xref: /freebsd/sys/netinet/tcp_syncache.c (revision 1f467eaaf82a9b863fc6264c7c8e6b40fffdb357)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Jonathan Lemon
6  * and McAfee Research, the Security Research Division of McAfee, Inc. under
7  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8  * DARPA CHATS research program.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD$
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/mac.h>
47 #include <sys/mbuf.h>
48 #include <sys/md5.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/random.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 
54 #include <net/if.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/in_var.h>
61 #include <netinet/in_pcb.h>
62 #include <netinet/ip_var.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #include <netinet/icmp6.h>
66 #include <netinet6/nd6.h>
67 #include <netinet6/ip6_var.h>
68 #include <netinet6/in6_pcb.h>
69 #endif
70 #include <netinet/tcp.h>
71 #ifdef TCPDEBUG
72 #include <netinet/tcpip.h>
73 #endif
74 #include <netinet/tcp_fsm.h>
75 #include <netinet/tcp_seq.h>
76 #include <netinet/tcp_timer.h>
77 #include <netinet/tcp_var.h>
78 #ifdef TCPDEBUG
79 #include <netinet/tcp_debug.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/tcp6_var.h>
83 #endif
84 
85 #ifdef IPSEC
86 #include <netinet6/ipsec.h>
87 #ifdef INET6
88 #include <netinet6/ipsec6.h>
89 #endif
90 #endif /*IPSEC*/
91 
92 #ifdef FAST_IPSEC
93 #include <netipsec/ipsec.h>
94 #ifdef INET6
95 #include <netipsec/ipsec6.h>
96 #endif
97 #include <netipsec/key.h>
98 #endif /*FAST_IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 #include <vm/uma.h>
102 
103 static int tcp_syncookies = 1;
104 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
105     &tcp_syncookies, 0,
106     "Use TCP SYN cookies if the syncache overflows");
107 
108 static void	 syncache_drop(struct syncache *, struct syncache_head *);
109 static void	 syncache_free(struct syncache *);
110 static void	 syncache_insert(struct syncache *, struct syncache_head *);
111 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
112 #ifdef TCPDEBUG
113 static int	 syncache_respond(struct syncache *, struct mbuf *, struct socket *);
114 #else
115 static int	 syncache_respond(struct syncache *, struct mbuf *);
116 #endif
117 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
118 		    struct mbuf *m);
119 static void	 syncache_timer(void *);
120 static u_int32_t syncookie_generate(struct syncache *, u_int32_t *);
121 static struct syncache *syncookie_lookup(struct in_conninfo *,
122 		    struct tcphdr *, struct socket *);
123 
124 /*
125  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
126  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
127  * the odds are that the user has given up attempting to connect by then.
128  */
129 #define SYNCACHE_MAXREXMTS		3
130 
131 /* Arbitrary values */
132 #define TCP_SYNCACHE_HASHSIZE		512
133 #define TCP_SYNCACHE_BUCKETLIMIT	30
134 
135 struct tcp_syncache {
136 	struct	syncache_head *hashbase;
137 	uma_zone_t zone;
138 	u_int	hashsize;
139 	u_int	hashmask;
140 	u_int	bucket_limit;
141 	u_int	cache_count;
142 	u_int	cache_limit;
143 	u_int	rexmt_limit;
144 	u_int	hash_secret;
145 	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
146 	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
147 };
148 static struct tcp_syncache tcp_syncache;
149 
150 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
151 
152 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
153      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
154 
155 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
156      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
157 
158 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
159      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
160 
161 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
162      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
163 
164 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
165      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
166 
167 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
168 
169 #define SYNCACHE_HASH(inc, mask)					\
170 	((tcp_syncache.hash_secret ^					\
171 	  (inc)->inc_faddr.s_addr ^					\
172 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
173 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
174 
175 #define SYNCACHE_HASH6(inc, mask)					\
176 	((tcp_syncache.hash_secret ^					\
177 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
178 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
179 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
180 
181 #define ENDPTS_EQ(a, b) (						\
182 	(a)->ie_fport == (b)->ie_fport &&				\
183 	(a)->ie_lport == (b)->ie_lport &&				\
184 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
185 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
186 )
187 
188 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
189 
190 #define SYNCACHE_TIMEOUT(sc, slot) do {				\
191 	sc->sc_rxtslot = (slot);					\
192 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
193 	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
194 	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
195 		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
196 		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
197 		    syncache_timer, (void *)((intptr_t)(slot)));	\
198 } while (0)
199 
200 static void
201 syncache_free(struct syncache *sc)
202 {
203 	if (sc->sc_ipopts)
204 		(void) m_free(sc->sc_ipopts);
205 
206 	uma_zfree(tcp_syncache.zone, sc);
207 }
208 
209 void
210 syncache_init(void)
211 {
212 	int i;
213 
214 	tcp_syncache.cache_count = 0;
215 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
216 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
217 	tcp_syncache.cache_limit =
218 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
219 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
220 	tcp_syncache.hash_secret = arc4random();
221 
222 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
223 	    &tcp_syncache.hashsize);
224 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
225 	    &tcp_syncache.cache_limit);
226 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
227 	    &tcp_syncache.bucket_limit);
228 	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
229 		printf("WARNING: syncache hash size is not a power of 2.\n");
230 		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
231 	}
232 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
233 
234 	/* Allocate the hash table. */
235 	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
236 	    tcp_syncache.hashsize * sizeof(struct syncache_head),
237 	    M_SYNCACHE, M_WAITOK);
238 
239 	/* Initialize the hash buckets. */
240 	for (i = 0; i < tcp_syncache.hashsize; i++) {
241 		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
242 		tcp_syncache.hashbase[i].sch_length = 0;
243 	}
244 
245 	/* Initialize the timer queues. */
246 	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
247 		TAILQ_INIT(&tcp_syncache.timerq[i]);
248 		callout_init(&tcp_syncache.tt_timerq[i], NET_CALLOUT_MPSAFE);
249 	}
250 
251 	/*
252 	 * Allocate the syncache entries.  Allow the zone to allocate one
253 	 * more entry than cache limit, so a new entry can bump out an
254 	 * older one.
255 	 */
256 	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
257 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
258 	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
259 	tcp_syncache.cache_limit -= 1;
260 }
261 
262 static void
263 syncache_insert(sc, sch)
264 	struct syncache *sc;
265 	struct syncache_head *sch;
266 {
267 	struct syncache *sc2;
268 	int i;
269 
270 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
271 
272 	/*
273 	 * Make sure that we don't overflow the per-bucket
274 	 * limit or the total cache size limit.
275 	 */
276 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
277 		/*
278 		 * The bucket is full, toss the oldest element.
279 		 */
280 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
281 		sc2->sc_tp->ts_recent = ticks;
282 		syncache_drop(sc2, sch);
283 		tcpstat.tcps_sc_bucketoverflow++;
284 	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
285 		/*
286 		 * The cache is full.  Toss the oldest entry in the
287 		 * entire cache.  This is the front entry in the
288 		 * first non-empty timer queue with the largest
289 		 * timeout value.
290 		 */
291 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
292 			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
293 			if (sc2 != NULL)
294 				break;
295 		}
296 		sc2->sc_tp->ts_recent = ticks;
297 		syncache_drop(sc2, NULL);
298 		tcpstat.tcps_sc_cacheoverflow++;
299 	}
300 
301 	/* Initialize the entry's timer. */
302 	SYNCACHE_TIMEOUT(sc, 0);
303 
304 	/* Put it into the bucket. */
305 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
306 	sch->sch_length++;
307 	tcp_syncache.cache_count++;
308 	tcpstat.tcps_sc_added++;
309 }
310 
311 static void
312 syncache_drop(sc, sch)
313 	struct syncache *sc;
314 	struct syncache_head *sch;
315 {
316 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
317 
318 	if (sch == NULL) {
319 #ifdef INET6
320 		if (sc->sc_inc.inc_isipv6) {
321 			sch = &tcp_syncache.hashbase[
322 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
323 		} else
324 #endif
325 		{
326 			sch = &tcp_syncache.hashbase[
327 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
328 		}
329 	}
330 
331 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
332 	sch->sch_length--;
333 	tcp_syncache.cache_count--;
334 
335 	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
336 	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
337 		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
338 
339 	syncache_free(sc);
340 }
341 
342 /*
343  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
344  * If we have retransmitted an entry the maximum number of times, expire it.
345  */
346 static void
347 syncache_timer(xslot)
348 	void *xslot;
349 {
350 	intptr_t slot = (intptr_t)xslot;
351 	struct syncache *sc, *nsc;
352 	struct inpcb *inp;
353 
354 	INP_INFO_WLOCK(&tcbinfo);
355 	if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
356 	    !callout_active(&tcp_syncache.tt_timerq[slot])) {
357 		/* XXX can this happen? */
358 		INP_INFO_WUNLOCK(&tcbinfo);
359 		return;
360 	}
361 	callout_deactivate(&tcp_syncache.tt_timerq[slot]);
362 
363 	nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
364 	while (nsc != NULL) {
365 		if (ticks < nsc->sc_rxttime)
366 			break;
367 		sc = nsc;
368 		inp = sc->sc_tp->t_inpcb;
369 		if (slot == SYNCACHE_MAXREXMTS ||
370 		    slot >= tcp_syncache.rexmt_limit ||
371 		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
372 			nsc = TAILQ_NEXT(sc, sc_timerq);
373 			syncache_drop(sc, NULL);
374 			tcpstat.tcps_sc_stale++;
375 			continue;
376 		}
377 		/*
378 		 * syncache_respond() may call back into the syncache to
379 		 * to modify another entry, so do not obtain the next
380 		 * entry on the timer chain until it has completed.
381 		 */
382 #ifdef TCPDEBUG
383 		(void) syncache_respond(sc, NULL, NULL);
384 #else
385 		(void) syncache_respond(sc, NULL);
386 #endif
387 		nsc = TAILQ_NEXT(sc, sc_timerq);
388 		tcpstat.tcps_sc_retransmitted++;
389 		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
390 		SYNCACHE_TIMEOUT(sc, slot + 1);
391 	}
392 	if (nsc != NULL)
393 		callout_reset(&tcp_syncache.tt_timerq[slot],
394 		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
395 	INP_INFO_WUNLOCK(&tcbinfo);
396 }
397 
398 /*
399  * Find an entry in the syncache.
400  */
401 struct syncache *
402 syncache_lookup(inc, schp)
403 	struct in_conninfo *inc;
404 	struct syncache_head **schp;
405 {
406 	struct syncache *sc;
407 	struct syncache_head *sch;
408 
409 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
410 
411 #ifdef INET6
412 	if (inc->inc_isipv6) {
413 		sch = &tcp_syncache.hashbase[
414 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
415 		*schp = sch;
416 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
417 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
418 				return (sc);
419 		}
420 	} else
421 #endif
422 	{
423 		sch = &tcp_syncache.hashbase[
424 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
425 		*schp = sch;
426 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
427 #ifdef INET6
428 			if (sc->sc_inc.inc_isipv6)
429 				continue;
430 #endif
431 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
432 				return (sc);
433 		}
434 	}
435 	return (NULL);
436 }
437 
438 /*
439  * This function is called when we get a RST for a
440  * non-existent connection, so that we can see if the
441  * connection is in the syn cache.  If it is, zap it.
442  */
443 void
444 syncache_chkrst(inc, th)
445 	struct in_conninfo *inc;
446 	struct tcphdr *th;
447 {
448 	struct syncache *sc;
449 	struct syncache_head *sch;
450 
451 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
452 
453 	sc = syncache_lookup(inc, &sch);
454 	if (sc == NULL)
455 		return;
456 	/*
457 	 * If the RST bit is set, check the sequence number to see
458 	 * if this is a valid reset segment.
459 	 * RFC 793 page 37:
460 	 *   In all states except SYN-SENT, all reset (RST) segments
461 	 *   are validated by checking their SEQ-fields.  A reset is
462 	 *   valid if its sequence number is in the window.
463 	 *
464 	 *   The sequence number in the reset segment is normally an
465 	 *   echo of our outgoing acknowlegement numbers, but some hosts
466 	 *   send a reset with the sequence number at the rightmost edge
467 	 *   of our receive window, and we have to handle this case.
468 	 */
469 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
470 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
471 		syncache_drop(sc, sch);
472 		tcpstat.tcps_sc_reset++;
473 	}
474 }
475 
476 void
477 syncache_badack(inc)
478 	struct in_conninfo *inc;
479 {
480 	struct syncache *sc;
481 	struct syncache_head *sch;
482 
483 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
484 
485 	sc = syncache_lookup(inc, &sch);
486 	if (sc != NULL) {
487 		syncache_drop(sc, sch);
488 		tcpstat.tcps_sc_badack++;
489 	}
490 }
491 
492 void
493 syncache_unreach(inc, th)
494 	struct in_conninfo *inc;
495 	struct tcphdr *th;
496 {
497 	struct syncache *sc;
498 	struct syncache_head *sch;
499 
500 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
501 
502 	sc = syncache_lookup(inc, &sch);
503 	if (sc == NULL)
504 		return;
505 
506 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
507 	if (ntohl(th->th_seq) != sc->sc_iss)
508 		return;
509 
510 	/*
511 	 * If we've rertransmitted 3 times and this is our second error,
512 	 * we remove the entry.  Otherwise, we allow it to continue on.
513 	 * This prevents us from incorrectly nuking an entry during a
514 	 * spurious network outage.
515 	 *
516 	 * See tcp_notify().
517 	 */
518 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
519 		sc->sc_flags |= SCF_UNREACH;
520 		return;
521 	}
522 	syncache_drop(sc, sch);
523 	tcpstat.tcps_sc_unreach++;
524 }
525 
526 /*
527  * Build a new TCP socket structure from a syncache entry.
528  */
529 static struct socket *
530 syncache_socket(sc, lso, m)
531 	struct syncache *sc;
532 	struct socket *lso;
533 	struct mbuf *m;
534 {
535 	struct inpcb *inp = NULL;
536 	struct socket *so;
537 	struct tcpcb *tp;
538 
539 	NET_ASSERT_GIANT();
540 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
541 
542 	/*
543 	 * Ok, create the full blown connection, and set things up
544 	 * as they would have been set up if we had created the
545 	 * connection when the SYN arrived.  If we can't create
546 	 * the connection, abort it.
547 	 */
548 	so = sonewconn(lso, SS_ISCONNECTED);
549 	if (so == NULL) {
550 		/*
551 		 * Drop the connection; we will send a RST if the peer
552 		 * retransmits the ACK,
553 		 */
554 		tcpstat.tcps_listendrop++;
555 		goto abort2;
556 	}
557 #ifdef MAC
558 	SOCK_LOCK(so);
559 	mac_set_socket_peer_from_mbuf(m, so);
560 	SOCK_UNLOCK(so);
561 #endif
562 
563 	inp = sotoinpcb(so);
564 	INP_LOCK(inp);
565 
566 	/*
567 	 * Insert new socket into hash list.
568 	 */
569 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
570 #ifdef INET6
571 	if (sc->sc_inc.inc_isipv6) {
572 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
573 	} else {
574 		inp->inp_vflag &= ~INP_IPV6;
575 		inp->inp_vflag |= INP_IPV4;
576 #endif
577 		inp->inp_laddr = sc->sc_inc.inc_laddr;
578 #ifdef INET6
579 	}
580 #endif
581 	inp->inp_lport = sc->sc_inc.inc_lport;
582 	if (in_pcbinshash(inp) != 0) {
583 		/*
584 		 * Undo the assignments above if we failed to
585 		 * put the PCB on the hash lists.
586 		 */
587 #ifdef INET6
588 		if (sc->sc_inc.inc_isipv6)
589 			inp->in6p_laddr = in6addr_any;
590 		else
591 #endif
592 			inp->inp_laddr.s_addr = INADDR_ANY;
593 		inp->inp_lport = 0;
594 		goto abort;
595 	}
596 #ifdef IPSEC
597 	/* copy old policy into new socket's */
598 	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
599 		printf("syncache_expand: could not copy policy\n");
600 #endif
601 #ifdef FAST_IPSEC
602 	/* copy old policy into new socket's */
603 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
604 		printf("syncache_expand: could not copy policy\n");
605 #endif
606 #ifdef INET6
607 	if (sc->sc_inc.inc_isipv6) {
608 		struct inpcb *oinp = sotoinpcb(lso);
609 		struct in6_addr laddr6;
610 		struct sockaddr_in6 sin6;
611 		/*
612 		 * Inherit socket options from the listening socket.
613 		 * Note that in6p_inputopts are not (and should not be)
614 		 * copied, since it stores previously received options and is
615 		 * used to detect if each new option is different than the
616 		 * previous one and hence should be passed to a user.
617 		 * If we copied in6p_inputopts, a user would not be able to
618 		 * receive options just after calling the accept system call.
619 		 */
620 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
621 		if (oinp->in6p_outputopts)
622 			inp->in6p_outputopts =
623 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
624 
625 		sin6.sin6_family = AF_INET6;
626 		sin6.sin6_len = sizeof(sin6);
627 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
628 		sin6.sin6_port = sc->sc_inc.inc_fport;
629 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
630 		laddr6 = inp->in6p_laddr;
631 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
632 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
633 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
634 		    thread0.td_ucred)) {
635 			inp->in6p_laddr = laddr6;
636 			goto abort;
637 		}
638 		/* Override flowlabel from in6_pcbconnect. */
639 		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
640 		inp->in6p_flowinfo |= sc->sc_flowlabel;
641 	} else
642 #endif
643 	{
644 		struct in_addr laddr;
645 		struct sockaddr_in sin;
646 
647 		inp->inp_options = ip_srcroute(m);
648 		if (inp->inp_options == NULL) {
649 			inp->inp_options = sc->sc_ipopts;
650 			sc->sc_ipopts = NULL;
651 		}
652 
653 		sin.sin_family = AF_INET;
654 		sin.sin_len = sizeof(sin);
655 		sin.sin_addr = sc->sc_inc.inc_faddr;
656 		sin.sin_port = sc->sc_inc.inc_fport;
657 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
658 		laddr = inp->inp_laddr;
659 		if (inp->inp_laddr.s_addr == INADDR_ANY)
660 			inp->inp_laddr = sc->sc_inc.inc_laddr;
661 		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
662 		    thread0.td_ucred)) {
663 			inp->inp_laddr = laddr;
664 			goto abort;
665 		}
666 	}
667 
668 	tp = intotcpcb(inp);
669 	tp->t_state = TCPS_SYN_RECEIVED;
670 	tp->iss = sc->sc_iss;
671 	tp->irs = sc->sc_irs;
672 	tcp_rcvseqinit(tp);
673 	tcp_sendseqinit(tp);
674 	tp->snd_wl1 = sc->sc_irs;
675 	tp->rcv_up = sc->sc_irs + 1;
676 	tp->rcv_wnd = sc->sc_wnd;
677 	tp->rcv_adv += tp->rcv_wnd;
678 
679 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
680 	if (sc->sc_flags & SCF_NOOPT)
681 		tp->t_flags |= TF_NOOPT;
682 	if (sc->sc_flags & SCF_WINSCALE) {
683 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
684 		tp->requested_s_scale = sc->sc_requested_s_scale;
685 		tp->request_r_scale = sc->sc_request_r_scale;
686 	}
687 	if (sc->sc_flags & SCF_TIMESTAMP) {
688 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
689 		tp->ts_recent = sc->sc_tsrecent;
690 		tp->ts_recent_age = ticks;
691 	}
692 #ifdef TCP_SIGNATURE
693 	if (sc->sc_flags & SCF_SIGNATURE)
694 		tp->t_flags |= TF_SIGNATURE;
695 #endif
696 	if (sc->sc_flags & SCF_SACK) {
697 		tp->sack_enable = 1;
698 		tp->t_flags |= TF_SACK_PERMIT;
699 	}
700 	/*
701 	 * Set up MSS and get cached values from tcp_hostcache.
702 	 * This might overwrite some of the defaults we just set.
703 	 */
704 	tcp_mss(tp, sc->sc_peer_mss);
705 
706 	/*
707 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
708 	 */
709 	if (sc->sc_rxtslot != 0)
710 		tp->snd_cwnd = tp->t_maxseg;
711 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
712 
713 	INP_UNLOCK(inp);
714 
715 	tcpstat.tcps_accepts++;
716 	return (so);
717 
718 abort:
719 	INP_UNLOCK(inp);
720 abort2:
721 	if (so != NULL)
722 		(void) soabort(so);
723 	return (NULL);
724 }
725 
726 /*
727  * This function gets called when we receive an ACK for a
728  * socket in the LISTEN state.  We look up the connection
729  * in the syncache, and if its there, we pull it out of
730  * the cache and turn it into a full-blown connection in
731  * the SYN-RECEIVED state.
732  */
733 int
734 syncache_expand(inc, th, sop, m)
735 	struct in_conninfo *inc;
736 	struct tcphdr *th;
737 	struct socket **sop;
738 	struct mbuf *m;
739 {
740 	struct syncache *sc;
741 	struct syncache_head *sch;
742 	struct socket *so;
743 
744 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
745 
746 	sc = syncache_lookup(inc, &sch);
747 	if (sc == NULL) {
748 		/*
749 		 * There is no syncache entry, so see if this ACK is
750 		 * a returning syncookie.  To do this, first:
751 		 *  A. See if this socket has had a syncache entry dropped in
752 		 *     the past.  We don't want to accept a bogus syncookie
753 		 *     if we've never received a SYN.
754 		 *  B. check that the syncookie is valid.  If it is, then
755 		 *     cobble up a fake syncache entry, and return.
756 		 */
757 		if (!tcp_syncookies)
758 			return (0);
759 		sc = syncookie_lookup(inc, th, *sop);
760 		if (sc == NULL)
761 			return (0);
762 		sch = NULL;
763 		tcpstat.tcps_sc_recvcookie++;
764 	}
765 
766 	/*
767 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
768 	 */
769 	if (th->th_ack != sc->sc_iss + 1)
770 		return (0);
771 
772 	so = syncache_socket(sc, *sop, m);
773 	if (so == NULL) {
774 #if 0
775 resetandabort:
776 		/* XXXjlemon check this - is this correct? */
777 		(void) tcp_respond(NULL, m, m, th,
778 		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
779 #endif
780 		m_freem(m);			/* XXX only needed for above */
781 		tcpstat.tcps_sc_aborted++;
782 	} else
783 		tcpstat.tcps_sc_completed++;
784 
785 	if (sch == NULL)
786 		syncache_free(sc);
787 	else
788 		syncache_drop(sc, sch);
789 	*sop = so;
790 	return (1);
791 }
792 
793 /*
794  * Given a LISTEN socket and an inbound SYN request, add
795  * this to the syn cache, and send back a segment:
796  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
797  * to the source.
798  *
799  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
800  * Doing so would require that we hold onto the data and deliver it
801  * to the application.  However, if we are the target of a SYN-flood
802  * DoS attack, an attacker could send data which would eventually
803  * consume all available buffer space if it were ACKed.  By not ACKing
804  * the data, we avoid this DoS scenario.
805  */
806 int
807 syncache_add(inc, to, th, sop, m)
808 	struct in_conninfo *inc;
809 	struct tcpopt *to;
810 	struct tcphdr *th;
811 	struct socket **sop;
812 	struct mbuf *m;
813 {
814 	struct tcpcb *tp;
815 	struct socket *so;
816 	struct syncache *sc = NULL;
817 	struct syncache_head *sch;
818 	struct mbuf *ipopts = NULL;
819 	u_int32_t flowtmp;
820 	int i, win;
821 
822 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
823 
824 	so = *sop;
825 	tp = sototcpcb(so);
826 
827 	/*
828 	 * Remember the IP options, if any.
829 	 */
830 #ifdef INET6
831 	if (!inc->inc_isipv6)
832 #endif
833 		ipopts = ip_srcroute(m);
834 
835 	/*
836 	 * See if we already have an entry for this connection.
837 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
838 	 *
839 	 * XXX
840 	 * should the syncache be re-initialized with the contents
841 	 * of the new SYN here (which may have different options?)
842 	 */
843 	sc = syncache_lookup(inc, &sch);
844 	if (sc != NULL) {
845 		tcpstat.tcps_sc_dupsyn++;
846 		if (ipopts) {
847 			/*
848 			 * If we were remembering a previous source route,
849 			 * forget it and use the new one we've been given.
850 			 */
851 			if (sc->sc_ipopts)
852 				(void) m_free(sc->sc_ipopts);
853 			sc->sc_ipopts = ipopts;
854 		}
855 		/*
856 		 * Update timestamp if present.
857 		 */
858 		if (sc->sc_flags & SCF_TIMESTAMP)
859 			sc->sc_tsrecent = to->to_tsval;
860 		/*
861 		 * PCB may have changed, pick up new values.
862 		 */
863 		sc->sc_tp = tp;
864 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
865 #ifdef TCPDEBUG
866 		if (syncache_respond(sc, m, so) == 0) {
867 #else
868 		if (syncache_respond(sc, m) == 0) {
869 #endif
870 			/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
871 			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
872 			    sc, sc_timerq);
873 			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
874 			tcpstat.tcps_sndacks++;
875 			tcpstat.tcps_sndtotal++;
876 		}
877 		*sop = NULL;
878 		return (1);
879 	}
880 
881 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
882 	if (sc == NULL) {
883 		/*
884 		 * The zone allocator couldn't provide more entries.
885 		 * Treat this as if the cache was full; drop the oldest
886 		 * entry and insert the new one.
887 		 */
888 		/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
889 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
890 			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
891 			if (sc != NULL)
892 				break;
893 		}
894 		sc->sc_tp->ts_recent = ticks;
895 		syncache_drop(sc, NULL);
896 		tcpstat.tcps_sc_zonefail++;
897 		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
898 		if (sc == NULL) {
899 			if (ipopts)
900 				(void) m_free(ipopts);
901 			return (0);
902 		}
903 	}
904 
905 	/*
906 	 * Fill in the syncache values.
907 	 */
908 	bzero(sc, sizeof(*sc));
909 	sc->sc_tp = tp;
910 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
911 	sc->sc_ipopts = ipopts;
912 	sc->sc_inc.inc_fport = inc->inc_fport;
913 	sc->sc_inc.inc_lport = inc->inc_lport;
914 #ifdef INET6
915 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
916 	if (inc->inc_isipv6) {
917 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
918 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
919 	} else
920 #endif
921 	{
922 		sc->sc_inc.inc_faddr = inc->inc_faddr;
923 		sc->sc_inc.inc_laddr = inc->inc_laddr;
924 	}
925 	sc->sc_irs = th->th_seq;
926 	sc->sc_flags = 0;
927 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
928 	sc->sc_flowlabel = 0;
929 	if (tcp_syncookies) {
930 		sc->sc_iss = syncookie_generate(sc, &flowtmp);
931 #ifdef INET6
932 		if (inc->inc_isipv6 &&
933 		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
934 			sc->sc_flowlabel = flowtmp & IPV6_FLOWLABEL_MASK;
935 		}
936 #endif
937 	} else {
938 		sc->sc_iss = arc4random();
939 #ifdef INET6
940 		if (inc->inc_isipv6 &&
941 		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
942 			sc->sc_flowlabel =
943 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
944 		}
945 #endif
946 	}
947 
948 	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
949 	win = sbspace(&so->so_rcv);
950 	win = imax(win, 0);
951 	win = imin(win, TCP_MAXWIN);
952 	sc->sc_wnd = win;
953 
954 	if (tcp_do_rfc1323) {
955 		/*
956 		 * A timestamp received in a SYN makes
957 		 * it ok to send timestamp requests and replies.
958 		 */
959 		if (to->to_flags & TOF_TS) {
960 			sc->sc_tsrecent = to->to_tsval;
961 			sc->sc_flags |= SCF_TIMESTAMP;
962 		}
963 		if (to->to_flags & TOF_SCALE) {
964 			int wscale = 0;
965 
966 			/* Compute proper scaling value from buffer space */
967 			while (wscale < TCP_MAX_WINSHIFT &&
968 			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
969 				wscale++;
970 			sc->sc_request_r_scale = wscale;
971 			sc->sc_requested_s_scale = to->to_requested_s_scale;
972 			sc->sc_flags |= SCF_WINSCALE;
973 		}
974 	}
975 	if (tp->t_flags & TF_NOOPT)
976 		sc->sc_flags = SCF_NOOPT;
977 #ifdef TCP_SIGNATURE
978 	/*
979 	 * If listening socket requested TCP digests, and received SYN
980 	 * contains the option, flag this in the syncache so that
981 	 * syncache_respond() will do the right thing with the SYN+ACK.
982 	 * XXX Currently we always record the option by default and will
983 	 * attempt to use it in syncache_respond().
984 	 */
985 	if (to->to_flags & TOF_SIGNATURE)
986 		sc->sc_flags |= SCF_SIGNATURE;
987 #endif
988 
989 	if (to->to_flags & TOF_SACK)
990 		sc->sc_flags |= SCF_SACK;
991 
992 	/*
993 	 * Do a standard 3-way handshake.
994 	 */
995 #ifdef TCPDEBUG
996 	if (syncache_respond(sc, m, so) == 0) {
997 #else
998 	if (syncache_respond(sc, m) == 0) {
999 #endif
1000 		syncache_insert(sc, sch);
1001 		tcpstat.tcps_sndacks++;
1002 		tcpstat.tcps_sndtotal++;
1003 	} else {
1004 		syncache_free(sc);
1005 		tcpstat.tcps_sc_dropped++;
1006 	}
1007 	*sop = NULL;
1008 	return (1);
1009 }
1010 
1011 #ifdef TCPDEBUG
1012 static int
1013 syncache_respond(sc, m, so)
1014 	struct syncache *sc;
1015 	struct mbuf *m;
1016 	struct socket *so;
1017 #else
1018 static int
1019 syncache_respond(sc, m)
1020 	struct syncache *sc;
1021 	struct mbuf *m;
1022 #endif
1023 {
1024 	u_int8_t *optp;
1025 	int optlen, error;
1026 	u_int16_t tlen, hlen, mssopt;
1027 	struct ip *ip = NULL;
1028 	struct tcphdr *th;
1029 	struct inpcb *inp;
1030 #ifdef INET6
1031 	struct ip6_hdr *ip6 = NULL;
1032 #endif
1033 
1034 	hlen =
1035 #ifdef INET6
1036 	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1037 #endif
1038 		sizeof(struct ip);
1039 
1040 	KASSERT((&sc->sc_inc) != NULL, ("syncache_respond with NULL in_conninfo pointer"));
1041 
1042 	/* Determine MSS we advertize to other end of connection */
1043 	mssopt = tcp_mssopt(&sc->sc_inc);
1044 
1045 	/* Compute the size of the TCP options. */
1046 	if (sc->sc_flags & SCF_NOOPT) {
1047 		optlen = 0;
1048 	} else {
1049 		optlen = TCPOLEN_MAXSEG +
1050 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1051 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
1052 #ifdef TCP_SIGNATURE
1053 		if (sc->sc_flags & SCF_SIGNATURE)
1054 			optlen += TCPOLEN_SIGNATURE;
1055 #endif
1056 		if (sc->sc_flags & SCF_SACK)
1057 			optlen += TCPOLEN_SACK_PERMITTED;
1058 		optlen = roundup2(optlen, 4);
1059 	}
1060 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1061 
1062 	/*
1063 	 * XXX
1064 	 * assume that the entire packet will fit in a header mbuf
1065 	 */
1066 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1067 
1068 	/*
1069 	 * XXX shouldn't this reuse the mbuf if possible ?
1070 	 * Create the IP+TCP header from scratch.
1071 	 */
1072 	if (m)
1073 		m_freem(m);
1074 
1075 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1076 	if (m == NULL)
1077 		return (ENOBUFS);
1078 	m->m_data += max_linkhdr;
1079 	m->m_len = tlen;
1080 	m->m_pkthdr.len = tlen;
1081 	m->m_pkthdr.rcvif = NULL;
1082 	inp = sc->sc_tp->t_inpcb;
1083 	INP_LOCK(inp);
1084 #ifdef MAC
1085 	mac_create_mbuf_from_inpcb(inp, m);
1086 #endif
1087 
1088 #ifdef INET6
1089 	if (sc->sc_inc.inc_isipv6) {
1090 		ip6 = mtod(m, struct ip6_hdr *);
1091 		ip6->ip6_vfc = IPV6_VERSION;
1092 		ip6->ip6_nxt = IPPROTO_TCP;
1093 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1094 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1095 		ip6->ip6_plen = htons(tlen - hlen);
1096 		/* ip6_hlim is set after checksum */
1097 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1098 		ip6->ip6_flow |= sc->sc_flowlabel;
1099 
1100 		th = (struct tcphdr *)(ip6 + 1);
1101 	} else
1102 #endif
1103 	{
1104 		ip = mtod(m, struct ip *);
1105 		ip->ip_v = IPVERSION;
1106 		ip->ip_hl = sizeof(struct ip) >> 2;
1107 		ip->ip_len = tlen;
1108 		ip->ip_id = 0;
1109 		ip->ip_off = 0;
1110 		ip->ip_sum = 0;
1111 		ip->ip_p = IPPROTO_TCP;
1112 		ip->ip_src = sc->sc_inc.inc_laddr;
1113 		ip->ip_dst = sc->sc_inc.inc_faddr;
1114 		ip->ip_ttl = inp->inp_ip_ttl;   /* XXX */
1115 		ip->ip_tos = inp->inp_ip_tos;   /* XXX */
1116 
1117 		/*
1118 		 * See if we should do MTU discovery.  Route lookups are
1119 		 * expensive, so we will only unset the DF bit if:
1120 		 *
1121 		 *	1) path_mtu_discovery is disabled
1122 		 *	2) the SCF_UNREACH flag has been set
1123 		 */
1124 		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1125 		       ip->ip_off |= IP_DF;
1126 
1127 		th = (struct tcphdr *)(ip + 1);
1128 	}
1129 	th->th_sport = sc->sc_inc.inc_lport;
1130 	th->th_dport = sc->sc_inc.inc_fport;
1131 
1132 	th->th_seq = htonl(sc->sc_iss);
1133 	th->th_ack = htonl(sc->sc_irs + 1);
1134 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1135 	th->th_x2 = 0;
1136 	th->th_flags = TH_SYN|TH_ACK;
1137 	th->th_win = htons(sc->sc_wnd);
1138 	th->th_urp = 0;
1139 
1140 	/* Tack on the TCP options. */
1141 	if (optlen != 0) {
1142 		optp = (u_int8_t *)(th + 1);
1143 		*optp++ = TCPOPT_MAXSEG;
1144 		*optp++ = TCPOLEN_MAXSEG;
1145 		*optp++ = (mssopt >> 8) & 0xff;
1146 		*optp++ = mssopt & 0xff;
1147 
1148 		if (sc->sc_flags & SCF_WINSCALE) {
1149 			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1150 			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1151 			    sc->sc_request_r_scale);
1152 			optp += 4;
1153 		}
1154 
1155 		if (sc->sc_flags & SCF_TIMESTAMP) {
1156 			u_int32_t *lp = (u_int32_t *)(optp);
1157 
1158 			/* Form timestamp option per appendix A of RFC 1323. */
1159 			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1160 			*lp++ = htonl(ticks);
1161 			*lp   = htonl(sc->sc_tsrecent);
1162 			optp += TCPOLEN_TSTAMP_APPA;
1163 		}
1164 
1165 #ifdef TCP_SIGNATURE
1166 		/*
1167 		 * Handle TCP-MD5 passive opener response.
1168 		 */
1169 		if (sc->sc_flags & SCF_SIGNATURE) {
1170 			u_int8_t *bp = optp;
1171 			int i;
1172 
1173 			*bp++ = TCPOPT_SIGNATURE;
1174 			*bp++ = TCPOLEN_SIGNATURE;
1175 			for (i = 0; i < TCP_SIGLEN; i++)
1176 				*bp++ = 0;
1177 			tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1178 			    optp + 2, IPSEC_DIR_OUTBOUND);
1179 			optp += TCPOLEN_SIGNATURE;
1180 		}
1181 #endif /* TCP_SIGNATURE */
1182 
1183 		if (sc->sc_flags & SCF_SACK) {
1184 			*optp++ = TCPOPT_SACK_PERMITTED;
1185 			*optp++ = TCPOLEN_SACK_PERMITTED;
1186 		}
1187 
1188 		{
1189 			/* Pad TCP options to a 4 byte boundary */
1190 			int padlen = optlen - (optp - (u_int8_t *)(th + 1));
1191 			while (padlen-- > 0)
1192 				*optp++ = TCPOPT_EOL;
1193 		}
1194 	}
1195 
1196 #ifdef INET6
1197 	if (sc->sc_inc.inc_isipv6) {
1198 		th->th_sum = 0;
1199 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1200 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1201 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1202 	} else
1203 #endif
1204 	{
1205 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1206 		    htons(tlen - hlen + IPPROTO_TCP));
1207 		m->m_pkthdr.csum_flags = CSUM_TCP;
1208 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1209 #ifdef TCPDEBUG
1210 		/*
1211 		 * Trace.
1212 		 */
1213 		if (so != NULL && so->so_options & SO_DEBUG) {
1214 			struct tcpcb *tp = sototcpcb(so);
1215 			tcp_trace(TA_OUTPUT, tp->t_state, tp,
1216 			    mtod(m, void *), th, 0);
1217 		}
1218 #endif
1219 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, inp);
1220 	}
1221 	INP_UNLOCK(inp);
1222 	return (error);
1223 }
1224 
1225 /*
1226  * cookie layers:
1227  *
1228  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1229  *	| peer iss                                                      |
1230  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1231  *	|                     0                       |(A)|             |
1232  * (A): peer mss index
1233  */
1234 
1235 /*
1236  * The values below are chosen to minimize the size of the tcp_secret
1237  * table, as well as providing roughly a 16 second lifetime for the cookie.
1238  */
1239 
1240 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1241 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1242 
1243 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1244 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1245 #define SYNCOOKIE_TIMEOUT \
1246     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1247 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1248 
1249 static struct {
1250 	u_int32_t	ts_secbits[4];
1251 	u_int		ts_expire;
1252 } tcp_secret[SYNCOOKIE_NSECRETS];
1253 
1254 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1255 
1256 static MD5_CTX syn_ctx;
1257 
1258 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1259 
1260 struct md5_add {
1261 	u_int32_t laddr, faddr;
1262 	u_int32_t secbits[4];
1263 	u_int16_t lport, fport;
1264 };
1265 
1266 #ifdef CTASSERT
1267 CTASSERT(sizeof(struct md5_add) == 28);
1268 #endif
1269 
1270 /*
1271  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1272  * original SYN was accepted, the connection is established.  The second
1273  * SYN is inflight, and if it arrives with an ISN that falls within the
1274  * receive window, the connection is killed.
1275  *
1276  * However, since cookies have other problems, this may not be worth
1277  * worrying about.
1278  */
1279 
1280 static u_int32_t
1281 syncookie_generate(struct syncache *sc, u_int32_t *flowid)
1282 {
1283 	u_int32_t md5_buffer[4];
1284 	u_int32_t data;
1285 	int idx, i;
1286 	struct md5_add add;
1287 
1288 	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1289 
1290 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1291 	if (tcp_secret[idx].ts_expire < ticks) {
1292 		for (i = 0; i < 4; i++)
1293 			tcp_secret[idx].ts_secbits[i] = arc4random();
1294 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1295 	}
1296 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1297 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1298 			break;
1299 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1300 	data ^= sc->sc_irs;				/* peer's iss */
1301 	MD5Init(&syn_ctx);
1302 #ifdef INET6
1303 	if (sc->sc_inc.inc_isipv6) {
1304 		MD5Add(sc->sc_inc.inc6_laddr);
1305 		MD5Add(sc->sc_inc.inc6_faddr);
1306 		add.laddr = 0;
1307 		add.faddr = 0;
1308 	} else
1309 #endif
1310 	{
1311 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1312 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1313 	}
1314 	add.lport = sc->sc_inc.inc_lport;
1315 	add.fport = sc->sc_inc.inc_fport;
1316 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1317 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1318 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1319 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1320 	MD5Add(add);
1321 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1322 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1323 	*flowid = md5_buffer[1];
1324 	return (data);
1325 }
1326 
1327 static struct syncache *
1328 syncookie_lookup(inc, th, so)
1329 	struct in_conninfo *inc;
1330 	struct tcphdr *th;
1331 	struct socket *so;
1332 {
1333 	u_int32_t md5_buffer[4];
1334 	struct syncache *sc;
1335 	u_int32_t data;
1336 	int wnd, idx;
1337 	struct md5_add add;
1338 
1339 	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1340 
1341 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1342 	idx = data & SYNCOOKIE_WNDMASK;
1343 	if (tcp_secret[idx].ts_expire < ticks ||
1344 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1345 		return (NULL);
1346 	MD5Init(&syn_ctx);
1347 #ifdef INET6
1348 	if (inc->inc_isipv6) {
1349 		MD5Add(inc->inc6_laddr);
1350 		MD5Add(inc->inc6_faddr);
1351 		add.laddr = 0;
1352 		add.faddr = 0;
1353 	} else
1354 #endif
1355 	{
1356 		add.laddr = inc->inc_laddr.s_addr;
1357 		add.faddr = inc->inc_faddr.s_addr;
1358 	}
1359 	add.lport = inc->inc_lport;
1360 	add.fport = inc->inc_fport;
1361 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1362 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1363 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1364 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1365 	MD5Add(add);
1366 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1367 	data ^= md5_buffer[0];
1368 	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1369 		return (NULL);
1370 	data = data >> SYNCOOKIE_WNDBITS;
1371 
1372 	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1373 	if (sc == NULL)
1374 		return (NULL);
1375 	/*
1376 	 * Fill in the syncache values.
1377 	 * XXX duplicate code from syncache_add
1378 	 */
1379 	sc->sc_ipopts = NULL;
1380 	sc->sc_inc.inc_fport = inc->inc_fport;
1381 	sc->sc_inc.inc_lport = inc->inc_lport;
1382 	sc->sc_tp = sototcpcb(so);
1383 #ifdef INET6
1384 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1385 	if (inc->inc_isipv6) {
1386 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1387 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1388 		if (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)
1389 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1390 	} else
1391 #endif
1392 	{
1393 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1394 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1395 	}
1396 	sc->sc_irs = th->th_seq - 1;
1397 	sc->sc_iss = th->th_ack - 1;
1398 	wnd = sbspace(&so->so_rcv);
1399 	wnd = imax(wnd, 0);
1400 	wnd = imin(wnd, TCP_MAXWIN);
1401 	sc->sc_wnd = wnd;
1402 	sc->sc_flags = 0;
1403 	sc->sc_rxtslot = 0;
1404 	sc->sc_peer_mss = tcp_msstab[data];
1405 	return (sc);
1406 }
1407