_reseed(void *arg)
1934 {
1935 	struct tcp_syncache *sc = arg;
1936 	uint8_t *secbits;
1937 	int secbit;
1938 
1939 	/*
1940 	 * Reseeding the secret doesn't have to be protected by a lock.
1941 	 * It only must be ensured that the new random values are visible
1942 	 * to all CPUs in a SMP environment.  The atomic with release
1943 	 * semantics ensures that.
1944 	 */
1945 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1946 	secbits = sc->secret.key[secbit];
1947 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1948 	atomic_add_rel_int(&sc->secret.oddeven, 1);
1949 
1950 	/* Reschedule ourself. */
1951 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1952 }
1953 
1954 /*
1955  * Returns the current number of syncache entries.  This number
1956  * will probably change before you get around to calling
1957  * syncache_pcblist.
1958  */
1959 int
1960 syncache_pcbcount(void)
1961 {
1962 	struct syncache_head *sch;
1963 	int count, i;
1964 
1965 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1966 		/* No need to lock for a read. */
1967 		sch = &V_tcp_syncache.hashbase[i];
1968 		count += sch->sch_length;
1969 	}
1970 	return count;
1971 }
1972 
1973 /*
1974  * Exports the syncache entries to userland so that netstat can display
1975  * them alongside the other sockets.  This function is intended to be
1976  * called only from tcp_pcblist.
1977  *
1978  * Due to concurrency on an active system, the number of pcbs exported
1979  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1980  * amount of space the caller allocated for this function to use.
1981  */
1982 int
1983 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1984 {
1985 	struct xtcpcb xt;
1986 	struct syncache *sc;
1987 	struct syncache_head *sch;
1988 	int count, error, i;
1989 
1990 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1991 		sch = &V_tcp_syncache.hashbase[i];
1992 		SCH_LOCK(sch);
1993 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1994 			if (count >= max_pcbs) {
1995 				SCH_UNLOCK(sch);
1996 				goto exit;
1997 			}
1998 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1999 				continue;
2000 			bzero(&xt, sizeof(xt));
2001 			xt.xt_len = sizeof(xt);
2002 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2003 				xt.xt_inp.inp_vflag = INP_IPV6;
2004 			else
2005 				xt.xt_inp.inp_vflag = INP_IPV4;
2006 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2007 			xt.xt_tp.t_inpcb = &xt.xt_inp;
2008 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2009 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2010 			xt.xt_socket.xso_len = sizeof (struct xsocket);
2011 			xt.xt_socket.so_type = SOCK_STREAM;
2012 			xt.xt_socket.so_state = SS_ISCONNECTING;
2013 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2014 			if (error) {
2015 				SCH_UNLOCK(sch);
2016 				goto exit;
2017 			}
2018 			count++;
2019 		}
2020 		SCH_UNLOCK(sch);
2021 	}
2022 exit:
2023 	*pcbs_exported = count;
2024 	return error;
2025 }
2026