xref: /freebsd/sys/netinet/tcp_syncache.c (revision 2e620256bd76c449c835c604e404483437743011)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 McAfee, Inc.
5  * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Jonathan Lemon
9  * and McAfee Research, the Security Research Division of McAfee, Inc. under
10  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
11  * DARPA CHATS research program. [2001 McAfee, Inc.]
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/hash.h>
43 #include <sys/refcount.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/limits.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/proc.h>		/* for proc0 declaration */
52 #include <sys/random.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/syslog.h>
56 #include <sys/ucred.h>
57 
58 #include <sys/md5.h>
59 #include <crypto/siphash/siphash.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/route.h>
66 #include <net/vnet.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_kdtrace.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #include <netinet/in_var.h>
73 #include <netinet/in_pcb.h>
74 #include <netinet/ip_var.h>
75 #include <netinet/ip_options.h>
76 #ifdef INET6
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet6/nd6.h>
80 #include <netinet6/ip6_var.h>
81 #include <netinet6/in6_pcb.h>
82 #endif
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fastopen.h>
85 #include <netinet/tcp_fsm.h>
86 #include <netinet/tcp_seq.h>
87 #include <netinet/tcp_timer.h>
88 #include <netinet/tcp_var.h>
89 #include <netinet/tcp_syncache.h>
90 #include <netinet/tcp_ecn.h>
91 #ifdef TCP_BLACKBOX
92 #include <netinet/tcp_log_buf.h>
93 #endif
94 #ifdef TCP_OFFLOAD
95 #include <netinet/toecore.h>
96 #endif
97 #include <netinet/udp.h>
98 
99 #include <netipsec/ipsec_support.h>
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 VNET_DEFINE_STATIC(int, tcp_syncookies) = 1;
106 #define	V_tcp_syncookies		VNET(tcp_syncookies)
107 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
108     &VNET_NAME(tcp_syncookies), 0,
109     "Use TCP SYN cookies if the syncache overflows");
110 
111 VNET_DEFINE_STATIC(int, tcp_syncookiesonly) = 0;
112 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
114     &VNET_NAME(tcp_syncookiesonly), 0,
115     "Use only TCP SYN cookies");
116 
117 VNET_DEFINE_STATIC(int, functions_inherit_listen_socket_stack) = 1;
118 #define V_functions_inherit_listen_socket_stack \
119     VNET(functions_inherit_listen_socket_stack)
120 SYSCTL_INT(_net_inet_tcp, OID_AUTO, functions_inherit_listen_socket_stack,
121     CTLFLAG_VNET | CTLFLAG_RW,
122     &VNET_NAME(functions_inherit_listen_socket_stack), 0,
123     "Inherit listen socket's stack");
124 
125 #ifdef TCP_OFFLOAD
126 #define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
127 #endif
128 
129 static void	 syncache_drop(struct syncache *, struct syncache_head *);
130 static void	 syncache_free(struct syncache *);
131 static void	 syncache_insert(struct syncache *, struct syncache_head *);
132 static int	 syncache_respond(struct syncache *, const struct mbuf *, int);
133 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
134 		    struct mbuf *m);
135 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
136 		    int docallout);
137 static void	 syncache_timer(void *);
138 
139 static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
140 		    uint8_t *, uintptr_t);
141 static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
142 static struct syncache
143 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
144 		    struct syncache *, struct tcphdr *, struct tcpopt *,
145 		    struct socket *, uint16_t);
146 static void	syncache_pause(struct in_conninfo *);
147 static void	syncache_unpause(void *);
148 static void	 syncookie_reseed(void *);
149 #ifdef INVARIANTS
150 static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
151 		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
152 		    struct socket *lso, uint16_t port);
153 #endif
154 
155 /*
156  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
157  * 3 retransmits corresponds to a timeout with default values of
158  * tcp_rexmit_initial * (             1 +
159  *                       tcp_backoff[1] +
160  *                       tcp_backoff[2] +
161  *                       tcp_backoff[3]) + 3 * tcp_rexmit_slop,
162  * 1000 ms * (1 + 2 + 4 + 8) +  3 * 200 ms = 15600 ms,
163  * the odds are that the user has given up attempting to connect by then.
164  */
165 #define SYNCACHE_MAXREXMTS		3
166 
167 /* Arbitrary values */
168 #define TCP_SYNCACHE_HASHSIZE		512
169 #define TCP_SYNCACHE_BUCKETLIMIT	30
170 
171 VNET_DEFINE_STATIC(struct tcp_syncache, tcp_syncache);
172 #define	V_tcp_syncache			VNET(tcp_syncache)
173 
174 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache,
175     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "TCP SYN cache");
177 
178 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
179     &VNET_NAME(tcp_syncache.bucket_limit), 0,
180     "Per-bucket hash limit for syncache");
181 
182 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
183     &VNET_NAME(tcp_syncache.cache_limit), 0,
184     "Overall entry limit for syncache");
185 
186 SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
187     &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
188 
189 SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
190     &VNET_NAME(tcp_syncache.hashsize), 0,
191     "Size of TCP syncache hashtable");
192 
193 SYSCTL_BOOL(_net_inet_tcp_syncache, OID_AUTO, see_other, CTLFLAG_VNET |
194     CTLFLAG_RW, &VNET_NAME(tcp_syncache.see_other), 0,
195     "All syncache(4) entries are visible, ignoring UID/GID, jail(2) "
196     "and mac(4) checks");
197 
198 static int
199 sysctl_net_inet_tcp_syncache_rexmtlimit_check(SYSCTL_HANDLER_ARGS)
200 {
201 	int error;
202 	u_int new;
203 
204 	new = V_tcp_syncache.rexmt_limit;
205 	error = sysctl_handle_int(oidp, &new, 0, req);
206 	if ((error == 0) && (req->newptr != NULL)) {
207 		if (new > TCP_MAXRXTSHIFT)
208 			error = EINVAL;
209 		else
210 			V_tcp_syncache.rexmt_limit = new;
211 	}
212 	return (error);
213 }
214 
215 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit,
216     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
217     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
218     sysctl_net_inet_tcp_syncache_rexmtlimit_check, "UI",
219     "Limit on SYN/ACK retransmissions");
220 
221 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
222 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
223     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
224     "Send reset on socket allocation failure");
225 
226 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
227 
228 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
229 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
230 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
231 
232 /*
233  * Requires the syncache entry to be already removed from the bucket list.
234  */
235 static void
236 syncache_free(struct syncache *sc)
237 {
238 
239 	if (sc->sc_ipopts)
240 		(void) m_free(sc->sc_ipopts);
241 	if (sc->sc_cred)
242 		crfree(sc->sc_cred);
243 #ifdef MAC
244 	mac_syncache_destroy(&sc->sc_label);
245 #endif
246 
247 	uma_zfree(V_tcp_syncache.zone, sc);
248 }
249 
250 void
251 syncache_init(void)
252 {
253 	int i;
254 
255 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
256 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
257 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
258 	V_tcp_syncache.hash_secret = arc4random();
259 
260 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
261 	    &V_tcp_syncache.hashsize);
262 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
263 	    &V_tcp_syncache.bucket_limit);
264 	if (!powerof2(V_tcp_syncache.hashsize) ||
265 	    V_tcp_syncache.hashsize == 0) {
266 		printf("WARNING: syncache hash size is not a power of 2.\n");
267 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
268 	}
269 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
270 
271 	/* Set limits. */
272 	V_tcp_syncache.cache_limit =
273 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
274 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
275 	    &V_tcp_syncache.cache_limit);
276 
277 	/* Allocate the hash table. */
278 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
279 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
280 
281 #ifdef VIMAGE
282 	V_tcp_syncache.vnet = curvnet;
283 #endif
284 
285 	/* Initialize the hash buckets. */
286 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
287 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
288 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
289 			 NULL, MTX_DEF);
290 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
291 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
292 		V_tcp_syncache.hashbase[i].sch_length = 0;
293 		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
294 		V_tcp_syncache.hashbase[i].sch_last_overflow =
295 		    -(SYNCOOKIE_LIFETIME + 1);
296 	}
297 
298 	/* Create the syncache entry zone. */
299 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
300 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
301 	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
302 	    V_tcp_syncache.cache_limit);
303 
304 	/* Start the SYN cookie reseeder callout. */
305 	callout_init(&V_tcp_syncache.secret.reseed, 1);
306 	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
307 	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
308 	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
309 	    syncookie_reseed, &V_tcp_syncache);
310 
311 	/* Initialize the pause machinery. */
312 	mtx_init(&V_tcp_syncache.pause_mtx, "tcp_sc_pause", NULL, MTX_DEF);
313 	callout_init_mtx(&V_tcp_syncache.pause_co, &V_tcp_syncache.pause_mtx,
314 	    0);
315 	V_tcp_syncache.pause_until = time_uptime - TCP_SYNCACHE_PAUSE_TIME;
316 	V_tcp_syncache.pause_backoff = 0;
317 	V_tcp_syncache.paused = false;
318 }
319 
320 #ifdef VIMAGE
321 void
322 syncache_destroy(void)
323 {
324 	struct syncache_head *sch;
325 	struct syncache *sc, *nsc;
326 	int i;
327 
328 	/*
329 	 * Stop the re-seed timer before freeing resources.  No need to
330 	 * possibly schedule it another time.
331 	 */
332 	callout_drain(&V_tcp_syncache.secret.reseed);
333 
334 	/* Stop the SYN cache pause callout. */
335 	mtx_lock(&V_tcp_syncache.pause_mtx);
336 	if (callout_stop(&V_tcp_syncache.pause_co) == 0) {
337 		mtx_unlock(&V_tcp_syncache.pause_mtx);
338 		callout_drain(&V_tcp_syncache.pause_co);
339 	} else
340 		mtx_unlock(&V_tcp_syncache.pause_mtx);
341 
342 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
343 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
344 		sch = &V_tcp_syncache.hashbase[i];
345 		callout_drain(&sch->sch_timer);
346 
347 		SCH_LOCK(sch);
348 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
349 			syncache_drop(sc, sch);
350 		SCH_UNLOCK(sch);
351 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
352 		    ("%s: sch->sch_bucket not empty", __func__));
353 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
354 		    __func__, sch->sch_length));
355 		mtx_destroy(&sch->sch_mtx);
356 	}
357 
358 	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
359 	    ("%s: cache_count not 0", __func__));
360 
361 	/* Free the allocated global resources. */
362 	uma_zdestroy(V_tcp_syncache.zone);
363 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
364 	mtx_destroy(&V_tcp_syncache.pause_mtx);
365 }
366 #endif
367 
368 /*
369  * Inserts a syncache entry into the specified bucket row.
370  * Locks and unlocks the syncache_head autonomously.
371  */
372 static void
373 syncache_insert(struct syncache *sc, struct syncache_head *sch)
374 {
375 	struct syncache *sc2;
376 
377 	SCH_LOCK(sch);
378 
379 	/*
380 	 * Make sure that we don't overflow the per-bucket limit.
381 	 * If the bucket is full, toss the oldest element.
382 	 */
383 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
384 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
385 			("sch->sch_length incorrect"));
386 		syncache_pause(&sc->sc_inc);
387 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
388 		sch->sch_last_overflow = time_uptime;
389 		syncache_drop(sc2, sch);
390 	}
391 
392 	/* Put it into the bucket. */
393 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
394 	sch->sch_length++;
395 
396 #ifdef TCP_OFFLOAD
397 	if (ADDED_BY_TOE(sc)) {
398 		struct toedev *tod = sc->sc_tod;
399 
400 		tod->tod_syncache_added(tod, sc->sc_todctx);
401 	}
402 #endif
403 
404 	/* Reinitialize the bucket row's timer. */
405 	if (sch->sch_length == 1)
406 		sch->sch_nextc = ticks + INT_MAX;
407 	syncache_timeout(sc, sch, 1);
408 
409 	SCH_UNLOCK(sch);
410 
411 	TCPSTATES_INC(TCPS_SYN_RECEIVED);
412 	TCPSTAT_INC(tcps_sc_added);
413 }
414 
415 /*
416  * Remove and free entry from syncache bucket row.
417  * Expects locked syncache head.
418  */
419 static void
420 syncache_drop(struct syncache *sc, struct syncache_head *sch)
421 {
422 
423 	SCH_LOCK_ASSERT(sch);
424 
425 	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
426 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
427 	sch->sch_length--;
428 
429 #ifdef TCP_OFFLOAD
430 	if (ADDED_BY_TOE(sc)) {
431 		struct toedev *tod = sc->sc_tod;
432 
433 		tod->tod_syncache_removed(tod, sc->sc_todctx);
434 	}
435 #endif
436 
437 	syncache_free(sc);
438 }
439 
440 /*
441  * Engage/reengage time on bucket row.
442  */
443 static void
444 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
445 {
446 	int rexmt;
447 
448 	if (sc->sc_rxmits == 0)
449 		rexmt = tcp_rexmit_initial;
450 	else
451 		TCPT_RANGESET(rexmt,
452 		    tcp_rexmit_initial * tcp_backoff[sc->sc_rxmits],
453 		    tcp_rexmit_min, TCPTV_REXMTMAX);
454 	sc->sc_rxttime = ticks + rexmt;
455 	sc->sc_rxmits++;
456 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
457 		sch->sch_nextc = sc->sc_rxttime;
458 		if (docallout)
459 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
460 			    syncache_timer, (void *)sch);
461 	}
462 }
463 
464 /*
465  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
466  * If we have retransmitted an entry the maximum number of times, expire it.
467  * One separate timer for each bucket row.
468  */
469 static void
470 syncache_timer(void *xsch)
471 {
472 	struct syncache_head *sch = (struct syncache_head *)xsch;
473 	struct syncache *sc, *nsc;
474 	struct epoch_tracker et;
475 	int tick = ticks;
476 	char *s;
477 	bool paused;
478 
479 	CURVNET_SET(sch->sch_sc->vnet);
480 
481 	/* NB: syncache_head has already been locked by the callout. */
482 	SCH_LOCK_ASSERT(sch);
483 
484 	/*
485 	 * In the following cycle we may remove some entries and/or
486 	 * advance some timeouts, so re-initialize the bucket timer.
487 	 */
488 	sch->sch_nextc = tick + INT_MAX;
489 
490 	/*
491 	 * If we have paused processing, unconditionally remove
492 	 * all syncache entries.
493 	 */
494 	mtx_lock(&V_tcp_syncache.pause_mtx);
495 	paused = V_tcp_syncache.paused;
496 	mtx_unlock(&V_tcp_syncache.pause_mtx);
497 
498 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
499 		if (paused) {
500 			syncache_drop(sc, sch);
501 			continue;
502 		}
503 		/*
504 		 * We do not check if the listen socket still exists
505 		 * and accept the case where the listen socket may be
506 		 * gone by the time we resend the SYN/ACK.  We do
507 		 * not expect this to happens often. If it does,
508 		 * then the RST will be sent by the time the remote
509 		 * host does the SYN/ACK->ACK.
510 		 */
511 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
512 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
513 				sch->sch_nextc = sc->sc_rxttime;
514 			continue;
515 		}
516 		if (sc->sc_rxmits > V_tcp_ecn_maxretries) {
517 			sc->sc_flags &= ~SCF_ECN_MASK;
518 		}
519 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
520 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
521 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
522 				    "giving up and removing syncache entry\n",
523 				    s, __func__);
524 				free(s, M_TCPLOG);
525 			}
526 			syncache_drop(sc, sch);
527 			TCPSTAT_INC(tcps_sc_stale);
528 			continue;
529 		}
530 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
531 			log(LOG_DEBUG, "%s; %s: Response timeout, "
532 			    "retransmitting (%u) SYN|ACK\n",
533 			    s, __func__, sc->sc_rxmits);
534 			free(s, M_TCPLOG);
535 		}
536 
537 		NET_EPOCH_ENTER(et);
538 		syncache_respond(sc, NULL, TH_SYN|TH_ACK);
539 		NET_EPOCH_EXIT(et);
540 		TCPSTAT_INC(tcps_sc_retransmitted);
541 		syncache_timeout(sc, sch, 0);
542 	}
543 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
544 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
545 			syncache_timer, (void *)(sch));
546 	CURVNET_RESTORE();
547 }
548 
549 /*
550  * Returns true if the system is only using cookies at the moment.
551  * This could be due to a sysadmin decision to only use cookies, or it
552  * could be due to the system detecting an attack.
553  */
554 static inline bool
555 syncache_cookiesonly(void)
556 {
557 
558 	return (V_tcp_syncookies && (V_tcp_syncache.paused ||
559 	    V_tcp_syncookiesonly));
560 }
561 
562 /*
563  * Find the hash bucket for the given connection.
564  */
565 static struct syncache_head *
566 syncache_hashbucket(struct in_conninfo *inc)
567 {
568 	uint32_t hash;
569 
570 	/*
571 	 * The hash is built on foreign port + local port + foreign address.
572 	 * We rely on the fact that struct in_conninfo starts with 16 bits
573 	 * of foreign port, then 16 bits of local port then followed by 128
574 	 * bits of foreign address.  In case of IPv4 address, the first 3
575 	 * 32-bit words of the address always are zeroes.
576 	 */
577 	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
578 	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
579 
580 	return (&V_tcp_syncache.hashbase[hash]);
581 }
582 
583 /*
584  * Find an entry in the syncache.
585  * Returns always with locked syncache_head plus a matching entry or NULL.
586  */
587 static struct syncache *
588 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
589 {
590 	struct syncache *sc;
591 	struct syncache_head *sch;
592 
593 	*schp = sch = syncache_hashbucket(inc);
594 	SCH_LOCK(sch);
595 
596 	/* Circle through bucket row to find matching entry. */
597 	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
598 		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
599 		    sizeof(struct in_endpoints)) == 0)
600 			break;
601 
602 	return (sc);	/* Always returns with locked sch. */
603 }
604 
605 /*
606  * This function is called when we get a RST for a
607  * non-existent connection, so that we can see if the
608  * connection is in the syn cache.  If it is, zap it.
609  * If required send a challenge ACK.
610  */
611 void
612 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th, struct mbuf *m,
613     uint16_t port)
614 {
615 	struct syncache *sc;
616 	struct syncache_head *sch;
617 	char *s = NULL;
618 
619 	if (syncache_cookiesonly())
620 		return;
621 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
622 	SCH_LOCK_ASSERT(sch);
623 
624 	/*
625 	 * No corresponding connection was found in syncache.
626 	 * If syncookies are enabled and possibly exclusively
627 	 * used, or we are under memory pressure, a valid RST
628 	 * may not find a syncache entry.  In that case we're
629 	 * done and no SYN|ACK retransmissions will happen.
630 	 * Otherwise the RST was misdirected or spoofed.
631 	 */
632 	if (sc == NULL) {
633 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
634 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
635 			    "syncache entry (possibly syncookie only), "
636 			    "segment ignored\n", s, __func__);
637 		TCPSTAT_INC(tcps_badrst);
638 		goto done;
639 	}
640 
641 	/* The remote UDP encaps port does not match. */
642 	if (sc->sc_port != port) {
643 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
644 			log(LOG_DEBUG, "%s; %s: Spurious RST with matching "
645 			    "syncache entry but non-matching UDP encaps port, "
646 			    "segment ignored\n", s, __func__);
647 		TCPSTAT_INC(tcps_badrst);
648 		goto done;
649 	}
650 
651 	/*
652 	 * If the RST bit is set, check the sequence number to see
653 	 * if this is a valid reset segment.
654 	 *
655 	 * RFC 793 page 37:
656 	 *   In all states except SYN-SENT, all reset (RST) segments
657 	 *   are validated by checking their SEQ-fields.  A reset is
658 	 *   valid if its sequence number is in the window.
659 	 *
660 	 * RFC 793 page 69:
661 	 *   There are four cases for the acceptability test for an incoming
662 	 *   segment:
663 	 *
664 	 * Segment Receive  Test
665 	 * Length  Window
666 	 * ------- -------  -------------------------------------------
667 	 *    0       0     SEG.SEQ = RCV.NXT
668 	 *    0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
669 	 *   >0       0     not acceptable
670 	 *   >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
671 	 *               or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
672 	 *
673 	 * Note that when receiving a SYN segment in the LISTEN state,
674 	 * IRS is set to SEG.SEQ and RCV.NXT is set to SEG.SEQ+1, as
675 	 * described in RFC 793, page 66.
676 	 */
677 	if ((SEQ_GEQ(th->th_seq, sc->sc_irs + 1) &&
678 	    SEQ_LT(th->th_seq, sc->sc_irs + 1 + sc->sc_wnd)) ||
679 	    (sc->sc_wnd == 0 && th->th_seq == sc->sc_irs + 1)) {
680 		if (V_tcp_insecure_rst ||
681 		    th->th_seq == sc->sc_irs + 1) {
682 			syncache_drop(sc, sch);
683 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
684 				log(LOG_DEBUG,
685 				    "%s; %s: Our SYN|ACK was rejected, "
686 				    "connection attempt aborted by remote "
687 				    "endpoint\n",
688 				    s, __func__);
689 			TCPSTAT_INC(tcps_sc_reset);
690 		} else {
691 			TCPSTAT_INC(tcps_badrst);
692 			/* Send challenge ACK. */
693 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
694 				log(LOG_DEBUG, "%s; %s: RST with invalid "
695 				    " SEQ %u != NXT %u (+WND %u), "
696 				    "sending challenge ACK\n",
697 				    s, __func__,
698 				    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
699 			syncache_respond(sc, m, TH_ACK);
700 		}
701 	} else {
702 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
703 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
704 			    "NXT %u (+WND %u), segment ignored\n",
705 			    s, __func__,
706 			    th->th_seq, sc->sc_irs + 1, sc->sc_wnd);
707 		TCPSTAT_INC(tcps_badrst);
708 	}
709 
710 done:
711 	if (s != NULL)
712 		free(s, M_TCPLOG);
713 	SCH_UNLOCK(sch);
714 }
715 
716 void
717 syncache_badack(struct in_conninfo *inc, uint16_t port)
718 {
719 	struct syncache *sc;
720 	struct syncache_head *sch;
721 
722 	if (syncache_cookiesonly())
723 		return;
724 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
725 	SCH_LOCK_ASSERT(sch);
726 	if ((sc != NULL) && (sc->sc_port == port)) {
727 		syncache_drop(sc, sch);
728 		TCPSTAT_INC(tcps_sc_badack);
729 	}
730 	SCH_UNLOCK(sch);
731 }
732 
733 void
734 syncache_unreach(struct in_conninfo *inc, tcp_seq th_seq, uint16_t port)
735 {
736 	struct syncache *sc;
737 	struct syncache_head *sch;
738 
739 	if (syncache_cookiesonly())
740 		return;
741 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
742 	SCH_LOCK_ASSERT(sch);
743 	if (sc == NULL)
744 		goto done;
745 
746 	/* If the port != sc_port, then it's a bogus ICMP msg */
747 	if (port != sc->sc_port)
748 		goto done;
749 
750 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
751 	if (ntohl(th_seq) != sc->sc_iss)
752 		goto done;
753 
754 	/*
755 	 * If we've rertransmitted 3 times and this is our second error,
756 	 * we remove the entry.  Otherwise, we allow it to continue on.
757 	 * This prevents us from incorrectly nuking an entry during a
758 	 * spurious network outage.
759 	 *
760 	 * See tcp_notify().
761 	 */
762 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
763 		sc->sc_flags |= SCF_UNREACH;
764 		goto done;
765 	}
766 	syncache_drop(sc, sch);
767 	TCPSTAT_INC(tcps_sc_unreach);
768 done:
769 	SCH_UNLOCK(sch);
770 }
771 
772 /*
773  * Build a new TCP socket structure from a syncache entry.
774  *
775  * On success return the newly created socket with its underlying inp locked.
776  */
777 static struct socket *
778 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
779 {
780 	struct tcp_function_block *blk;
781 	struct inpcb *inp = NULL;
782 	struct socket *so;
783 	struct tcpcb *tp;
784 	int error;
785 	char *s;
786 
787 	NET_EPOCH_ASSERT();
788 
789 	/*
790 	 * Ok, create the full blown connection, and set things up
791 	 * as they would have been set up if we had created the
792 	 * connection when the SYN arrived.
793 	 */
794 	if ((so = solisten_clone(lso)) == NULL)
795 		goto allocfail;
796 #ifdef MAC
797 	mac_socketpeer_set_from_mbuf(m, so);
798 #endif
799 	error = in_pcballoc(so, &V_tcbinfo);
800 	if (error) {
801 		sodealloc(so);
802 		goto allocfail;
803 	}
804 	inp = sotoinpcb(so);
805 	if ((tp = tcp_newtcpcb(inp)) == NULL) {
806 		in_pcbdetach(inp);
807 		in_pcbfree(inp);
808 		sodealloc(so);
809 		goto allocfail;
810 	}
811 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
812 #ifdef INET6
813 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
814 		inp->inp_vflag &= ~INP_IPV4;
815 		inp->inp_vflag |= INP_IPV6;
816 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
817 	} else {
818 		inp->inp_vflag &= ~INP_IPV6;
819 		inp->inp_vflag |= INP_IPV4;
820 #endif
821 		inp->inp_ip_ttl = sc->sc_ip_ttl;
822 		inp->inp_ip_tos = sc->sc_ip_tos;
823 		inp->inp_laddr = sc->sc_inc.inc_laddr;
824 #ifdef INET6
825 	}
826 #endif
827 
828 	/*
829 	 * If there's an mbuf and it has a flowid, then let's initialise the
830 	 * inp with that particular flowid.
831 	 */
832 	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
833 		inp->inp_flowid = m->m_pkthdr.flowid;
834 		inp->inp_flowtype = M_HASHTYPE_GET(m);
835 #ifdef NUMA
836 		inp->inp_numa_domain = m->m_pkthdr.numa_domain;
837 #endif
838 	}
839 
840 	inp->inp_lport = sc->sc_inc.inc_lport;
841 #ifdef INET6
842 	if (inp->inp_vflag & INP_IPV6PROTO) {
843 		struct inpcb *oinp = sotoinpcb(lso);
844 
845 		/*
846 		 * Inherit socket options from the listening socket.
847 		 * Note that in6p_inputopts are not (and should not be)
848 		 * copied, since it stores previously received options and is
849 		 * used to detect if each new option is different than the
850 		 * previous one and hence should be passed to a user.
851 		 * If we copied in6p_inputopts, a user would not be able to
852 		 * receive options just after calling the accept system call.
853 		 */
854 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
855 		if (oinp->in6p_outputopts)
856 			inp->in6p_outputopts =
857 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
858 		inp->in6p_hops = oinp->in6p_hops;
859 	}
860 
861 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
862 		struct sockaddr_in6 sin6;
863 
864 		sin6.sin6_family = AF_INET6;
865 		sin6.sin6_len = sizeof(sin6);
866 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
867 		sin6.sin6_port = sc->sc_inc.inc_fport;
868 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
869 		INP_HASH_WLOCK(&V_tcbinfo);
870 		error = in6_pcbconnect(inp, &sin6, thread0.td_ucred, false);
871 		INP_HASH_WUNLOCK(&V_tcbinfo);
872 		if (error != 0)
873 			goto abort;
874 		/* Override flowlabel from in6_pcbconnect. */
875 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
876 		inp->inp_flow |= sc->sc_flowlabel;
877 	}
878 #endif /* INET6 */
879 #if defined(INET) && defined(INET6)
880 	else
881 #endif
882 #ifdef INET
883 	{
884 		struct sockaddr_in sin;
885 
886 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
887 
888 		if (inp->inp_options == NULL) {
889 			inp->inp_options = sc->sc_ipopts;
890 			sc->sc_ipopts = NULL;
891 		}
892 
893 		sin.sin_family = AF_INET;
894 		sin.sin_len = sizeof(sin);
895 		sin.sin_addr = sc->sc_inc.inc_faddr;
896 		sin.sin_port = sc->sc_inc.inc_fport;
897 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
898 		INP_HASH_WLOCK(&V_tcbinfo);
899 		error = in_pcbconnect(inp, &sin, thread0.td_ucred, false);
900 		INP_HASH_WUNLOCK(&V_tcbinfo);
901 		if (error != 0)
902 			goto abort;
903 	}
904 #endif /* INET */
905 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
906 	/* Copy old policy into new socket's. */
907 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso), inp) != 0)
908 		printf("syncache_socket: could not copy policy\n");
909 #endif
910 	tp->t_state = TCPS_SYN_RECEIVED;
911 	tp->iss = sc->sc_iss;
912 	tp->irs = sc->sc_irs;
913 	tp->t_port = sc->sc_port;
914 	tcp_rcvseqinit(tp);
915 	tcp_sendseqinit(tp);
916 	blk = sototcpcb(lso)->t_fb;
917 	if (V_functions_inherit_listen_socket_stack && blk != tp->t_fb) {
918 		/*
919 		 * Our parents t_fb was not the default,
920 		 * we need to release our ref on tp->t_fb and
921 		 * pickup one on the new entry.
922 		 */
923 		struct tcp_function_block *rblk;
924 		void *ptr = NULL;
925 
926 		rblk = find_and_ref_tcp_fb(blk);
927 		KASSERT(rblk != NULL,
928 		    ("cannot find blk %p out of syncache?", blk));
929 
930 		if (rblk->tfb_tcp_fb_init == NULL ||
931 		    (*rblk->tfb_tcp_fb_init)(tp, &ptr) == 0) {
932 			/* Release the old stack */
933 			if (tp->t_fb->tfb_tcp_fb_fini != NULL)
934 				(*tp->t_fb->tfb_tcp_fb_fini)(tp, 0);
935 			refcount_release(&tp->t_fb->tfb_refcnt);
936 			/* Now set in all the pointers */
937 			tp->t_fb = rblk;
938 			tp->t_fb_ptr = ptr;
939 		} else {
940 			/*
941 			 * Initialization failed. Release the reference count on
942 			 * the looked up default stack.
943 			 */
944 			refcount_release(&rblk->tfb_refcnt);
945 		}
946 	}
947 	tp->snd_wl1 = sc->sc_irs;
948 	tp->snd_max = tp->iss + 1;
949 	tp->snd_nxt = tp->iss + 1;
950 	tp->rcv_up = sc->sc_irs + 1;
951 	tp->rcv_wnd = sc->sc_wnd;
952 	tp->rcv_adv += tp->rcv_wnd;
953 	tp->last_ack_sent = tp->rcv_nxt;
954 
955 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
956 	if (sc->sc_flags & SCF_NOOPT)
957 		tp->t_flags |= TF_NOOPT;
958 	else {
959 		if (sc->sc_flags & SCF_WINSCALE) {
960 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
961 			tp->snd_scale = sc->sc_requested_s_scale;
962 			tp->request_r_scale = sc->sc_requested_r_scale;
963 		}
964 		if (sc->sc_flags & SCF_TIMESTAMP) {
965 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
966 			tp->ts_recent = sc->sc_tsreflect;
967 			tp->ts_recent_age = tcp_ts_getticks();
968 			tp->ts_offset = sc->sc_tsoff;
969 		}
970 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
971 		if (sc->sc_flags & SCF_SIGNATURE)
972 			tp->t_flags |= TF_SIGNATURE;
973 #endif
974 		if (sc->sc_flags & SCF_SACK)
975 			tp->t_flags |= TF_SACK_PERMIT;
976 	}
977 
978 	tcp_ecn_syncache_socket(tp, sc);
979 
980 	/*
981 	 * Set up MSS and get cached values from tcp_hostcache.
982 	 * This might overwrite some of the defaults we just set.
983 	 */
984 	tcp_mss(tp, sc->sc_peer_mss);
985 
986 	/*
987 	 * If the SYN,ACK was retransmitted, indicate that CWND to be
988 	 * limited to one segment in cc_conn_init().
989 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
990 	 */
991 	if (sc->sc_rxmits > 1)
992 		tp->snd_cwnd = 1;
993 
994 #ifdef TCP_OFFLOAD
995 	/*
996 	 * Allow a TOE driver to install its hooks.  Note that we hold the
997 	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
998 	 * new connection before the TOE driver has done its thing.
999 	 */
1000 	if (ADDED_BY_TOE(sc)) {
1001 		struct toedev *tod = sc->sc_tod;
1002 
1003 		tod->tod_offload_socket(tod, sc->sc_todctx, so);
1004 	}
1005 #endif
1006 #ifdef TCP_BLACKBOX
1007 	/*
1008 	 * Inherit the log state from the listening socket, if
1009 	 * - the log state of the listening socket is not off and
1010 	 * - the listening socket was not auto selected from all sessions and
1011 	 * - a log id is not set on the listening socket.
1012 	 * This avoids inheriting a log state which was automatically set.
1013 	 */
1014 	if ((tcp_get_bblog_state(sototcpcb(lso)) != TCP_LOG_STATE_OFF) &&
1015 	    ((sototcpcb(lso)->t_flags2 & TF2_LOG_AUTO) == 0) &&
1016 	    (sototcpcb(lso)->t_lib == NULL)) {
1017 		tcp_log_state_change(tp, tcp_get_bblog_state(sototcpcb(lso)));
1018 	}
1019 #endif
1020 	/*
1021 	 * Copy and activate timers.
1022 	 */
1023 	tp->t_maxunacktime = sototcpcb(lso)->t_maxunacktime;
1024 	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
1025 	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
1026 	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
1027 	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
1028 	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
1029 
1030 	TCPSTAT_INC(tcps_accepts);
1031 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, TCPS_LISTEN);
1032 
1033 	if (!solisten_enqueue(so, SS_ISCONNECTED))
1034 		tp->t_flags |= TF_SONOTCONN;
1035 
1036 	return (so);
1037 
1038 allocfail:
1039 	/*
1040 	 * Drop the connection; we will either send a RST or have the peer
1041 	 * retransmit its SYN again after its RTO and try again.
1042 	 */
1043 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1044 		log(LOG_DEBUG, "%s; %s: Socket create failed "
1045 		    "due to limits or memory shortage\n",
1046 		    s, __func__);
1047 		free(s, M_TCPLOG);
1048 	}
1049 	TCPSTAT_INC(tcps_listendrop);
1050 	return (NULL);
1051 
1052 abort:
1053 	in_pcbdetach(inp);
1054 	in_pcbfree(inp);
1055 	sodealloc(so);
1056 	if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
1057 		log(LOG_DEBUG, "%s; %s: in%s_pcbconnect failed with error %i\n",
1058 		    s, __func__, (sc->sc_inc.inc_flags & INC_ISIPV6) ? "6" : "",
1059 		    error);
1060 		free(s, M_TCPLOG);
1061 	}
1062 	TCPSTAT_INC(tcps_listendrop);
1063 	return (NULL);
1064 }
1065 
1066 /*
1067  * This function gets called when we receive an ACK for a
1068  * socket in the LISTEN state.  We look up the connection
1069  * in the syncache, and if its there, we pull it out of
1070  * the cache and turn it into a full-blown connection in
1071  * the SYN-RECEIVED state.
1072  *
1073  * On syncache_socket() success the newly created socket
1074  * has its underlying inp locked.
1075  */
1076 int
1077 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1078     struct socket **lsop, struct mbuf *m, uint16_t port)
1079 {
1080 	struct syncache *sc;
1081 	struct syncache_head *sch;
1082 	struct syncache scs;
1083 	char *s;
1084 	bool locked;
1085 
1086 	NET_EPOCH_ASSERT();
1087 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
1088 	    ("%s: can handle only ACK", __func__));
1089 
1090 	if (syncache_cookiesonly()) {
1091 		sc = NULL;
1092 		sch = syncache_hashbucket(inc);
1093 		locked = false;
1094 	} else {
1095 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1096 		locked = true;
1097 		SCH_LOCK_ASSERT(sch);
1098 	}
1099 
1100 #ifdef INVARIANTS
1101 	/*
1102 	 * Test code for syncookies comparing the syncache stored
1103 	 * values with the reconstructed values from the cookie.
1104 	 */
1105 	if (sc != NULL)
1106 		syncookie_cmp(inc, sch, sc, th, to, *lsop, port);
1107 #endif
1108 
1109 	if (sc == NULL) {
1110 		/*
1111 		 * There is no syncache entry, so see if this ACK is
1112 		 * a returning syncookie.  To do this, first:
1113 		 *  A. Check if syncookies are used in case of syncache
1114 		 *     overflows
1115 		 *  B. See if this socket has had a syncache entry dropped in
1116 		 *     the recent past. We don't want to accept a bogus
1117 		 *     syncookie if we've never received a SYN or accept it
1118 		 *     twice.
1119 		 *  C. check that the syncookie is valid.  If it is, then
1120 		 *     cobble up a fake syncache entry, and return.
1121 		 */
1122 		if (locked && !V_tcp_syncookies) {
1123 			SCH_UNLOCK(sch);
1124 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1125 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1126 				    "segment rejected (syncookies disabled)\n",
1127 				    s, __func__);
1128 			goto failed;
1129 		}
1130 		if (locked && !V_tcp_syncookiesonly &&
1131 		    sch->sch_last_overflow < time_uptime - SYNCOOKIE_LIFETIME) {
1132 			SCH_UNLOCK(sch);
1133 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1134 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
1135 				    "segment rejected (no syncache entry)\n",
1136 				    s, __func__);
1137 			goto failed;
1138 		}
1139 		bzero(&scs, sizeof(scs));
1140 		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop, port);
1141 		if (locked)
1142 			SCH_UNLOCK(sch);
1143 		if (sc == NULL) {
1144 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1145 				log(LOG_DEBUG, "%s; %s: Segment failed "
1146 				    "SYNCOOKIE authentication, segment rejected "
1147 				    "(probably spoofed)\n", s, __func__);
1148 			goto failed;
1149 		}
1150 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1151 		/* If received ACK has MD5 signature, check it. */
1152 		if ((to->to_flags & TOF_SIGNATURE) != 0 &&
1153 		    (!TCPMD5_ENABLED() ||
1154 		    TCPMD5_INPUT(m, th, to->to_signature) != 0)) {
1155 			/* Drop the ACK. */
1156 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1157 				log(LOG_DEBUG, "%s; %s: Segment rejected, "
1158 				    "MD5 signature doesn't match.\n",
1159 				    s, __func__);
1160 				free(s, M_TCPLOG);
1161 			}
1162 			TCPSTAT_INC(tcps_sig_err_sigopt);
1163 			return (-1); /* Do not send RST */
1164 		}
1165 #endif /* TCP_SIGNATURE */
1166 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1167 	} else {
1168 		if (sc->sc_port != port) {
1169 			SCH_UNLOCK(sch);
1170 			return (0);
1171 		}
1172 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1173 		/*
1174 		 * If listening socket requested TCP digests, check that
1175 		 * received ACK has signature and it is correct.
1176 		 * If not, drop the ACK and leave sc entry in th cache,
1177 		 * because SYN was received with correct signature.
1178 		 */
1179 		if (sc->sc_flags & SCF_SIGNATURE) {
1180 			if ((to->to_flags & TOF_SIGNATURE) == 0) {
1181 				/* No signature */
1182 				TCPSTAT_INC(tcps_sig_err_nosigopt);
1183 				SCH_UNLOCK(sch);
1184 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1185 					log(LOG_DEBUG, "%s; %s: Segment "
1186 					    "rejected, MD5 signature wasn't "
1187 					    "provided.\n", s, __func__);
1188 					free(s, M_TCPLOG);
1189 				}
1190 				return (-1); /* Do not send RST */
1191 			}
1192 			if (!TCPMD5_ENABLED() ||
1193 			    TCPMD5_INPUT(m, th, to->to_signature) != 0) {
1194 				/* Doesn't match or no SA */
1195 				SCH_UNLOCK(sch);
1196 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1197 					log(LOG_DEBUG, "%s; %s: Segment "
1198 					    "rejected, MD5 signature doesn't "
1199 					    "match.\n", s, __func__);
1200 					free(s, M_TCPLOG);
1201 				}
1202 				return (-1); /* Do not send RST */
1203 			}
1204 		}
1205 #endif /* TCP_SIGNATURE */
1206 
1207 		/*
1208 		 * RFC 7323 PAWS: If we have a timestamp on this segment and
1209 		 * it's less than ts_recent, drop it.
1210 		 * XXXMT: RFC 7323 also requires to send an ACK.
1211 		 *        In tcp_input.c this is only done for TCP segments
1212 		 *        with user data, so be consistent here and just drop
1213 		 *        the segment.
1214 		 */
1215 		if (sc->sc_flags & SCF_TIMESTAMP && to->to_flags & TOF_TS &&
1216 		    TSTMP_LT(to->to_tsval, sc->sc_tsreflect)) {
1217 			SCH_UNLOCK(sch);
1218 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1219 				log(LOG_DEBUG,
1220 				    "%s; %s: SEG.TSval %u < TS.Recent %u, "
1221 				    "segment dropped\n", s, __func__,
1222 				    to->to_tsval, sc->sc_tsreflect);
1223 				free(s, M_TCPLOG);
1224 			}
1225 			return (-1);  /* Do not send RST */
1226 		}
1227 
1228 		/*
1229 		 * If timestamps were not negotiated during SYN/ACK and a
1230 		 * segment with a timestamp is received, ignore the
1231 		 * timestamp and process the packet normally.
1232 		 * See section 3.2 of RFC 7323.
1233 		 */
1234 		if (!(sc->sc_flags & SCF_TIMESTAMP) &&
1235 		    (to->to_flags & TOF_TS)) {
1236 			if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1237 				log(LOG_DEBUG, "%s; %s: Timestamp not "
1238 				    "expected, segment processed normally\n",
1239 				    s, __func__);
1240 				free(s, M_TCPLOG);
1241 				s = NULL;
1242 			}
1243 		}
1244 
1245 		/*
1246 		 * If timestamps were negotiated during SYN/ACK and a
1247 		 * segment without a timestamp is received, silently drop
1248 		 * the segment, unless the missing timestamps are tolerated.
1249 		 * See section 3.2 of RFC 7323.
1250 		 */
1251 		if ((sc->sc_flags & SCF_TIMESTAMP) &&
1252 		    !(to->to_flags & TOF_TS)) {
1253 			if (V_tcp_tolerate_missing_ts) {
1254 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1255 					log(LOG_DEBUG,
1256 					    "%s; %s: Timestamp missing, "
1257 					    "segment processed normally\n",
1258 					    s, __func__);
1259 					free(s, M_TCPLOG);
1260 				}
1261 			} else {
1262 				SCH_UNLOCK(sch);
1263 				if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1264 					log(LOG_DEBUG,
1265 					    "%s; %s: Timestamp missing, "
1266 					    "segment silently dropped\n",
1267 					    s, __func__);
1268 					free(s, M_TCPLOG);
1269 				}
1270 				return (-1);  /* Do not send RST */
1271 			}
1272 		}
1273 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1274 		sch->sch_length--;
1275 #ifdef TCP_OFFLOAD
1276 		if (ADDED_BY_TOE(sc)) {
1277 			struct toedev *tod = sc->sc_tod;
1278 
1279 			tod->tod_syncache_removed(tod, sc->sc_todctx);
1280 		}
1281 #endif
1282 		SCH_UNLOCK(sch);
1283 	}
1284 
1285 	/*
1286 	 * Segment validation:
1287 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1288 	 */
1289 	if (th->th_ack != sc->sc_iss + 1) {
1290 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1291 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1292 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1293 		goto failed;
1294 	}
1295 
1296 	/*
1297 	 * The SEQ must fall in the window starting at the received
1298 	 * initial receive sequence number + 1 (the SYN).
1299 	 */
1300 	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1301 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1302 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1303 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1304 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1305 		goto failed;
1306 	}
1307 
1308 	*lsop = syncache_socket(sc, *lsop, m);
1309 
1310 	if (__predict_false(*lsop == NULL)) {
1311 		TCPSTAT_INC(tcps_sc_aborted);
1312 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1313 	} else
1314 		TCPSTAT_INC(tcps_sc_completed);
1315 
1316 /* how do we find the inp for the new socket? */
1317 	if (sc != &scs)
1318 		syncache_free(sc);
1319 	return (1);
1320 failed:
1321 	if (sc != NULL) {
1322 		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1323 		if (sc != &scs)
1324 			syncache_free(sc);
1325 	}
1326 	if (s != NULL)
1327 		free(s, M_TCPLOG);
1328 	*lsop = NULL;
1329 	return (0);
1330 }
1331 
1332 static struct socket *
1333 syncache_tfo_expand(struct syncache *sc, struct socket *lso, struct mbuf *m,
1334     uint64_t response_cookie)
1335 {
1336 	struct inpcb *inp;
1337 	struct tcpcb *tp;
1338 	unsigned int *pending_counter;
1339 	struct socket *so;
1340 
1341 	NET_EPOCH_ASSERT();
1342 
1343 	pending_counter = intotcpcb(sotoinpcb(lso))->t_tfo_pending;
1344 	so = syncache_socket(sc, lso, m);
1345 	if (so == NULL) {
1346 		TCPSTAT_INC(tcps_sc_aborted);
1347 		atomic_subtract_int(pending_counter, 1);
1348 	} else {
1349 		soisconnected(so);
1350 		inp = sotoinpcb(so);
1351 		tp = intotcpcb(inp);
1352 		tp->t_flags |= TF_FASTOPEN;
1353 		tp->t_tfo_cookie.server = response_cookie;
1354 		tp->snd_max = tp->iss;
1355 		tp->snd_nxt = tp->iss;
1356 		tp->t_tfo_pending = pending_counter;
1357 		TCPSTATES_INC(TCPS_SYN_RECEIVED);
1358 		TCPSTAT_INC(tcps_sc_completed);
1359 	}
1360 
1361 	return (so);
1362 }
1363 
1364 /*
1365  * Given a LISTEN socket and an inbound SYN request, add
1366  * this to the syn cache, and send back a segment:
1367  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1368  * to the source.
1369  *
1370  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1371  * Doing so would require that we hold onto the data and deliver it
1372  * to the application.  However, if we are the target of a SYN-flood
1373  * DoS attack, an attacker could send data which would eventually
1374  * consume all available buffer space if it were ACKed.  By not ACKing
1375  * the data, we avoid this DoS scenario.
1376  *
1377  * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1378  * cookie is processed and a new socket is created.  In this case, any data
1379  * accompanying the SYN will be queued to the socket by tcp_input() and will
1380  * be ACKed either when the application sends response data or the delayed
1381  * ACK timer expires, whichever comes first.
1382  */
1383 struct socket *
1384 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1385     struct inpcb *inp, struct socket *so, struct mbuf *m, void *tod,
1386     void *todctx, uint8_t iptos, uint16_t port)
1387 {
1388 	struct tcpcb *tp;
1389 	struct socket *rv = NULL;
1390 	struct syncache *sc = NULL;
1391 	struct syncache_head *sch;
1392 	struct mbuf *ipopts = NULL;
1393 	u_int ltflags;
1394 	int win, ip_ttl, ip_tos;
1395 	char *s;
1396 #ifdef INET6
1397 	int autoflowlabel = 0;
1398 #endif
1399 #ifdef MAC
1400 	struct label *maclabel;
1401 #endif
1402 	struct syncache scs;
1403 	struct ucred *cred;
1404 	uint64_t tfo_response_cookie;
1405 	unsigned int *tfo_pending = NULL;
1406 	int tfo_cookie_valid = 0;
1407 	int tfo_response_cookie_valid = 0;
1408 	bool locked;
1409 
1410 	INP_RLOCK_ASSERT(inp);			/* listen socket */
1411 	KASSERT((tcp_get_flags(th) & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1412 	    ("%s: unexpected tcp flags", __func__));
1413 
1414 	/*
1415 	 * Combine all so/tp operations very early to drop the INP lock as
1416 	 * soon as possible.
1417 	 */
1418 	KASSERT(SOLISTENING(so), ("%s: %p not listening", __func__, so));
1419 	tp = sototcpcb(so);
1420 	cred = V_tcp_syncache.see_other ? NULL : crhold(so->so_cred);
1421 
1422 #ifdef INET6
1423 	if (inc->inc_flags & INC_ISIPV6) {
1424 		if (inp->inp_flags & IN6P_AUTOFLOWLABEL) {
1425 			autoflowlabel = 1;
1426 		}
1427 		ip_ttl = in6_selecthlim(inp, NULL);
1428 		if ((inp->in6p_outputopts == NULL) ||
1429 		    (inp->in6p_outputopts->ip6po_tclass == -1)) {
1430 			ip_tos = 0;
1431 		} else {
1432 			ip_tos = inp->in6p_outputopts->ip6po_tclass;
1433 		}
1434 	}
1435 #endif
1436 #if defined(INET6) && defined(INET)
1437 	else
1438 #endif
1439 #ifdef INET
1440 	{
1441 		ip_ttl = inp->inp_ip_ttl;
1442 		ip_tos = inp->inp_ip_tos;
1443 	}
1444 #endif
1445 	win = so->sol_sbrcv_hiwat;
1446 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1447 
1448 	if (V_tcp_fastopen_server_enable && IS_FASTOPEN(tp->t_flags) &&
1449 	    (tp->t_tfo_pending != NULL) &&
1450 	    (to->to_flags & TOF_FASTOPEN)) {
1451 		/*
1452 		 * Limit the number of pending TFO connections to
1453 		 * approximately half of the queue limit.  This prevents TFO
1454 		 * SYN floods from starving the service by filling the
1455 		 * listen queue with bogus TFO connections.
1456 		 */
1457 		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1458 		    (so->sol_qlimit / 2)) {
1459 			int result;
1460 
1461 			result = tcp_fastopen_check_cookie(inc,
1462 			    to->to_tfo_cookie, to->to_tfo_len,
1463 			    &tfo_response_cookie);
1464 			tfo_cookie_valid = (result > 0);
1465 			tfo_response_cookie_valid = (result >= 0);
1466 		}
1467 
1468 		/*
1469 		 * Remember the TFO pending counter as it will have to be
1470 		 * decremented below if we don't make it to syncache_tfo_expand().
1471 		 */
1472 		tfo_pending = tp->t_tfo_pending;
1473 	}
1474 
1475 #ifdef MAC
1476 	if (mac_syncache_init(&maclabel) != 0) {
1477 		INP_RUNLOCK(inp);
1478 		goto done;
1479 	} else
1480 		mac_syncache_create(maclabel, inp);
1481 #endif
1482 	if (!tfo_cookie_valid)
1483 		INP_RUNLOCK(inp);
1484 
1485 	/*
1486 	 * Remember the IP options, if any.
1487 	 */
1488 #ifdef INET6
1489 	if (!(inc->inc_flags & INC_ISIPV6))
1490 #endif
1491 #ifdef INET
1492 		ipopts = (m) ? ip_srcroute(m) : NULL;
1493 #else
1494 		ipopts = NULL;
1495 #endif
1496 
1497 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1498 	/*
1499 	 * When the socket is TCP-MD5 enabled check that,
1500 	 *  - a signed packet is valid
1501 	 *  - a non-signed packet does not have a security association
1502 	 *
1503 	 *  If a signed packet fails validation or a non-signed packet has a
1504 	 *  security association, the packet will be dropped.
1505 	 */
1506 	if (ltflags & TF_SIGNATURE) {
1507 		if (to->to_flags & TOF_SIGNATURE) {
1508 			if (!TCPMD5_ENABLED() ||
1509 			    TCPMD5_INPUT(m, th, to->to_signature) != 0)
1510 				goto done;
1511 		} else {
1512 			if (TCPMD5_ENABLED() &&
1513 			    TCPMD5_INPUT(m, NULL, NULL) != ENOENT)
1514 				goto done;
1515 		}
1516 	} else if (to->to_flags & TOF_SIGNATURE)
1517 		goto done;
1518 #endif	/* TCP_SIGNATURE */
1519 	/*
1520 	 * See if we already have an entry for this connection.
1521 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1522 	 *
1523 	 * XXX: should the syncache be re-initialized with the contents
1524 	 * of the new SYN here (which may have different options?)
1525 	 *
1526 	 * XXX: We do not check the sequence number to see if this is a
1527 	 * real retransmit or a new connection attempt.  The question is
1528 	 * how to handle such a case; either ignore it as spoofed, or
1529 	 * drop the current entry and create a new one?
1530 	 */
1531 	if (syncache_cookiesonly()) {
1532 		sc = NULL;
1533 		sch = syncache_hashbucket(inc);
1534 		locked = false;
1535 	} else {
1536 		sc = syncache_lookup(inc, &sch);	/* returns locked sch */
1537 		locked = true;
1538 		SCH_LOCK_ASSERT(sch);
1539 	}
1540 	if (sc != NULL) {
1541 		if (tfo_cookie_valid)
1542 			INP_RUNLOCK(inp);
1543 		TCPSTAT_INC(tcps_sc_dupsyn);
1544 		if (ipopts) {
1545 			/*
1546 			 * If we were remembering a previous source route,
1547 			 * forget it and use the new one we've been given.
1548 			 */
1549 			if (sc->sc_ipopts)
1550 				(void) m_free(sc->sc_ipopts);
1551 			sc->sc_ipopts = ipopts;
1552 		}
1553 		/*
1554 		 * Update timestamp if present.
1555 		 */
1556 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1557 			sc->sc_tsreflect = to->to_tsval;
1558 		else
1559 			sc->sc_flags &= ~SCF_TIMESTAMP;
1560 		/*
1561 		 * Adjust ECN response if needed, e.g. different
1562 		 * IP ECN field, or a fallback by the remote host.
1563 		 */
1564 		if (sc->sc_flags & SCF_ECN_MASK) {
1565 			sc->sc_flags &= ~SCF_ECN_MASK;
1566 			sc->sc_flags = tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1567 		}
1568 #ifdef MAC
1569 		/*
1570 		 * Since we have already unconditionally allocated label
1571 		 * storage, free it up.  The syncache entry will already
1572 		 * have an initialized label we can use.
1573 		 */
1574 		mac_syncache_destroy(&maclabel);
1575 #endif
1576 		TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1577 		/* Retransmit SYN|ACK and reset retransmit count. */
1578 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1579 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1580 			    "resetting timer and retransmitting SYN|ACK\n",
1581 			    s, __func__);
1582 			free(s, M_TCPLOG);
1583 		}
1584 		if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1585 			sc->sc_rxmits = 0;
1586 			syncache_timeout(sc, sch, 1);
1587 			TCPSTAT_INC(tcps_sndacks);
1588 			TCPSTAT_INC(tcps_sndtotal);
1589 		}
1590 		SCH_UNLOCK(sch);
1591 		goto donenoprobe;
1592 	}
1593 
1594 	if (tfo_cookie_valid) {
1595 		bzero(&scs, sizeof(scs));
1596 		sc = &scs;
1597 		goto skip_alloc;
1598 	}
1599 
1600 	/*
1601 	 * Skip allocating a syncache entry if we are just going to discard
1602 	 * it later.
1603 	 */
1604 	if (!locked) {
1605 		bzero(&scs, sizeof(scs));
1606 		sc = &scs;
1607 	} else
1608 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1609 	if (sc == NULL) {
1610 		/*
1611 		 * The zone allocator couldn't provide more entries.
1612 		 * Treat this as if the cache was full; drop the oldest
1613 		 * entry and insert the new one.
1614 		 */
1615 		TCPSTAT_INC(tcps_sc_zonefail);
1616 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL) {
1617 			sch->sch_last_overflow = time_uptime;
1618 			syncache_drop(sc, sch);
1619 			syncache_pause(inc);
1620 		}
1621 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1622 		if (sc == NULL) {
1623 			if (V_tcp_syncookies) {
1624 				bzero(&scs, sizeof(scs));
1625 				sc = &scs;
1626 			} else {
1627 				KASSERT(locked,
1628 				    ("%s: bucket unexpectedly unlocked",
1629 				    __func__));
1630 				SCH_UNLOCK(sch);
1631 				if (ipopts)
1632 					(void) m_free(ipopts);
1633 				goto done;
1634 			}
1635 		}
1636 	}
1637 
1638 skip_alloc:
1639 	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1640 		sc->sc_tfo_cookie = &tfo_response_cookie;
1641 
1642 	/*
1643 	 * Fill in the syncache values.
1644 	 */
1645 #ifdef MAC
1646 	sc->sc_label = maclabel;
1647 #endif
1648 	sc->sc_cred = cred;
1649 	sc->sc_port = port;
1650 	cred = NULL;
1651 	sc->sc_ipopts = ipopts;
1652 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1653 	sc->sc_ip_tos = ip_tos;
1654 	sc->sc_ip_ttl = ip_ttl;
1655 #ifdef TCP_OFFLOAD
1656 	sc->sc_tod = tod;
1657 	sc->sc_todctx = todctx;
1658 #endif
1659 	sc->sc_irs = th->th_seq;
1660 	sc->sc_flags = 0;
1661 	sc->sc_flowlabel = 0;
1662 
1663 	/*
1664 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1665 	 * win was derived from socket earlier in the function.
1666 	 */
1667 	win = imax(win, 0);
1668 	win = imin(win, TCP_MAXWIN);
1669 	sc->sc_wnd = win;
1670 
1671 	if (V_tcp_do_rfc1323 &&
1672 	    !(ltflags & TF_NOOPT)) {
1673 		/*
1674 		 * A timestamp received in a SYN makes
1675 		 * it ok to send timestamp requests and replies.
1676 		 */
1677 		if ((to->to_flags & TOF_TS) && (V_tcp_do_rfc1323 != 2)) {
1678 			sc->sc_tsreflect = to->to_tsval;
1679 			sc->sc_flags |= SCF_TIMESTAMP;
1680 			sc->sc_tsoff = tcp_new_ts_offset(inc);
1681 		}
1682 		if ((to->to_flags & TOF_SCALE) && (V_tcp_do_rfc1323 != 3)) {
1683 			int wscale = 0;
1684 
1685 			/*
1686 			 * Pick the smallest possible scaling factor that
1687 			 * will still allow us to scale up to sb_max, aka
1688 			 * kern.ipc.maxsockbuf.
1689 			 *
1690 			 * We do this because there are broken firewalls that
1691 			 * will corrupt the window scale option, leading to
1692 			 * the other endpoint believing that our advertised
1693 			 * window is unscaled.  At scale factors larger than
1694 			 * 5 the unscaled window will drop below 1500 bytes,
1695 			 * leading to serious problems when traversing these
1696 			 * broken firewalls.
1697 			 *
1698 			 * With the default maxsockbuf of 256K, a scale factor
1699 			 * of 3 will be chosen by this algorithm.  Those who
1700 			 * choose a larger maxsockbuf should watch out
1701 			 * for the compatibility problems mentioned above.
1702 			 *
1703 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1704 			 * or <SYN,ACK>) segment itself is never scaled.
1705 			 */
1706 			while (wscale < TCP_MAX_WINSHIFT &&
1707 			    (TCP_MAXWIN << wscale) < sb_max)
1708 				wscale++;
1709 			sc->sc_requested_r_scale = wscale;
1710 			sc->sc_requested_s_scale = to->to_wscale;
1711 			sc->sc_flags |= SCF_WINSCALE;
1712 		}
1713 	}
1714 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1715 	/*
1716 	 * If incoming packet has an MD5 signature, flag this in the
1717 	 * syncache so that syncache_respond() will do the right thing
1718 	 * with the SYN+ACK.
1719 	 */
1720 	if (to->to_flags & TOF_SIGNATURE)
1721 		sc->sc_flags |= SCF_SIGNATURE;
1722 #endif	/* TCP_SIGNATURE */
1723 	if (to->to_flags & TOF_SACKPERM)
1724 		sc->sc_flags |= SCF_SACK;
1725 	if (to->to_flags & TOF_MSS)
1726 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1727 	if (ltflags & TF_NOOPT)
1728 		sc->sc_flags |= SCF_NOOPT;
1729 	/* ECN Handshake */
1730 	if (V_tcp_do_ecn && (tp->t_flags2 & TF2_CANNOT_DO_ECN) == 0)
1731 		sc->sc_flags |= tcp_ecn_syncache_add(tcp_get_flags(th), iptos);
1732 
1733 	if (V_tcp_syncookies)
1734 		sc->sc_iss = syncookie_generate(sch, sc);
1735 	else
1736 		sc->sc_iss = arc4random();
1737 #ifdef INET6
1738 	if (autoflowlabel) {
1739 		if (V_tcp_syncookies)
1740 			sc->sc_flowlabel = sc->sc_iss;
1741 		else
1742 			sc->sc_flowlabel = ip6_randomflowlabel();
1743 		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1744 	}
1745 #endif
1746 	if (locked)
1747 		SCH_UNLOCK(sch);
1748 
1749 	if (tfo_cookie_valid) {
1750 		rv = syncache_tfo_expand(sc, so, m, tfo_response_cookie);
1751 		/* INP_RUNLOCK(inp) will be performed by the caller */
1752 		goto tfo_expanded;
1753 	}
1754 
1755 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1756 	/*
1757 	 * Do a standard 3-way handshake.
1758 	 */
1759 	if (syncache_respond(sc, m, TH_SYN|TH_ACK) == 0) {
1760 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1761 			syncache_free(sc);
1762 		else if (sc != &scs)
1763 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1764 		TCPSTAT_INC(tcps_sndacks);
1765 		TCPSTAT_INC(tcps_sndtotal);
1766 	} else {
1767 		if (sc != &scs)
1768 			syncache_free(sc);
1769 		TCPSTAT_INC(tcps_sc_dropped);
1770 	}
1771 	goto donenoprobe;
1772 
1773 done:
1774 	TCP_PROBE5(receive, NULL, NULL, m, NULL, th);
1775 donenoprobe:
1776 	if (m)
1777 		m_freem(m);
1778 	/*
1779 	 * If tfo_pending is not NULL here, then a TFO SYN that did not
1780 	 * result in a new socket was processed and the associated pending
1781 	 * counter has not yet been decremented.  All such TFO processing paths
1782 	 * transit this point.
1783 	 */
1784 	if (tfo_pending != NULL)
1785 		tcp_fastopen_decrement_counter(tfo_pending);
1786 
1787 tfo_expanded:
1788 	if (cred != NULL)
1789 		crfree(cred);
1790 #ifdef MAC
1791 	if (sc == &scs)
1792 		mac_syncache_destroy(&maclabel);
1793 #endif
1794 	return (rv);
1795 }
1796 
1797 /*
1798  * Send SYN|ACK or ACK to the peer.  Either in response to a peer's segment,
1799  * i.e. m0 != NULL, or upon 3WHS ACK timeout, i.e. m0 == NULL.
1800  */
1801 static int
1802 syncache_respond(struct syncache *sc, const struct mbuf *m0, int flags)
1803 {
1804 	struct ip *ip = NULL;
1805 	struct mbuf *m;
1806 	struct tcphdr *th = NULL;
1807 	struct udphdr *udp = NULL;
1808 	int optlen, error = 0;	/* Make compiler happy */
1809 	u_int16_t hlen, tlen, mssopt, ulen;
1810 	struct tcpopt to;
1811 #ifdef INET6
1812 	struct ip6_hdr *ip6 = NULL;
1813 #endif
1814 
1815 	NET_EPOCH_ASSERT();
1816 
1817 	hlen =
1818 #ifdef INET6
1819 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1820 #endif
1821 		sizeof(struct ip);
1822 	tlen = hlen + sizeof(struct tcphdr);
1823 	if (sc->sc_port) {
1824 		tlen += sizeof(struct udphdr);
1825 	}
1826 	/* Determine MSS we advertize to other end of connection. */
1827 	mssopt = tcp_mssopt(&sc->sc_inc);
1828 	if (sc->sc_port)
1829 		mssopt -= V_tcp_udp_tunneling_overhead;
1830 	mssopt = max(mssopt, V_tcp_minmss);
1831 
1832 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1833 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1834 	    ("syncache: mbuf too small: hlen %u, sc_port %u, max_linkhdr %d + "
1835 	    "tlen %d + TCP_MAXOLEN %ju <= MHLEN %d", hlen, sc->sc_port,
1836 	    max_linkhdr, tlen, (uintmax_t)TCP_MAXOLEN, MHLEN));
1837 
1838 	/* Create the IP+TCP header from scratch. */
1839 	m = m_gethdr(M_NOWAIT, MT_DATA);
1840 	if (m == NULL)
1841 		return (ENOBUFS);
1842 #ifdef MAC
1843 	mac_syncache_create_mbuf(sc->sc_label, m);
1844 #endif
1845 	m->m_data += max_linkhdr;
1846 	m->m_len = tlen;
1847 	m->m_pkthdr.len = tlen;
1848 	m->m_pkthdr.rcvif = NULL;
1849 
1850 #ifdef INET6
1851 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1852 		ip6 = mtod(m, struct ip6_hdr *);
1853 		ip6->ip6_vfc = IPV6_VERSION;
1854 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1855 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1856 		ip6->ip6_plen = htons(tlen - hlen);
1857 		/* ip6_hlim is set after checksum */
1858 		/* Zero out traffic class and flow label. */
1859 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
1860 		ip6->ip6_flow |= sc->sc_flowlabel;
1861 		if (sc->sc_port != 0) {
1862 			ip6->ip6_nxt = IPPROTO_UDP;
1863 			udp = (struct udphdr *)(ip6 + 1);
1864 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1865 			udp->uh_dport = sc->sc_port;
1866 			ulen = (tlen - sizeof(struct ip6_hdr));
1867 			th = (struct tcphdr *)(udp + 1);
1868 		} else {
1869 			ip6->ip6_nxt = IPPROTO_TCP;
1870 			th = (struct tcphdr *)(ip6 + 1);
1871 		}
1872 		ip6->ip6_flow |= htonl(sc->sc_ip_tos << IPV6_FLOWLABEL_LEN);
1873 	}
1874 #endif
1875 #if defined(INET6) && defined(INET)
1876 	else
1877 #endif
1878 #ifdef INET
1879 	{
1880 		ip = mtod(m, struct ip *);
1881 		ip->ip_v = IPVERSION;
1882 		ip->ip_hl = sizeof(struct ip) >> 2;
1883 		ip->ip_len = htons(tlen);
1884 		ip->ip_id = 0;
1885 		ip->ip_off = 0;
1886 		ip->ip_sum = 0;
1887 		ip->ip_src = sc->sc_inc.inc_laddr;
1888 		ip->ip_dst = sc->sc_inc.inc_faddr;
1889 		ip->ip_ttl = sc->sc_ip_ttl;
1890 		ip->ip_tos = sc->sc_ip_tos;
1891 
1892 		/*
1893 		 * See if we should do MTU discovery.  Route lookups are
1894 		 * expensive, so we will only unset the DF bit if:
1895 		 *
1896 		 *	1) path_mtu_discovery is disabled
1897 		 *	2) the SCF_UNREACH flag has been set
1898 		 */
1899 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1900 		       ip->ip_off |= htons(IP_DF);
1901 		if (sc->sc_port == 0) {
1902 			ip->ip_p = IPPROTO_TCP;
1903 			th = (struct tcphdr *)(ip + 1);
1904 		} else {
1905 			ip->ip_p = IPPROTO_UDP;
1906 			udp = (struct udphdr *)(ip + 1);
1907 			udp->uh_sport = htons(V_tcp_udp_tunneling_port);
1908 			udp->uh_dport = sc->sc_port;
1909 			ulen = (tlen - sizeof(struct ip));
1910 			th = (struct tcphdr *)(udp + 1);
1911 		}
1912 	}
1913 #endif /* INET */
1914 	th->th_sport = sc->sc_inc.inc_lport;
1915 	th->th_dport = sc->sc_inc.inc_fport;
1916 
1917 	if (flags & TH_SYN)
1918 		th->th_seq = htonl(sc->sc_iss);
1919 	else
1920 		th->th_seq = htonl(sc->sc_iss + 1);
1921 	th->th_ack = htonl(sc->sc_irs + 1);
1922 	th->th_off = sizeof(struct tcphdr) >> 2;
1923 	th->th_win = htons(sc->sc_wnd);
1924 	th->th_urp = 0;
1925 
1926 	flags = tcp_ecn_syncache_respond(flags, sc);
1927 	tcp_set_flags(th, flags);
1928 
1929 	/* Tack on the TCP options. */
1930 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1931 		to.to_flags = 0;
1932 
1933 		if (flags & TH_SYN) {
1934 			to.to_mss = mssopt;
1935 			to.to_flags = TOF_MSS;
1936 			if (sc->sc_flags & SCF_WINSCALE) {
1937 				to.to_wscale = sc->sc_requested_r_scale;
1938 				to.to_flags |= TOF_SCALE;
1939 			}
1940 			if (sc->sc_flags & SCF_SACK)
1941 				to.to_flags |= TOF_SACKPERM;
1942 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1943 			if (sc->sc_flags & SCF_SIGNATURE)
1944 				to.to_flags |= TOF_SIGNATURE;
1945 #endif
1946 			if (sc->sc_tfo_cookie) {
1947 				to.to_flags |= TOF_FASTOPEN;
1948 				to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1949 				to.to_tfo_cookie = sc->sc_tfo_cookie;
1950 				/* don't send cookie again when retransmitting response */
1951 				sc->sc_tfo_cookie = NULL;
1952 			}
1953 		}
1954 		if (sc->sc_flags & SCF_TIMESTAMP) {
1955 			to.to_tsval = sc->sc_tsoff + tcp_ts_getticks();
1956 			to.to_tsecr = sc->sc_tsreflect;
1957 			to.to_flags |= TOF_TS;
1958 		}
1959 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1960 
1961 		/* Adjust headers by option size. */
1962 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1963 		m->m_len += optlen;
1964 		m->m_pkthdr.len += optlen;
1965 #ifdef INET6
1966 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1967 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1968 		else
1969 #endif
1970 			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1971 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1972 		if (sc->sc_flags & SCF_SIGNATURE) {
1973 			KASSERT(to.to_flags & TOF_SIGNATURE,
1974 			    ("tcp_addoptions() didn't set tcp_signature"));
1975 
1976 			/* NOTE: to.to_signature is inside of mbuf */
1977 			if (!TCPMD5_ENABLED() ||
1978 			    TCPMD5_OUTPUT(m, th, to.to_signature) != 0) {
1979 				m_freem(m);
1980 				return (EACCES);
1981 			}
1982 		}
1983 #endif
1984 	} else
1985 		optlen = 0;
1986 
1987 	if (udp) {
1988 		ulen += optlen;
1989 		udp->uh_ulen = htons(ulen);
1990 	}
1991 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1992 	/*
1993 	 * If we have peer's SYN and it has a flowid, then let's assign it to
1994 	 * our SYN|ACK.  ip6_output() and ip_output() will not assign flowid
1995 	 * to SYN|ACK due to lack of inp here.
1996 	 */
1997 	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1998 		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1999 		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
2000 	}
2001 #ifdef INET6
2002 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
2003 		if (sc->sc_port) {
2004 			m->m_pkthdr.csum_flags = CSUM_UDP_IPV6;
2005 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2006 			udp->uh_sum = in6_cksum_pseudo(ip6, ulen,
2007 			      IPPROTO_UDP, 0);
2008 			th->th_sum = htons(0);
2009 		} else {
2010 			m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
2011 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2012 			th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
2013 			    IPPROTO_TCP, 0);
2014 		}
2015 		ip6->ip6_hlim = sc->sc_ip_ttl;
2016 #ifdef TCP_OFFLOAD
2017 		if (ADDED_BY_TOE(sc)) {
2018 			struct toedev *tod = sc->sc_tod;
2019 
2020 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2021 
2022 			return (error);
2023 		}
2024 #endif
2025 		TCP_PROBE5(send, NULL, NULL, ip6, NULL, th);
2026 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
2027 	}
2028 #endif
2029 #if defined(INET6) && defined(INET)
2030 	else
2031 #endif
2032 #ifdef INET
2033 	{
2034 		if (sc->sc_port) {
2035 			m->m_pkthdr.csum_flags = CSUM_UDP;
2036 			m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
2037 			udp->uh_sum = in_pseudo(ip->ip_src.s_addr,
2038 			      ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP));
2039 			th->th_sum = htons(0);
2040 		} else {
2041 			m->m_pkthdr.csum_flags = CSUM_TCP;
2042 			m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2043 			th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2044 			    htons(tlen + optlen - hlen + IPPROTO_TCP));
2045 		}
2046 #ifdef TCP_OFFLOAD
2047 		if (ADDED_BY_TOE(sc)) {
2048 			struct toedev *tod = sc->sc_tod;
2049 
2050 			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
2051 
2052 			return (error);
2053 		}
2054 #endif
2055 		TCP_PROBE5(send, NULL, NULL, ip, NULL, th);
2056 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
2057 	}
2058 #endif
2059 	return (error);
2060 }
2061 
2062 /*
2063  * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
2064  * that exceed the capacity of the syncache by avoiding the storage of any
2065  * of the SYNs we receive.  Syncookies defend against blind SYN flooding
2066  * attacks where the attacker does not have access to our responses.
2067  *
2068  * Syncookies encode and include all necessary information about the
2069  * connection setup within the SYN|ACK that we send back.  That way we
2070  * can avoid keeping any local state until the ACK to our SYN|ACK returns
2071  * (if ever).  Normally the syncache and syncookies are running in parallel
2072  * with the latter taking over when the former is exhausted.  When matching
2073  * syncache entry is found the syncookie is ignored.
2074  *
2075  * The only reliable information persisting the 3WHS is our initial sequence
2076  * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
2077  * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
2078  * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
2079  * returns and signifies a legitimate connection if it matches the ACK.
2080  *
2081  * The available space of 32 bits to store the hash and to encode the SYN
2082  * option information is very tight and we should have at least 24 bits for
2083  * the MAC to keep the number of guesses by blind spoofing reasonably high.
2084  *
2085  * SYN option information we have to encode to fully restore a connection:
2086  * MSS: is imporant to chose an optimal segment size to avoid IP level
2087  *   fragmentation along the path.  The common MSS values can be encoded
2088  *   in a 3-bit table.  Uncommon values are captured by the next lower value
2089  *   in the table leading to a slight increase in packetization overhead.
2090  * WSCALE: is necessary to allow large windows to be used for high delay-
2091  *   bandwidth product links.  Not scaling the window when it was initially
2092  *   negotiated is bad for performance as lack of scaling further decreases
2093  *   the apparent available send window.  We only need to encode the WSCALE
2094  *   we received from the remote end.  Our end can be recalculated at any
2095  *   time.  The common WSCALE values can be encoded in a 3-bit table.
2096  *   Uncommon values are captured by the next lower value in the table
2097  *   making us under-estimate the available window size halving our
2098  *   theoretically possible maximum throughput for that connection.
2099  * SACK: Greatly assists in packet loss recovery and requires 1 bit.
2100  * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
2101  *   that are included in all segments on a connection.  We enable them when
2102  *   the ACK has them.
2103  *
2104  * Security of syncookies and attack vectors:
2105  *
2106  * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
2107  * together with the gloabl secret to make it unique per connection attempt.
2108  * Thus any change of any of those parameters results in a different MAC output
2109  * in an unpredictable way unless a collision is encountered.  24 bits of the
2110  * MAC are embedded into the ISS.
2111  *
2112  * To prevent replay attacks two rotating global secrets are updated with a
2113  * new random value every 15 seconds.  The life-time of a syncookie is thus
2114  * 15-30 seconds.
2115  *
2116  * Vector 1: Attacking the secret.  This requires finding a weakness in the
2117  * MAC itself or the way it is used here.  The attacker can do a chosen plain
2118  * text attack by varying and testing the all parameters under his control.
2119  * The strength depends on the size and randomness of the secret, and the
2120  * cryptographic security of the MAC function.  Due to the constant updating
2121  * of the secret the attacker has at most 29.999 seconds to find the secret
2122  * and launch spoofed connections.  After that he has to start all over again.
2123  *
2124  * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
2125  * size an average of 4,823 attempts are required for a 50% chance of success
2126  * to spoof a single syncookie (birthday collision paradox).  However the
2127  * attacker is blind and doesn't know if one of his attempts succeeded unless
2128  * he has a side channel to interfere success from.  A single connection setup
2129  * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
2130  * This many attempts are required for each one blind spoofed connection.  For
2131  * every additional spoofed connection he has to launch another N attempts.
2132  * Thus for a sustained rate 100 spoofed connections per second approximately
2133  * 1,800,000 packets per second would have to be sent.
2134  *
2135  * NB: The MAC function should be fast so that it doesn't become a CPU
2136  * exhaustion attack vector itself.
2137  *
2138  * References:
2139  *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
2140  *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
2141  *   http://cr.yp.to/syncookies.html    (overview)
2142  *   http://cr.yp.to/syncookies/archive (details)
2143  *
2144  *
2145  * Schematic construction of a syncookie enabled Initial Sequence Number:
2146  *  0        1         2         3
2147  *  12345678901234567890123456789012
2148  * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
2149  *
2150  *  x 24 MAC (truncated)
2151  *  W  3 Send Window Scale index
2152  *  M  3 MSS index
2153  *  S  1 SACK permitted
2154  *  P  1 Odd/even secret
2155  */
2156 
2157 /*
2158  * Distribution and probability of certain MSS values.  Those in between are
2159  * rounded down to the next lower one.
2160  * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
2161  *                            .2%  .3%   5%    7%    7%    20%   15%   45%
2162  */
2163 static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
2164 
2165 /*
2166  * Distribution and probability of certain WSCALE values.  We have to map the
2167  * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
2168  * bits based on prevalence of certain values.  Where we don't have an exact
2169  * match for are rounded down to the next lower one letting us under-estimate
2170  * the true available window.  At the moment this would happen only for the
2171  * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
2172  * and window size).  The absence of the WSCALE option (no scaling in either
2173  * direction) is encoded with index zero.
2174  * [WSCALE values histograms, Allman, 2012]
2175  *                            X 10 10 35  5  6 14 10%   by host
2176  *                            X 11  4  5  5 18 49  3%   by connections
2177  */
2178 static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
2179 
2180 /*
2181  * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
2182  * and good cryptographic properties.
2183  */
2184 static uint32_t
2185 syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
2186     uint8_t *secbits, uintptr_t secmod)
2187 {
2188 	SIPHASH_CTX ctx;
2189 	uint32_t siphash[2];
2190 
2191 	SipHash24_Init(&ctx);
2192 	SipHash_SetKey(&ctx, secbits);
2193 	switch (inc->inc_flags & INC_ISIPV6) {
2194 #ifdef INET
2195 	case 0:
2196 		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
2197 		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
2198 		break;
2199 #endif
2200 #ifdef INET6
2201 	case INC_ISIPV6:
2202 		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
2203 		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
2204 		break;
2205 #endif
2206 	}
2207 	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
2208 	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
2209 	SipHash_Update(&ctx, &irs, sizeof(irs));
2210 	SipHash_Update(&ctx, &flags, sizeof(flags));
2211 	SipHash_Update(&ctx, &secmod, sizeof(secmod));
2212 	SipHash_Final((u_int8_t *)&siphash, &ctx);
2213 
2214 	return (siphash[0] ^ siphash[1]);
2215 }
2216 
2217 static tcp_seq
2218 syncookie_generate(struct syncache_head *sch, struct syncache *sc)
2219 {
2220 	u_int i, secbit, wscale;
2221 	uint32_t iss, hash;
2222 	uint8_t *secbits;
2223 	union syncookie cookie;
2224 
2225 	cookie.cookie = 0;
2226 
2227 	/* Map our computed MSS into the 3-bit index. */
2228 	for (i = nitems(tcp_sc_msstab) - 1;
2229 	     tcp_sc_msstab[i] > sc->sc_peer_mss && i > 0;
2230 	     i--)
2231 		;
2232 	cookie.flags.mss_idx = i;
2233 
2234 	/*
2235 	 * Map the send window scale into the 3-bit index but only if
2236 	 * the wscale option was received.
2237 	 */
2238 	if (sc->sc_flags & SCF_WINSCALE) {
2239 		wscale = sc->sc_requested_s_scale;
2240 		for (i = nitems(tcp_sc_wstab) - 1;
2241 		    tcp_sc_wstab[i] > wscale && i > 0;
2242 		     i--)
2243 			;
2244 		cookie.flags.wscale_idx = i;
2245 	}
2246 
2247 	/* Can we do SACK? */
2248 	if (sc->sc_flags & SCF_SACK)
2249 		cookie.flags.sack_ok = 1;
2250 
2251 	/* Which of the two secrets to use. */
2252 	secbit = V_tcp_syncache.secret.oddeven & 0x1;
2253 	cookie.flags.odd_even = secbit;
2254 
2255 	secbits = V_tcp_syncache.secret.key[secbit];
2256 	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
2257 	    (uintptr_t)sch);
2258 
2259 	/*
2260 	 * Put the flags into the hash and XOR them to get better ISS number
2261 	 * variance.  This doesn't enhance the cryptographic strength and is
2262 	 * done to prevent the 8 cookie bits from showing up directly on the
2263 	 * wire.
2264 	 */
2265 	iss = hash & ~0xff;
2266 	iss |= cookie.cookie ^ (hash >> 24);
2267 
2268 	TCPSTAT_INC(tcps_sc_sendcookie);
2269 	return (iss);
2270 }
2271 
2272 static struct syncache *
2273 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
2274     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2275     struct socket *lso, uint16_t port)
2276 {
2277 	uint32_t hash;
2278 	uint8_t *secbits;
2279 	tcp_seq ack, seq;
2280 	int wnd, wscale = 0;
2281 	union syncookie cookie;
2282 
2283 	/*
2284 	 * Pull information out of SYN-ACK/ACK and revert sequence number
2285 	 * advances.
2286 	 */
2287 	ack = th->th_ack - 1;
2288 	seq = th->th_seq - 1;
2289 
2290 	/*
2291 	 * Unpack the flags containing enough information to restore the
2292 	 * connection.
2293 	 */
2294 	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
2295 
2296 	/* Which of the two secrets to use. */
2297 	secbits = V_tcp_syncache.secret.key[cookie.flags.odd_even];
2298 
2299 	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
2300 
2301 	/* The recomputed hash matches the ACK if this was a genuine cookie. */
2302 	if ((ack & ~0xff) != (hash & ~0xff))
2303 		return (NULL);
2304 
2305 	/* Fill in the syncache values. */
2306 	sc->sc_flags = 0;
2307 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
2308 	sc->sc_ipopts = NULL;
2309 
2310 	sc->sc_irs = seq;
2311 	sc->sc_iss = ack;
2312 
2313 	switch (inc->inc_flags & INC_ISIPV6) {
2314 #ifdef INET
2315 	case 0:
2316 		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2317 		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2318 		break;
2319 #endif
2320 #ifdef INET6
2321 	case INC_ISIPV6:
2322 		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2323 			sc->sc_flowlabel =
2324 			    htonl(sc->sc_iss) & IPV6_FLOWLABEL_MASK;
2325 		break;
2326 #endif
2327 	}
2328 
2329 	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2330 
2331 	/* We can simply recompute receive window scale we sent earlier. */
2332 	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2333 		wscale++;
2334 
2335 	/* Only use wscale if it was enabled in the orignal SYN. */
2336 	if (cookie.flags.wscale_idx > 0) {
2337 		sc->sc_requested_r_scale = wscale;
2338 		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2339 		sc->sc_flags |= SCF_WINSCALE;
2340 	}
2341 
2342 	wnd = lso->sol_sbrcv_hiwat;
2343 	wnd = imax(wnd, 0);
2344 	wnd = imin(wnd, TCP_MAXWIN);
2345 	sc->sc_wnd = wnd;
2346 
2347 	if (cookie.flags.sack_ok)
2348 		sc->sc_flags |= SCF_SACK;
2349 
2350 	if (to->to_flags & TOF_TS) {
2351 		sc->sc_flags |= SCF_TIMESTAMP;
2352 		sc->sc_tsreflect = to->to_tsval;
2353 		sc->sc_tsoff = tcp_new_ts_offset(inc);
2354 	}
2355 
2356 	if (to->to_flags & TOF_SIGNATURE)
2357 		sc->sc_flags |= SCF_SIGNATURE;
2358 
2359 	sc->sc_rxmits = 0;
2360 
2361 	sc->sc_port = port;
2362 
2363 	TCPSTAT_INC(tcps_sc_recvcookie);
2364 	return (sc);
2365 }
2366 
2367 #ifdef INVARIANTS
2368 static int
2369 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2370     struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2371     struct socket *lso, uint16_t port)
2372 {
2373 	struct syncache scs, *scx;
2374 	char *s;
2375 
2376 	bzero(&scs, sizeof(scs));
2377 	scx = syncookie_lookup(inc, sch, &scs, th, to, lso, port);
2378 
2379 	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2380 		return (0);
2381 
2382 	if (scx != NULL) {
2383 		if (sc->sc_peer_mss != scx->sc_peer_mss)
2384 			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2385 			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2386 
2387 		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2388 			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2389 			    s, __func__, sc->sc_requested_r_scale,
2390 			    scx->sc_requested_r_scale);
2391 
2392 		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2393 			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2394 			    s, __func__, sc->sc_requested_s_scale,
2395 			    scx->sc_requested_s_scale);
2396 
2397 		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2398 			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2399 	}
2400 
2401 	if (s != NULL)
2402 		free(s, M_TCPLOG);
2403 	return (0);
2404 }
2405 #endif /* INVARIANTS */
2406 
2407 static void
2408 syncookie_reseed(void *arg)
2409 {
2410 	struct tcp_syncache *sc = arg;
2411 	uint8_t *secbits;
2412 	int secbit;
2413 
2414 	/*
2415 	 * Reseeding the secret doesn't have to be protected by a lock.
2416 	 * It only must be ensured that the new random values are visible
2417 	 * to all CPUs in a SMP environment.  The atomic with release
2418 	 * semantics ensures that.
2419 	 */
2420 	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2421 	secbits = sc->secret.key[secbit];
2422 	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2423 	atomic_add_rel_int(&sc->secret.oddeven, 1);
2424 
2425 	/* Reschedule ourself. */
2426 	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2427 }
2428 
2429 /*
2430  * We have overflowed a bucket. Let's pause dealing with the syncache.
2431  * This function will increment the bucketoverflow statistics appropriately
2432  * (once per pause when pausing is enabled; otherwise, once per overflow).
2433  */
2434 static void
2435 syncache_pause(struct in_conninfo *inc)
2436 {
2437 	time_t delta;
2438 	const char *s;
2439 
2440 	/* XXX:
2441 	 * 2. Add sysctl read here so we don't get the benefit of this
2442 	 * change without the new sysctl.
2443 	 */
2444 
2445 	/*
2446 	 * Try an unlocked read. If we already know that another thread
2447 	 * has activated the feature, there is no need to proceed.
2448 	 */
2449 	if (V_tcp_syncache.paused)
2450 		return;
2451 
2452 	/* Are cookied enabled? If not, we can't pause. */
2453 	if (!V_tcp_syncookies) {
2454 		TCPSTAT_INC(tcps_sc_bucketoverflow);
2455 		return;
2456 	}
2457 
2458 	/*
2459 	 * We may be the first thread to find an overflow. Get the lock
2460 	 * and evaluate if we need to take action.
2461 	 */
2462 	mtx_lock(&V_tcp_syncache.pause_mtx);
2463 	if (V_tcp_syncache.paused) {
2464 		mtx_unlock(&V_tcp_syncache.pause_mtx);
2465 		return;
2466 	}
2467 
2468 	/* Activate protection. */
2469 	V_tcp_syncache.paused = true;
2470 	TCPSTAT_INC(tcps_sc_bucketoverflow);
2471 
2472 	/*
2473 	 * Determine the last backoff time. If we are seeing a re-newed
2474 	 * attack within that same time after last reactivating the syncache,
2475 	 * consider it an extension of the same attack.
2476 	 */
2477 	delta = TCP_SYNCACHE_PAUSE_TIME << V_tcp_syncache.pause_backoff;
2478 	if (V_tcp_syncache.pause_until + delta - time_uptime > 0) {
2479 		if (V_tcp_syncache.pause_backoff < TCP_SYNCACHE_MAX_BACKOFF) {
2480 			delta <<= 1;
2481 			V_tcp_syncache.pause_backoff++;
2482 		}
2483 	} else {
2484 		delta = TCP_SYNCACHE_PAUSE_TIME;
2485 		V_tcp_syncache.pause_backoff = 0;
2486 	}
2487 
2488 	/* Log a warning, including IP addresses, if able. */
2489 	if (inc != NULL)
2490 		s = tcp_log_addrs(inc, NULL, NULL, NULL);
2491 	else
2492 		s = (const char *)NULL;
2493 	log(LOG_WARNING, "TCP syncache overflow detected; using syncookies for "
2494 	    "the next %lld seconds%s%s%s\n", (long long)delta,
2495 	    (s != NULL) ? " (last SYN: " : "", (s != NULL) ? s : "",
2496 	    (s != NULL) ? ")" : "");
2497 	free(__DECONST(void *, s), M_TCPLOG);
2498 
2499 	/* Use the calculated delta to set a new pause time. */
2500 	V_tcp_syncache.pause_until = time_uptime + delta;
2501 	callout_reset(&V_tcp_syncache.pause_co, delta * hz, syncache_unpause,
2502 	    &V_tcp_syncache);
2503 	mtx_unlock(&V_tcp_syncache.pause_mtx);
2504 }
2505 
2506 /* Evaluate whether we need to unpause. */
2507 static void
2508 syncache_unpause(void *arg)
2509 {
2510 	struct tcp_syncache *sc;
2511 	time_t delta;
2512 
2513 	sc = arg;
2514 	mtx_assert(&sc->pause_mtx, MA_OWNED | MA_NOTRECURSED);
2515 	callout_deactivate(&sc->pause_co);
2516 
2517 	/*
2518 	 * Check to make sure we are not running early. If the pause
2519 	 * time has expired, then deactivate the protection.
2520 	 */
2521 	if ((delta = sc->pause_until - time_uptime) > 0)
2522 		callout_schedule(&sc->pause_co, delta * hz);
2523 	else
2524 		sc->paused = false;
2525 }
2526 
2527 /*
2528  * Exports the syncache entries to userland so that netstat can display
2529  * them alongside the other sockets.  This function is intended to be
2530  * called only from tcp_pcblist.
2531  *
2532  * Due to concurrency on an active system, the number of pcbs exported
2533  * may have no relation to max_pcbs.  max_pcbs merely indicates the
2534  * amount of space the caller allocated for this function to use.
2535  */
2536 int
2537 syncache_pcblist(struct sysctl_req *req)
2538 {
2539 	struct xtcpcb xt;
2540 	struct syncache *sc;
2541 	struct syncache_head *sch;
2542 	int error, i;
2543 
2544 	bzero(&xt, sizeof(xt));
2545 	xt.xt_len = sizeof(xt);
2546 	xt.t_state = TCPS_SYN_RECEIVED;
2547 	xt.xt_inp.xi_socket.xso_protocol = IPPROTO_TCP;
2548 	xt.xt_inp.xi_socket.xso_len = sizeof (struct xsocket);
2549 	xt.xt_inp.xi_socket.so_type = SOCK_STREAM;
2550 	xt.xt_inp.xi_socket.so_state = SS_ISCONNECTING;
2551 
2552 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
2553 		sch = &V_tcp_syncache.hashbase[i];
2554 		SCH_LOCK(sch);
2555 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2556 			if (sc->sc_cred != NULL &&
2557 			    cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2558 				continue;
2559 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2560 				xt.xt_inp.inp_vflag = INP_IPV6;
2561 			else
2562 				xt.xt_inp.inp_vflag = INP_IPV4;
2563 			xt.xt_encaps_port = sc->sc_port;
2564 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc,
2565 			    sizeof (struct in_conninfo));
2566 			error = SYSCTL_OUT(req, &xt, sizeof xt);
2567 			if (error) {
2568 				SCH_UNLOCK(sch);
2569 				return (0);
2570 			}
2571 		}
2572 		SCH_UNLOCK(sch);
2573 	}
2574 
2575 	return (0);
2576 }
2577