xref: /freebsd/sys/netinet/tcp_syncache.c (revision 1bee2ec756f2ea5255f9f68dd58c1ceae1a2f56c)
1 /*-
2  * Copyright (c) 2001 McAfee, Inc.
3  * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Jonathan Lemon
7  * and McAfee Research, the Security Research Division of McAfee, Inc. under
8  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9  * DARPA CHATS research program.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_pcbgroup.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/md5.h>
51 #include <sys/proc.h>		/* for proc0 declaration */
52 #include <sys/random.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/syslog.h>
56 #include <sys/ucred.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/vnet.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #include <netinet/in_var.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/ip_options.h>
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #include <netinet/icmp6.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/in6_pcb.h>
77 #endif
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet/tcp_syncache.h>
84 #include <netinet/tcp_offload.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 
89 #ifdef IPSEC
90 #include <netipsec/ipsec.h>
91 #ifdef INET6
92 #include <netipsec/ipsec6.h>
93 #endif
94 #include <netipsec/key.h>
95 #endif /*IPSEC*/
96 
97 #include <machine/in_cksum.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 static VNET_DEFINE(int, tcp_syncookies) = 1;
102 #define	V_tcp_syncookies		VNET(tcp_syncookies)
103 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
104     &VNET_NAME(tcp_syncookies), 0,
105     "Use TCP SYN cookies if the syncache overflows");
106 
107 static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
108 #define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
109 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
110     &VNET_NAME(tcp_syncookiesonly), 0,
111     "Use only TCP SYN cookies");
112 
113 #ifdef TCP_OFFLOAD_DISABLE
114 #define TOEPCB_ISSET(sc) (0)
115 #else
116 #define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
117 #endif
118 
119 static void	 syncache_drop(struct syncache *, struct syncache_head *);
120 static void	 syncache_free(struct syncache *);
121 static void	 syncache_insert(struct syncache *, struct syncache_head *);
122 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
123 static int	 syncache_respond(struct syncache *);
124 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
125 		    struct mbuf *m);
126 static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
127 		    int docallout);
128 static void	 syncache_timer(void *);
129 static void	 syncookie_generate(struct syncache_head *, struct syncache *,
130 		    u_int32_t *);
131 static struct syncache
132 		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
133 		    struct syncache *, struct tcpopt *, struct tcphdr *,
134 		    struct socket *);
135 
136 /*
137  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
138  * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
139  * the odds are that the user has given up attempting to connect by then.
140  */
141 #define SYNCACHE_MAXREXMTS		3
142 
143 /* Arbitrary values */
144 #define TCP_SYNCACHE_HASHSIZE		512
145 #define TCP_SYNCACHE_BUCKETLIMIT	30
146 
147 static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
148 #define	V_tcp_syncache			VNET(tcp_syncache)
149 
150 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
151 
152 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
153     &VNET_NAME(tcp_syncache.bucket_limit), 0,
154     "Per-bucket hash limit for syncache");
155 
156 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
157     &VNET_NAME(tcp_syncache.cache_limit), 0,
158     "Overall entry limit for syncache");
159 
160 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
161     &VNET_NAME(tcp_syncache.cache_count), 0,
162     "Current number of entries in syncache");
163 
164 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
165     &VNET_NAME(tcp_syncache.hashsize), 0,
166     "Size of TCP syncache hashtable");
167 
168 SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
169     &VNET_NAME(tcp_syncache.rexmt_limit), 0,
170     "Limit on SYN/ACK retransmissions");
171 
172 VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
173 SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
174     CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
175     "Send reset on socket allocation failure");
176 
177 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178 
179 #define SYNCACHE_HASH(inc, mask)					\
180 	((V_tcp_syncache.hash_secret ^					\
181 	  (inc)->inc_faddr.s_addr ^					\
182 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184 
185 #define SYNCACHE_HASH6(inc, mask)					\
186 	((V_tcp_syncache.hash_secret ^					\
187 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190 
191 #define ENDPTS_EQ(a, b) (						\
192 	(a)->ie_fport == (b)->ie_fport &&				\
193 	(a)->ie_lport == (b)->ie_lport &&				\
194 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196 )
197 
198 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199 
200 #define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201 #define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202 #define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203 
204 /*
205  * Requires the syncache entry to be already removed from the bucket list.
206  */
207 static void
208 syncache_free(struct syncache *sc)
209 {
210 
211 	if (sc->sc_ipopts)
212 		(void) m_free(sc->sc_ipopts);
213 	if (sc->sc_cred)
214 		crfree(sc->sc_cred);
215 #ifdef MAC
216 	mac_syncache_destroy(&sc->sc_label);
217 #endif
218 
219 	uma_zfree(V_tcp_syncache.zone, sc);
220 }
221 
222 void
223 syncache_init(void)
224 {
225 	int i;
226 
227 	V_tcp_syncache.cache_count = 0;
228 	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
229 	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
230 	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
231 	V_tcp_syncache.hash_secret = arc4random();
232 
233 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
234 	    &V_tcp_syncache.hashsize);
235 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
236 	    &V_tcp_syncache.bucket_limit);
237 	if (!powerof2(V_tcp_syncache.hashsize) ||
238 	    V_tcp_syncache.hashsize == 0) {
239 		printf("WARNING: syncache hash size is not a power of 2.\n");
240 		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
241 	}
242 	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
243 
244 	/* Set limits. */
245 	V_tcp_syncache.cache_limit =
246 	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
247 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
248 	    &V_tcp_syncache.cache_limit);
249 
250 	/* Allocate the hash table. */
251 	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
252 	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
253 
254 	/* Initialize the hash buckets. */
255 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
256 #ifdef VIMAGE
257 		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
258 #endif
259 		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
260 		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
261 			 NULL, MTX_DEF);
262 		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
263 			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
264 		V_tcp_syncache.hashbase[i].sch_length = 0;
265 	}
266 
267 	/* Create the syncache entry zone. */
268 	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
270 	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
271 }
272 
273 #ifdef VIMAGE
274 void
275 syncache_destroy(void)
276 {
277 	struct syncache_head *sch;
278 	struct syncache *sc, *nsc;
279 	int i;
280 
281 	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
282 	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
283 
284 		sch = &V_tcp_syncache.hashbase[i];
285 		callout_drain(&sch->sch_timer);
286 
287 		SCH_LOCK(sch);
288 		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
289 			syncache_drop(sc, sch);
290 		SCH_UNLOCK(sch);
291 		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
292 		    ("%s: sch->sch_bucket not empty", __func__));
293 		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
294 		    __func__, sch->sch_length));
295 		mtx_destroy(&sch->sch_mtx);
296 	}
297 
298 	KASSERT(V_tcp_syncache.cache_count == 0, ("%s: cache_count %d not 0",
299 	    __func__, V_tcp_syncache.cache_count));
300 
301 	/* Free the allocated global resources. */
302 	uma_zdestroy(V_tcp_syncache.zone);
303 	free(V_tcp_syncache.hashbase, M_SYNCACHE);
304 }
305 #endif
306 
307 /*
308  * Inserts a syncache entry into the specified bucket row.
309  * Locks and unlocks the syncache_head autonomously.
310  */
311 static void
312 syncache_insert(struct syncache *sc, struct syncache_head *sch)
313 {
314 	struct syncache *sc2;
315 
316 	SCH_LOCK(sch);
317 
318 	/*
319 	 * Make sure that we don't overflow the per-bucket limit.
320 	 * If the bucket is full, toss the oldest element.
321 	 */
322 	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
323 		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
324 			("sch->sch_length incorrect"));
325 		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
326 		syncache_drop(sc2, sch);
327 		TCPSTAT_INC(tcps_sc_bucketoverflow);
328 	}
329 
330 	/* Put it into the bucket. */
331 	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
332 	sch->sch_length++;
333 
334 	/* Reinitialize the bucket row's timer. */
335 	if (sch->sch_length == 1)
336 		sch->sch_nextc = ticks + INT_MAX;
337 	syncache_timeout(sc, sch, 1);
338 
339 	SCH_UNLOCK(sch);
340 
341 	V_tcp_syncache.cache_count++;
342 	TCPSTAT_INC(tcps_sc_added);
343 }
344 
345 /*
346  * Remove and free entry from syncache bucket row.
347  * Expects locked syncache head.
348  */
349 static void
350 syncache_drop(struct syncache *sc, struct syncache_head *sch)
351 {
352 
353 	SCH_LOCK_ASSERT(sch);
354 
355 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
356 	sch->sch_length--;
357 
358 #ifndef TCP_OFFLOAD_DISABLE
359 	if (sc->sc_tu)
360 		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
361 #endif
362 	syncache_free(sc);
363 	V_tcp_syncache.cache_count--;
364 }
365 
366 /*
367  * Engage/reengage time on bucket row.
368  */
369 static void
370 syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
371 {
372 	sc->sc_rxttime = ticks +
373 		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
374 	sc->sc_rxmits++;
375 	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
376 		sch->sch_nextc = sc->sc_rxttime;
377 		if (docallout)
378 			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
379 			    syncache_timer, (void *)sch);
380 	}
381 }
382 
383 /*
384  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
385  * If we have retransmitted an entry the maximum number of times, expire it.
386  * One separate timer for each bucket row.
387  */
388 static void
389 syncache_timer(void *xsch)
390 {
391 	struct syncache_head *sch = (struct syncache_head *)xsch;
392 	struct syncache *sc, *nsc;
393 	int tick = ticks;
394 	char *s;
395 
396 	CURVNET_SET(sch->sch_vnet);
397 
398 	/* NB: syncache_head has already been locked by the callout. */
399 	SCH_LOCK_ASSERT(sch);
400 
401 	/*
402 	 * In the following cycle we may remove some entries and/or
403 	 * advance some timeouts, so re-initialize the bucket timer.
404 	 */
405 	sch->sch_nextc = tick + INT_MAX;
406 
407 	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
408 		/*
409 		 * We do not check if the listen socket still exists
410 		 * and accept the case where the listen socket may be
411 		 * gone by the time we resend the SYN/ACK.  We do
412 		 * not expect this to happens often. If it does,
413 		 * then the RST will be sent by the time the remote
414 		 * host does the SYN/ACK->ACK.
415 		 */
416 		if (TSTMP_GT(sc->sc_rxttime, tick)) {
417 			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
418 				sch->sch_nextc = sc->sc_rxttime;
419 			continue;
420 		}
421 		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
422 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
423 				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
424 				    "giving up and removing syncache entry\n",
425 				    s, __func__);
426 				free(s, M_TCPLOG);
427 			}
428 			syncache_drop(sc, sch);
429 			TCPSTAT_INC(tcps_sc_stale);
430 			continue;
431 		}
432 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
433 			log(LOG_DEBUG, "%s; %s: Response timeout, "
434 			    "retransmitting (%u) SYN|ACK\n",
435 			    s, __func__, sc->sc_rxmits);
436 			free(s, M_TCPLOG);
437 		}
438 
439 		(void) syncache_respond(sc);
440 		TCPSTAT_INC(tcps_sc_retransmitted);
441 		syncache_timeout(sc, sch, 0);
442 	}
443 	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
444 		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
445 			syncache_timer, (void *)(sch));
446 	CURVNET_RESTORE();
447 }
448 
449 /*
450  * Find an entry in the syncache.
451  * Returns always with locked syncache_head plus a matching entry or NULL.
452  */
453 struct syncache *
454 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
455 {
456 	struct syncache *sc;
457 	struct syncache_head *sch;
458 
459 #ifdef INET6
460 	if (inc->inc_flags & INC_ISIPV6) {
461 		sch = &V_tcp_syncache.hashbase[
462 		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
463 		*schp = sch;
464 
465 		SCH_LOCK(sch);
466 
467 		/* Circle through bucket row to find matching entry. */
468 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
469 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
470 				return (sc);
471 		}
472 	} else
473 #endif
474 	{
475 		sch = &V_tcp_syncache.hashbase[
476 		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
477 		*schp = sch;
478 
479 		SCH_LOCK(sch);
480 
481 		/* Circle through bucket row to find matching entry. */
482 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
483 #ifdef INET6
484 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
485 				continue;
486 #endif
487 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
488 				return (sc);
489 		}
490 	}
491 	SCH_LOCK_ASSERT(*schp);
492 	return (NULL);			/* always returns with locked sch */
493 }
494 
495 /*
496  * This function is called when we get a RST for a
497  * non-existent connection, so that we can see if the
498  * connection is in the syn cache.  If it is, zap it.
499  */
500 void
501 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
502 {
503 	struct syncache *sc;
504 	struct syncache_head *sch;
505 	char *s = NULL;
506 
507 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
508 	SCH_LOCK_ASSERT(sch);
509 
510 	/*
511 	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
512 	 * See RFC 793 page 65, section SEGMENT ARRIVES.
513 	 */
514 	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
515 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
516 			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
517 			    "FIN flag set, segment ignored\n", s, __func__);
518 		TCPSTAT_INC(tcps_badrst);
519 		goto done;
520 	}
521 
522 	/*
523 	 * No corresponding connection was found in syncache.
524 	 * If syncookies are enabled and possibly exclusively
525 	 * used, or we are under memory pressure, a valid RST
526 	 * may not find a syncache entry.  In that case we're
527 	 * done and no SYN|ACK retransmissions will happen.
528 	 * Otherwise the RST was misdirected or spoofed.
529 	 */
530 	if (sc == NULL) {
531 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
532 			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
533 			    "syncache entry (possibly syncookie only), "
534 			    "segment ignored\n", s, __func__);
535 		TCPSTAT_INC(tcps_badrst);
536 		goto done;
537 	}
538 
539 	/*
540 	 * If the RST bit is set, check the sequence number to see
541 	 * if this is a valid reset segment.
542 	 * RFC 793 page 37:
543 	 *   In all states except SYN-SENT, all reset (RST) segments
544 	 *   are validated by checking their SEQ-fields.  A reset is
545 	 *   valid if its sequence number is in the window.
546 	 *
547 	 *   The sequence number in the reset segment is normally an
548 	 *   echo of our outgoing acknowlegement numbers, but some hosts
549 	 *   send a reset with the sequence number at the rightmost edge
550 	 *   of our receive window, and we have to handle this case.
551 	 */
552 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
553 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
554 		syncache_drop(sc, sch);
555 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
556 			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
557 			    "connection attempt aborted by remote endpoint\n",
558 			    s, __func__);
559 		TCPSTAT_INC(tcps_sc_reset);
560 	} else {
561 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
562 			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
563 			    "IRS %u (+WND %u), segment ignored\n",
564 			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
565 		TCPSTAT_INC(tcps_badrst);
566 	}
567 
568 done:
569 	if (s != NULL)
570 		free(s, M_TCPLOG);
571 	SCH_UNLOCK(sch);
572 }
573 
574 void
575 syncache_badack(struct in_conninfo *inc)
576 {
577 	struct syncache *sc;
578 	struct syncache_head *sch;
579 
580 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
581 	SCH_LOCK_ASSERT(sch);
582 	if (sc != NULL) {
583 		syncache_drop(sc, sch);
584 		TCPSTAT_INC(tcps_sc_badack);
585 	}
586 	SCH_UNLOCK(sch);
587 }
588 
589 void
590 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
591 {
592 	struct syncache *sc;
593 	struct syncache_head *sch;
594 
595 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
596 	SCH_LOCK_ASSERT(sch);
597 	if (sc == NULL)
598 		goto done;
599 
600 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
601 	if (ntohl(th->th_seq) != sc->sc_iss)
602 		goto done;
603 
604 	/*
605 	 * If we've rertransmitted 3 times and this is our second error,
606 	 * we remove the entry.  Otherwise, we allow it to continue on.
607 	 * This prevents us from incorrectly nuking an entry during a
608 	 * spurious network outage.
609 	 *
610 	 * See tcp_notify().
611 	 */
612 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
613 		sc->sc_flags |= SCF_UNREACH;
614 		goto done;
615 	}
616 	syncache_drop(sc, sch);
617 	TCPSTAT_INC(tcps_sc_unreach);
618 done:
619 	SCH_UNLOCK(sch);
620 }
621 
622 /*
623  * Build a new TCP socket structure from a syncache entry.
624  */
625 static struct socket *
626 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
627 {
628 	struct inpcb *inp = NULL;
629 	struct socket *so;
630 	struct tcpcb *tp;
631 	int error;
632 	char *s;
633 
634 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
635 
636 	/*
637 	 * Ok, create the full blown connection, and set things up
638 	 * as they would have been set up if we had created the
639 	 * connection when the SYN arrived.  If we can't create
640 	 * the connection, abort it.
641 	 */
642 	so = sonewconn(lso, SS_ISCONNECTED);
643 	if (so == NULL) {
644 		/*
645 		 * Drop the connection; we will either send a RST or
646 		 * have the peer retransmit its SYN again after its
647 		 * RTO and try again.
648 		 */
649 		TCPSTAT_INC(tcps_listendrop);
650 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
651 			log(LOG_DEBUG, "%s; %s: Socket create failed "
652 			    "due to limits or memory shortage\n",
653 			    s, __func__);
654 			free(s, M_TCPLOG);
655 		}
656 		goto abort2;
657 	}
658 #ifdef MAC
659 	mac_socketpeer_set_from_mbuf(m, so);
660 #endif
661 
662 	inp = sotoinpcb(so);
663 	inp->inp_inc.inc_fibnum = so->so_fibnum;
664 	INP_WLOCK(inp);
665 	INP_HASH_WLOCK(&V_tcbinfo);
666 
667 	/* Insert new socket into PCB hash list. */
668 	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
669 #ifdef INET6
670 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
671 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
672 	} else {
673 		inp->inp_vflag &= ~INP_IPV6;
674 		inp->inp_vflag |= INP_IPV4;
675 #endif
676 		inp->inp_laddr = sc->sc_inc.inc_laddr;
677 #ifdef INET6
678 	}
679 #endif
680 
681 	/*
682 	 * Install in the reservation hash table for now, but don't yet
683 	 * install a connection group since the full 4-tuple isn't yet
684 	 * configured.
685 	 */
686 	inp->inp_lport = sc->sc_inc.inc_lport;
687 	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
688 		/*
689 		 * Undo the assignments above if we failed to
690 		 * put the PCB on the hash lists.
691 		 */
692 #ifdef INET6
693 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
694 			inp->in6p_laddr = in6addr_any;
695 		else
696 #endif
697 			inp->inp_laddr.s_addr = INADDR_ANY;
698 		inp->inp_lport = 0;
699 		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
700 			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
701 			    "with error %i\n",
702 			    s, __func__, error);
703 			free(s, M_TCPLOG);
704 		}
705 		INP_HASH_WUNLOCK(&V_tcbinfo);
706 		goto abort;
707 	}
708 #ifdef IPSEC
709 	/* Copy old policy into new socket's. */
710 	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
711 		printf("syncache_socket: could not copy policy\n");
712 #endif
713 #ifdef INET6
714 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
715 		struct inpcb *oinp = sotoinpcb(lso);
716 		struct in6_addr laddr6;
717 		struct sockaddr_in6 sin6;
718 		/*
719 		 * Inherit socket options from the listening socket.
720 		 * Note that in6p_inputopts are not (and should not be)
721 		 * copied, since it stores previously received options and is
722 		 * used to detect if each new option is different than the
723 		 * previous one and hence should be passed to a user.
724 		 * If we copied in6p_inputopts, a user would not be able to
725 		 * receive options just after calling the accept system call.
726 		 */
727 		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
728 		if (oinp->in6p_outputopts)
729 			inp->in6p_outputopts =
730 			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
731 
732 		sin6.sin6_family = AF_INET6;
733 		sin6.sin6_len = sizeof(sin6);
734 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
735 		sin6.sin6_port = sc->sc_inc.inc_fport;
736 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
737 		laddr6 = inp->in6p_laddr;
738 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
739 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
740 		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
741 		    thread0.td_ucred, m)) != 0) {
742 			inp->in6p_laddr = laddr6;
743 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
744 				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
745 				    "with error %i\n",
746 				    s, __func__, error);
747 				free(s, M_TCPLOG);
748 			}
749 			INP_HASH_WUNLOCK(&V_tcbinfo);
750 			goto abort;
751 		}
752 		/* Override flowlabel from in6_pcbconnect. */
753 		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
754 		inp->inp_flow |= sc->sc_flowlabel;
755 	}
756 #endif /* INET6 */
757 #if defined(INET) && defined(INET6)
758 	else
759 #endif
760 #ifdef INET
761 	{
762 		struct in_addr laddr;
763 		struct sockaddr_in sin;
764 
765 		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
766 
767 		if (inp->inp_options == NULL) {
768 			inp->inp_options = sc->sc_ipopts;
769 			sc->sc_ipopts = NULL;
770 		}
771 
772 		sin.sin_family = AF_INET;
773 		sin.sin_len = sizeof(sin);
774 		sin.sin_addr = sc->sc_inc.inc_faddr;
775 		sin.sin_port = sc->sc_inc.inc_fport;
776 		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
777 		laddr = inp->inp_laddr;
778 		if (inp->inp_laddr.s_addr == INADDR_ANY)
779 			inp->inp_laddr = sc->sc_inc.inc_laddr;
780 		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
781 		    thread0.td_ucred, m)) != 0) {
782 			inp->inp_laddr = laddr;
783 			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
784 				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
785 				    "with error %i\n",
786 				    s, __func__, error);
787 				free(s, M_TCPLOG);
788 			}
789 			INP_HASH_WUNLOCK(&V_tcbinfo);
790 			goto abort;
791 		}
792 	}
793 #endif /* INET */
794 	INP_HASH_WUNLOCK(&V_tcbinfo);
795 	tp = intotcpcb(inp);
796 	tp->t_state = TCPS_SYN_RECEIVED;
797 	tp->iss = sc->sc_iss;
798 	tp->irs = sc->sc_irs;
799 	tcp_rcvseqinit(tp);
800 	tcp_sendseqinit(tp);
801 	tp->snd_wl1 = sc->sc_irs;
802 	tp->snd_max = tp->iss + 1;
803 	tp->snd_nxt = tp->iss + 1;
804 	tp->rcv_up = sc->sc_irs + 1;
805 	tp->rcv_wnd = sc->sc_wnd;
806 	tp->rcv_adv += tp->rcv_wnd;
807 	tp->last_ack_sent = tp->rcv_nxt;
808 
809 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
810 	if (sc->sc_flags & SCF_NOOPT)
811 		tp->t_flags |= TF_NOOPT;
812 	else {
813 		if (sc->sc_flags & SCF_WINSCALE) {
814 			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
815 			tp->snd_scale = sc->sc_requested_s_scale;
816 			tp->request_r_scale = sc->sc_requested_r_scale;
817 		}
818 		if (sc->sc_flags & SCF_TIMESTAMP) {
819 			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
820 			tp->ts_recent = sc->sc_tsreflect;
821 			tp->ts_recent_age = ticks;
822 			tp->ts_offset = sc->sc_tsoff;
823 		}
824 #ifdef TCP_SIGNATURE
825 		if (sc->sc_flags & SCF_SIGNATURE)
826 			tp->t_flags |= TF_SIGNATURE;
827 #endif
828 		if (sc->sc_flags & SCF_SACK)
829 			tp->t_flags |= TF_SACK_PERMIT;
830 	}
831 
832 	if (sc->sc_flags & SCF_ECN)
833 		tp->t_flags |= TF_ECN_PERMIT;
834 
835 	/*
836 	 * Set up MSS and get cached values from tcp_hostcache.
837 	 * This might overwrite some of the defaults we just set.
838 	 */
839 	tcp_mss(tp, sc->sc_peer_mss);
840 
841 	/*
842 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
843 	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
844 	 */
845 	if (sc->sc_rxmits > 1)
846 		tp->snd_cwnd = tp->t_maxseg;
847 	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
848 
849 	INP_WUNLOCK(inp);
850 
851 	TCPSTAT_INC(tcps_accepts);
852 	return (so);
853 
854 abort:
855 	INP_WUNLOCK(inp);
856 abort2:
857 	if (so != NULL)
858 		soabort(so);
859 	return (NULL);
860 }
861 
862 /*
863  * This function gets called when we receive an ACK for a
864  * socket in the LISTEN state.  We look up the connection
865  * in the syncache, and if its there, we pull it out of
866  * the cache and turn it into a full-blown connection in
867  * the SYN-RECEIVED state.
868  */
869 int
870 syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
871     struct socket **lsop, struct mbuf *m)
872 {
873 	struct syncache *sc;
874 	struct syncache_head *sch;
875 	struct syncache scs;
876 	char *s;
877 
878 	/*
879 	 * Global TCP locks are held because we manipulate the PCB lists
880 	 * and create a new socket.
881 	 */
882 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
883 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
884 	    ("%s: can handle only ACK", __func__));
885 
886 	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
887 	SCH_LOCK_ASSERT(sch);
888 	if (sc == NULL) {
889 		/*
890 		 * There is no syncache entry, so see if this ACK is
891 		 * a returning syncookie.  To do this, first:
892 		 *  A. See if this socket has had a syncache entry dropped in
893 		 *     the past.  We don't want to accept a bogus syncookie
894 		 *     if we've never received a SYN.
895 		 *  B. check that the syncookie is valid.  If it is, then
896 		 *     cobble up a fake syncache entry, and return.
897 		 */
898 		if (!V_tcp_syncookies) {
899 			SCH_UNLOCK(sch);
900 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
901 				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
902 				    "segment rejected (syncookies disabled)\n",
903 				    s, __func__);
904 			goto failed;
905 		}
906 		bzero(&scs, sizeof(scs));
907 		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
908 		SCH_UNLOCK(sch);
909 		if (sc == NULL) {
910 			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
911 				log(LOG_DEBUG, "%s; %s: Segment failed "
912 				    "SYNCOOKIE authentication, segment rejected "
913 				    "(probably spoofed)\n", s, __func__);
914 			goto failed;
915 		}
916 	} else {
917 		/* Pull out the entry to unlock the bucket row. */
918 		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
919 		sch->sch_length--;
920 		V_tcp_syncache.cache_count--;
921 		SCH_UNLOCK(sch);
922 	}
923 
924 	/*
925 	 * Segment validation:
926 	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
927 	 */
928 	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
929 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
930 			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
931 			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
932 		goto failed;
933 	}
934 
935 	/*
936 	 * The SEQ must fall in the window starting at the received
937 	 * initial receive sequence number + 1 (the SYN).
938 	 */
939 	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
940 	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
941 	    !TOEPCB_ISSET(sc)) {
942 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
943 			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
944 			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
945 		goto failed;
946 	}
947 
948 	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
949 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
950 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
951 			    "segment rejected\n", s, __func__);
952 		goto failed;
953 	}
954 	/*
955 	 * If timestamps were negotiated the reflected timestamp
956 	 * must be equal to what we actually sent in the SYN|ACK.
957 	 */
958 	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
959 	    !TOEPCB_ISSET(sc)) {
960 		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
961 			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
962 			    "segment rejected\n",
963 			    s, __func__, to->to_tsecr, sc->sc_ts);
964 		goto failed;
965 	}
966 
967 	*lsop = syncache_socket(sc, *lsop, m);
968 
969 	if (*lsop == NULL)
970 		TCPSTAT_INC(tcps_sc_aborted);
971 	else
972 		TCPSTAT_INC(tcps_sc_completed);
973 
974 /* how do we find the inp for the new socket? */
975 	if (sc != &scs)
976 		syncache_free(sc);
977 	return (1);
978 failed:
979 	if (sc != NULL && sc != &scs)
980 		syncache_free(sc);
981 	if (s != NULL)
982 		free(s, M_TCPLOG);
983 	*lsop = NULL;
984 	return (0);
985 }
986 
987 int
988 tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
989     struct tcphdr *th, struct socket **lsop, struct mbuf *m)
990 {
991 	struct tcpopt to;
992 	int rc;
993 
994 	bzero(&to, sizeof(struct tcpopt));
995 	to.to_mss = toeo->to_mss;
996 	to.to_wscale = toeo->to_wscale;
997 	to.to_flags = toeo->to_flags;
998 
999 	INP_INFO_WLOCK(&V_tcbinfo);
1000 	rc = syncache_expand(inc, &to, th, lsop, m);
1001 	INP_INFO_WUNLOCK(&V_tcbinfo);
1002 
1003 	return (rc);
1004 }
1005 
1006 /*
1007  * Given a LISTEN socket and an inbound SYN request, add
1008  * this to the syn cache, and send back a segment:
1009  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1010  * to the source.
1011  *
1012  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1013  * Doing so would require that we hold onto the data and deliver it
1014  * to the application.  However, if we are the target of a SYN-flood
1015  * DoS attack, an attacker could send data which would eventually
1016  * consume all available buffer space if it were ACKed.  By not ACKing
1017  * the data, we avoid this DoS scenario.
1018  */
1019 static void
1020 _syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1021     struct inpcb *inp, struct socket **lsop, struct mbuf *m,
1022     struct toe_usrreqs *tu, void *toepcb)
1023 {
1024 	struct tcpcb *tp;
1025 	struct socket *so;
1026 	struct syncache *sc = NULL;
1027 	struct syncache_head *sch;
1028 	struct mbuf *ipopts = NULL;
1029 	u_int32_t flowtmp;
1030 	u_int ltflags;
1031 	int win, sb_hiwat, ip_ttl, ip_tos;
1032 	char *s;
1033 #ifdef INET6
1034 	int autoflowlabel = 0;
1035 #endif
1036 #ifdef MAC
1037 	struct label *maclabel;
1038 #endif
1039 	struct syncache scs;
1040 	struct ucred *cred;
1041 
1042 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1043 	INP_WLOCK_ASSERT(inp);			/* listen socket */
1044 	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1045 	    ("%s: unexpected tcp flags", __func__));
1046 
1047 	/*
1048 	 * Combine all so/tp operations very early to drop the INP lock as
1049 	 * soon as possible.
1050 	 */
1051 	so = *lsop;
1052 	tp = sototcpcb(so);
1053 	cred = crhold(so->so_cred);
1054 
1055 #ifdef INET6
1056 	if ((inc->inc_flags & INC_ISIPV6) &&
1057 	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1058 		autoflowlabel = 1;
1059 #endif
1060 	ip_ttl = inp->inp_ip_ttl;
1061 	ip_tos = inp->inp_ip_tos;
1062 	win = sbspace(&so->so_rcv);
1063 	sb_hiwat = so->so_rcv.sb_hiwat;
1064 	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1065 
1066 	/* By the time we drop the lock these should no longer be used. */
1067 	so = NULL;
1068 	tp = NULL;
1069 
1070 #ifdef MAC
1071 	if (mac_syncache_init(&maclabel) != 0) {
1072 		INP_WUNLOCK(inp);
1073 		INP_INFO_WUNLOCK(&V_tcbinfo);
1074 		goto done;
1075 	} else
1076 		mac_syncache_create(maclabel, inp);
1077 #endif
1078 	INP_WUNLOCK(inp);
1079 	INP_INFO_WUNLOCK(&V_tcbinfo);
1080 
1081 	/*
1082 	 * Remember the IP options, if any.
1083 	 */
1084 #ifdef INET6
1085 	if (!(inc->inc_flags & INC_ISIPV6))
1086 #endif
1087 #ifdef INET
1088 		ipopts = (m) ? ip_srcroute(m) : NULL;
1089 #else
1090 		ipopts = NULL;
1091 #endif
1092 
1093 	/*
1094 	 * See if we already have an entry for this connection.
1095 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1096 	 *
1097 	 * XXX: should the syncache be re-initialized with the contents
1098 	 * of the new SYN here (which may have different options?)
1099 	 *
1100 	 * XXX: We do not check the sequence number to see if this is a
1101 	 * real retransmit or a new connection attempt.  The question is
1102 	 * how to handle such a case; either ignore it as spoofed, or
1103 	 * drop the current entry and create a new one?
1104 	 */
1105 	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1106 	SCH_LOCK_ASSERT(sch);
1107 	if (sc != NULL) {
1108 #ifndef TCP_OFFLOAD_DISABLE
1109 		if (sc->sc_tu)
1110 			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1111 			    sc->sc_toepcb);
1112 #endif
1113 		TCPSTAT_INC(tcps_sc_dupsyn);
1114 		if (ipopts) {
1115 			/*
1116 			 * If we were remembering a previous source route,
1117 			 * forget it and use the new one we've been given.
1118 			 */
1119 			if (sc->sc_ipopts)
1120 				(void) m_free(sc->sc_ipopts);
1121 			sc->sc_ipopts = ipopts;
1122 		}
1123 		/*
1124 		 * Update timestamp if present.
1125 		 */
1126 		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1127 			sc->sc_tsreflect = to->to_tsval;
1128 		else
1129 			sc->sc_flags &= ~SCF_TIMESTAMP;
1130 #ifdef MAC
1131 		/*
1132 		 * Since we have already unconditionally allocated label
1133 		 * storage, free it up.  The syncache entry will already
1134 		 * have an initialized label we can use.
1135 		 */
1136 		mac_syncache_destroy(&maclabel);
1137 #endif
1138 		/* Retransmit SYN|ACK and reset retransmit count. */
1139 		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1140 			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1141 			    "resetting timer and retransmitting SYN|ACK\n",
1142 			    s, __func__);
1143 			free(s, M_TCPLOG);
1144 		}
1145 		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1146 			sc->sc_rxmits = 0;
1147 			syncache_timeout(sc, sch, 1);
1148 			TCPSTAT_INC(tcps_sndacks);
1149 			TCPSTAT_INC(tcps_sndtotal);
1150 		}
1151 		SCH_UNLOCK(sch);
1152 		goto done;
1153 	}
1154 
1155 	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1156 	if (sc == NULL) {
1157 		/*
1158 		 * The zone allocator couldn't provide more entries.
1159 		 * Treat this as if the cache was full; drop the oldest
1160 		 * entry and insert the new one.
1161 		 */
1162 		TCPSTAT_INC(tcps_sc_zonefail);
1163 		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1164 			syncache_drop(sc, sch);
1165 		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1166 		if (sc == NULL) {
1167 			if (V_tcp_syncookies) {
1168 				bzero(&scs, sizeof(scs));
1169 				sc = &scs;
1170 			} else {
1171 				SCH_UNLOCK(sch);
1172 				if (ipopts)
1173 					(void) m_free(ipopts);
1174 				goto done;
1175 			}
1176 		}
1177 	}
1178 
1179 	/*
1180 	 * Fill in the syncache values.
1181 	 */
1182 #ifdef MAC
1183 	sc->sc_label = maclabel;
1184 #endif
1185 	sc->sc_cred = cred;
1186 	cred = NULL;
1187 	sc->sc_ipopts = ipopts;
1188 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1189 #ifdef INET6
1190 	if (!(inc->inc_flags & INC_ISIPV6))
1191 #endif
1192 	{
1193 		sc->sc_ip_tos = ip_tos;
1194 		sc->sc_ip_ttl = ip_ttl;
1195 	}
1196 #ifndef TCP_OFFLOAD_DISABLE
1197 	sc->sc_tu = tu;
1198 	sc->sc_toepcb = toepcb;
1199 #endif
1200 	sc->sc_irs = th->th_seq;
1201 	sc->sc_iss = arc4random();
1202 	sc->sc_flags = 0;
1203 	sc->sc_flowlabel = 0;
1204 
1205 	/*
1206 	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1207 	 * win was derived from socket earlier in the function.
1208 	 */
1209 	win = imax(win, 0);
1210 	win = imin(win, TCP_MAXWIN);
1211 	sc->sc_wnd = win;
1212 
1213 	if (V_tcp_do_rfc1323) {
1214 		/*
1215 		 * A timestamp received in a SYN makes
1216 		 * it ok to send timestamp requests and replies.
1217 		 */
1218 		if (to->to_flags & TOF_TS) {
1219 			sc->sc_tsreflect = to->to_tsval;
1220 			sc->sc_ts = ticks;
1221 			sc->sc_flags |= SCF_TIMESTAMP;
1222 		}
1223 		if (to->to_flags & TOF_SCALE) {
1224 			int wscale = 0;
1225 
1226 			/*
1227 			 * Pick the smallest possible scaling factor that
1228 			 * will still allow us to scale up to sb_max, aka
1229 			 * kern.ipc.maxsockbuf.
1230 			 *
1231 			 * We do this because there are broken firewalls that
1232 			 * will corrupt the window scale option, leading to
1233 			 * the other endpoint believing that our advertised
1234 			 * window is unscaled.  At scale factors larger than
1235 			 * 5 the unscaled window will drop below 1500 bytes,
1236 			 * leading to serious problems when traversing these
1237 			 * broken firewalls.
1238 			 *
1239 			 * With the default maxsockbuf of 256K, a scale factor
1240 			 * of 3 will be chosen by this algorithm.  Those who
1241 			 * choose a larger maxsockbuf should watch out
1242 			 * for the compatiblity problems mentioned above.
1243 			 *
1244 			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1245 			 * or <SYN,ACK>) segment itself is never scaled.
1246 			 */
1247 			while (wscale < TCP_MAX_WINSHIFT &&
1248 			    (TCP_MAXWIN << wscale) < sb_max)
1249 				wscale++;
1250 			sc->sc_requested_r_scale = wscale;
1251 			sc->sc_requested_s_scale = to->to_wscale;
1252 			sc->sc_flags |= SCF_WINSCALE;
1253 		}
1254 	}
1255 #ifdef TCP_SIGNATURE
1256 	/*
1257 	 * If listening socket requested TCP digests, and received SYN
1258 	 * contains the option, flag this in the syncache so that
1259 	 * syncache_respond() will do the right thing with the SYN+ACK.
1260 	 * XXX: Currently we always record the option by default and will
1261 	 * attempt to use it in syncache_respond().
1262 	 */
1263 	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1264 		sc->sc_flags |= SCF_SIGNATURE;
1265 #endif
1266 	if (to->to_flags & TOF_SACKPERM)
1267 		sc->sc_flags |= SCF_SACK;
1268 	if (to->to_flags & TOF_MSS)
1269 		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1270 	if (ltflags & TF_NOOPT)
1271 		sc->sc_flags |= SCF_NOOPT;
1272 	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1273 		sc->sc_flags |= SCF_ECN;
1274 
1275 	if (V_tcp_syncookies) {
1276 		syncookie_generate(sch, sc, &flowtmp);
1277 #ifdef INET6
1278 		if (autoflowlabel)
1279 			sc->sc_flowlabel = flowtmp;
1280 #endif
1281 	} else {
1282 #ifdef INET6
1283 		if (autoflowlabel)
1284 			sc->sc_flowlabel =
1285 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1286 #endif
1287 	}
1288 	SCH_UNLOCK(sch);
1289 
1290 	/*
1291 	 * Do a standard 3-way handshake.
1292 	 */
1293 	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1294 		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1295 			syncache_free(sc);
1296 		else if (sc != &scs)
1297 			syncache_insert(sc, sch);   /* locks and unlocks sch */
1298 		TCPSTAT_INC(tcps_sndacks);
1299 		TCPSTAT_INC(tcps_sndtotal);
1300 	} else {
1301 		if (sc != &scs)
1302 			syncache_free(sc);
1303 		TCPSTAT_INC(tcps_sc_dropped);
1304 	}
1305 
1306 done:
1307 	if (cred != NULL)
1308 		crfree(cred);
1309 #ifdef MAC
1310 	if (sc == &scs)
1311 		mac_syncache_destroy(&maclabel);
1312 #endif
1313 	if (m) {
1314 
1315 		*lsop = NULL;
1316 		m_freem(m);
1317 	}
1318 }
1319 
1320 static int
1321 syncache_respond(struct syncache *sc)
1322 {
1323 	struct ip *ip = NULL;
1324 	struct mbuf *m;
1325 	struct tcphdr *th = NULL;
1326 	int optlen, error = 0;	/* Make compiler happy */
1327 	u_int16_t hlen, tlen, mssopt;
1328 	struct tcpopt to;
1329 #ifdef INET6
1330 	struct ip6_hdr *ip6 = NULL;
1331 #endif
1332 
1333 	hlen =
1334 #ifdef INET6
1335 	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1336 #endif
1337 		sizeof(struct ip);
1338 	tlen = hlen + sizeof(struct tcphdr);
1339 
1340 	/* Determine MSS we advertize to other end of connection. */
1341 	mssopt = tcp_mssopt(&sc->sc_inc);
1342 	if (sc->sc_peer_mss)
1343 		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1344 
1345 	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1346 	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1347 	    ("syncache: mbuf too small"));
1348 
1349 	/* Create the IP+TCP header from scratch. */
1350 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1351 	if (m == NULL)
1352 		return (ENOBUFS);
1353 #ifdef MAC
1354 	mac_syncache_create_mbuf(sc->sc_label, m);
1355 #endif
1356 	m->m_data += max_linkhdr;
1357 	m->m_len = tlen;
1358 	m->m_pkthdr.len = tlen;
1359 	m->m_pkthdr.rcvif = NULL;
1360 
1361 #ifdef INET6
1362 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1363 		ip6 = mtod(m, struct ip6_hdr *);
1364 		ip6->ip6_vfc = IPV6_VERSION;
1365 		ip6->ip6_nxt = IPPROTO_TCP;
1366 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1367 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1368 		ip6->ip6_plen = htons(tlen - hlen);
1369 		/* ip6_hlim is set after checksum */
1370 		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1371 		ip6->ip6_flow |= sc->sc_flowlabel;
1372 
1373 		th = (struct tcphdr *)(ip6 + 1);
1374 	}
1375 #endif
1376 #if defined(INET6) && defined(INET)
1377 	else
1378 #endif
1379 #ifdef INET
1380 	{
1381 		ip = mtod(m, struct ip *);
1382 		ip->ip_v = IPVERSION;
1383 		ip->ip_hl = sizeof(struct ip) >> 2;
1384 		ip->ip_len = tlen;
1385 		ip->ip_id = 0;
1386 		ip->ip_off = 0;
1387 		ip->ip_sum = 0;
1388 		ip->ip_p = IPPROTO_TCP;
1389 		ip->ip_src = sc->sc_inc.inc_laddr;
1390 		ip->ip_dst = sc->sc_inc.inc_faddr;
1391 		ip->ip_ttl = sc->sc_ip_ttl;
1392 		ip->ip_tos = sc->sc_ip_tos;
1393 
1394 		/*
1395 		 * See if we should do MTU discovery.  Route lookups are
1396 		 * expensive, so we will only unset the DF bit if:
1397 		 *
1398 		 *	1) path_mtu_discovery is disabled
1399 		 *	2) the SCF_UNREACH flag has been set
1400 		 */
1401 		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1402 		       ip->ip_off |= IP_DF;
1403 
1404 		th = (struct tcphdr *)(ip + 1);
1405 	}
1406 #endif /* INET */
1407 	th->th_sport = sc->sc_inc.inc_lport;
1408 	th->th_dport = sc->sc_inc.inc_fport;
1409 
1410 	th->th_seq = htonl(sc->sc_iss);
1411 	th->th_ack = htonl(sc->sc_irs + 1);
1412 	th->th_off = sizeof(struct tcphdr) >> 2;
1413 	th->th_x2 = 0;
1414 	th->th_flags = TH_SYN|TH_ACK;
1415 	th->th_win = htons(sc->sc_wnd);
1416 	th->th_urp = 0;
1417 
1418 	if (sc->sc_flags & SCF_ECN) {
1419 		th->th_flags |= TH_ECE;
1420 		TCPSTAT_INC(tcps_ecn_shs);
1421 	}
1422 
1423 	/* Tack on the TCP options. */
1424 	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1425 		to.to_flags = 0;
1426 
1427 		to.to_mss = mssopt;
1428 		to.to_flags = TOF_MSS;
1429 		if (sc->sc_flags & SCF_WINSCALE) {
1430 			to.to_wscale = sc->sc_requested_r_scale;
1431 			to.to_flags |= TOF_SCALE;
1432 		}
1433 		if (sc->sc_flags & SCF_TIMESTAMP) {
1434 			/* Virgin timestamp or TCP cookie enhanced one. */
1435 			to.to_tsval = sc->sc_ts;
1436 			to.to_tsecr = sc->sc_tsreflect;
1437 			to.to_flags |= TOF_TS;
1438 		}
1439 		if (sc->sc_flags & SCF_SACK)
1440 			to.to_flags |= TOF_SACKPERM;
1441 #ifdef TCP_SIGNATURE
1442 		if (sc->sc_flags & SCF_SIGNATURE)
1443 			to.to_flags |= TOF_SIGNATURE;
1444 #endif
1445 		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1446 
1447 		/* Adjust headers by option size. */
1448 		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1449 		m->m_len += optlen;
1450 		m->m_pkthdr.len += optlen;
1451 
1452 #ifdef TCP_SIGNATURE
1453 		if (sc->sc_flags & SCF_SIGNATURE)
1454 			tcp_signature_compute(m, 0, 0, optlen,
1455 			    to.to_signature, IPSEC_DIR_OUTBOUND);
1456 #endif
1457 #ifdef INET6
1458 		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1459 			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1460 		else
1461 #endif
1462 			ip->ip_len += optlen;
1463 	} else
1464 		optlen = 0;
1465 
1466 	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1467 #ifdef INET6
1468 	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1469 		th->th_sum = 0;
1470 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1471 				       tlen + optlen - hlen);
1472 		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1473 		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1474 	}
1475 #endif
1476 #if defined(INET6) && defined(INET)
1477 	else
1478 #endif
1479 #ifdef INET
1480 	{
1481 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1482 		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1483 		m->m_pkthdr.csum_flags = CSUM_TCP;
1484 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1485 		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1486 	}
1487 #endif
1488 	return (error);
1489 }
1490 
1491 void
1492 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1493     struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1494 {
1495 	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1496 }
1497 
1498 void
1499 tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1500     struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1501     struct toe_usrreqs *tu, void *toepcb)
1502 {
1503 	struct tcpopt to;
1504 
1505 	bzero(&to, sizeof(struct tcpopt));
1506 	to.to_mss = toeo->to_mss;
1507 	to.to_wscale = toeo->to_wscale;
1508 	to.to_flags = toeo->to_flags;
1509 
1510 	INP_INFO_WLOCK(&V_tcbinfo);
1511 	INP_WLOCK(inp);
1512 
1513 	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1514 }
1515 
1516 /*
1517  * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1518  * receive and to be able to handle SYN floods from bogus source addresses
1519  * (where we will never receive any reply).  SYN floods try to exhaust all
1520  * our memory and available slots in the SYN cache table to cause a denial
1521  * of service to legitimate users of the local host.
1522  *
1523  * The idea of SYN cookies is to encode and include all necessary information
1524  * about the connection setup state within the SYN-ACK we send back and thus
1525  * to get along without keeping any local state until the ACK to the SYN-ACK
1526  * arrives (if ever).  Everything we need to know should be available from
1527  * the information we encoded in the SYN-ACK.
1528  *
1529  * More information about the theory behind SYN cookies and its first
1530  * discussion and specification can be found at:
1531  *  http://cr.yp.to/syncookies.html    (overview)
1532  *  http://cr.yp.to/syncookies/archive (gory details)
1533  *
1534  * This implementation extends the orginal idea and first implementation
1535  * of FreeBSD by using not only the initial sequence number field to store
1536  * information but also the timestamp field if present.  This way we can
1537  * keep track of the entire state we need to know to recreate the session in
1538  * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1539  * these days.  For those that do not we still have to live with the known
1540  * shortcomings of the ISN only SYN cookies.
1541  *
1542  * Cookie layers:
1543  *
1544  * Initial sequence number we send:
1545  * 31|................................|0
1546  *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1547  *    D = MD5 Digest (first dword)
1548  *    M = MSS index
1549  *    R = Rotation of secret
1550  *    P = Odd or Even secret
1551  *
1552  * The MD5 Digest is computed with over following parameters:
1553  *  a) randomly rotated secret
1554  *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1555  *  c) the received initial sequence number from remote host
1556  *  d) the rotation offset and odd/even bit
1557  *
1558  * Timestamp we send:
1559  * 31|................................|0
1560  *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1561  *    D = MD5 Digest (third dword) (only as filler)
1562  *    S = Requested send window scale
1563  *    R = Requested receive window scale
1564  *    A = SACK allowed
1565  *    5 = TCP-MD5 enabled (not implemented yet)
1566  *    XORed with MD5 Digest (forth dword)
1567  *
1568  * The timestamp isn't cryptographically secure and doesn't need to be.
1569  * The double use of the MD5 digest dwords ties it to a specific remote/
1570  * local host/port, remote initial sequence number and our local time
1571  * limited secret.  A received timestamp is reverted (XORed) and then
1572  * the contained MD5 dword is compared to the computed one to ensure the
1573  * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1574  * have been tampered with but this isn't different from supplying bogus
1575  * values in the SYN in the first place.
1576  *
1577  * Some problems with SYN cookies remain however:
1578  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1579  * original SYN was accepted, the connection is established.  The second
1580  * SYN is inflight, and if it arrives with an ISN that falls within the
1581  * receive window, the connection is killed.
1582  *
1583  * Notes:
1584  * A heuristic to determine when to accept syn cookies is not necessary.
1585  * An ACK flood would cause the syncookie verification to be attempted,
1586  * but a SYN flood causes syncookies to be generated.  Both are of equal
1587  * cost, so there's no point in trying to optimize the ACK flood case.
1588  * Also, if you don't process certain ACKs for some reason, then all someone
1589  * would have to do is launch a SYN and ACK flood at the same time, which
1590  * would stop cookie verification and defeat the entire purpose of syncookies.
1591  */
1592 static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1593 
1594 static void
1595 syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1596     u_int32_t *flowlabel)
1597 {
1598 	MD5_CTX ctx;
1599 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1600 	u_int32_t data;
1601 	u_int32_t *secbits;
1602 	u_int off, pmss, mss;
1603 	int i;
1604 
1605 	SCH_LOCK_ASSERT(sch);
1606 
1607 	/* Which of the two secrets to use. */
1608 	secbits = sch->sch_oddeven ?
1609 			sch->sch_secbits_odd : sch->sch_secbits_even;
1610 
1611 	/* Reseed secret if too old. */
1612 	if (sch->sch_reseed < time_uptime) {
1613 		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1614 		secbits = sch->sch_oddeven ?
1615 				sch->sch_secbits_odd : sch->sch_secbits_even;
1616 		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1617 			secbits[i] = arc4random();
1618 		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1619 	}
1620 
1621 	/* Secret rotation offset. */
1622 	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1623 
1624 	/* Maximum segment size calculation. */
1625 	pmss =
1626 	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1627 	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1628 		if (tcp_sc_msstab[mss] <= pmss)
1629 			break;
1630 
1631 	/* Fold parameters and MD5 digest into the ISN we will send. */
1632 	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1633 	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1634 	data |= mss << 4;	/* mss, 3 bits */
1635 
1636 	MD5Init(&ctx);
1637 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1638 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1639 	MD5Update(&ctx, secbits, off);
1640 	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1641 	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1642 	MD5Update(&ctx, &data, sizeof(data));
1643 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1644 
1645 	data |= (md5_buffer[0] << 7);
1646 	sc->sc_iss = data;
1647 
1648 #ifdef INET6
1649 	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1650 #endif
1651 
1652 	/* Additional parameters are stored in the timestamp if present. */
1653 	if (sc->sc_flags & SCF_TIMESTAMP) {
1654 		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1655 		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1656 		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1657 		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1658 		data |= md5_buffer[2] << 10;		/* more digest bits */
1659 		data ^= md5_buffer[3];
1660 		sc->sc_ts = data;
1661 		sc->sc_tsoff = data - ticks;		/* after XOR */
1662 	}
1663 
1664 	TCPSTAT_INC(tcps_sc_sendcookie);
1665 }
1666 
1667 static struct syncache *
1668 syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1669     struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1670     struct socket *so)
1671 {
1672 	MD5_CTX ctx;
1673 	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1674 	u_int32_t data = 0;
1675 	u_int32_t *secbits;
1676 	tcp_seq ack, seq;
1677 	int off, mss, wnd, flags;
1678 
1679 	SCH_LOCK_ASSERT(sch);
1680 
1681 	/*
1682 	 * Pull information out of SYN-ACK/ACK and
1683 	 * revert sequence number advances.
1684 	 */
1685 	ack = th->th_ack - 1;
1686 	seq = th->th_seq - 1;
1687 	off = (ack >> 1) & 0x7;
1688 	mss = (ack >> 4) & 0x7;
1689 	flags = ack & 0x7f;
1690 
1691 	/* Which of the two secrets to use. */
1692 	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1693 
1694 	/*
1695 	 * The secret wasn't updated for the lifetime of a syncookie,
1696 	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1697 	 */
1698 	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1699 		return (NULL);
1700 	}
1701 
1702 	/* Recompute the digest so we can compare it. */
1703 	MD5Init(&ctx);
1704 	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1705 	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1706 	MD5Update(&ctx, secbits, off);
1707 	MD5Update(&ctx, inc, sizeof(*inc));
1708 	MD5Update(&ctx, &seq, sizeof(seq));
1709 	MD5Update(&ctx, &flags, sizeof(flags));
1710 	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1711 
1712 	/* Does the digest part of or ACK'ed ISS match? */
1713 	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1714 		return (NULL);
1715 
1716 	/* Does the digest part of our reflected timestamp match? */
1717 	if (to->to_flags & TOF_TS) {
1718 		data = md5_buffer[3] ^ to->to_tsecr;
1719 		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1720 			return (NULL);
1721 	}
1722 
1723 	/* Fill in the syncache values. */
1724 	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1725 	sc->sc_ipopts = NULL;
1726 
1727 	sc->sc_irs = seq;
1728 	sc->sc_iss = ack;
1729 
1730 #ifdef INET6
1731 	if (inc->inc_flags & INC_ISIPV6) {
1732 		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1733 			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1734 	} else
1735 #endif
1736 	{
1737 		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1738 		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1739 	}
1740 
1741 	/* Additional parameters that were encoded in the timestamp. */
1742 	if (data) {
1743 		sc->sc_flags |= SCF_TIMESTAMP;
1744 		sc->sc_tsreflect = to->to_tsval;
1745 		sc->sc_ts = to->to_tsecr;
1746 		sc->sc_tsoff = to->to_tsecr - ticks;
1747 		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1748 		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1749 		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1750 		    TCP_MAX_WINSHIFT);
1751 		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1752 		    TCP_MAX_WINSHIFT);
1753 		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1754 			sc->sc_flags |= SCF_WINSCALE;
1755 	} else
1756 		sc->sc_flags |= SCF_NOOPT;
1757 
1758 	wnd = sbspace(&so->so_rcv);
1759 	wnd = imax(wnd, 0);
1760 	wnd = imin(wnd, TCP_MAXWIN);
1761 	sc->sc_wnd = wnd;
1762 
1763 	sc->sc_rxmits = 0;
1764 	sc->sc_peer_mss = tcp_sc_msstab[mss];
1765 
1766 	TCPSTAT_INC(tcps_sc_recvcookie);
1767 	return (sc);
1768 }
1769 
1770 /*
1771  * Returns the current number of syncache entries.  This number
1772  * will probably change before you get around to calling
1773  * syncache_pcblist.
1774  */
1775 
1776 int
1777 syncache_pcbcount(void)
1778 {
1779 	struct syncache_head *sch;
1780 	int count, i;
1781 
1782 	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1783 		/* No need to lock for a read. */
1784 		sch = &V_tcp_syncache.hashbase[i];
1785 		count += sch->sch_length;
1786 	}
1787 	return count;
1788 }
1789 
1790 /*
1791  * Exports the syncache entries to userland so that netstat can display
1792  * them alongside the other sockets.  This function is intended to be
1793  * called only from tcp_pcblist.
1794  *
1795  * Due to concurrency on an active system, the number of pcbs exported
1796  * may have no relation to max_pcbs.  max_pcbs merely indicates the
1797  * amount of space the caller allocated for this function to use.
1798  */
1799 int
1800 syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1801 {
1802 	struct xtcpcb xt;
1803 	struct syncache *sc;
1804 	struct syncache_head *sch;
1805 	int count, error, i;
1806 
1807 	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1808 		sch = &V_tcp_syncache.hashbase[i];
1809 		SCH_LOCK(sch);
1810 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1811 			if (count >= max_pcbs) {
1812 				SCH_UNLOCK(sch);
1813 				goto exit;
1814 			}
1815 			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1816 				continue;
1817 			bzero(&xt, sizeof(xt));
1818 			xt.xt_len = sizeof(xt);
1819 			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1820 				xt.xt_inp.inp_vflag = INP_IPV6;
1821 			else
1822 				xt.xt_inp.inp_vflag = INP_IPV4;
1823 			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1824 			xt.xt_tp.t_inpcb = &xt.xt_inp;
1825 			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1826 			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1827 			xt.xt_socket.xso_len = sizeof (struct xsocket);
1828 			xt.xt_socket.so_type = SOCK_STREAM;
1829 			xt.xt_socket.so_state = SS_ISCONNECTING;
1830 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1831 			if (error) {
1832 				SCH_UNLOCK(sch);
1833 				goto exit;
1834 			}
1835 			count++;
1836 		}
1837 		SCH_UNLOCK(sch);
1838 	}
1839 exit:
1840 	*pcbs_exported = count;
1841 	return error;
1842 }
1843