xref: /freebsd/sys/netinet/tcp_syncache.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Jonathan Lemon
6  * and McAfee Research, the Security Research Division of McAfee, Inc. under
7  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8  * DARPA CHATS research program.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mac.h>
47 #include <sys/mbuf.h>
48 #include <sys/md5.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 
54 #include <net/if.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/in_var.h>
61 #include <netinet/in_pcb.h>
62 #include <netinet/ip_var.h>
63 #include <netinet/ip_options.h>
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet/icmp6.h>
67 #include <netinet6/nd6.h>
68 #include <netinet6/ip6_var.h>
69 #include <netinet6/in6_pcb.h>
70 #endif
71 #include <netinet/tcp.h>
72 #ifdef TCPDEBUG
73 #include <netinet/tcpip.h>
74 #endif
75 #include <netinet/tcp_fsm.h>
76 #include <netinet/tcp_seq.h>
77 #include <netinet/tcp_timer.h>
78 #include <netinet/tcp_var.h>
79 #ifdef TCPDEBUG
80 #include <netinet/tcp_debug.h>
81 #endif
82 #ifdef INET6
83 #include <netinet6/tcp6_var.h>
84 #endif
85 
86 #ifdef IPSEC
87 #include <netinet6/ipsec.h>
88 #ifdef INET6
89 #include <netinet6/ipsec6.h>
90 #endif
91 #endif /*IPSEC*/
92 
93 #ifdef FAST_IPSEC
94 #include <netipsec/ipsec.h>
95 #ifdef INET6
96 #include <netipsec/ipsec6.h>
97 #endif
98 #include <netipsec/key.h>
99 #endif /*FAST_IPSEC*/
100 
101 #include <machine/in_cksum.h>
102 #include <vm/uma.h>
103 
104 static int tcp_syncookies = 1;
105 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
106     &tcp_syncookies, 0,
107     "Use TCP SYN cookies if the syncache overflows");
108 
109 static void	 syncache_drop(struct syncache *, struct syncache_head *);
110 static void	 syncache_free(struct syncache *);
111 static void	 syncache_insert(struct syncache *, struct syncache_head *);
112 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
113 #ifdef TCPDEBUG
114 static int	 syncache_respond(struct syncache *, struct mbuf *, struct socket *);
115 #else
116 static int	 syncache_respond(struct syncache *, struct mbuf *);
117 #endif
118 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
119 		    struct mbuf *m);
120 static void	 syncache_timer(void *);
121 static u_int32_t syncookie_generate(struct syncache *, u_int32_t *);
122 static struct syncache *syncookie_lookup(struct in_conninfo *,
123 		    struct tcphdr *, struct socket *);
124 
125 /*
126  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
127  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
128  * the odds are that the user has given up attempting to connect by then.
129  */
130 #define SYNCACHE_MAXREXMTS		3
131 
132 /* Arbitrary values */
133 #define TCP_SYNCACHE_HASHSIZE		512
134 #define TCP_SYNCACHE_BUCKETLIMIT	30
135 
136 struct tcp_syncache {
137 	struct	syncache_head *hashbase;
138 	uma_zone_t zone;
139 	u_int	hashsize;
140 	u_int	hashmask;
141 	u_int	bucket_limit;
142 	u_int	cache_count;
143 	u_int	cache_limit;
144 	u_int	rexmt_limit;
145 	u_int	hash_secret;
146 	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
147 	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
148 };
149 static struct tcp_syncache tcp_syncache;
150 
151 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152 
153 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
154      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
155 
156 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
157      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
158 
159 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
161 
162 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
163      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
164 
165 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
166      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
167 
168 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
169 
170 #define SYNCACHE_HASH(inc, mask)					\
171 	((tcp_syncache.hash_secret ^					\
172 	  (inc)->inc_faddr.s_addr ^					\
173 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
174 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
175 
176 #define SYNCACHE_HASH6(inc, mask)					\
177 	((tcp_syncache.hash_secret ^					\
178 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
179 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
180 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
181 
182 #define ENDPTS_EQ(a, b) (						\
183 	(a)->ie_fport == (b)->ie_fport &&				\
184 	(a)->ie_lport == (b)->ie_lport &&				\
185 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
186 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
187 )
188 
189 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
190 
191 #define SYNCACHE_TIMEOUT(sc, slot) do {				\
192 	sc->sc_rxtslot = (slot);					\
193 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
194 	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
195 	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
196 		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
197 		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
198 		    syncache_timer, (void *)((intptr_t)(slot)));	\
199 } while (0)
200 
201 static void
202 syncache_free(struct syncache *sc)
203 {
204 	if (sc->sc_ipopts)
205 		(void) m_free(sc->sc_ipopts);
206 
207 	uma_zfree(tcp_syncache.zone, sc);
208 }
209 
210 void
211 syncache_init(void)
212 {
213 	int i;
214 
215 	tcp_syncache.cache_count = 0;
216 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
217 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
218 	tcp_syncache.cache_limit =
219 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
220 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
221 	tcp_syncache.hash_secret = arc4random();
222 
223 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
224 	    &tcp_syncache.hashsize);
225 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
226 	    &tcp_syncache.cache_limit);
227 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
228 	    &tcp_syncache.bucket_limit);
229 	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
230 		printf("WARNING: syncache hash size is not a power of 2.\n");
231 		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
232 	}
233 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
234 
235 	/* Allocate the hash table. */
236 	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
237 	    tcp_syncache.hashsize * sizeof(struct syncache_head),
238 	    M_SYNCACHE, M_WAITOK);
239 
240 	/* Initialize the hash buckets. */
241 	for (i = 0; i < tcp_syncache.hashsize; i++) {
242 		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
243 		tcp_syncache.hashbase[i].sch_length = 0;
244 	}
245 
246 	/* Initialize the timer queues. */
247 	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
248 		TAILQ_INIT(&tcp_syncache.timerq[i]);
249 		callout_init(&tcp_syncache.tt_timerq[i], NET_CALLOUT_MPSAFE);
250 	}
251 
252 	/*
253 	 * Allocate the syncache entries.  Allow the zone to allocate one
254 	 * more entry than cache limit, so a new entry can bump out an
255 	 * older one.
256 	 */
257 	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
258 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259 	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
260 	tcp_syncache.cache_limit -= 1;
261 }
262 
263 static void
264 syncache_insert(sc, sch)
265 	struct syncache *sc;
266 	struct syncache_head *sch;
267 {
268 	struct syncache *sc2;
269 	int i;
270 
271 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
272 
273 	/*
274 	 * Make sure that we don't overflow the per-bucket
275 	 * limit or the total cache size limit.
276 	 */
277 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
278 		/*
279 		 * The bucket is full, toss the oldest element.
280 		 */
281 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
282 		sc2->sc_tp->ts_recent = ticks;
283 		syncache_drop(sc2, sch);
284 		tcpstat.tcps_sc_bucketoverflow++;
285 	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
286 		/*
287 		 * The cache is full.  Toss the oldest entry in the
288 		 * entire cache.  This is the front entry in the
289 		 * first non-empty timer queue with the largest
290 		 * timeout value.
291 		 */
292 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
293 			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
294 			if (sc2 != NULL)
295 				break;
296 		}
297 		sc2->sc_tp->ts_recent = ticks;
298 		syncache_drop(sc2, NULL);
299 		tcpstat.tcps_sc_cacheoverflow++;
300 	}
301 
302 	/* Initialize the entry's timer. */
303 	SYNCACHE_TIMEOUT(sc, 0);
304 
305 	/* Put it into the bucket. */
306 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
307 	sch->sch_length++;
308 	tcp_syncache.cache_count++;
309 	tcpstat.tcps_sc_added++;
310 }
311 
312 static void
313 syncache_drop(sc, sch)
314 	struct syncache *sc;
315 	struct syncache_head *sch;
316 {
317 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
318 
319 	if (sch == NULL) {
320 #ifdef INET6
321 		if (sc->sc_inc.inc_isipv6) {
322 			sch = &tcp_syncache.hashbase[
323 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
324 		} else
325 #endif
326 		{
327 			sch = &tcp_syncache.hashbase[
328 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
329 		}
330 	}
331 
332 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
333 	sch->sch_length--;
334 	tcp_syncache.cache_count--;
335 
336 	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
337 	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
338 		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
339 
340 	syncache_free(sc);
341 }
342 
343 /*
344  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
345  * If we have retransmitted an entry the maximum number of times, expire it.
346  */
347 static void
348 syncache_timer(xslot)
349 	void *xslot;
350 {
351 	intptr_t slot = (intptr_t)xslot;
352 	struct syncache *sc, *nsc;
353 	struct inpcb *inp;
354 
355 	INP_INFO_WLOCK(&tcbinfo);
356 	if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
357 	    !callout_active(&tcp_syncache.tt_timerq[slot])) {
358 		/* XXX can this happen? */
359 		INP_INFO_WUNLOCK(&tcbinfo);
360 		return;
361 	}
362 	callout_deactivate(&tcp_syncache.tt_timerq[slot]);
363 
364 	nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
365 	while (nsc != NULL) {
366 		if (ticks < nsc->sc_rxttime)
367 			break;
368 		sc = nsc;
369 		inp = sc->sc_tp->t_inpcb;
370 		if (slot == SYNCACHE_MAXREXMTS ||
371 		    slot >= tcp_syncache.rexmt_limit ||
372 		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
373 			nsc = TAILQ_NEXT(sc, sc_timerq);
374 			syncache_drop(sc, NULL);
375 			tcpstat.tcps_sc_stale++;
376 			continue;
377 		}
378 		/*
379 		 * syncache_respond() may call back into the syncache to
380 		 * to modify another entry, so do not obtain the next
381 		 * entry on the timer chain until it has completed.
382 		 */
383 #ifdef TCPDEBUG
384 		(void) syncache_respond(sc, NULL, NULL);
385 #else
386 		(void) syncache_respond(sc, NULL);
387 #endif
388 		nsc = TAILQ_NEXT(sc, sc_timerq);
389 		tcpstat.tcps_sc_retransmitted++;
390 		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
391 		SYNCACHE_TIMEOUT(sc, slot + 1);
392 	}
393 	if (nsc != NULL)
394 		callout_reset(&tcp_syncache.tt_timerq[slot],
395 		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
396 	INP_INFO_WUNLOCK(&tcbinfo);
397 }
398 
399 /*
400  * Find an entry in the syncache.
401  */
402 struct syncache *
403 syncache_lookup(inc, schp)
404 	struct in_conninfo *inc;
405 	struct syncache_head **schp;
406 {
407 	struct syncache *sc;
408 	struct syncache_head *sch;
409 
410 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
411 
412 #ifdef INET6
413 	if (inc->inc_isipv6) {
414 		sch = &tcp_syncache.hashbase[
415 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
416 		*schp = sch;
417 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
418 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
419 				return (sc);
420 		}
421 	} else
422 #endif
423 	{
424 		sch = &tcp_syncache.hashbase[
425 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
426 		*schp = sch;
427 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
428 #ifdef INET6
429 			if (sc->sc_inc.inc_isipv6)
430 				continue;
431 #endif
432 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
433 				return (sc);
434 		}
435 	}
436 	return (NULL);
437 }
438 
439 /*
440  * This function is called when we get a RST for a
441  * non-existent connection, so that we can see if the
442  * connection is in the syn cache.  If it is, zap it.
443  */
444 void
445 syncache_chkrst(inc, th)
446 	struct in_conninfo *inc;
447 	struct tcphdr *th;
448 {
449 	struct syncache *sc;
450 	struct syncache_head *sch;
451 
452 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
453 
454 	sc = syncache_lookup(inc, &sch);
455 	if (sc == NULL)
456 		return;
457 	/*
458 	 * If the RST bit is set, check the sequence number to see
459 	 * if this is a valid reset segment.
460 	 * RFC 793 page 37:
461 	 *   In all states except SYN-SENT, all reset (RST) segments
462 	 *   are validated by checking their SEQ-fields.  A reset is
463 	 *   valid if its sequence number is in the window.
464 	 *
465 	 *   The sequence number in the reset segment is normally an
466 	 *   echo of our outgoing acknowlegement numbers, but some hosts
467 	 *   send a reset with the sequence number at the rightmost edge
468 	 *   of our receive window, and we have to handle this case.
469 	 */
470 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
471 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
472 		syncache_drop(sc, sch);
473 		tcpstat.tcps_sc_reset++;
474 	}
475 }
476 
477 void
478 syncache_badack(inc)
479 	struct in_conninfo *inc;
480 {
481 	struct syncache *sc;
482 	struct syncache_head *sch;
483 
484 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
485 
486 	sc = syncache_lookup(inc, &sch);
487 	if (sc != NULL) {
488 		syncache_drop(sc, sch);
489 		tcpstat.tcps_sc_badack++;
490 	}
491 }
492 
493 void
494 syncache_unreach(inc, th)
495 	struct in_conninfo *inc;
496 	struct tcphdr *th;
497 {
498 	struct syncache *sc;
499 	struct syncache_head *sch;
500 
501 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
502 
503 	sc = syncache_lookup(inc, &sch);
504 	if (sc == NULL)
505 		return;
506 
507 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
508 	if (ntohl(th->th_seq) != sc->sc_iss)
509 		return;
510 
511 	/*
512 	 * If we've rertransmitted 3 times and this is our second error,
513 	 * we remove the entry.  Otherwise, we allow it to continue on.
514 	 * This prevents us from incorrectly nuking an entry during a
515 	 * spurious network outage.
516 	 *
517 	 * See tcp_notify().
518 	 */
519 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
520 		sc->sc_flags |= SCF_UNREACH;
521 		return;
522 	}
523 	syncache_drop(sc, sch);
524 	tcpstat.tcps_sc_unreach++;
525 }
526 
527 /*
528  * Build a new TCP socket structure from a syncache entry.
529  */
530 static struct socket *
531 syncache_socket(sc, lso, m)
532 	struct syncache *sc;
533 	struct socket *lso;
534 	struct mbuf *m;
535 {
536 	struct inpcb *inp = NULL;
537 	struct socket *so;
538 	struct tcpcb *tp;
539 
540 	NET_ASSERT_GIANT();
541 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
542 
543 	/*
544 	 * Ok, create the full blown connection, and set things up
545 	 * as they would have been set up if we had created the
546 	 * connection when the SYN arrived.  If we can't create
547 	 * the connection, abort it.
548 	 */
549 	so = sonewconn(lso, SS_ISCONNECTED);
550 	if (so == NULL) {
551 		/*
552 		 * Drop the connection; we will send a RST if the peer
553 		 * retransmits the ACK,
554 		 */
555 		tcpstat.tcps_listendrop++;
556 		goto abort2;
557 	}
558 #ifdef MAC
559 	SOCK_LOCK(so);
560 	mac_set_socket_peer_from_mbuf(m, so);
561 	SOCK_UNLOCK(so);
562 #endif
563 
564 	inp = sotoinpcb(so);
565 	INP_LOCK(inp);
566 
567 	/*
568 	 * Insert new socket into hash list.
569 	 */
570 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
571 #ifdef INET6
572 	if (sc->sc_inc.inc_isipv6) {
573 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
574 	} else {
575 		inp->inp_vflag &= ~INP_IPV6;
576 		inp->inp_vflag |= INP_IPV4;
577 #endif
578 		inp->inp_laddr = sc->sc_inc.inc_laddr;
579 #ifdef INET6
580 	}
581 #endif
582 	inp->inp_lport = sc->sc_inc.inc_lport;
583 	if (in_pcbinshash(inp) != 0) {
584 		/*
585 		 * Undo the assignments above if we failed to
586 		 * put the PCB on the hash lists.
587 		 */
588 #ifdef INET6
589 		if (sc->sc_inc.inc_isipv6)
590 			inp->in6p_laddr = in6addr_any;
591 		else
592 #endif
593 			inp->inp_laddr.s_addr = INADDR_ANY;
594 		inp->inp_lport = 0;
595 		goto abort;
596 	}
597 #ifdef IPSEC
598 	/* copy old policy into new socket's */
599 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
600 		printf("syncache_expand: could not copy policy\n");
601 #endif
602 #ifdef FAST_IPSEC
603 	/* copy old policy into new socket's */
604 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
605 		printf("syncache_expand: could not copy policy\n");
606 #endif
607 #ifdef INET6
608 	if (sc->sc_inc.inc_isipv6) {
609 		struct inpcb *oinp = sotoinpcb(lso);
610 		struct in6_addr laddr6;
611 		struct sockaddr_in6 sin6;
612 		/*
613 		 * Inherit socket options from the listening socket.
614 		 * Note that in6p_inputopts are not (and should not be)
615 		 * copied, since it stores previously received options and is
616 		 * used to detect if each new option is different than the
617 		 * previous one and hence should be passed to a user.
618 		 * If we copied in6p_inputopts, a user would not be able to
619 		 * receive options just after calling the accept system call.
620 		 */
621 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
622 		if (oinp->in6p_outputopts)
623 			inp->in6p_outputopts =
624 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
625 
626 		sin6.sin6_family = AF_INET6;
627 		sin6.sin6_len = sizeof(sin6);
628 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
629 		sin6.sin6_port = sc->sc_inc.inc_fport;
630 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
631 		laddr6 = inp->in6p_laddr;
632 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
633 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
634 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
635 		    thread0.td_ucred)) {
636 			inp->in6p_laddr = laddr6;
637 			goto abort;
638 		}
639 		/* Override flowlabel from in6_pcbconnect. */
640 		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
641 		inp->in6p_flowinfo |= sc->sc_flowlabel;
642 	} else
643 #endif
644 	{
645 		struct in_addr laddr;
646 		struct sockaddr_in sin;
647 
648 		inp->inp_options = ip_srcroute(m);
649 		if (inp->inp_options == NULL) {
650 			inp->inp_options = sc->sc_ipopts;
651 			sc->sc_ipopts = NULL;
652 		}
653 
654 		sin.sin_family = AF_INET;
655 		sin.sin_len = sizeof(sin);
656 		sin.sin_addr = sc->sc_inc.inc_faddr;
657 		sin.sin_port = sc->sc_inc.inc_fport;
658 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
659 		laddr = inp->inp_laddr;
660 		if (inp->inp_laddr.s_addr == INADDR_ANY)
661 			inp->inp_laddr = sc->sc_inc.inc_laddr;
662 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
663 		    thread0.td_ucred)) {
664 			inp->inp_laddr = laddr;
665 			goto abort;
666 		}
667 	}
668 
669 	tp = intotcpcb(inp);
670 	tp->t_state = TCPS_SYN_RECEIVED;
671 	tp->iss = sc->sc_iss;
672 	tp->irs = sc->sc_irs;
673 	tcp_rcvseqinit(tp);
674 	tcp_sendseqinit(tp);
675 	tp->snd_wl1 = sc->sc_irs;
676 	tp->rcv_up = sc->sc_irs + 1;
677 	tp->rcv_wnd = sc->sc_wnd;
678 	tp->rcv_adv += tp->rcv_wnd;
679 
680 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
681 	if (sc->sc_flags & SCF_NOOPT)
682 		tp->t_flags |= TF_NOOPT;
683 	if (sc->sc_flags & SCF_WINSCALE) {
684 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
685 		tp->requested_s_scale = sc->sc_requested_s_scale;
686 		tp->request_r_scale = sc->sc_request_r_scale;
687 	}
688 	if (sc->sc_flags & SCF_TIMESTAMP) {
689 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
690 		tp->ts_recent = sc->sc_tsrecent;
691 		tp->ts_recent_age = ticks;
692 	}
693 #ifdef TCP_SIGNATURE
694 	if (sc->sc_flags & SCF_SIGNATURE)
695 		tp->t_flags |= TF_SIGNATURE;
696 #endif
697 	if (sc->sc_flags & SCF_SACK) {
698 		tp->sack_enable = 1;
699 		tp->t_flags |= TF_SACK_PERMIT;
700 	}
701 	/*
702 	 * Set up MSS and get cached values from tcp_hostcache.
703 	 * This might overwrite some of the defaults we just set.
704 	 */
705 	tcp_mss(tp, sc->sc_peer_mss);
706 
707 	/*
708 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
709 	 */
710 	if (sc->sc_rxtslot != 0)
711 		tp->snd_cwnd = tp->t_maxseg;
712 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
713 
714 	INP_UNLOCK(inp);
715 
716 	tcpstat.tcps_accepts++;
717 	return (so);
718 
719 abort:
720 	INP_UNLOCK(inp);
721 abort2:
722 	if (so != NULL)
723 		(void) soabort(so);
724 	return (NULL);
725 }
726 
727 /*
728  * This function gets called when we receive an ACK for a
729  * socket in the LISTEN state.  We look up the connection
730  * in the syncache, and if its there, we pull it out of
731  * the cache and turn it into a full-blown connection in
732  * the SYN-RECEIVED state.
733  */
734 int
735 syncache_expand(inc, th, sop, m)
736 	struct in_conninfo *inc;
737 	struct tcphdr *th;
738 	struct socket **sop;
739 	struct mbuf *m;
740 {
741 	struct syncache *sc;
742 	struct syncache_head *sch;
743 	struct socket *so;
744 
745 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
746 
747 	sc = syncache_lookup(inc, &sch);
748 	if (sc == NULL) {
749 		/*
750 		 * There is no syncache entry, so see if this ACK is
751 		 * a returning syncookie.  To do this, first:
752 		 *  A. See if this socket has had a syncache entry dropped in
753 		 *     the past.  We don't want to accept a bogus syncookie
754 		 *     if we've never received a SYN.
755 		 *  B. check that the syncookie is valid.  If it is, then
756 		 *     cobble up a fake syncache entry, and return.
757 		 */
758 		if (!tcp_syncookies)
759 			return (0);
760 		sc = syncookie_lookup(inc, th, *sop);
761 		if (sc == NULL)
762 			return (0);
763 		sch = NULL;
764 		tcpstat.tcps_sc_recvcookie++;
765 	}
766 
767 	/*
768 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
769 	 */
770 	if (th->th_ack != sc->sc_iss + 1)
771 		return (0);
772 
773 	so = syncache_socket(sc, *sop, m);
774 	if (so == NULL) {
775 #if 0
776 resetandabort:
777 		/* XXXjlemon check this - is this correct? */
778 		(void) tcp_respond(NULL, m, m, th,
779 		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
780 #endif
781 		m_freem(m);			/* XXX only needed for above */
782 		tcpstat.tcps_sc_aborted++;
783 	} else
784 		tcpstat.tcps_sc_completed++;
785 
786 	if (sch == NULL)
787 		syncache_free(sc);
788 	else
789 		syncache_drop(sc, sch);
790 	*sop = so;
791 	return (1);
792 }
793 
794 /*
795  * Given a LISTEN socket and an inbound SYN request, add
796  * this to the syn cache, and send back a segment:
797  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
798  * to the source.
799  *
800  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
801  * Doing so would require that we hold onto the data and deliver it
802  * to the application.  However, if we are the target of a SYN-flood
803  * DoS attack, an attacker could send data which would eventually
804  * consume all available buffer space if it were ACKed.  By not ACKing
805  * the data, we avoid this DoS scenario.
806  */
807 int
808 syncache_add(inc, to, th, sop, m)
809 	struct in_conninfo *inc;
810 	struct tcpopt *to;
811 	struct tcphdr *th;
812 	struct socket **sop;
813 	struct mbuf *m;
814 {
815 	struct tcpcb *tp;
816 	struct socket *so;
817 	struct syncache *sc = NULL;
818 	struct syncache_head *sch;
819 	struct mbuf *ipopts = NULL;
820 	u_int32_t flowtmp;
821 	int i, win;
822 
823 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
824 
825 	so = *sop;
826 	tp = sototcpcb(so);
827 
828 	/*
829 	 * Remember the IP options, if any.
830 	 */
831 #ifdef INET6
832 	if (!inc->inc_isipv6)
833 #endif
834 		ipopts = ip_srcroute(m);
835 
836 	/*
837 	 * See if we already have an entry for this connection.
838 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
839 	 *
840 	 * XXX
841 	 * should the syncache be re-initialized with the contents
842 	 * of the new SYN here (which may have different options?)
843 	 */
844 	sc = syncache_lookup(inc, &sch);
845 	if (sc != NULL) {
846 		tcpstat.tcps_sc_dupsyn++;
847 		if (ipopts) {
848 			/*
849 			 * If we were remembering a previous source route,
850 			 * forget it and use the new one we've been given.
851 			 */
852 			if (sc->sc_ipopts)
853 				(void) m_free(sc->sc_ipopts);
854 			sc->sc_ipopts = ipopts;
855 		}
856 		/*
857 		 * Update timestamp if present.
858 		 */
859 		if (sc->sc_flags & SCF_TIMESTAMP)
860 			sc->sc_tsrecent = to->to_tsval;
861 		/*
862 		 * PCB may have changed, pick up new values.
863 		 */
864 		sc->sc_tp = tp;
865 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
866 #ifdef TCPDEBUG
867 		if (syncache_respond(sc, m, so) == 0) {
868 #else
869 		if (syncache_respond(sc, m) == 0) {
870 #endif
871 			/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
872 			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
873 			    sc, sc_timerq);
874 			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
875 			tcpstat.tcps_sndacks++;
876 			tcpstat.tcps_sndtotal++;
877 		}
878 		*sop = NULL;
879 		return (1);
880 	}
881 
882 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
883 	if (sc == NULL) {
884 		/*
885 		 * The zone allocator couldn't provide more entries.
886 		 * Treat this as if the cache was full; drop the oldest
887 		 * entry and insert the new one.
888 		 */
889 		/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
890 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
891 			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
892 			if (sc != NULL)
893 				break;
894 		}
895 		sc->sc_tp->ts_recent = ticks;
896 		syncache_drop(sc, NULL);
897 		tcpstat.tcps_sc_zonefail++;
898 		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
899 		if (sc == NULL) {
900 			if (ipopts)
901 				(void) m_free(ipopts);
902 			return (0);
903 		}
904 	}
905 
906 	/*
907 	 * Fill in the syncache values.
908 	 */
909 	bzero(sc, sizeof(*sc));
910 	sc->sc_tp = tp;
911 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
912 	sc->sc_ipopts = ipopts;
913 	sc->sc_inc.inc_fport = inc->inc_fport;
914 	sc->sc_inc.inc_lport = inc->inc_lport;
915 #ifdef INET6
916 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
917 	if (inc->inc_isipv6) {
918 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
919 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
920 	} else
921 #endif
922 	{
923 		sc->sc_inc.inc_faddr = inc->inc_faddr;
924 		sc->sc_inc.inc_laddr = inc->inc_laddr;
925 	}
926 	sc->sc_irs = th->th_seq;
927 	sc->sc_flags = 0;
928 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
929 	sc->sc_flowlabel = 0;
930 	if (tcp_syncookies) {
931 		sc->sc_iss = syncookie_generate(sc, &flowtmp);
932 #ifdef INET6
933 		if (inc->inc_isipv6 &&
934 		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
935 			sc->sc_flowlabel = flowtmp & IPV6_FLOWLABEL_MASK;
936 		}
937 #endif
938 	} else {
939 		sc->sc_iss = arc4random();
940 #ifdef INET6
941 		if (inc->inc_isipv6 &&
942 		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
943 			sc->sc_flowlabel =
944 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
945 		}
946 #endif
947 	}
948 
949 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
950 	win = sbspace(&so->so_rcv);
951 	win = imax(win, 0);
952 	win = imin(win, TCP_MAXWIN);
953 	sc->sc_wnd = win;
954 
955 	if (tcp_do_rfc1323) {
956 		/*
957 		 * A timestamp received in a SYN makes
958 		 * it ok to send timestamp requests and replies.
959 		 */
960 		if (to->to_flags & TOF_TS) {
961 			sc->sc_tsrecent = to->to_tsval;
962 			sc->sc_flags |= SCF_TIMESTAMP;
963 		}
964 		if (to->to_flags & TOF_SCALE) {
965 			int wscale = 0;
966 
967 			/* Compute proper scaling value from buffer space */
968 			while (wscale < TCP_MAX_WINSHIFT &&
969 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
970 				wscale++;
971 			sc->sc_request_r_scale = wscale;
972 			sc->sc_requested_s_scale = to->to_requested_s_scale;
973 			sc->sc_flags |= SCF_WINSCALE;
974 		}
975 	}
976 	if (tp->t_flags & TF_NOOPT)
977 		sc->sc_flags = SCF_NOOPT;
978 #ifdef TCP_SIGNATURE
979 	/*
980 	 * If listening socket requested TCP digests, and received SYN
981 	 * contains the option, flag this in the syncache so that
982 	 * syncache_respond() will do the right thing with the SYN+ACK.
983 	 * XXX Currently we always record the option by default and will
984 	 * attempt to use it in syncache_respond().
985 	 */
986 	if (to->to_flags & TOF_SIGNATURE)
987 		sc->sc_flags |= SCF_SIGNATURE;
988 #endif
989 
990 	if (to->to_flags & TOF_SACK)
991 		sc->sc_flags |= SCF_SACK;
992 
993 	/*
994 	 * Do a standard 3-way handshake.
995 	 */
996 #ifdef TCPDEBUG
997 	if (syncache_respond(sc, m, so) == 0) {
998 #else
999 	if (syncache_respond(sc, m) == 0) {
1000 #endif
1001 		syncache_insert(sc, sch);
1002 		tcpstat.tcps_sndacks++;
1003 		tcpstat.tcps_sndtotal++;
1004 	} else {
1005 		syncache_free(sc);
1006 		tcpstat.tcps_sc_dropped++;
1007 	}
1008 	*sop = NULL;
1009 	return (1);
1010 }
1011 
1012 #ifdef TCPDEBUG
1013 static int
1014 syncache_respond(sc, m, so)
1015 	struct syncache *sc;
1016 	struct mbuf *m;
1017 	struct socket *so;
1018 #else
1019 static int
1020 syncache_respond(sc, m)
1021 	struct syncache *sc;
1022 	struct mbuf *m;
1023 #endif
1024 {
1025 	u_int8_t *optp;
1026 	int optlen, error;
1027 	u_int16_t tlen, hlen, mssopt;
1028 	struct ip *ip = NULL;
1029 	struct tcphdr *th;
1030 	struct inpcb *inp;
1031 #ifdef INET6
1032 	struct ip6_hdr *ip6 = NULL;
1033 #endif
1034 
1035 	hlen =
1036 #ifdef INET6
1037 	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1038 #endif
1039 		sizeof(struct ip);
1040 
1041 	KASSERT((&sc->sc_inc) != NULL, ("syncache_respond with NULL in_conninfo pointer"));
1042 
1043 	/* Determine MSS we advertize to other end of connection */
1044 	mssopt = tcp_mssopt(&sc->sc_inc);
1045 
1046 	/* Compute the size of the TCP options. */
1047 	if (sc->sc_flags & SCF_NOOPT) {
1048 		optlen = 0;
1049 	} else {
1050 		optlen = TCPOLEN_MAXSEG +
1051 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1052 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
1053 #ifdef TCP_SIGNATURE
1054 		if (sc->sc_flags & SCF_SIGNATURE)
1055 			optlen += TCPOLEN_SIGNATURE;
1056 #endif
1057 		if (sc->sc_flags & SCF_SACK)
1058 			optlen += TCPOLEN_SACK_PERMITTED;
1059 		optlen = roundup2(optlen, 4);
1060 	}
1061 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1062 
1063 	/*
1064 	 * XXX
1065 	 * assume that the entire packet will fit in a header mbuf
1066 	 */
1067 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1068 
1069 	/*
1070 	 * XXX shouldn't this reuse the mbuf if possible ?
1071 	 * Create the IP+TCP header from scratch.
1072 	 */
1073 	if (m)
1074 		m_freem(m);
1075 
1076 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1077 	if (m == NULL)
1078 		return (ENOBUFS);
1079 	m->m_data += max_linkhdr;
1080 	m->m_len = tlen;
1081 	m->m_pkthdr.len = tlen;
1082 	m->m_pkthdr.rcvif = NULL;
1083 	inp = sc->sc_tp->t_inpcb;
1084 	INP_LOCK(inp);
1085 #ifdef MAC
1086 	mac_create_mbuf_from_inpcb(inp, m);
1087 #endif
1088 
1089 #ifdef INET6
1090 	if (sc->sc_inc.inc_isipv6) {
1091 		ip6 = mtod(m, struct ip6_hdr *);
1092 		ip6->ip6_vfc = IPV6_VERSION;
1093 		ip6->ip6_nxt = IPPROTO_TCP;
1094 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1095 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1096 		ip6->ip6_plen = htons(tlen - hlen);
1097 		/* ip6_hlim is set after checksum */
1098 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1099 		ip6->ip6_flow |= sc->sc_flowlabel;
1100 
1101 		th = (struct tcphdr *)(ip6 + 1);
1102 	} else
1103 #endif
1104 	{
1105 		ip = mtod(m, struct ip *);
1106 		ip->ip_v = IPVERSION;
1107 		ip->ip_hl = sizeof(struct ip) >> 2;
1108 		ip->ip_len = tlen;
1109 		ip->ip_id = 0;
1110 		ip->ip_off = 0;
1111 		ip->ip_sum = 0;
1112 		ip->ip_p = IPPROTO_TCP;
1113 		ip->ip_src = sc->sc_inc.inc_laddr;
1114 		ip->ip_dst = sc->sc_inc.inc_faddr;
1115 		ip->ip_ttl = inp->inp_ip_ttl;   /* XXX */
1116 		ip->ip_tos = inp->inp_ip_tos;   /* XXX */
1117 
1118 		/*
1119 		 * See if we should do MTU discovery.  Route lookups are
1120 		 * expensive, so we will only unset the DF bit if:
1121 		 *
1122 		 *	1) path_mtu_discovery is disabled
1123 		 *	2) the SCF_UNREACH flag has been set
1124 		 */
1125 		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1126 		       ip->ip_off |= IP_DF;
1127 
1128 		th = (struct tcphdr *)(ip + 1);
1129 	}
1130 	th->th_sport = sc->sc_inc.inc_lport;
1131 	th->th_dport = sc->sc_inc.inc_fport;
1132 
1133 	th->th_seq = htonl(sc->sc_iss);
1134 	th->th_ack = htonl(sc->sc_irs + 1);
1135 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1136 	th->th_x2 = 0;
1137 	th->th_flags = TH_SYN|TH_ACK;
1138 	th->th_win = htons(sc->sc_wnd);
1139 	th->th_urp = 0;
1140 
1141 	/* Tack on the TCP options. */
1142 	if (optlen != 0) {
1143 		optp = (u_int8_t *)(th + 1);
1144 		*optp++ = TCPOPT_MAXSEG;
1145 		*optp++ = TCPOLEN_MAXSEG;
1146 		*optp++ = (mssopt >> 8) & 0xff;
1147 		*optp++ = mssopt & 0xff;
1148 
1149 		if (sc->sc_flags & SCF_WINSCALE) {
1150 			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1151 			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1152 			    sc->sc_request_r_scale);
1153 			optp += 4;
1154 		}
1155 
1156 		if (sc->sc_flags & SCF_TIMESTAMP) {
1157 			u_int32_t *lp = (u_int32_t *)(optp);
1158 
1159 			/* Form timestamp option per appendix A of RFC 1323. */
1160 			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1161 			*lp++ = htonl(ticks);
1162 			*lp   = htonl(sc->sc_tsrecent);
1163 			optp += TCPOLEN_TSTAMP_APPA;
1164 		}
1165 
1166 #ifdef TCP_SIGNATURE
1167 		/*
1168 		 * Handle TCP-MD5 passive opener response.
1169 		 */
1170 		if (sc->sc_flags & SCF_SIGNATURE) {
1171 			u_int8_t *bp = optp;
1172 			int i;
1173 
1174 			*bp++ = TCPOPT_SIGNATURE;
1175 			*bp++ = TCPOLEN_SIGNATURE;
1176 			for (i = 0; i < TCP_SIGLEN; i++)
1177 				*bp++ = 0;
1178 			tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1179 			    optp + 2, IPSEC_DIR_OUTBOUND);
1180 			optp += TCPOLEN_SIGNATURE;
1181 		}
1182 #endif /* TCP_SIGNATURE */
1183 
1184 		if (sc->sc_flags & SCF_SACK) {
1185 			*optp++ = TCPOPT_SACK_PERMITTED;
1186 			*optp++ = TCPOLEN_SACK_PERMITTED;
1187 		}
1188 
1189 		{
1190 			/* Pad TCP options to a 4 byte boundary */
1191 			int padlen = optlen - (optp - (u_int8_t *)(th + 1));
1192 			while (padlen-- > 0)
1193 				*optp++ = TCPOPT_EOL;
1194 		}
1195 	}
1196 
1197 #ifdef INET6
1198 	if (sc->sc_inc.inc_isipv6) {
1199 		th->th_sum = 0;
1200 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1201 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1202 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1203 	} else
1204 #endif
1205 	{
1206 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1207 		    htons(tlen - hlen + IPPROTO_TCP));
1208 		m->m_pkthdr.csum_flags = CSUM_TCP;
1209 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1210 #ifdef TCPDEBUG
1211 		/*
1212 		 * Trace.
1213 		 */
1214 		if (so != NULL && so->so_options & SO_DEBUG) {
1215 			struct tcpcb *tp = sototcpcb(so);
1216 			tcp_trace(TA_OUTPUT, tp->t_state, tp,
1217 			    mtod(m, void *), th, 0);
1218 		}
1219 #endif
1220 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, inp);
1221 	}
1222 	INP_UNLOCK(inp);
1223 	return (error);
1224 }
1225 
1226 /*
1227  * cookie layers:
1228  *
1229  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1230  *	| peer iss                                                      |
1231  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1232  *	|                     0                       |(A)|             |
1233  * (A): peer mss index
1234  */
1235 
1236 /*
1237  * The values below are chosen to minimize the size of the tcp_secret
1238  * table, as well as providing roughly a 16 second lifetime for the cookie.
1239  */
1240 
1241 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1242 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1243 
1244 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1245 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1246 #define SYNCOOKIE_TIMEOUT \
1247     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1248 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1249 
1250 static struct {
1251 	u_int32_t	ts_secbits[4];
1252 	u_int		ts_expire;
1253 } tcp_secret[SYNCOOKIE_NSECRETS];
1254 
1255 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1256 
1257 static MD5_CTX syn_ctx;
1258 
1259 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1260 
1261 struct md5_add {
1262 	u_int32_t laddr, faddr;
1263 	u_int32_t secbits[4];
1264 	u_int16_t lport, fport;
1265 };
1266 
1267 #ifdef CTASSERT
1268 CTASSERT(sizeof(struct md5_add) == 28);
1269 #endif
1270 
1271 /*
1272  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1273  * original SYN was accepted, the connection is established.  The second
1274  * SYN is inflight, and if it arrives with an ISN that falls within the
1275  * receive window, the connection is killed.
1276  *
1277  * However, since cookies have other problems, this may not be worth
1278  * worrying about.
1279  */
1280 
1281 static u_int32_t
1282 syncookie_generate(struct syncache *sc, u_int32_t *flowid)
1283 {
1284 	u_int32_t md5_buffer[4];
1285 	u_int32_t data;
1286 	int idx, i;
1287 	struct md5_add add;
1288 
1289 	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1290 
1291 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1292 	if (tcp_secret[idx].ts_expire < ticks) {
1293 		for (i = 0; i < 4; i++)
1294 			tcp_secret[idx].ts_secbits[i] = arc4random();
1295 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1296 	}
1297 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1298 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1299 			break;
1300 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1301 	data ^= sc->sc_irs;				/* peer's iss */
1302 	MD5Init(&syn_ctx);
1303 #ifdef INET6
1304 	if (sc->sc_inc.inc_isipv6) {
1305 		MD5Add(sc->sc_inc.inc6_laddr);
1306 		MD5Add(sc->sc_inc.inc6_faddr);
1307 		add.laddr = 0;
1308 		add.faddr = 0;
1309 	} else
1310 #endif
1311 	{
1312 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1313 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1314 	}
1315 	add.lport = sc->sc_inc.inc_lport;
1316 	add.fport = sc->sc_inc.inc_fport;
1317 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1318 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1319 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1320 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1321 	MD5Add(add);
1322 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1323 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1324 	*flowid = md5_buffer[1];
1325 	return (data);
1326 }
1327 
1328 static struct syncache *
1329 syncookie_lookup(inc, th, so)
1330 	struct in_conninfo *inc;
1331 	struct tcphdr *th;
1332 	struct socket *so;
1333 {
1334 	u_int32_t md5_buffer[4];
1335 	struct syncache *sc;
1336 	u_int32_t data;
1337 	int wnd, idx;
1338 	struct md5_add add;
1339 
1340 	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1341 
1342 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1343 	idx = data & SYNCOOKIE_WNDMASK;
1344 	if (tcp_secret[idx].ts_expire < ticks ||
1345 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1346 		return (NULL);
1347 	MD5Init(&syn_ctx);
1348 #ifdef INET6
1349 	if (inc->inc_isipv6) {
1350 		MD5Add(inc->inc6_laddr);
1351 		MD5Add(inc->inc6_faddr);
1352 		add.laddr = 0;
1353 		add.faddr = 0;
1354 	} else
1355 #endif
1356 	{
1357 		add.laddr = inc->inc_laddr.s_addr;
1358 		add.faddr = inc->inc_faddr.s_addr;
1359 	}
1360 	add.lport = inc->inc_lport;
1361 	add.fport = inc->inc_fport;
1362 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1363 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1364 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1365 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1366 	MD5Add(add);
1367 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1368 	data ^= md5_buffer[0];
1369 	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1370 		return (NULL);
1371 	data = data >> SYNCOOKIE_WNDBITS;
1372 
1373 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1374 	if (sc == NULL)
1375 		return (NULL);
1376 	/*
1377 	 * Fill in the syncache values.
1378 	 * XXX duplicate code from syncache_add
1379 	 */
1380 	sc->sc_ipopts = NULL;
1381 	sc->sc_inc.inc_fport = inc->inc_fport;
1382 	sc->sc_inc.inc_lport = inc->inc_lport;
1383 	sc->sc_tp = sototcpcb(so);
1384 #ifdef INET6
1385 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1386 	if (inc->inc_isipv6) {
1387 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1388 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1389 		if (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)
1390 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1391 	} else
1392 #endif
1393 	{
1394 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1395 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1396 	}
1397 	sc->sc_irs = th->th_seq - 1;
1398 	sc->sc_iss = th->th_ack - 1;
1399 	wnd = sbspace(&so->so_rcv);
1400 	wnd = imax(wnd, 0);
1401 	wnd = imin(wnd, TCP_MAXWIN);
1402 	sc->sc_wnd = wnd;
1403 	sc->sc_flags = 0;
1404 	sc->sc_rxtslot = 0;
1405 	sc->sc_peer_mss = tcp_msstab[data];
1406 	return (sc);
1407 }
1408