xref: /freebsd/sys/netinet/tcp_subr.c (revision fbe4316a67fa30b786e2cac77d6f6c2b6b5b691c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/ip_icmp.h>
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #include <netkey/key.h>
100 #endif /*IPSEC*/
101 
102 #ifdef FAST_IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #define	IPSEC
110 #endif /*FAST_IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 int	tcp_mssdflt = TCP_MSS;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
118 
119 #ifdef INET6
120 int	tcp_v6mssdflt = TCP6_MSS;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
122 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
123 	"Default TCP Maximum Segment Size for IPv6");
124 #endif
125 
126 /*
127  * Minimum MSS we accept and use. This prevents DoS attacks where
128  * we are forced to a ridiculous low MSS like 20 and send hundreds
129  * of packets instead of one. The effect scales with the available
130  * bandwidth and quickly saturates the CPU and network interface
131  * with packet generation and sending. Set to zero to disable MINMSS
132  * checking. This setting prevents us from sending too small packets.
133  */
134 int	tcp_minmss = TCP_MINMSS;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
136     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
137 /*
138  * Number of TCP segments per second we accept from remote host
139  * before we start to calculate average segment size. If average
140  * segment size drops below the minimum TCP MSS we assume a DoS
141  * attack and reset+drop the connection. Care has to be taken not to
142  * set this value too small to not kill interactive type connections
143  * (telnet, SSH) which send many small packets.
144  */
145 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
147     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
148     "be under the MINMSS Size");
149 
150 #if 0
151 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
152 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
153     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
154 #endif
155 
156 int	tcp_do_rfc1323 = 1;
157 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
158     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
159 
160 static int	tcp_tcbhashsize = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
162      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
163 
164 static int	do_tcpdrain = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
166      "Enable tcp_drain routine for extra help when low on mbufs");
167 
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
169     &tcbinfo.ipi_count, 0, "Number of active PCBs");
170 
171 static int	icmp_may_rst = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
173     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
174 
175 static int	tcp_isn_reseed_interval = 0;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
177     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
178 
179 /*
180  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
181  * 1024 exists only for debugging.  A good production default would be
182  * something like 6100.
183  */
184 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
185     "TCP inflight data limiting");
186 
187 static int	tcp_inflight_enable = 1;
188 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
189     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
190 
191 static int	tcp_inflight_debug = 0;
192 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
193     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
194 
195 static int	tcp_inflight_min = 6144;
196 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
197     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
198 
199 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
200 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
201     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
202 
203 static int	tcp_inflight_stab = 20;
204 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
205     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
206 
207 uma_zone_t sack_hole_zone;
208 
209 static struct inpcb *tcp_notify(struct inpcb *, int);
210 static void	tcp_discardcb(struct tcpcb *);
211 static void	tcp_isn_tick(void *);
212 
213 /*
214  * Target size of TCP PCB hash tables. Must be a power of two.
215  *
216  * Note that this can be overridden by the kernel environment
217  * variable net.inet.tcp.tcbhashsize
218  */
219 #ifndef TCBHASHSIZE
220 #define TCBHASHSIZE	512
221 #endif
222 
223 /*
224  * XXX
225  * Callouts should be moved into struct tcp directly.  They are currently
226  * separate because the tcpcb structure is exported to userland for sysctl
227  * parsing purposes, which do not know about callouts.
228  */
229 struct	tcpcb_mem {
230 	struct	tcpcb tcb;
231 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
232 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
233 };
234 
235 static uma_zone_t tcpcb_zone;
236 static uma_zone_t tcptw_zone;
237 struct callout isn_callout;
238 
239 /*
240  * Tcp initialization
241  */
242 void
243 tcp_init()
244 {
245 	int hashsize = TCBHASHSIZE;
246 
247 	tcp_delacktime = TCPTV_DELACK;
248 	tcp_keepinit = TCPTV_KEEP_INIT;
249 	tcp_keepidle = TCPTV_KEEP_IDLE;
250 	tcp_keepintvl = TCPTV_KEEPINTVL;
251 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
252 	tcp_msl = TCPTV_MSL;
253 	tcp_rexmit_min = TCPTV_MIN;
254 	tcp_rexmit_slop = TCPTV_CPU_VAR;
255 
256 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
257 	LIST_INIT(&tcb);
258 	tcbinfo.listhead = &tcb;
259 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
260 	if (!powerof2(hashsize)) {
261 		printf("WARNING: TCB hash size not a power of 2\n");
262 		hashsize = 512; /* safe default */
263 	}
264 	tcp_tcbhashsize = hashsize;
265 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
266 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
267 					&tcbinfo.porthashmask);
268 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
271 #ifdef INET6
272 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
273 #else /* INET6 */
274 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
275 #endif /* INET6 */
276 	if (max_protohdr < TCP_MINPROTOHDR)
277 		max_protohdr = TCP_MINPROTOHDR;
278 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
279 		panic("tcp_init");
280 #undef TCP_MINPROTOHDR
281 	/*
282 	 * These have to be type stable for the benefit of the timers.
283 	 */
284 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
285 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286 	uma_zone_set_max(tcpcb_zone, maxsockets);
287 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
288 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
289 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
290 	tcp_timer_init();
291 	syncache_init();
292 	tcp_hc_init();
293 	tcp_reass_init();
294 	callout_init(&isn_callout, CALLOUT_MPSAFE);
295 	tcp_isn_tick(NULL);
296 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
297 		SHUTDOWN_PRI_DEFAULT);
298 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
299 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300 }
301 
302 void
303 tcp_fini(xtp)
304 	void *xtp;
305 {
306 	callout_stop(&isn_callout);
307 
308 }
309 
310 /*
311  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
312  * tcp_template used to store this data in mbufs, but we now recopy it out
313  * of the tcpcb each time to conserve mbufs.
314  */
315 void
316 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
317 	struct inpcb *inp;
318 	void *ip_ptr;
319 	void *tcp_ptr;
320 {
321 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
322 
323 	INP_LOCK_ASSERT(inp);
324 
325 #ifdef INET6
326 	if ((inp->inp_vflag & INP_IPV6) != 0) {
327 		struct ip6_hdr *ip6;
328 
329 		ip6 = (struct ip6_hdr *)ip_ptr;
330 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
331 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
332 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
333 			(IPV6_VERSION & IPV6_VERSION_MASK);
334 		ip6->ip6_nxt = IPPROTO_TCP;
335 		ip6->ip6_plen = sizeof(struct tcphdr);
336 		ip6->ip6_src = inp->in6p_laddr;
337 		ip6->ip6_dst = inp->in6p_faddr;
338 	} else
339 #endif
340 	{
341 		struct ip *ip;
342 
343 		ip = (struct ip *)ip_ptr;
344 		ip->ip_v = IPVERSION;
345 		ip->ip_hl = 5;
346 		ip->ip_tos = inp->inp_ip_tos;
347 		ip->ip_len = 0;
348 		ip->ip_id = 0;
349 		ip->ip_off = 0;
350 		ip->ip_ttl = inp->inp_ip_ttl;
351 		ip->ip_sum = 0;
352 		ip->ip_p = IPPROTO_TCP;
353 		ip->ip_src = inp->inp_laddr;
354 		ip->ip_dst = inp->inp_faddr;
355 	}
356 	th->th_sport = inp->inp_lport;
357 	th->th_dport = inp->inp_fport;
358 	th->th_seq = 0;
359 	th->th_ack = 0;
360 	th->th_x2 = 0;
361 	th->th_off = 5;
362 	th->th_flags = 0;
363 	th->th_win = 0;
364 	th->th_urp = 0;
365 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
366 }
367 
368 /*
369  * Create template to be used to send tcp packets on a connection.
370  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
371  * use for this function is in keepalives, which use tcp_respond.
372  */
373 struct tcptemp *
374 tcpip_maketemplate(inp)
375 	struct inpcb *inp;
376 {
377 	struct mbuf *m;
378 	struct tcptemp *n;
379 
380 	m = m_get(M_DONTWAIT, MT_HEADER);
381 	if (m == NULL)
382 		return (0);
383 	m->m_len = sizeof(struct tcptemp);
384 	n = mtod(m, struct tcptemp *);
385 
386 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
387 	return (n);
388 }
389 
390 /*
391  * Send a single message to the TCP at address specified by
392  * the given TCP/IP header.  If m == NULL, then we make a copy
393  * of the tcpiphdr at ti and send directly to the addressed host.
394  * This is used to force keep alive messages out using the TCP
395  * template for a connection.  If flags are given then we send
396  * a message back to the TCP which originated the * segment ti,
397  * and discard the mbuf containing it and any other attached mbufs.
398  *
399  * In any case the ack and sequence number of the transmitted
400  * segment are as specified by the parameters.
401  *
402  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
403  */
404 void
405 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
406 	struct tcpcb *tp;
407 	void *ipgen;
408 	register struct tcphdr *th;
409 	register struct mbuf *m;
410 	tcp_seq ack, seq;
411 	int flags;
412 {
413 	register int tlen;
414 	int win = 0;
415 	struct ip *ip;
416 	struct tcphdr *nth;
417 #ifdef INET6
418 	struct ip6_hdr *ip6;
419 	int isipv6;
420 #endif /* INET6 */
421 	int ipflags = 0;
422 	struct inpcb *inp;
423 
424 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
425 
426 #ifdef INET6
427 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
428 	ip6 = ipgen;
429 #endif /* INET6 */
430 	ip = ipgen;
431 
432 	if (tp != NULL) {
433 		inp = tp->t_inpcb;
434 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
435 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
436 		INP_LOCK_ASSERT(inp);
437 	} else
438 		inp = NULL;
439 
440 	if (tp != NULL) {
441 		if (!(flags & TH_RST)) {
442 			win = sbspace(&inp->inp_socket->so_rcv);
443 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
444 				win = (long)TCP_MAXWIN << tp->rcv_scale;
445 		}
446 	}
447 	if (m == NULL) {
448 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
449 		if (m == NULL)
450 			return;
451 		tlen = 0;
452 		m->m_data += max_linkhdr;
453 #ifdef INET6
454 		if (isipv6) {
455 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
456 			      sizeof(struct ip6_hdr));
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			nth = (struct tcphdr *)(ip6 + 1);
459 		} else
460 #endif /* INET6 */
461 	      {
462 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
463 		ip = mtod(m, struct ip *);
464 		nth = (struct tcphdr *)(ip + 1);
465 	      }
466 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
467 		flags = TH_ACK;
468 	} else {
469 		m_freem(m->m_next);
470 		m->m_next = NULL;
471 		m->m_data = (caddr_t)ipgen;
472 		/* m_len is set later */
473 		tlen = 0;
474 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
475 #ifdef INET6
476 		if (isipv6) {
477 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
478 			nth = (struct tcphdr *)(ip6 + 1);
479 		} else
480 #endif /* INET6 */
481 	      {
482 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
483 		nth = (struct tcphdr *)(ip + 1);
484 	      }
485 		if (th != nth) {
486 			/*
487 			 * this is usually a case when an extension header
488 			 * exists between the IPv6 header and the
489 			 * TCP header.
490 			 */
491 			nth->th_sport = th->th_sport;
492 			nth->th_dport = th->th_dport;
493 		}
494 		xchg(nth->th_dport, nth->th_sport, n_short);
495 #undef xchg
496 	}
497 #ifdef INET6
498 	if (isipv6) {
499 		ip6->ip6_flow = 0;
500 		ip6->ip6_vfc = IPV6_VERSION;
501 		ip6->ip6_nxt = IPPROTO_TCP;
502 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
503 						tlen));
504 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
505 	} else
506 #endif
507 	{
508 		tlen += sizeof (struct tcpiphdr);
509 		ip->ip_len = tlen;
510 		ip->ip_ttl = ip_defttl;
511 		if (path_mtu_discovery)
512 			ip->ip_off |= IP_DF;
513 	}
514 	m->m_len = tlen;
515 	m->m_pkthdr.len = tlen;
516 	m->m_pkthdr.rcvif = NULL;
517 #ifdef MAC
518 	if (inp != NULL) {
519 		/*
520 		 * Packet is associated with a socket, so allow the
521 		 * label of the response to reflect the socket label.
522 		 */
523 		INP_LOCK_ASSERT(inp);
524 		mac_create_mbuf_from_inpcb(inp, m);
525 	} else {
526 		/*
527 		 * Packet is not associated with a socket, so possibly
528 		 * update the label in place.
529 		 */
530 		mac_reflect_mbuf_tcp(m);
531 	}
532 #endif
533 	nth->th_seq = htonl(seq);
534 	nth->th_ack = htonl(ack);
535 	nth->th_x2 = 0;
536 	nth->th_off = sizeof (struct tcphdr) >> 2;
537 	nth->th_flags = flags;
538 	if (tp != NULL)
539 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
540 	else
541 		nth->th_win = htons((u_short)win);
542 	nth->th_urp = 0;
543 #ifdef INET6
544 	if (isipv6) {
545 		nth->th_sum = 0;
546 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
547 					sizeof(struct ip6_hdr),
548 					tlen - sizeof(struct ip6_hdr));
549 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
550 		    NULL, NULL);
551 	} else
552 #endif /* INET6 */
553 	{
554 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
555 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
556 		m->m_pkthdr.csum_flags = CSUM_TCP;
557 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
558 	}
559 #ifdef TCPDEBUG
560 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
561 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
562 #endif
563 #ifdef INET6
564 	if (isipv6)
565 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
566 	else
567 #endif /* INET6 */
568 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
569 }
570 
571 /*
572  * Create a new TCP control block, making an
573  * empty reassembly queue and hooking it to the argument
574  * protocol control block.  The `inp' parameter must have
575  * come from the zone allocator set up in tcp_init().
576  */
577 struct tcpcb *
578 tcp_newtcpcb(inp)
579 	struct inpcb *inp;
580 {
581 	struct tcpcb_mem *tm;
582 	struct tcpcb *tp;
583 #ifdef INET6
584 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
585 #endif /* INET6 */
586 
587 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
588 	if (tm == NULL)
589 		return (NULL);
590 	tp = &tm->tcb;
591 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
592 	tp->t_maxseg = tp->t_maxopd =
593 #ifdef INET6
594 		isipv6 ? tcp_v6mssdflt :
595 #endif /* INET6 */
596 		tcp_mssdflt;
597 
598 	/* Set up our timeouts. */
599 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
600 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
601 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
602 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
603 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
604 
605 	if (tcp_do_rfc1323)
606 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
607 	tp->sack_enable = tcp_do_sack;
608 	if (tp->sack_enable)
609 		TAILQ_INIT(&tp->snd_holes);
610 	tp->t_inpcb = inp;	/* XXX */
611 	/*
612 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
613 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
614 	 * reasonable initial retransmit time.
615 	 */
616 	tp->t_srtt = TCPTV_SRTTBASE;
617 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
618 	tp->t_rttmin = tcp_rexmit_min;
619 	tp->t_rxtcur = TCPTV_RTOBASE;
620 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
621 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623 	tp->t_rcvtime = ticks;
624 	tp->t_bw_rtttime = ticks;
625 	/*
626 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
627 	 * because the socket may be bound to an IPv6 wildcard address,
628 	 * which may match an IPv4-mapped IPv6 address.
629 	 */
630 	inp->inp_ip_ttl = ip_defttl;
631 	inp->inp_ppcb = (caddr_t)tp;
632 	return (tp);		/* XXX */
633 }
634 
635 /*
636  * Drop a TCP connection, reporting
637  * the specified error.  If connection is synchronized,
638  * then send a RST to peer.
639  */
640 struct tcpcb *
641 tcp_drop(tp, errno)
642 	register struct tcpcb *tp;
643 	int errno;
644 {
645 	struct socket *so = tp->t_inpcb->inp_socket;
646 
647 	INP_LOCK_ASSERT(tp->t_inpcb);
648 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
649 		tp->t_state = TCPS_CLOSED;
650 		(void) tcp_output(tp);
651 		tcpstat.tcps_drops++;
652 	} else
653 		tcpstat.tcps_conndrops++;
654 	if (errno == ETIMEDOUT && tp->t_softerror)
655 		errno = tp->t_softerror;
656 	so->so_error = errno;
657 	return (tcp_close(tp));
658 }
659 
660 static void
661 tcp_discardcb(tp)
662 	struct tcpcb *tp;
663 {
664 	struct tseg_qent *q;
665 	struct inpcb *inp = tp->t_inpcb;
666 	struct socket *so = inp->inp_socket;
667 #ifdef INET6
668 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
669 #endif /* INET6 */
670 
671 	INP_LOCK_ASSERT(inp);
672 
673 	/*
674 	 * Make sure that all of our timers are stopped before we
675 	 * delete the PCB.
676 	 */
677 	callout_stop(tp->tt_rexmt);
678 	callout_stop(tp->tt_persist);
679 	callout_stop(tp->tt_keep);
680 	callout_stop(tp->tt_2msl);
681 	callout_stop(tp->tt_delack);
682 
683 	/*
684 	 * If we got enough samples through the srtt filter,
685 	 * save the rtt and rttvar in the routing entry.
686 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
687 	 * 4 samples is enough for the srtt filter to converge
688 	 * to within enough % of the correct value; fewer samples
689 	 * and we could save a bogus rtt. The danger is not high
690 	 * as tcp quickly recovers from everything.
691 	 * XXX: Works very well but needs some more statistics!
692 	 */
693 	if (tp->t_rttupdated >= 4) {
694 		struct hc_metrics_lite metrics;
695 		u_long ssthresh;
696 
697 		bzero(&metrics, sizeof(metrics));
698 		/*
699 		 * Update the ssthresh always when the conditions below
700 		 * are satisfied. This gives us better new start value
701 		 * for the congestion avoidance for new connections.
702 		 * ssthresh is only set if packet loss occured on a session.
703 		 */
704 		ssthresh = tp->snd_ssthresh;
705 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
706 			/*
707 			 * convert the limit from user data bytes to
708 			 * packets then to packet data bytes.
709 			 */
710 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
711 			if (ssthresh < 2)
712 				ssthresh = 2;
713 			ssthresh *= (u_long)(tp->t_maxseg +
714 #ifdef INET6
715 				      (isipv6 ? sizeof (struct ip6_hdr) +
716 					       sizeof (struct tcphdr) :
717 #endif
718 				       sizeof (struct tcpiphdr)
719 #ifdef INET6
720 				       )
721 #endif
722 				      );
723 		} else
724 			ssthresh = 0;
725 		metrics.rmx_ssthresh = ssthresh;
726 
727 		metrics.rmx_rtt = tp->t_srtt;
728 		metrics.rmx_rttvar = tp->t_rttvar;
729 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
730 		metrics.rmx_bandwidth = tp->snd_bandwidth;
731 		metrics.rmx_cwnd = tp->snd_cwnd;
732 		metrics.rmx_sendpipe = 0;
733 		metrics.rmx_recvpipe = 0;
734 
735 		tcp_hc_update(&inp->inp_inc, &metrics);
736 	}
737 
738 	/* free the reassembly queue, if any */
739 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
740 		LIST_REMOVE(q, tqe_q);
741 		m_freem(q->tqe_m);
742 		uma_zfree(tcp_reass_zone, q);
743 		tp->t_segqlen--;
744 		tcp_reass_qsize--;
745 	}
746 	tcp_free_sackholes(tp);
747 	inp->inp_ppcb = NULL;
748 	tp->t_inpcb = NULL;
749 	uma_zfree(tcpcb_zone, tp);
750 	soisdisconnected(so);
751 }
752 
753 /*
754  * Close a TCP control block:
755  *    discard all space held by the tcp
756  *    discard internet protocol block
757  *    wake up any sleepers
758  */
759 struct tcpcb *
760 tcp_close(tp)
761 	struct tcpcb *tp;
762 {
763 	struct inpcb *inp = tp->t_inpcb;
764 #ifdef INET6
765 	struct socket *so = inp->inp_socket;
766 #endif
767 
768 	INP_LOCK_ASSERT(inp);
769 
770 	tcp_discardcb(tp);
771 #ifdef INET6
772 	if (INP_CHECK_SOCKAF(so, AF_INET6))
773 		in6_pcbdetach(inp);
774 	else
775 #endif
776 		in_pcbdetach(inp);
777 	tcpstat.tcps_closed++;
778 	return (NULL);
779 }
780 
781 void
782 tcp_drain()
783 {
784 	if (do_tcpdrain)
785 	{
786 		struct inpcb *inpb;
787 		struct tcpcb *tcpb;
788 		struct tseg_qent *te;
789 
790 	/*
791 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
792 	 * if there is one...
793 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
794 	 *      reassembly queue should be flushed, but in a situation
795 	 *	where we're really low on mbufs, this is potentially
796 	 *	usefull.
797 	 */
798 		INP_INFO_RLOCK(&tcbinfo);
799 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
800 			if (inpb->inp_vflag & INP_TIMEWAIT)
801 				continue;
802 			INP_LOCK(inpb);
803 			if ((tcpb = intotcpcb(inpb)) != NULL) {
804 				while ((te = LIST_FIRST(&tcpb->t_segq))
805 			            != NULL) {
806 					LIST_REMOVE(te, tqe_q);
807 					m_freem(te->tqe_m);
808 					uma_zfree(tcp_reass_zone, te);
809 					tcpb->t_segqlen--;
810 					tcp_reass_qsize--;
811 				}
812 				tcp_clean_sackreport(tcpb);
813 			}
814 			INP_UNLOCK(inpb);
815 		}
816 		INP_INFO_RUNLOCK(&tcbinfo);
817 	}
818 }
819 
820 /*
821  * Notify a tcp user of an asynchronous error;
822  * store error as soft error, but wake up user
823  * (for now, won't do anything until can select for soft error).
824  *
825  * Do not wake up user since there currently is no mechanism for
826  * reporting soft errors (yet - a kqueue filter may be added).
827  */
828 static struct inpcb *
829 tcp_notify(inp, error)
830 	struct inpcb *inp;
831 	int error;
832 {
833 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
834 
835 	INP_LOCK_ASSERT(inp);
836 
837 	/*
838 	 * Ignore some errors if we are hooked up.
839 	 * If connection hasn't completed, has retransmitted several times,
840 	 * and receives a second error, give up now.  This is better
841 	 * than waiting a long time to establish a connection that
842 	 * can never complete.
843 	 */
844 	if (tp->t_state == TCPS_ESTABLISHED &&
845 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
846 	     error == EHOSTDOWN)) {
847 		return (inp);
848 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
849 	    tp->t_softerror) {
850 		tcp_drop(tp, error);
851 		return (struct inpcb *)0;
852 	} else {
853 		tp->t_softerror = error;
854 		return (inp);
855 	}
856 #if 0
857 	wakeup( &so->so_timeo);
858 	sorwakeup(so);
859 	sowwakeup(so);
860 #endif
861 }
862 
863 static int
864 tcp_pcblist(SYSCTL_HANDLER_ARGS)
865 {
866 	int error, i, n, s;
867 	struct inpcb *inp, **inp_list;
868 	inp_gen_t gencnt;
869 	struct xinpgen xig;
870 
871 	/*
872 	 * The process of preparing the TCB list is too time-consuming and
873 	 * resource-intensive to repeat twice on every request.
874 	 */
875 	if (req->oldptr == NULL) {
876 		n = tcbinfo.ipi_count;
877 		req->oldidx = 2 * (sizeof xig)
878 			+ (n + n/8) * sizeof(struct xtcpcb);
879 		return (0);
880 	}
881 
882 	if (req->newptr != NULL)
883 		return (EPERM);
884 
885 	/*
886 	 * OK, now we're committed to doing something.
887 	 */
888 	s = splnet();
889 	INP_INFO_RLOCK(&tcbinfo);
890 	gencnt = tcbinfo.ipi_gencnt;
891 	n = tcbinfo.ipi_count;
892 	INP_INFO_RUNLOCK(&tcbinfo);
893 	splx(s);
894 
895 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
896 		+ n * sizeof(struct xtcpcb));
897 	if (error != 0)
898 		return (error);
899 
900 	xig.xig_len = sizeof xig;
901 	xig.xig_count = n;
902 	xig.xig_gen = gencnt;
903 	xig.xig_sogen = so_gencnt;
904 	error = SYSCTL_OUT(req, &xig, sizeof xig);
905 	if (error)
906 		return (error);
907 
908 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
909 	if (inp_list == NULL)
910 		return (ENOMEM);
911 
912 	s = splnet();
913 	INP_INFO_RLOCK(&tcbinfo);
914 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
915 	     inp = LIST_NEXT(inp, inp_list)) {
916 		INP_LOCK(inp);
917 		if (inp->inp_gencnt <= gencnt) {
918 			/*
919 			 * XXX: This use of cr_cansee(), introduced with
920 			 * TCP state changes, is not quite right, but for
921 			 * now, better than nothing.
922 			 */
923 			if (inp->inp_vflag & INP_TIMEWAIT)
924 				error = cr_cansee(req->td->td_ucred,
925 				    intotw(inp)->tw_cred);
926 			else
927 				error = cr_canseesocket(req->td->td_ucred,
928 				    inp->inp_socket);
929 			if (error == 0)
930 				inp_list[i++] = inp;
931 		}
932 		INP_UNLOCK(inp);
933 	}
934 	INP_INFO_RUNLOCK(&tcbinfo);
935 	splx(s);
936 	n = i;
937 
938 	error = 0;
939 	for (i = 0; i < n; i++) {
940 		inp = inp_list[i];
941 		if (inp->inp_gencnt <= gencnt) {
942 			struct xtcpcb xt;
943 			caddr_t inp_ppcb;
944 
945 			bzero(&xt, sizeof(xt));
946 			xt.xt_len = sizeof xt;
947 			/* XXX should avoid extra copy */
948 			bcopy(inp, &xt.xt_inp, sizeof *inp);
949 			inp_ppcb = inp->inp_ppcb;
950 			if (inp_ppcb == NULL)
951 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
952 			else if (inp->inp_vflag & INP_TIMEWAIT) {
953 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
954 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
955 			} else
956 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
957 			if (inp->inp_socket != NULL)
958 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
959 			else {
960 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
961 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
962 			}
963 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
964 			error = SYSCTL_OUT(req, &xt, sizeof xt);
965 		}
966 	}
967 	if (!error) {
968 		/*
969 		 * Give the user an updated idea of our state.
970 		 * If the generation differs from what we told
971 		 * her before, she knows that something happened
972 		 * while we were processing this request, and it
973 		 * might be necessary to retry.
974 		 */
975 		s = splnet();
976 		INP_INFO_RLOCK(&tcbinfo);
977 		xig.xig_gen = tcbinfo.ipi_gencnt;
978 		xig.xig_sogen = so_gencnt;
979 		xig.xig_count = tcbinfo.ipi_count;
980 		INP_INFO_RUNLOCK(&tcbinfo);
981 		splx(s);
982 		error = SYSCTL_OUT(req, &xig, sizeof xig);
983 	}
984 	free(inp_list, M_TEMP);
985 	return (error);
986 }
987 
988 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
989 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
990 
991 static int
992 tcp_getcred(SYSCTL_HANDLER_ARGS)
993 {
994 	struct xucred xuc;
995 	struct sockaddr_in addrs[2];
996 	struct inpcb *inp;
997 	int error, s;
998 
999 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1000 	if (error)
1001 		return (error);
1002 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1003 	if (error)
1004 		return (error);
1005 	s = splnet();
1006 	INP_INFO_RLOCK(&tcbinfo);
1007 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1008 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1009 	if (inp == NULL) {
1010 		error = ENOENT;
1011 		goto outunlocked;
1012 	}
1013 	INP_LOCK(inp);
1014 	if (inp->inp_socket == NULL) {
1015 		error = ENOENT;
1016 		goto out;
1017 	}
1018 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1019 	if (error)
1020 		goto out;
1021 	cru2x(inp->inp_socket->so_cred, &xuc);
1022 out:
1023 	INP_UNLOCK(inp);
1024 outunlocked:
1025 	INP_INFO_RUNLOCK(&tcbinfo);
1026 	splx(s);
1027 	if (error == 0)
1028 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1029 	return (error);
1030 }
1031 
1032 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1033     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1034     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1035 
1036 #ifdef INET6
1037 static int
1038 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1039 {
1040 	struct xucred xuc;
1041 	struct sockaddr_in6 addrs[2];
1042 	struct in6_addr a6[2];
1043 	struct inpcb *inp;
1044 	int error, s, mapped = 0;
1045 
1046 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1047 	if (error)
1048 		return (error);
1049 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1050 	if (error)
1051 		return (error);
1052 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1053 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1054 			mapped = 1;
1055 		else
1056 			return (EINVAL);
1057 	} else {
1058 		error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
1059 		if (error)
1060 			return (EINVAL);
1061 		error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
1062 		if (error)
1063 			return (EINVAL);
1064 	}
1065 	s = splnet();
1066 	INP_INFO_RLOCK(&tcbinfo);
1067 	if (mapped == 1)
1068 		inp = in_pcblookup_hash(&tcbinfo,
1069 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1070 			addrs[1].sin6_port,
1071 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1072 			addrs[0].sin6_port,
1073 			0, NULL);
1074 	else
1075 		inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
1076 			&a6[0], addrs[0].sin6_port, 0, NULL);
1077 	if (inp == NULL) {
1078 		error = ENOENT;
1079 		goto outunlocked;
1080 	}
1081 	INP_LOCK(inp);
1082 	if (inp->inp_socket == NULL) {
1083 		error = ENOENT;
1084 		goto out;
1085 	}
1086 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1087 	if (error)
1088 		goto out;
1089 	cru2x(inp->inp_socket->so_cred, &xuc);
1090 out:
1091 	INP_UNLOCK(inp);
1092 outunlocked:
1093 	INP_INFO_RUNLOCK(&tcbinfo);
1094 	splx(s);
1095 	if (error == 0)
1096 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1097 	return (error);
1098 }
1099 
1100 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1101     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1102     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1103 #endif
1104 
1105 
1106 void
1107 tcp_ctlinput(cmd, sa, vip)
1108 	int cmd;
1109 	struct sockaddr *sa;
1110 	void *vip;
1111 {
1112 	struct ip *ip = vip;
1113 	struct tcphdr *th;
1114 	struct in_addr faddr;
1115 	struct inpcb *inp;
1116 	struct tcpcb *tp;
1117 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1118 	struct icmp *icp;
1119 	struct in_conninfo inc;
1120 	tcp_seq icmp_tcp_seq;
1121 	int mtu, s;
1122 
1123 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1124 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1125 		return;
1126 
1127 	if (cmd == PRC_MSGSIZE)
1128 		notify = tcp_mtudisc;
1129 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1130 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1131 		notify = tcp_drop_syn_sent;
1132 	/*
1133 	 * Redirects don't need to be handled up here.
1134 	 */
1135 	else if (PRC_IS_REDIRECT(cmd))
1136 		return;
1137 	/*
1138 	 * Source quench is depreciated.
1139 	 */
1140 	else if (cmd == PRC_QUENCH)
1141 		return;
1142 	/*
1143 	 * Hostdead is ugly because it goes linearly through all PCBs.
1144 	 * XXX: We never get this from ICMP, otherwise it makes an
1145 	 * excellent DoS attack on machines with many connections.
1146 	 */
1147 	else if (cmd == PRC_HOSTDEAD)
1148 		ip = NULL;
1149 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1150 		return;
1151 	if (ip != NULL) {
1152 		s = splnet();
1153 		icp = (struct icmp *)((caddr_t)ip
1154 				      - offsetof(struct icmp, icmp_ip));
1155 		th = (struct tcphdr *)((caddr_t)ip
1156 				       + (ip->ip_hl << 2));
1157 		INP_INFO_WLOCK(&tcbinfo);
1158 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1159 		    ip->ip_src, th->th_sport, 0, NULL);
1160 		if (inp != NULL)  {
1161 			INP_LOCK(inp);
1162 			if (inp->inp_socket != NULL) {
1163 				icmp_tcp_seq = htonl(th->th_seq);
1164 				tp = intotcpcb(inp);
1165 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1166 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1167 					if (cmd == PRC_MSGSIZE) {
1168 					    /*
1169 					     * MTU discovery:
1170 					     * If we got a needfrag set the MTU
1171 					     * in the route to the suggested new
1172 					     * value (if given) and then notify.
1173 					     */
1174 					    bzero(&inc, sizeof(inc));
1175 					    inc.inc_flags = 0;	/* IPv4 */
1176 					    inc.inc_faddr = faddr;
1177 
1178 					    mtu = ntohs(icp->icmp_nextmtu);
1179 					    /*
1180 					     * If no alternative MTU was
1181 					     * proposed, try the next smaller
1182 					     * one.
1183 					     */
1184 					    if (!mtu)
1185 						mtu = ip_next_mtu(ntohs(ip->ip_len),
1186 						 1);
1187 					    if (mtu < max(296, (tcp_minmss)
1188 						 + sizeof(struct tcpiphdr)))
1189 						mtu = 0;
1190 					    if (!mtu)
1191 						mtu = tcp_mssdflt
1192 						 + sizeof(struct tcpiphdr);
1193 					    /*
1194 					     * Only cache the the MTU if it
1195 					     * is smaller than the interface
1196 					     * or route MTU.  tcp_mtudisc()
1197 					     * will do right thing by itself.
1198 					     */
1199 					    if (mtu <= tcp_maxmtu(&inc))
1200 						tcp_hc_updatemtu(&inc, mtu);
1201 					}
1202 
1203 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1204 				}
1205 			}
1206 			if (inp != NULL)
1207 				INP_UNLOCK(inp);
1208 		} else {
1209 			inc.inc_fport = th->th_dport;
1210 			inc.inc_lport = th->th_sport;
1211 			inc.inc_faddr = faddr;
1212 			inc.inc_laddr = ip->ip_src;
1213 #ifdef INET6
1214 			inc.inc_isipv6 = 0;
1215 #endif
1216 			syncache_unreach(&inc, th);
1217 		}
1218 		INP_INFO_WUNLOCK(&tcbinfo);
1219 		splx(s);
1220 	} else
1221 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1222 }
1223 
1224 #ifdef INET6
1225 void
1226 tcp6_ctlinput(cmd, sa, d)
1227 	int cmd;
1228 	struct sockaddr *sa;
1229 	void *d;
1230 {
1231 	struct tcphdr th;
1232 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1233 	struct ip6_hdr *ip6;
1234 	struct mbuf *m;
1235 	struct ip6ctlparam *ip6cp = NULL;
1236 	const struct sockaddr_in6 *sa6_src = NULL;
1237 	int off;
1238 	struct tcp_portonly {
1239 		u_int16_t th_sport;
1240 		u_int16_t th_dport;
1241 	} *thp;
1242 
1243 	if (sa->sa_family != AF_INET6 ||
1244 	    sa->sa_len != sizeof(struct sockaddr_in6))
1245 		return;
1246 
1247 	if (cmd == PRC_MSGSIZE)
1248 		notify = tcp_mtudisc;
1249 	else if (!PRC_IS_REDIRECT(cmd) &&
1250 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1251 		return;
1252 	/* Source quench is depreciated. */
1253 	else if (cmd == PRC_QUENCH)
1254 		return;
1255 
1256 	/* if the parameter is from icmp6, decode it. */
1257 	if (d != NULL) {
1258 		ip6cp = (struct ip6ctlparam *)d;
1259 		m = ip6cp->ip6c_m;
1260 		ip6 = ip6cp->ip6c_ip6;
1261 		off = ip6cp->ip6c_off;
1262 		sa6_src = ip6cp->ip6c_src;
1263 	} else {
1264 		m = NULL;
1265 		ip6 = NULL;
1266 		off = 0;	/* fool gcc */
1267 		sa6_src = &sa6_any;
1268 	}
1269 
1270 	if (ip6 != NULL) {
1271 		struct in_conninfo inc;
1272 		/*
1273 		 * XXX: We assume that when IPV6 is non NULL,
1274 		 * M and OFF are valid.
1275 		 */
1276 
1277 		/* check if we can safely examine src and dst ports */
1278 		if (m->m_pkthdr.len < off + sizeof(*thp))
1279 			return;
1280 
1281 		bzero(&th, sizeof(th));
1282 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1283 
1284 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1285 		    (struct sockaddr *)ip6cp->ip6c_src,
1286 		    th.th_sport, cmd, NULL, notify);
1287 
1288 		inc.inc_fport = th.th_dport;
1289 		inc.inc_lport = th.th_sport;
1290 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1291 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1292 		inc.inc_isipv6 = 1;
1293 		INP_INFO_WLOCK(&tcbinfo);
1294 		syncache_unreach(&inc, &th);
1295 		INP_INFO_WUNLOCK(&tcbinfo);
1296 	} else
1297 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1298 			      0, cmd, NULL, notify);
1299 }
1300 #endif /* INET6 */
1301 
1302 
1303 /*
1304  * Following is where TCP initial sequence number generation occurs.
1305  *
1306  * There are two places where we must use initial sequence numbers:
1307  * 1.  In SYN-ACK packets.
1308  * 2.  In SYN packets.
1309  *
1310  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1311  * tcp_syncache.c for details.
1312  *
1313  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1314  * depends on this property.  In addition, these ISNs should be
1315  * unguessable so as to prevent connection hijacking.  To satisfy
1316  * the requirements of this situation, the algorithm outlined in
1317  * RFC 1948 is used, with only small modifications.
1318  *
1319  * Implementation details:
1320  *
1321  * Time is based off the system timer, and is corrected so that it
1322  * increases by one megabyte per second.  This allows for proper
1323  * recycling on high speed LANs while still leaving over an hour
1324  * before rollover.
1325  *
1326  * As reading the *exact* system time is too expensive to be done
1327  * whenever setting up a TCP connection, we increment the time
1328  * offset in two ways.  First, a small random positive increment
1329  * is added to isn_offset for each connection that is set up.
1330  * Second, the function tcp_isn_tick fires once per clock tick
1331  * and increments isn_offset as necessary so that sequence numbers
1332  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1333  * random positive increments serve only to ensure that the same
1334  * exact sequence number is never sent out twice (as could otherwise
1335  * happen when a port is recycled in less than the system tick
1336  * interval.)
1337  *
1338  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1339  * between seeding of isn_secret.  This is normally set to zero,
1340  * as reseeding should not be necessary.
1341  *
1342  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1343  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1344  * general, this means holding an exclusive (write) lock.
1345  */
1346 
1347 #define ISN_BYTES_PER_SECOND 1048576
1348 #define ISN_STATIC_INCREMENT 4096
1349 #define ISN_RANDOM_INCREMENT (4096 - 1)
1350 
1351 static u_char isn_secret[32];
1352 static int isn_last_reseed;
1353 static u_int32_t isn_offset, isn_offset_old;
1354 static MD5_CTX isn_ctx;
1355 
1356 tcp_seq
1357 tcp_new_isn(tp)
1358 	struct tcpcb *tp;
1359 {
1360 	u_int32_t md5_buffer[4];
1361 	tcp_seq new_isn;
1362 
1363 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1364 	INP_LOCK_ASSERT(tp->t_inpcb);
1365 
1366 	/* Seed if this is the first use, reseed if requested. */
1367 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1368 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1369 		< (u_int)ticks))) {
1370 		read_random(&isn_secret, sizeof(isn_secret));
1371 		isn_last_reseed = ticks;
1372 	}
1373 
1374 	/* Compute the md5 hash and return the ISN. */
1375 	MD5Init(&isn_ctx);
1376 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1377 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1378 #ifdef INET6
1379 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1380 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1381 			  sizeof(struct in6_addr));
1382 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1383 			  sizeof(struct in6_addr));
1384 	} else
1385 #endif
1386 	{
1387 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1388 			  sizeof(struct in_addr));
1389 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1390 			  sizeof(struct in_addr));
1391 	}
1392 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1393 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1394 	new_isn = (tcp_seq) md5_buffer[0];
1395 	isn_offset += ISN_STATIC_INCREMENT +
1396 		(arc4random() & ISN_RANDOM_INCREMENT);
1397 	new_isn += isn_offset;
1398 	return (new_isn);
1399 }
1400 
1401 /*
1402  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1403  * to keep time flowing at a relatively constant rate.  If the random
1404  * increments have already pushed us past the projected offset, do nothing.
1405  */
1406 static void
1407 tcp_isn_tick(xtp)
1408 	void *xtp;
1409 {
1410 	u_int32_t projected_offset;
1411 
1412 	INP_INFO_WLOCK(&tcbinfo);
1413 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1414 
1415 	if (projected_offset > isn_offset)
1416 		isn_offset = projected_offset;
1417 
1418 	isn_offset_old = isn_offset;
1419 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1420 	INP_INFO_WUNLOCK(&tcbinfo);
1421 }
1422 
1423 /*
1424  * When a specific ICMP unreachable message is received and the
1425  * connection state is SYN-SENT, drop the connection.  This behavior
1426  * is controlled by the icmp_may_rst sysctl.
1427  */
1428 struct inpcb *
1429 tcp_drop_syn_sent(inp, errno)
1430 	struct inpcb *inp;
1431 	int errno;
1432 {
1433 	struct tcpcb *tp = intotcpcb(inp);
1434 
1435 	INP_LOCK_ASSERT(inp);
1436 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1437 		tcp_drop(tp, errno);
1438 		return (NULL);
1439 	}
1440 	return (inp);
1441 }
1442 
1443 /*
1444  * When `need fragmentation' ICMP is received, update our idea of the MSS
1445  * based on the new value in the route.  Also nudge TCP to send something,
1446  * since we know the packet we just sent was dropped.
1447  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1448  */
1449 struct inpcb *
1450 tcp_mtudisc(inp, errno)
1451 	struct inpcb *inp;
1452 	int errno;
1453 {
1454 	struct tcpcb *tp = intotcpcb(inp);
1455 	struct socket *so = inp->inp_socket;
1456 	u_int maxmtu;
1457 	u_int romtu;
1458 	int mss;
1459 #ifdef INET6
1460 	int isipv6;
1461 #endif /* INET6 */
1462 
1463 	INP_LOCK_ASSERT(inp);
1464 	if (tp != NULL) {
1465 #ifdef INET6
1466 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1467 #endif
1468 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1469 		romtu =
1470 #ifdef INET6
1471 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1472 #endif /* INET6 */
1473 		    tcp_maxmtu(&inp->inp_inc);
1474 		if (!maxmtu)
1475 			maxmtu = romtu;
1476 		else
1477 			maxmtu = min(maxmtu, romtu);
1478 		if (!maxmtu) {
1479 			tp->t_maxopd = tp->t_maxseg =
1480 #ifdef INET6
1481 				isipv6 ? tcp_v6mssdflt :
1482 #endif /* INET6 */
1483 				tcp_mssdflt;
1484 			return (inp);
1485 		}
1486 		mss = maxmtu -
1487 #ifdef INET6
1488 			(isipv6 ?
1489 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1490 #endif /* INET6 */
1491 			 sizeof(struct tcpiphdr)
1492 #ifdef INET6
1493 			 )
1494 #endif /* INET6 */
1495 			;
1496 
1497 		/*
1498 		 * XXX - The above conditional probably violates the TCP
1499 		 * spec.  The problem is that, since we don't know the
1500 		 * other end's MSS, we are supposed to use a conservative
1501 		 * default.  But, if we do that, then MTU discovery will
1502 		 * never actually take place, because the conservative
1503 		 * default is much less than the MTUs typically seen
1504 		 * on the Internet today.  For the moment, we'll sweep
1505 		 * this under the carpet.
1506 		 *
1507 		 * The conservative default might not actually be a problem
1508 		 * if the only case this occurs is when sending an initial
1509 		 * SYN with options and data to a host we've never talked
1510 		 * to before.  Then, they will reply with an MSS value which
1511 		 * will get recorded and the new parameters should get
1512 		 * recomputed.  For Further Study.
1513 		 */
1514 		if (tp->t_maxopd <= mss)
1515 			return (inp);
1516 		tp->t_maxopd = mss;
1517 
1518 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1519 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1520 			mss -= TCPOLEN_TSTAMP_APPA;
1521 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1522 		if (mss > MCLBYTES)
1523 			mss &= ~(MCLBYTES-1);
1524 #else
1525 		if (mss > MCLBYTES)
1526 			mss = mss / MCLBYTES * MCLBYTES;
1527 #endif
1528 		if (so->so_snd.sb_hiwat < mss)
1529 			mss = so->so_snd.sb_hiwat;
1530 
1531 		tp->t_maxseg = mss;
1532 
1533 		tcpstat.tcps_mturesent++;
1534 		tp->t_rtttime = 0;
1535 		tp->snd_nxt = tp->snd_una;
1536 		tcp_output(tp);
1537 	}
1538 	return (inp);
1539 }
1540 
1541 /*
1542  * Look-up the routing entry to the peer of this inpcb.  If no route
1543  * is found and it cannot be allocated, then return NULL.  This routine
1544  * is called by TCP routines that access the rmx structure and by tcp_mss
1545  * to get the interface MTU.
1546  */
1547 u_long
1548 tcp_maxmtu(inc)
1549 	struct in_conninfo *inc;
1550 {
1551 	struct route sro;
1552 	struct sockaddr_in *dst;
1553 	struct ifnet *ifp;
1554 	u_long maxmtu = 0;
1555 
1556 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1557 
1558 	bzero(&sro, sizeof(sro));
1559 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1560 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1561 		dst->sin_family = AF_INET;
1562 		dst->sin_len = sizeof(*dst);
1563 		dst->sin_addr = inc->inc_faddr;
1564 		rtalloc_ign(&sro, RTF_CLONING);
1565 	}
1566 	if (sro.ro_rt != NULL) {
1567 		ifp = sro.ro_rt->rt_ifp;
1568 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1569 			maxmtu = ifp->if_mtu;
1570 		else
1571 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1572 		RTFREE(sro.ro_rt);
1573 	}
1574 	return (maxmtu);
1575 }
1576 
1577 #ifdef INET6
1578 u_long
1579 tcp_maxmtu6(inc)
1580 	struct in_conninfo *inc;
1581 {
1582 	struct route_in6 sro6;
1583 	struct ifnet *ifp;
1584 	u_long maxmtu = 0;
1585 
1586 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1587 
1588 	bzero(&sro6, sizeof(sro6));
1589 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1590 		sro6.ro_dst.sin6_family = AF_INET6;
1591 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1592 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1593 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1594 	}
1595 	if (sro6.ro_rt != NULL) {
1596 		ifp = sro6.ro_rt->rt_ifp;
1597 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1598 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1599 		else
1600 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1601 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1602 		RTFREE(sro6.ro_rt);
1603 	}
1604 
1605 	return (maxmtu);
1606 }
1607 #endif /* INET6 */
1608 
1609 #ifdef IPSEC
1610 /* compute ESP/AH header size for TCP, including outer IP header. */
1611 size_t
1612 ipsec_hdrsiz_tcp(tp)
1613 	struct tcpcb *tp;
1614 {
1615 	struct inpcb *inp;
1616 	struct mbuf *m;
1617 	size_t hdrsiz;
1618 	struct ip *ip;
1619 #ifdef INET6
1620 	struct ip6_hdr *ip6;
1621 #endif
1622 	struct tcphdr *th;
1623 
1624 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1625 		return (0);
1626 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1627 	if (!m)
1628 		return (0);
1629 
1630 #ifdef INET6
1631 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1632 		ip6 = mtod(m, struct ip6_hdr *);
1633 		th = (struct tcphdr *)(ip6 + 1);
1634 		m->m_pkthdr.len = m->m_len =
1635 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1636 		tcpip_fillheaders(inp, ip6, th);
1637 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1638 	} else
1639 #endif /* INET6 */
1640 	{
1641 		ip = mtod(m, struct ip *);
1642 		th = (struct tcphdr *)(ip + 1);
1643 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1644 		tcpip_fillheaders(inp, ip, th);
1645 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1646 	}
1647 
1648 	m_free(m);
1649 	return (hdrsiz);
1650 }
1651 #endif /*IPSEC*/
1652 
1653 /*
1654  * Move a TCP connection into TIME_WAIT state.
1655  *    tcbinfo is locked.
1656  *    inp is locked, and is unlocked before returning.
1657  */
1658 void
1659 tcp_twstart(tp)
1660 	struct tcpcb *tp;
1661 {
1662 	struct tcptw *tw;
1663 	struct inpcb *inp;
1664 	int tw_time, acknow;
1665 	struct socket *so;
1666 
1667 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1668 	INP_LOCK_ASSERT(tp->t_inpcb);
1669 
1670 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1671 	if (tw == NULL) {
1672 		tw = tcp_timer_2msl_tw(1);
1673 		if (tw == NULL) {
1674 			tcp_close(tp);
1675 			return;
1676 		}
1677 	}
1678 	inp = tp->t_inpcb;
1679 	tw->tw_inpcb = inp;
1680 
1681 	/*
1682 	 * Recover last window size sent.
1683 	 */
1684 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1685 
1686 	/*
1687 	 * Set t_recent if timestamps are used on the connection.
1688 	 */
1689 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1690 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1691 		tw->t_recent = tp->ts_recent;
1692 	else
1693 		tw->t_recent = 0;
1694 
1695 	tw->snd_nxt = tp->snd_nxt;
1696 	tw->rcv_nxt = tp->rcv_nxt;
1697 	tw->iss     = tp->iss;
1698 	tw->irs     = tp->irs;
1699 	tw->t_starttime = tp->t_starttime;
1700 	tw->tw_time = 0;
1701 
1702 /* XXX
1703  * If this code will
1704  * be used for fin-wait-2 state also, then we may need
1705  * a ts_recent from the last segment.
1706  */
1707 	tw_time = 2 * tcp_msl;
1708 	acknow = tp->t_flags & TF_ACKNOW;
1709 	tcp_discardcb(tp);
1710 	so = inp->inp_socket;
1711 	ACCEPT_LOCK();
1712 	SOCK_LOCK(so);
1713 	so->so_pcb = NULL;
1714 	tw->tw_cred = crhold(so->so_cred);
1715 	tw->tw_so_options = so->so_options;
1716 	sotryfree(so);
1717 	inp->inp_socket = NULL;
1718 	if (acknow)
1719 		tcp_twrespond(tw, TH_ACK);
1720 	inp->inp_ppcb = (caddr_t)tw;
1721 	inp->inp_vflag |= INP_TIMEWAIT;
1722 	tcp_timer_2msl_reset(tw, tw_time);
1723 	INP_UNLOCK(inp);
1724 }
1725 
1726 /*
1727  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1728  * the actual rate is slightly higher due to the addition of
1729  * random positive increments.
1730  *
1731  * Most other new OSes use semi-randomized ISN values, so we
1732  * do not need to worry about them.
1733  */
1734 #define MS_ISN_BYTES_PER_SECOND		250000
1735 
1736 /*
1737  * Determine if the ISN we will generate has advanced beyond the last
1738  * sequence number used by the previous connection.  If so, indicate
1739  * that it is safe to recycle this tw socket by returning 1.
1740  *
1741  * XXXRW: This function should assert the inpcb lock as it does multiple
1742  * non-atomic reads from the tcptw, but is currently called without it from
1743  * in_pcb.c:in_pcblookup_local().
1744  */
1745 int
1746 tcp_twrecycleable(struct tcptw *tw)
1747 {
1748 	tcp_seq new_iss = tw->iss;
1749 	tcp_seq new_irs = tw->irs;
1750 
1751 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1752 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1753 
1754 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1755 		return (1);
1756 	else
1757 		return (0);
1758 }
1759 
1760 struct tcptw *
1761 tcp_twclose(struct tcptw *tw, int reuse)
1762 {
1763 	struct inpcb *inp;
1764 
1765 	inp = tw->tw_inpcb;
1766 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1767 	INP_LOCK_ASSERT(inp);
1768 
1769 	tw->tw_inpcb = NULL;
1770 	tcp_timer_2msl_stop(tw);
1771 	inp->inp_ppcb = NULL;
1772 #ifdef INET6
1773 	if (inp->inp_vflag & INP_IPV6PROTO)
1774 		in6_pcbdetach(inp);
1775 	else
1776 #endif
1777 		in_pcbdetach(inp);
1778 	tcpstat.tcps_closed++;
1779 	crfree(tw->tw_cred);
1780 	tw->tw_cred = NULL;
1781 	if (reuse)
1782 		return (tw);
1783 	uma_zfree(tcptw_zone, tw);
1784 	return (NULL);
1785 }
1786 
1787 int
1788 tcp_twrespond(struct tcptw *tw, int flags)
1789 {
1790 	struct inpcb *inp = tw->tw_inpcb;
1791 	struct tcphdr *th;
1792 	struct mbuf *m;
1793 	struct ip *ip = NULL;
1794 	u_int8_t *optp;
1795 	u_int hdrlen, optlen;
1796 	int error;
1797 #ifdef INET6
1798 	struct ip6_hdr *ip6 = NULL;
1799 	int isipv6 = inp->inp_inc.inc_isipv6;
1800 #endif
1801 
1802 	INP_LOCK_ASSERT(inp);
1803 
1804 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1805 	if (m == NULL)
1806 		return (ENOBUFS);
1807 	m->m_data += max_linkhdr;
1808 
1809 #ifdef MAC
1810 	mac_create_mbuf_from_inpcb(inp, m);
1811 #endif
1812 
1813 #ifdef INET6
1814 	if (isipv6) {
1815 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1816 		ip6 = mtod(m, struct ip6_hdr *);
1817 		th = (struct tcphdr *)(ip6 + 1);
1818 		tcpip_fillheaders(inp, ip6, th);
1819 	} else
1820 #endif
1821 	{
1822 		hdrlen = sizeof(struct tcpiphdr);
1823 		ip = mtod(m, struct ip *);
1824 		th = (struct tcphdr *)(ip + 1);
1825 		tcpip_fillheaders(inp, ip, th);
1826 	}
1827 	optp = (u_int8_t *)(th + 1);
1828 
1829 	/*
1830 	 * Send a timestamp and echo-reply if both our side and our peer
1831 	 * have sent timestamps in our SYN's and this is not a RST.
1832 	 */
1833 	if (tw->t_recent && flags == TH_ACK) {
1834 		u_int32_t *lp = (u_int32_t *)optp;
1835 
1836 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1837 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1838 		*lp++ = htonl(ticks);
1839 		*lp   = htonl(tw->t_recent);
1840 		optp += TCPOLEN_TSTAMP_APPA;
1841 	}
1842 
1843 	optlen = optp - (u_int8_t *)(th + 1);
1844 
1845 	m->m_len = hdrlen + optlen;
1846 	m->m_pkthdr.len = m->m_len;
1847 
1848 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1849 
1850 	th->th_seq = htonl(tw->snd_nxt);
1851 	th->th_ack = htonl(tw->rcv_nxt);
1852 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1853 	th->th_flags = flags;
1854 	th->th_win = htons(tw->last_win);
1855 
1856 #ifdef INET6
1857 	if (isipv6) {
1858 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1859 		    sizeof(struct tcphdr) + optlen);
1860 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1861 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1862 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1863 	} else
1864 #endif
1865 	{
1866 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1867 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1868 		m->m_pkthdr.csum_flags = CSUM_TCP;
1869 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1870 		ip->ip_len = m->m_pkthdr.len;
1871 		if (path_mtu_discovery)
1872 			ip->ip_off |= IP_DF;
1873 		error = ip_output(m, inp->inp_options, NULL,
1874 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1875 		    NULL, inp);
1876 	}
1877 	if (flags & TH_ACK)
1878 		tcpstat.tcps_sndacks++;
1879 	else
1880 		tcpstat.tcps_sndctrl++;
1881 	tcpstat.tcps_sndtotal++;
1882 	return (error);
1883 }
1884 
1885 /*
1886  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1887  *
1888  * This code attempts to calculate the bandwidth-delay product as a
1889  * means of determining the optimal window size to maximize bandwidth,
1890  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1891  * routers.  This code also does a fairly good job keeping RTTs in check
1892  * across slow links like modems.  We implement an algorithm which is very
1893  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1894  * transmitter side of a TCP connection and so only effects the transmit
1895  * side of the connection.
1896  *
1897  * BACKGROUND:  TCP makes no provision for the management of buffer space
1898  * at the end points or at the intermediate routers and switches.  A TCP
1899  * stream, whether using NewReno or not, will eventually buffer as
1900  * many packets as it is able and the only reason this typically works is
1901  * due to the fairly small default buffers made available for a connection
1902  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1903  * scaling it is now fairly easy for even a single TCP connection to blow-out
1904  * all available buffer space not only on the local interface, but on
1905  * intermediate routers and switches as well.  NewReno makes a misguided
1906  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1907  * then backing off, then steadily increasing the window again until another
1908  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1909  * is only made worse as network loads increase and the idea of intentionally
1910  * blowing out network buffers is, frankly, a terrible way to manage network
1911  * resources.
1912  *
1913  * It is far better to limit the transmit window prior to the failure
1914  * condition being achieved.  There are two general ways to do this:  First
1915  * you can 'scan' through different transmit window sizes and locate the
1916  * point where the RTT stops increasing, indicating that you have filled the
1917  * pipe, then scan backwards until you note that RTT stops decreasing, then
1918  * repeat ad-infinitum.  This method works in principle but has severe
1919  * implementation issues due to RTT variances, timer granularity, and
1920  * instability in the algorithm which can lead to many false positives and
1921  * create oscillations as well as interact badly with other TCP streams
1922  * implementing the same algorithm.
1923  *
1924  * The second method is to limit the window to the bandwidth delay product
1925  * of the link.  This is the method we implement.  RTT variances and our
1926  * own manipulation of the congestion window, bwnd, can potentially
1927  * destabilize the algorithm.  For this reason we have to stabilize the
1928  * elements used to calculate the window.  We do this by using the minimum
1929  * observed RTT, the long term average of the observed bandwidth, and
1930  * by adding two segments worth of slop.  It isn't perfect but it is able
1931  * to react to changing conditions and gives us a very stable basis on
1932  * which to extend the algorithm.
1933  */
1934 void
1935 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1936 {
1937 	u_long bw;
1938 	u_long bwnd;
1939 	int save_ticks;
1940 
1941 	INP_LOCK_ASSERT(tp->t_inpcb);
1942 
1943 	/*
1944 	 * If inflight_enable is disabled in the middle of a tcp connection,
1945 	 * make sure snd_bwnd is effectively disabled.
1946 	 */
1947 	if (tcp_inflight_enable == 0) {
1948 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1949 		tp->snd_bandwidth = 0;
1950 		return;
1951 	}
1952 
1953 	/*
1954 	 * Figure out the bandwidth.  Due to the tick granularity this
1955 	 * is a very rough number and it MUST be averaged over a fairly
1956 	 * long period of time.  XXX we need to take into account a link
1957 	 * that is not using all available bandwidth, but for now our
1958 	 * slop will ramp us up if this case occurs and the bandwidth later
1959 	 * increases.
1960 	 *
1961 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1962 	 * effectively reset t_bw_rtttime for this case.
1963 	 */
1964 	save_ticks = ticks;
1965 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1966 		return;
1967 
1968 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1969 	    (save_ticks - tp->t_bw_rtttime);
1970 	tp->t_bw_rtttime = save_ticks;
1971 	tp->t_bw_rtseq = ack_seq;
1972 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1973 		return;
1974 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1975 
1976 	tp->snd_bandwidth = bw;
1977 
1978 	/*
1979 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1980 	 * segments.  The additional slop puts us squarely in the sweet
1981 	 * spot and also handles the bandwidth run-up case and stabilization.
1982 	 * Without the slop we could be locking ourselves into a lower
1983 	 * bandwidth.
1984 	 *
1985 	 * Situations Handled:
1986 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1987 	 *	    high speed LANs, allowing larger TCP buffers to be
1988 	 *	    specified, and also does a good job preventing
1989 	 *	    over-queueing of packets over choke points like modems
1990 	 *	    (at least for the transmit side).
1991 	 *
1992 	 *	(2) Is able to handle changing network loads (bandwidth
1993 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1994 	 *	    increases).
1995 	 *
1996 	 *	(3) Theoretically should stabilize in the face of multiple
1997 	 *	    connections implementing the same algorithm (this may need
1998 	 *	    a little work).
1999 	 *
2000 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2001 	 *	    be adjusted with a sysctl but typically only needs to be
2002 	 *	    on very slow connections.  A value no smaller then 5
2003 	 *	    should be used, but only reduce this default if you have
2004 	 *	    no other choice.
2005 	 */
2006 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2007 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2008 #undef USERTT
2009 
2010 	if (tcp_inflight_debug > 0) {
2011 		static int ltime;
2012 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2013 			ltime = ticks;
2014 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2015 			    tp,
2016 			    bw,
2017 			    tp->t_rttbest,
2018 			    tp->t_srtt,
2019 			    bwnd
2020 			);
2021 		}
2022 	}
2023 	if ((long)bwnd < tcp_inflight_min)
2024 		bwnd = tcp_inflight_min;
2025 	if (bwnd > tcp_inflight_max)
2026 		bwnd = tcp_inflight_max;
2027 	if ((long)bwnd < tp->t_maxseg * 2)
2028 		bwnd = tp->t_maxseg * 2;
2029 	tp->snd_bwnd = bwnd;
2030 }
2031 
2032 #ifdef TCP_SIGNATURE
2033 /*
2034  * Callback function invoked by m_apply() to digest TCP segment data
2035  * contained within an mbuf chain.
2036  */
2037 static int
2038 tcp_signature_apply(void *fstate, void *data, u_int len)
2039 {
2040 
2041 	MD5Update(fstate, (u_char *)data, len);
2042 	return (0);
2043 }
2044 
2045 /*
2046  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2047  *
2048  * Parameters:
2049  * m		pointer to head of mbuf chain
2050  * off0		offset to TCP header within the mbuf chain
2051  * len		length of TCP segment data, excluding options
2052  * optlen	length of TCP segment options
2053  * buf		pointer to storage for computed MD5 digest
2054  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2055  *
2056  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2057  * When called from tcp_input(), we can be sure that th_sum has been
2058  * zeroed out and verified already.
2059  *
2060  * This function is for IPv4 use only. Calling this function with an
2061  * IPv6 packet in the mbuf chain will yield undefined results.
2062  *
2063  * Return 0 if successful, otherwise return -1.
2064  *
2065  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2066  * search with the destination IP address, and a 'magic SPI' to be
2067  * determined by the application. This is hardcoded elsewhere to 1179
2068  * right now. Another branch of this code exists which uses the SPD to
2069  * specify per-application flows but it is unstable.
2070  */
2071 int
2072 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2073     u_char *buf, u_int direction)
2074 {
2075 	union sockaddr_union dst;
2076 	struct ippseudo ippseudo;
2077 	MD5_CTX ctx;
2078 	int doff;
2079 	struct ip *ip;
2080 	struct ipovly *ipovly;
2081 	struct secasvar *sav;
2082 	struct tcphdr *th;
2083 	u_short savecsum;
2084 
2085 	KASSERT(m != NULL, ("NULL mbuf chain"));
2086 	KASSERT(buf != NULL, ("NULL signature pointer"));
2087 
2088 	/* Extract the destination from the IP header in the mbuf. */
2089 	ip = mtod(m, struct ip *);
2090 	bzero(&dst, sizeof(union sockaddr_union));
2091 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2092 	dst.sa.sa_family = AF_INET;
2093 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2094 	    ip->ip_src : ip->ip_dst;
2095 
2096 	/* Look up an SADB entry which matches the address of the peer. */
2097 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2098 	if (sav == NULL) {
2099 		printf("%s: SADB lookup failed for %s\n", __func__,
2100 		    inet_ntoa(dst.sin.sin_addr));
2101 		return (EINVAL);
2102 	}
2103 
2104 	MD5Init(&ctx);
2105 	ipovly = (struct ipovly *)ip;
2106 	th = (struct tcphdr *)((u_char *)ip + off0);
2107 	doff = off0 + sizeof(struct tcphdr) + optlen;
2108 
2109 	/*
2110 	 * Step 1: Update MD5 hash with IP pseudo-header.
2111 	 *
2112 	 * XXX The ippseudo header MUST be digested in network byte order,
2113 	 * or else we'll fail the regression test. Assume all fields we've
2114 	 * been doing arithmetic on have been in host byte order.
2115 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2116 	 * tcp_output(), the underlying ip_len member has not yet been set.
2117 	 */
2118 	ippseudo.ippseudo_src = ipovly->ih_src;
2119 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2120 	ippseudo.ippseudo_pad = 0;
2121 	ippseudo.ippseudo_p = IPPROTO_TCP;
2122 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2123 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2124 
2125 	/*
2126 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2127 	 * The TCP checksum must be set to zero.
2128 	 */
2129 	savecsum = th->th_sum;
2130 	th->th_sum = 0;
2131 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2132 	th->th_sum = savecsum;
2133 
2134 	/*
2135 	 * Step 3: Update MD5 hash with TCP segment data.
2136 	 *         Use m_apply() to avoid an early m_pullup().
2137 	 */
2138 	if (len > 0)
2139 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2140 
2141 	/*
2142 	 * Step 4: Update MD5 hash with shared secret.
2143 	 */
2144 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2145 	MD5Final(buf, &ctx);
2146 
2147 	key_sa_recordxfer(sav, m);
2148 	KEY_FREESAV(&sav);
2149 	return (0);
2150 }
2151 #endif /* TCP_SIGNATURE */
2152 
2153 static int
2154 sysctl_drop(SYSCTL_HANDLER_ARGS)
2155 {
2156 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2157 	struct sockaddr_storage addrs[2];
2158 	struct inpcb *inp;
2159 	struct tcpcb *tp;
2160 	struct sockaddr_in *fin, *lin;
2161 #ifdef INET6
2162 	struct sockaddr_in6 *fin6, *lin6;
2163 	struct in6_addr f6, l6;
2164 #endif
2165 	int error;
2166 
2167 	inp = NULL;
2168 	fin = lin = NULL;
2169 #ifdef INET6
2170 	fin6 = lin6 = NULL;
2171 #endif
2172 	error = 0;
2173 
2174 	if (req->oldptr != NULL || req->oldlen != 0)
2175 		return (EINVAL);
2176 	if (req->newptr == NULL)
2177 		return (EPERM);
2178 	if (req->newlen < sizeof(addrs))
2179 		return (ENOMEM);
2180 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2181 	if (error)
2182 		return (error);
2183 
2184 	switch (addrs[0].ss_family) {
2185 #ifdef INET6
2186 	case AF_INET6:
2187 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2188 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2189 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2190 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2191 			return (EINVAL);
2192 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2193 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2194 				return (EINVAL);
2195 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2196 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2197 			fin = (struct sockaddr_in *)&addrs[0];
2198 			lin = (struct sockaddr_in *)&addrs[1];
2199 			break;
2200 		}
2201 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2202 		if (error)
2203 			return (EINVAL);
2204 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2205 		if (error)
2206 			return (EINVAL);
2207 		break;
2208 #endif
2209 	case AF_INET:
2210 		fin = (struct sockaddr_in *)&addrs[0];
2211 		lin = (struct sockaddr_in *)&addrs[1];
2212 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2213 		    lin->sin_len != sizeof(struct sockaddr_in))
2214 			return (EINVAL);
2215 		break;
2216 	default:
2217 		return (EINVAL);
2218 	}
2219 	INP_INFO_WLOCK(&tcbinfo);
2220 	switch (addrs[0].ss_family) {
2221 #ifdef INET6
2222 	case AF_INET6:
2223 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2224 		    &l6, lin6->sin6_port, 0, NULL);
2225 		break;
2226 #endif
2227 	case AF_INET:
2228 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2229 		    lin->sin_addr, lin->sin_port, 0, NULL);
2230 		break;
2231 	}
2232 	if (inp != NULL) {
2233 		INP_LOCK(inp);
2234 		if ((tp = intotcpcb(inp)) &&
2235 		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2236 			tp = tcp_drop(tp, ECONNABORTED);
2237 			if (tp != NULL)
2238 				INP_UNLOCK(inp);
2239 		} else
2240 			INP_UNLOCK(inp);
2241 	} else
2242 		error = ESRCH;
2243 	INP_INFO_WUNLOCK(&tcbinfo);
2244 	return (error);
2245 }
2246 
2247 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2248     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2249     0, sysctl_drop, "", "Drop TCP connection");
2250