xref: /freebsd/sys/netinet/tcp_subr.c (revision fafb1ee7bdc5d8a7d07cd03b2fb0bbb76f7a9d7c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/cc.h>
72 #include <netinet/in.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_pcb.h>
83 #include <netinet6/ip6_var.h>
84 #include <netinet6/scope6_var.h>
85 #include <netinet6/nd6.h>
86 #endif
87 
88 #ifdef TCP_RFC7413
89 #include <netinet/tcp_fastopen.h>
90 #endif
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcp_syncache.h>
96 #ifdef INET6
97 #include <netinet6/tcp6_var.h>
98 #endif
99 #include <netinet/tcpip.h>
100 #ifdef TCPPCAP
101 #include <netinet/tcp_pcap.h>
102 #endif
103 #ifdef TCPDEBUG
104 #include <netinet/tcp_debug.h>
105 #endif
106 #ifdef INET6
107 #include <netinet6/ip6protosw.h>
108 #endif
109 #ifdef TCP_OFFLOAD
110 #include <netinet/tcp_offload.h>
111 #endif
112 
113 #ifdef IPSEC
114 #include <netipsec/ipsec.h>
115 #include <netipsec/xform.h>
116 #ifdef INET6
117 #include <netipsec/ipsec6.h>
118 #endif
119 #include <netipsec/key.h>
120 #include <sys/syslog.h>
121 #endif /*IPSEC*/
122 
123 #include <machine/in_cksum.h>
124 #include <sys/md5.h>
125 
126 #include <security/mac/mac_framework.h>
127 
128 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
129 #ifdef INET6
130 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
131 #endif
132 
133 struct rwlock tcp_function_lock;
134 
135 static int
136 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
137 {
138 	int error, new;
139 
140 	new = V_tcp_mssdflt;
141 	error = sysctl_handle_int(oidp, &new, 0, req);
142 	if (error == 0 && req->newptr) {
143 		if (new < TCP_MINMSS)
144 			error = EINVAL;
145 		else
146 			V_tcp_mssdflt = new;
147 	}
148 	return (error);
149 }
150 
151 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
152     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
153     &sysctl_net_inet_tcp_mss_check, "I",
154     "Default TCP Maximum Segment Size");
155 
156 #ifdef INET6
157 static int
158 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
159 {
160 	int error, new;
161 
162 	new = V_tcp_v6mssdflt;
163 	error = sysctl_handle_int(oidp, &new, 0, req);
164 	if (error == 0 && req->newptr) {
165 		if (new < TCP_MINMSS)
166 			error = EINVAL;
167 		else
168 			V_tcp_v6mssdflt = new;
169 	}
170 	return (error);
171 }
172 
173 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
174     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
175     &sysctl_net_inet_tcp_mss_v6_check, "I",
176    "Default TCP Maximum Segment Size for IPv6");
177 #endif /* INET6 */
178 
179 /*
180  * Minimum MSS we accept and use. This prevents DoS attacks where
181  * we are forced to a ridiculous low MSS like 20 and send hundreds
182  * of packets instead of one. The effect scales with the available
183  * bandwidth and quickly saturates the CPU and network interface
184  * with packet generation and sending. Set to zero to disable MINMSS
185  * checking. This setting prevents us from sending too small packets.
186  */
187 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
189      &VNET_NAME(tcp_minmss), 0,
190     "Minimum TCP Maximum Segment Size");
191 
192 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
194     &VNET_NAME(tcp_do_rfc1323), 0,
195     "Enable rfc1323 (high performance TCP) extensions");
196 
197 static int	tcp_log_debug = 0;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
199     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
200 
201 static int	tcp_tcbhashsize;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
203     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
204 
205 static int	do_tcpdrain = 1;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
207     "Enable tcp_drain routine for extra help when low on mbufs");
208 
209 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
210     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
211 
212 static VNET_DEFINE(int, icmp_may_rst) = 1;
213 #define	V_icmp_may_rst			VNET(icmp_may_rst)
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
215     &VNET_NAME(icmp_may_rst), 0,
216     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
217 
218 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
219 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
221     &VNET_NAME(tcp_isn_reseed_interval), 0,
222     "Seconds between reseeding of ISN secret");
223 
224 static int	tcp_soreceive_stream;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
226     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
227 
228 #ifdef TCP_SIGNATURE
229 static int	tcp_sig_checksigs = 1;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
231     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
232 #endif
233 
234 VNET_DEFINE(uma_zone_t, sack_hole_zone);
235 #define	V_sack_hole_zone		VNET(sack_hole_zone)
236 
237 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
238 
239 static struct inpcb *tcp_notify(struct inpcb *, int);
240 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
241 static void tcp_mtudisc(struct inpcb *, int);
242 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
243 		    void *ip4hdr, const void *ip6hdr);
244 static void	tcp_timer_discard(struct tcpcb *, uint32_t);
245 
246 
247 static struct tcp_function_block tcp_def_funcblk = {
248 	"default",
249 	tcp_output,
250 	tcp_do_segment,
251 	tcp_default_ctloutput,
252 	NULL,
253 	NULL,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	0,
260 	0
261 };
262 
263 struct tcp_funchead t_functions;
264 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
265 
266 static struct tcp_function_block *
267 find_tcp_functions_locked(struct tcp_function_set *fs)
268 {
269 	struct tcp_function *f;
270 	struct tcp_function_block *blk=NULL;
271 
272 	TAILQ_FOREACH(f, &t_functions, tf_next) {
273 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
274 			blk = f->tf_fb;
275 			break;
276 		}
277 	}
278 	return(blk);
279 }
280 
281 static struct tcp_function_block *
282 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
283 {
284 	struct tcp_function_block *rblk=NULL;
285 	struct tcp_function *f;
286 
287 	TAILQ_FOREACH(f, &t_functions, tf_next) {
288 		if (f->tf_fb == blk) {
289 			rblk = blk;
290 			if (s) {
291 				*s = f;
292 			}
293 			break;
294 		}
295 	}
296 	return (rblk);
297 }
298 
299 struct tcp_function_block *
300 find_and_ref_tcp_functions(struct tcp_function_set *fs)
301 {
302 	struct tcp_function_block *blk;
303 
304 	rw_rlock(&tcp_function_lock);
305 	blk = find_tcp_functions_locked(fs);
306 	if (blk)
307 		refcount_acquire(&blk->tfb_refcnt);
308 	rw_runlock(&tcp_function_lock);
309 	return(blk);
310 }
311 
312 struct tcp_function_block *
313 find_and_ref_tcp_fb(struct tcp_function_block *blk)
314 {
315 	struct tcp_function_block *rblk;
316 
317 	rw_rlock(&tcp_function_lock);
318 	rblk = find_tcp_fb_locked(blk, NULL);
319 	if (rblk)
320 		refcount_acquire(&rblk->tfb_refcnt);
321 	rw_runlock(&tcp_function_lock);
322 	return(rblk);
323 }
324 
325 
326 static int
327 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
328 {
329 	int error=ENOENT;
330 	struct tcp_function_set fs;
331 	struct tcp_function_block *blk;
332 
333 	memset(&fs, 0, sizeof(fs));
334 	rw_rlock(&tcp_function_lock);
335 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
336 	if (blk) {
337 		/* Found him */
338 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
339 		fs.pcbcnt = blk->tfb_refcnt;
340 	}
341 	rw_runlock(&tcp_function_lock);
342 	error = sysctl_handle_string(oidp, fs.function_set_name,
343 				     sizeof(fs.function_set_name), req);
344 
345 	/* Check for error or no change */
346 	if (error != 0 || req->newptr == NULL)
347 		return(error);
348 
349 	rw_wlock(&tcp_function_lock);
350 	blk = find_tcp_functions_locked(&fs);
351 	if ((blk == NULL) ||
352 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
353 		error = ENOENT;
354 		goto done;
355 	}
356 	tcp_func_set_ptr = blk;
357 done:
358 	rw_wunlock(&tcp_function_lock);
359 	return (error);
360 }
361 
362 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
363 	    CTLTYPE_STRING | CTLFLAG_RW,
364 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
365 	    "Set/get the default TCP functions");
366 
367 static int
368 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
369 {
370 	int error, cnt, linesz;
371 	struct tcp_function *f;
372 	char *buffer, *cp;
373 	size_t bufsz, outsz;
374 
375 	cnt = 0;
376 	rw_rlock(&tcp_function_lock);
377 	TAILQ_FOREACH(f, &t_functions, tf_next) {
378 		cnt++;
379 	}
380 	rw_runlock(&tcp_function_lock);
381 
382 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
383 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
384 
385 	error = 0;
386 	cp = buffer;
387 
388 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
389 	cp += linesz;
390 	bufsz -= linesz;
391 	outsz = linesz;
392 
393 	rw_rlock(&tcp_function_lock);
394 	TAILQ_FOREACH(f, &t_functions, tf_next) {
395 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
396 		    f->tf_fb->tfb_tcp_block_name,
397 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
398 		    f->tf_fb->tfb_refcnt);
399 		if (linesz >= bufsz) {
400 			error = EOVERFLOW;
401 			break;
402 		}
403 		cp += linesz;
404 		bufsz -= linesz;
405 		outsz += linesz;
406 	}
407 	rw_runlock(&tcp_function_lock);
408 	if (error == 0)
409 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
410 	free(buffer, M_TEMP);
411 	return (error);
412 }
413 
414 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
415 	    CTLTYPE_STRING|CTLFLAG_RD,
416 	    NULL, 0, sysctl_net_inet_list_available, "A",
417 	    "list available TCP Function sets");
418 
419 /*
420  * Target size of TCP PCB hash tables. Must be a power of two.
421  *
422  * Note that this can be overridden by the kernel environment
423  * variable net.inet.tcp.tcbhashsize
424  */
425 #ifndef TCBHASHSIZE
426 #define TCBHASHSIZE	0
427 #endif
428 
429 /*
430  * XXX
431  * Callouts should be moved into struct tcp directly.  They are currently
432  * separate because the tcpcb structure is exported to userland for sysctl
433  * parsing purposes, which do not know about callouts.
434  */
435 struct tcpcb_mem {
436 	struct	tcpcb		tcb;
437 	struct	tcp_timer	tt;
438 	struct	cc_var		ccv;
439 	struct	osd		osd;
440 };
441 
442 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
443 #define	V_tcpcb_zone			VNET(tcpcb_zone)
444 
445 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
446 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
447 
448 static struct mtx isn_mtx;
449 
450 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
451 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
452 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
453 
454 /*
455  * TCP initialization.
456  */
457 static void
458 tcp_zone_change(void *tag)
459 {
460 
461 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
462 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
463 	tcp_tw_zone_change();
464 }
465 
466 static int
467 tcp_inpcb_init(void *mem, int size, int flags)
468 {
469 	struct inpcb *inp = mem;
470 
471 	INP_LOCK_INIT(inp, "inp", "tcpinp");
472 	return (0);
473 }
474 
475 /*
476  * Take a value and get the next power of 2 that doesn't overflow.
477  * Used to size the tcp_inpcb hash buckets.
478  */
479 static int
480 maketcp_hashsize(int size)
481 {
482 	int hashsize;
483 
484 	/*
485 	 * auto tune.
486 	 * get the next power of 2 higher than maxsockets.
487 	 */
488 	hashsize = 1 << fls(size);
489 	/* catch overflow, and just go one power of 2 smaller */
490 	if (hashsize < size) {
491 		hashsize = 1 << (fls(size) - 1);
492 	}
493 	return (hashsize);
494 }
495 
496 int
497 register_tcp_functions(struct tcp_function_block *blk, int wait)
498 {
499 	struct tcp_function_block *lblk;
500 	struct tcp_function *n;
501 	struct tcp_function_set fs;
502 
503 	if ((blk->tfb_tcp_output == NULL) ||
504 	    (blk->tfb_tcp_do_segment == NULL) ||
505 	    (blk->tfb_tcp_ctloutput == NULL) ||
506 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
507 		/*
508 		 * These functions are required and you
509 		 * need a name.
510 		 */
511 		return (EINVAL);
512 	}
513 	if (blk->tfb_tcp_timer_stop_all ||
514 	    blk->tfb_tcp_timers_left ||
515 	    blk->tfb_tcp_timer_activate ||
516 	    blk->tfb_tcp_timer_active ||
517 	    blk->tfb_tcp_timer_stop) {
518 		/*
519 		 * If you define one timer function you
520 		 * must have them all.
521 		 */
522 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
523 		    (blk->tfb_tcp_timers_left  == NULL) ||
524 		    (blk->tfb_tcp_timer_activate == NULL) ||
525 		    (blk->tfb_tcp_timer_active == NULL) ||
526 		    (blk->tfb_tcp_timer_stop == NULL)) {
527 			return (EINVAL);
528 		}
529 	}
530 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
531 	if (n == NULL) {
532 		return (ENOMEM);
533 	}
534 	n->tf_fb = blk;
535 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
536 	rw_wlock(&tcp_function_lock);
537 	lblk = find_tcp_functions_locked(&fs);
538 	if (lblk) {
539 		/* Duplicate name space not allowed */
540 		rw_wunlock(&tcp_function_lock);
541 		free(n, M_TCPFUNCTIONS);
542 		return (EALREADY);
543 	}
544 	refcount_init(&blk->tfb_refcnt, 0);
545 	blk->tfb_flags = 0;
546 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
547 	rw_wunlock(&tcp_function_lock);
548 	return(0);
549 }
550 
551 int
552 deregister_tcp_functions(struct tcp_function_block *blk)
553 {
554 	struct tcp_function_block *lblk;
555 	struct tcp_function *f;
556 	int error=ENOENT;
557 
558 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
559 		/* You can't un-register the default */
560 		return (EPERM);
561 	}
562 	rw_wlock(&tcp_function_lock);
563 	if (blk == tcp_func_set_ptr) {
564 		/* You can't free the current default */
565 		rw_wunlock(&tcp_function_lock);
566 		return (EBUSY);
567 	}
568 	if (blk->tfb_refcnt) {
569 		/* Still tcb attached, mark it. */
570 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
571 		rw_wunlock(&tcp_function_lock);
572 		return (EBUSY);
573 	}
574 	lblk = find_tcp_fb_locked(blk, &f);
575 	if (lblk) {
576 		/* Found */
577 		TAILQ_REMOVE(&t_functions, f, tf_next);
578 		f->tf_fb = NULL;
579 		free(f, M_TCPFUNCTIONS);
580 		error = 0;
581 	}
582 	rw_wunlock(&tcp_function_lock);
583 	return (error);
584 }
585 
586 void
587 tcp_init(void)
588 {
589 	const char *tcbhash_tuneable;
590 	int hashsize;
591 
592 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
593 
594 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
595 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
596 		printf("%s: WARNING: unable to register helper hook\n", __func__);
597 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
598 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
599 		printf("%s: WARNING: unable to register helper hook\n", __func__);
600 	hashsize = TCBHASHSIZE;
601 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
602 	if (hashsize == 0) {
603 		/*
604 		 * Auto tune the hash size based on maxsockets.
605 		 * A perfect hash would have a 1:1 mapping
606 		 * (hashsize = maxsockets) however it's been
607 		 * suggested that O(2) average is better.
608 		 */
609 		hashsize = maketcp_hashsize(maxsockets / 4);
610 		/*
611 		 * Our historical default is 512,
612 		 * do not autotune lower than this.
613 		 */
614 		if (hashsize < 512)
615 			hashsize = 512;
616 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
617 			printf("%s: %s auto tuned to %d\n", __func__,
618 			    tcbhash_tuneable, hashsize);
619 	}
620 	/*
621 	 * We require a hashsize to be a power of two.
622 	 * Previously if it was not a power of two we would just reset it
623 	 * back to 512, which could be a nasty surprise if you did not notice
624 	 * the error message.
625 	 * Instead what we do is clip it to the closest power of two lower
626 	 * than the specified hash value.
627 	 */
628 	if (!powerof2(hashsize)) {
629 		int oldhashsize = hashsize;
630 
631 		hashsize = maketcp_hashsize(hashsize);
632 		/* prevent absurdly low value */
633 		if (hashsize < 16)
634 			hashsize = 16;
635 		printf("%s: WARNING: TCB hash size not a power of 2, "
636 		    "clipped from %d to %d.\n", __func__, oldhashsize,
637 		    hashsize);
638 	}
639 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
640 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
641 	    IPI_HASHFIELDS_4TUPLE);
642 
643 	/*
644 	 * These have to be type stable for the benefit of the timers.
645 	 */
646 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
647 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
648 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
649 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
650 
651 	tcp_tw_init();
652 	syncache_init();
653 	tcp_hc_init();
654 
655 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
656 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
657 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
658 
659 	/* Skip initialization of globals for non-default instances. */
660 	if (!IS_DEFAULT_VNET(curvnet))
661 		return;
662 
663 	tcp_reass_global_init();
664 
665 	/* XXX virtualize those bellow? */
666 	tcp_delacktime = TCPTV_DELACK;
667 	tcp_keepinit = TCPTV_KEEP_INIT;
668 	tcp_keepidle = TCPTV_KEEP_IDLE;
669 	tcp_keepintvl = TCPTV_KEEPINTVL;
670 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
671 	tcp_msl = TCPTV_MSL;
672 	tcp_rexmit_min = TCPTV_MIN;
673 	if (tcp_rexmit_min < 1)
674 		tcp_rexmit_min = 1;
675 	tcp_rexmit_slop = TCPTV_CPU_VAR;
676 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
677 	tcp_tcbhashsize = hashsize;
678 	/* Setup the tcp function block list */
679 	TAILQ_INIT(&t_functions);
680 	rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
681 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
682 
683 	if (tcp_soreceive_stream) {
684 #ifdef INET
685 		tcp_usrreqs.pru_soreceive = soreceive_stream;
686 #endif
687 #ifdef INET6
688 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
689 #endif /* INET6 */
690 	}
691 
692 #ifdef INET6
693 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
694 #else /* INET6 */
695 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
696 #endif /* INET6 */
697 	if (max_protohdr < TCP_MINPROTOHDR)
698 		max_protohdr = TCP_MINPROTOHDR;
699 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
700 		panic("tcp_init");
701 #undef TCP_MINPROTOHDR
702 
703 	ISN_LOCK_INIT();
704 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
705 		SHUTDOWN_PRI_DEFAULT);
706 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
707 		EVENTHANDLER_PRI_ANY);
708 #ifdef TCPPCAP
709 	tcp_pcap_init();
710 #endif
711 
712 #ifdef TCP_RFC7413
713 	tcp_fastopen_init();
714 #endif
715 }
716 
717 #ifdef VIMAGE
718 void
719 tcp_destroy(void)
720 {
721 	int error;
722 
723 #ifdef TCP_RFC7413
724 	tcp_fastopen_destroy();
725 #endif
726 	tcp_hc_destroy();
727 	syncache_destroy();
728 	tcp_tw_destroy();
729 	in_pcbinfo_destroy(&V_tcbinfo);
730 	uma_zdestroy(V_sack_hole_zone);
731 	uma_zdestroy(V_tcpcb_zone);
732 
733 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
734 	if (error != 0) {
735 		printf("%s: WARNING: unable to deregister helper hook "
736 		    "type=%d, id=%d: error %d returned\n", __func__,
737 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
738 	}
739 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
740 	if (error != 0) {
741 		printf("%s: WARNING: unable to deregister helper hook "
742 		    "type=%d, id=%d: error %d returned\n", __func__,
743 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
744 	}
745 }
746 #endif
747 
748 void
749 tcp_fini(void *xtp)
750 {
751 
752 }
753 
754 /*
755  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
756  * tcp_template used to store this data in mbufs, but we now recopy it out
757  * of the tcpcb each time to conserve mbufs.
758  */
759 void
760 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
761 {
762 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
763 
764 	INP_WLOCK_ASSERT(inp);
765 
766 #ifdef INET6
767 	if ((inp->inp_vflag & INP_IPV6) != 0) {
768 		struct ip6_hdr *ip6;
769 
770 		ip6 = (struct ip6_hdr *)ip_ptr;
771 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
772 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
773 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
774 			(IPV6_VERSION & IPV6_VERSION_MASK);
775 		ip6->ip6_nxt = IPPROTO_TCP;
776 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
777 		ip6->ip6_src = inp->in6p_laddr;
778 		ip6->ip6_dst = inp->in6p_faddr;
779 	}
780 #endif /* INET6 */
781 #if defined(INET6) && defined(INET)
782 	else
783 #endif
784 #ifdef INET
785 	{
786 		struct ip *ip;
787 
788 		ip = (struct ip *)ip_ptr;
789 		ip->ip_v = IPVERSION;
790 		ip->ip_hl = 5;
791 		ip->ip_tos = inp->inp_ip_tos;
792 		ip->ip_len = 0;
793 		ip->ip_id = 0;
794 		ip->ip_off = 0;
795 		ip->ip_ttl = inp->inp_ip_ttl;
796 		ip->ip_sum = 0;
797 		ip->ip_p = IPPROTO_TCP;
798 		ip->ip_src = inp->inp_laddr;
799 		ip->ip_dst = inp->inp_faddr;
800 	}
801 #endif /* INET */
802 	th->th_sport = inp->inp_lport;
803 	th->th_dport = inp->inp_fport;
804 	th->th_seq = 0;
805 	th->th_ack = 0;
806 	th->th_x2 = 0;
807 	th->th_off = 5;
808 	th->th_flags = 0;
809 	th->th_win = 0;
810 	th->th_urp = 0;
811 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
812 }
813 
814 /*
815  * Create template to be used to send tcp packets on a connection.
816  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
817  * use for this function is in keepalives, which use tcp_respond.
818  */
819 struct tcptemp *
820 tcpip_maketemplate(struct inpcb *inp)
821 {
822 	struct tcptemp *t;
823 
824 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
825 	if (t == NULL)
826 		return (NULL);
827 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
828 	return (t);
829 }
830 
831 /*
832  * Send a single message to the TCP at address specified by
833  * the given TCP/IP header.  If m == NULL, then we make a copy
834  * of the tcpiphdr at th and send directly to the addressed host.
835  * This is used to force keep alive messages out using the TCP
836  * template for a connection.  If flags are given then we send
837  * a message back to the TCP which originated the segment th,
838  * and discard the mbuf containing it and any other attached mbufs.
839  *
840  * In any case the ack and sequence number of the transmitted
841  * segment are as specified by the parameters.
842  *
843  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
844  */
845 void
846 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
847     tcp_seq ack, tcp_seq seq, int flags)
848 {
849 	int tlen;
850 	int win = 0;
851 	struct ip *ip;
852 	struct tcphdr *nth;
853 #ifdef INET6
854 	struct ip6_hdr *ip6;
855 	int isipv6;
856 #endif /* INET6 */
857 	int ipflags = 0;
858 	struct inpcb *inp;
859 
860 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
861 
862 #ifdef INET6
863 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
864 	ip6 = ipgen;
865 #endif /* INET6 */
866 	ip = ipgen;
867 
868 	if (tp != NULL) {
869 		inp = tp->t_inpcb;
870 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
871 		INP_WLOCK_ASSERT(inp);
872 	} else
873 		inp = NULL;
874 
875 	if (tp != NULL) {
876 		if (!(flags & TH_RST)) {
877 			win = sbspace(&inp->inp_socket->so_rcv);
878 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
879 				win = (long)TCP_MAXWIN << tp->rcv_scale;
880 		}
881 	}
882 	if (m == NULL) {
883 		m = m_gethdr(M_NOWAIT, MT_DATA);
884 		if (m == NULL)
885 			return;
886 		tlen = 0;
887 		m->m_data += max_linkhdr;
888 #ifdef INET6
889 		if (isipv6) {
890 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
891 			      sizeof(struct ip6_hdr));
892 			ip6 = mtod(m, struct ip6_hdr *);
893 			nth = (struct tcphdr *)(ip6 + 1);
894 		} else
895 #endif /* INET6 */
896 		{
897 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
898 			ip = mtod(m, struct ip *);
899 			nth = (struct tcphdr *)(ip + 1);
900 		}
901 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
902 		flags = TH_ACK;
903 	} else {
904 		/*
905 		 *  reuse the mbuf.
906 		 * XXX MRT We inherrit the FIB, which is lucky.
907 		 */
908 		m_freem(m->m_next);
909 		m->m_next = NULL;
910 		m->m_data = (caddr_t)ipgen;
911 		/* m_len is set later */
912 		tlen = 0;
913 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
914 #ifdef INET6
915 		if (isipv6) {
916 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
917 			nth = (struct tcphdr *)(ip6 + 1);
918 		} else
919 #endif /* INET6 */
920 		{
921 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
922 			nth = (struct tcphdr *)(ip + 1);
923 		}
924 		if (th != nth) {
925 			/*
926 			 * this is usually a case when an extension header
927 			 * exists between the IPv6 header and the
928 			 * TCP header.
929 			 */
930 			nth->th_sport = th->th_sport;
931 			nth->th_dport = th->th_dport;
932 		}
933 		xchg(nth->th_dport, nth->th_sport, uint16_t);
934 #undef xchg
935 	}
936 #ifdef INET6
937 	if (isipv6) {
938 		ip6->ip6_flow = 0;
939 		ip6->ip6_vfc = IPV6_VERSION;
940 		ip6->ip6_nxt = IPPROTO_TCP;
941 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
942 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
943 	}
944 #endif
945 #if defined(INET) && defined(INET6)
946 	else
947 #endif
948 #ifdef INET
949 	{
950 		tlen += sizeof (struct tcpiphdr);
951 		ip->ip_len = htons(tlen);
952 		ip->ip_ttl = V_ip_defttl;
953 		if (V_path_mtu_discovery)
954 			ip->ip_off |= htons(IP_DF);
955 	}
956 #endif
957 	m->m_len = tlen;
958 	m->m_pkthdr.len = tlen;
959 	m->m_pkthdr.rcvif = NULL;
960 #ifdef MAC
961 	if (inp != NULL) {
962 		/*
963 		 * Packet is associated with a socket, so allow the
964 		 * label of the response to reflect the socket label.
965 		 */
966 		INP_WLOCK_ASSERT(inp);
967 		mac_inpcb_create_mbuf(inp, m);
968 	} else {
969 		/*
970 		 * Packet is not associated with a socket, so possibly
971 		 * update the label in place.
972 		 */
973 		mac_netinet_tcp_reply(m);
974 	}
975 #endif
976 	nth->th_seq = htonl(seq);
977 	nth->th_ack = htonl(ack);
978 	nth->th_x2 = 0;
979 	nth->th_off = sizeof (struct tcphdr) >> 2;
980 	nth->th_flags = flags;
981 	if (tp != NULL)
982 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
983 	else
984 		nth->th_win = htons((u_short)win);
985 	nth->th_urp = 0;
986 
987 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
988 #ifdef INET6
989 	if (isipv6) {
990 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
991 		nth->th_sum = in6_cksum_pseudo(ip6,
992 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
993 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
994 		    NULL, NULL);
995 	}
996 #endif /* INET6 */
997 #if defined(INET6) && defined(INET)
998 	else
999 #endif
1000 #ifdef INET
1001 	{
1002 		m->m_pkthdr.csum_flags = CSUM_TCP;
1003 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1004 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1005 	}
1006 #endif /* INET */
1007 #ifdef TCPDEBUG
1008 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1009 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1010 #endif
1011 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1012 	if (flags & TH_RST)
1013 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1014 		    tp, nth);
1015 
1016 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1017 #ifdef INET6
1018 	if (isipv6)
1019 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
1020 #endif /* INET6 */
1021 #if defined(INET) && defined(INET6)
1022 	else
1023 #endif
1024 #ifdef INET
1025 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
1026 #endif
1027 }
1028 
1029 /*
1030  * Create a new TCP control block, making an
1031  * empty reassembly queue and hooking it to the argument
1032  * protocol control block.  The `inp' parameter must have
1033  * come from the zone allocator set up in tcp_init().
1034  */
1035 struct tcpcb *
1036 tcp_newtcpcb(struct inpcb *inp)
1037 {
1038 	struct tcpcb_mem *tm;
1039 	struct tcpcb *tp;
1040 #ifdef INET6
1041 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1042 #endif /* INET6 */
1043 
1044 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1045 	if (tm == NULL)
1046 		return (NULL);
1047 	tp = &tm->tcb;
1048 
1049 	/* Initialise cc_var struct for this tcpcb. */
1050 	tp->ccv = &tm->ccv;
1051 	tp->ccv->type = IPPROTO_TCP;
1052 	tp->ccv->ccvc.tcp = tp;
1053 	rw_rlock(&tcp_function_lock);
1054 	tp->t_fb = tcp_func_set_ptr;
1055 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1056 	rw_runlock(&tcp_function_lock);
1057 	if (tp->t_fb->tfb_tcp_fb_init) {
1058 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1059 	}
1060 	/*
1061 	 * Use the current system default CC algorithm.
1062 	 */
1063 	CC_LIST_RLOCK();
1064 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1065 	CC_ALGO(tp) = CC_DEFAULT();
1066 	CC_LIST_RUNLOCK();
1067 
1068 	if (CC_ALGO(tp)->cb_init != NULL)
1069 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1070 			if (tp->t_fb->tfb_tcp_fb_fini)
1071 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1072 			refcount_release(&tp->t_fb->tfb_refcnt);
1073 			uma_zfree(V_tcpcb_zone, tm);
1074 			return (NULL);
1075 		}
1076 
1077 	tp->osd = &tm->osd;
1078 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1079 		if (tp->t_fb->tfb_tcp_fb_fini)
1080 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1081 		refcount_release(&tp->t_fb->tfb_refcnt);
1082 		uma_zfree(V_tcpcb_zone, tm);
1083 		return (NULL);
1084 	}
1085 
1086 #ifdef VIMAGE
1087 	tp->t_vnet = inp->inp_vnet;
1088 #endif
1089 	tp->t_timers = &tm->tt;
1090 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1091 	tp->t_maxseg =
1092 #ifdef INET6
1093 		isipv6 ? V_tcp_v6mssdflt :
1094 #endif /* INET6 */
1095 		V_tcp_mssdflt;
1096 
1097 	/* Set up our timeouts. */
1098 	callout_init(&tp->t_timers->tt_rexmt, 1);
1099 	callout_init(&tp->t_timers->tt_persist, 1);
1100 	callout_init(&tp->t_timers->tt_keep, 1);
1101 	callout_init(&tp->t_timers->tt_2msl, 1);
1102 	callout_init(&tp->t_timers->tt_delack, 1);
1103 
1104 	if (V_tcp_do_rfc1323)
1105 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1106 	if (V_tcp_do_sack)
1107 		tp->t_flags |= TF_SACK_PERMIT;
1108 	TAILQ_INIT(&tp->snd_holes);
1109 	/*
1110 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1111 	 * is called.
1112 	 */
1113 	in_pcbref(inp);	/* Reference for tcpcb */
1114 	tp->t_inpcb = inp;
1115 
1116 	/*
1117 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1118 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1119 	 * reasonable initial retransmit time.
1120 	 */
1121 	tp->t_srtt = TCPTV_SRTTBASE;
1122 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1123 	tp->t_rttmin = tcp_rexmit_min;
1124 	tp->t_rxtcur = TCPTV_RTOBASE;
1125 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1126 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1127 	tp->t_rcvtime = ticks;
1128 	/*
1129 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1130 	 * because the socket may be bound to an IPv6 wildcard address,
1131 	 * which may match an IPv4-mapped IPv6 address.
1132 	 */
1133 	inp->inp_ip_ttl = V_ip_defttl;
1134 	inp->inp_ppcb = tp;
1135 #ifdef TCPPCAP
1136 	/*
1137 	 * Init the TCP PCAP queues.
1138 	 */
1139 	tcp_pcap_tcpcb_init(tp);
1140 #endif
1141 	return (tp);		/* XXX */
1142 }
1143 
1144 /*
1145  * Switch the congestion control algorithm back to NewReno for any active
1146  * control blocks using an algorithm which is about to go away.
1147  * This ensures the CC framework can allow the unload to proceed without leaving
1148  * any dangling pointers which would trigger a panic.
1149  * Returning non-zero would inform the CC framework that something went wrong
1150  * and it would be unsafe to allow the unload to proceed. However, there is no
1151  * way for this to occur with this implementation so we always return zero.
1152  */
1153 int
1154 tcp_ccalgounload(struct cc_algo *unload_algo)
1155 {
1156 	struct cc_algo *tmpalgo;
1157 	struct inpcb *inp;
1158 	struct tcpcb *tp;
1159 	VNET_ITERATOR_DECL(vnet_iter);
1160 
1161 	/*
1162 	 * Check all active control blocks across all network stacks and change
1163 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1164 	 * requires cleanup code to be run, call it.
1165 	 */
1166 	VNET_LIST_RLOCK();
1167 	VNET_FOREACH(vnet_iter) {
1168 		CURVNET_SET(vnet_iter);
1169 		INP_INFO_WLOCK(&V_tcbinfo);
1170 		/*
1171 		 * New connections already part way through being initialised
1172 		 * with the CC algo we're removing will not race with this code
1173 		 * because the INP_INFO_WLOCK is held during initialisation. We
1174 		 * therefore don't enter the loop below until the connection
1175 		 * list has stabilised.
1176 		 */
1177 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1178 			INP_WLOCK(inp);
1179 			/* Important to skip tcptw structs. */
1180 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1181 			    (tp = intotcpcb(inp)) != NULL) {
1182 				/*
1183 				 * By holding INP_WLOCK here, we are assured
1184 				 * that the connection is not currently
1185 				 * executing inside the CC module's functions
1186 				 * i.e. it is safe to make the switch back to
1187 				 * NewReno.
1188 				 */
1189 				if (CC_ALGO(tp) == unload_algo) {
1190 					tmpalgo = CC_ALGO(tp);
1191 					/* NewReno does not require any init. */
1192 					CC_ALGO(tp) = &newreno_cc_algo;
1193 					if (tmpalgo->cb_destroy != NULL)
1194 						tmpalgo->cb_destroy(tp->ccv);
1195 				}
1196 			}
1197 			INP_WUNLOCK(inp);
1198 		}
1199 		INP_INFO_WUNLOCK(&V_tcbinfo);
1200 		CURVNET_RESTORE();
1201 	}
1202 	VNET_LIST_RUNLOCK();
1203 
1204 	return (0);
1205 }
1206 
1207 /*
1208  * Drop a TCP connection, reporting
1209  * the specified error.  If connection is synchronized,
1210  * then send a RST to peer.
1211  */
1212 struct tcpcb *
1213 tcp_drop(struct tcpcb *tp, int errno)
1214 {
1215 	struct socket *so = tp->t_inpcb->inp_socket;
1216 
1217 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1218 	INP_WLOCK_ASSERT(tp->t_inpcb);
1219 
1220 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1221 		tcp_state_change(tp, TCPS_CLOSED);
1222 		(void) tp->t_fb->tfb_tcp_output(tp);
1223 		TCPSTAT_INC(tcps_drops);
1224 	} else
1225 		TCPSTAT_INC(tcps_conndrops);
1226 	if (errno == ETIMEDOUT && tp->t_softerror)
1227 		errno = tp->t_softerror;
1228 	so->so_error = errno;
1229 	return (tcp_close(tp));
1230 }
1231 
1232 void
1233 tcp_discardcb(struct tcpcb *tp)
1234 {
1235 	struct inpcb *inp = tp->t_inpcb;
1236 	struct socket *so = inp->inp_socket;
1237 #ifdef INET6
1238 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1239 #endif /* INET6 */
1240 	int released;
1241 
1242 	INP_WLOCK_ASSERT(inp);
1243 
1244 	/*
1245 	 * Make sure that all of our timers are stopped before we delete the
1246 	 * PCB.
1247 	 *
1248 	 * If stopping a timer fails, we schedule a discard function in same
1249 	 * callout, and the last discard function called will take care of
1250 	 * deleting the tcpcb.
1251 	 */
1252 	tcp_timer_stop(tp, TT_REXMT);
1253 	tcp_timer_stop(tp, TT_PERSIST);
1254 	tcp_timer_stop(tp, TT_KEEP);
1255 	tcp_timer_stop(tp, TT_2MSL);
1256 	tcp_timer_stop(tp, TT_DELACK);
1257 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1258 		/* Call the stop-all function of the methods */
1259 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1260 	}
1261 
1262 	/*
1263 	 * If we got enough samples through the srtt filter,
1264 	 * save the rtt and rttvar in the routing entry.
1265 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1266 	 * 4 samples is enough for the srtt filter to converge
1267 	 * to within enough % of the correct value; fewer samples
1268 	 * and we could save a bogus rtt. The danger is not high
1269 	 * as tcp quickly recovers from everything.
1270 	 * XXX: Works very well but needs some more statistics!
1271 	 */
1272 	if (tp->t_rttupdated >= 4) {
1273 		struct hc_metrics_lite metrics;
1274 		u_long ssthresh;
1275 
1276 		bzero(&metrics, sizeof(metrics));
1277 		/*
1278 		 * Update the ssthresh always when the conditions below
1279 		 * are satisfied. This gives us better new start value
1280 		 * for the congestion avoidance for new connections.
1281 		 * ssthresh is only set if packet loss occured on a session.
1282 		 *
1283 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1284 		 * being torn down.  Ideally this code would not use 'so'.
1285 		 */
1286 		ssthresh = tp->snd_ssthresh;
1287 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1288 			/*
1289 			 * convert the limit from user data bytes to
1290 			 * packets then to packet data bytes.
1291 			 */
1292 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1293 			if (ssthresh < 2)
1294 				ssthresh = 2;
1295 			ssthresh *= (u_long)(tp->t_maxseg +
1296 #ifdef INET6
1297 			    (isipv6 ? sizeof (struct ip6_hdr) +
1298 				sizeof (struct tcphdr) :
1299 #endif
1300 				sizeof (struct tcpiphdr)
1301 #ifdef INET6
1302 			    )
1303 #endif
1304 			    );
1305 		} else
1306 			ssthresh = 0;
1307 		metrics.rmx_ssthresh = ssthresh;
1308 
1309 		metrics.rmx_rtt = tp->t_srtt;
1310 		metrics.rmx_rttvar = tp->t_rttvar;
1311 		metrics.rmx_cwnd = tp->snd_cwnd;
1312 		metrics.rmx_sendpipe = 0;
1313 		metrics.rmx_recvpipe = 0;
1314 
1315 		tcp_hc_update(&inp->inp_inc, &metrics);
1316 	}
1317 
1318 	/* free the reassembly queue, if any */
1319 	tcp_reass_flush(tp);
1320 
1321 #ifdef TCP_OFFLOAD
1322 	/* Disconnect offload device, if any. */
1323 	if (tp->t_flags & TF_TOE)
1324 		tcp_offload_detach(tp);
1325 #endif
1326 
1327 	tcp_free_sackholes(tp);
1328 
1329 #ifdef TCPPCAP
1330 	/* Free the TCP PCAP queues. */
1331 	tcp_pcap_drain(&(tp->t_inpkts));
1332 	tcp_pcap_drain(&(tp->t_outpkts));
1333 #endif
1334 
1335 	/* Allow the CC algorithm to clean up after itself. */
1336 	if (CC_ALGO(tp)->cb_destroy != NULL)
1337 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1338 
1339 	khelp_destroy_osd(tp->osd);
1340 
1341 	CC_ALGO(tp) = NULL;
1342 	inp->inp_ppcb = NULL;
1343 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1344 		/* We own the last reference on tcpcb, let's free it. */
1345 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1346 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1347 			    /* Some fb timers left running! */
1348 			    return;
1349 		}
1350 		if (tp->t_fb->tfb_tcp_fb_fini)
1351 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1352 		refcount_release(&tp->t_fb->tfb_refcnt);
1353 		tp->t_inpcb = NULL;
1354 		uma_zfree(V_tcpcb_zone, tp);
1355 		released = in_pcbrele_wlocked(inp);
1356 		KASSERT(!released, ("%s: inp %p should not have been released "
1357 			"here", __func__, inp));
1358 	}
1359 }
1360 
1361 void
1362 tcp_timer_2msl_discard(void *xtp)
1363 {
1364 
1365 	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1366 }
1367 
1368 void
1369 tcp_timer_keep_discard(void *xtp)
1370 {
1371 
1372 	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1373 }
1374 
1375 void
1376 tcp_timer_persist_discard(void *xtp)
1377 {
1378 
1379 	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1380 }
1381 
1382 void
1383 tcp_timer_rexmt_discard(void *xtp)
1384 {
1385 
1386 	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1387 }
1388 
1389 void
1390 tcp_timer_delack_discard(void *xtp)
1391 {
1392 
1393 	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1394 }
1395 
1396 void
1397 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1398 {
1399 	struct inpcb *inp;
1400 
1401 	CURVNET_SET(tp->t_vnet);
1402 	INP_INFO_RLOCK(&V_tcbinfo);
1403 	inp = tp->t_inpcb;
1404 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1405 		__func__, tp));
1406 	INP_WLOCK(inp);
1407 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1408 		("%s: tcpcb has to be stopped here", __func__));
1409 	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1410 		("%s: discard callout should be running", __func__));
1411 	tp->t_timers->tt_flags &= ~timer_type;
1412 	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1413 		/* We own the last reference on this tcpcb, let's free it. */
1414 		if ((tp->t_fb->tfb_tcp_timers_left) &&
1415 		    (tp->t_fb->tfb_tcp_timers_left(tp))) {
1416 			    /* Some fb timers left running! */
1417 			    goto leave;
1418 		}
1419 		if (tp->t_fb->tfb_tcp_fb_fini)
1420 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1421 		refcount_release(&tp->t_fb->tfb_refcnt);
1422 		tp->t_inpcb = NULL;
1423 		uma_zfree(V_tcpcb_zone, tp);
1424 		if (in_pcbrele_wlocked(inp)) {
1425 			INP_INFO_RUNLOCK(&V_tcbinfo);
1426 			CURVNET_RESTORE();
1427 			return;
1428 		}
1429 	}
1430 leave:
1431 	INP_WUNLOCK(inp);
1432 	INP_INFO_RUNLOCK(&V_tcbinfo);
1433 	CURVNET_RESTORE();
1434 }
1435 
1436 /*
1437  * Attempt to close a TCP control block, marking it as dropped, and freeing
1438  * the socket if we hold the only reference.
1439  */
1440 struct tcpcb *
1441 tcp_close(struct tcpcb *tp)
1442 {
1443 	struct inpcb *inp = tp->t_inpcb;
1444 	struct socket *so;
1445 
1446 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1447 	INP_WLOCK_ASSERT(inp);
1448 
1449 #ifdef TCP_OFFLOAD
1450 	if (tp->t_state == TCPS_LISTEN)
1451 		tcp_offload_listen_stop(tp);
1452 #endif
1453 #ifdef TCP_RFC7413
1454 	/*
1455 	 * This releases the TFO pending counter resource for TFO listen
1456 	 * sockets as well as passively-created TFO sockets that transition
1457 	 * from SYN_RECEIVED to CLOSED.
1458 	 */
1459 	if (tp->t_tfo_pending) {
1460 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1461 		tp->t_tfo_pending = NULL;
1462 	}
1463 #endif
1464 	in_pcbdrop(inp);
1465 	TCPSTAT_INC(tcps_closed);
1466 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1467 	so = inp->inp_socket;
1468 	soisdisconnected(so);
1469 	if (inp->inp_flags & INP_SOCKREF) {
1470 		KASSERT(so->so_state & SS_PROTOREF,
1471 		    ("tcp_close: !SS_PROTOREF"));
1472 		inp->inp_flags &= ~INP_SOCKREF;
1473 		INP_WUNLOCK(inp);
1474 		ACCEPT_LOCK();
1475 		SOCK_LOCK(so);
1476 		so->so_state &= ~SS_PROTOREF;
1477 		sofree(so);
1478 		return (NULL);
1479 	}
1480 	return (tp);
1481 }
1482 
1483 void
1484 tcp_drain(void)
1485 {
1486 	VNET_ITERATOR_DECL(vnet_iter);
1487 
1488 	if (!do_tcpdrain)
1489 		return;
1490 
1491 	VNET_LIST_RLOCK_NOSLEEP();
1492 	VNET_FOREACH(vnet_iter) {
1493 		CURVNET_SET(vnet_iter);
1494 		struct inpcb *inpb;
1495 		struct tcpcb *tcpb;
1496 
1497 	/*
1498 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1499 	 * if there is one...
1500 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1501 	 *      reassembly queue should be flushed, but in a situation
1502 	 *	where we're really low on mbufs, this is potentially
1503 	 *	useful.
1504 	 */
1505 		INP_INFO_WLOCK(&V_tcbinfo);
1506 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1507 			if (inpb->inp_flags & INP_TIMEWAIT)
1508 				continue;
1509 			INP_WLOCK(inpb);
1510 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1511 				tcp_reass_flush(tcpb);
1512 				tcp_clean_sackreport(tcpb);
1513 			}
1514 			INP_WUNLOCK(inpb);
1515 		}
1516 		INP_INFO_WUNLOCK(&V_tcbinfo);
1517 		CURVNET_RESTORE();
1518 	}
1519 	VNET_LIST_RUNLOCK_NOSLEEP();
1520 }
1521 
1522 /*
1523  * Notify a tcp user of an asynchronous error;
1524  * store error as soft error, but wake up user
1525  * (for now, won't do anything until can select for soft error).
1526  *
1527  * Do not wake up user since there currently is no mechanism for
1528  * reporting soft errors (yet - a kqueue filter may be added).
1529  */
1530 static struct inpcb *
1531 tcp_notify(struct inpcb *inp, int error)
1532 {
1533 	struct tcpcb *tp;
1534 
1535 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1536 	INP_WLOCK_ASSERT(inp);
1537 
1538 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1539 	    (inp->inp_flags & INP_DROPPED))
1540 		return (inp);
1541 
1542 	tp = intotcpcb(inp);
1543 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1544 
1545 	/*
1546 	 * Ignore some errors if we are hooked up.
1547 	 * If connection hasn't completed, has retransmitted several times,
1548 	 * and receives a second error, give up now.  This is better
1549 	 * than waiting a long time to establish a connection that
1550 	 * can never complete.
1551 	 */
1552 	if (tp->t_state == TCPS_ESTABLISHED &&
1553 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1554 	     error == EHOSTDOWN)) {
1555 		return (inp);
1556 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1557 	    tp->t_softerror) {
1558 		tp = tcp_drop(tp, error);
1559 		if (tp != NULL)
1560 			return (inp);
1561 		else
1562 			return (NULL);
1563 	} else {
1564 		tp->t_softerror = error;
1565 		return (inp);
1566 	}
1567 #if 0
1568 	wakeup( &so->so_timeo);
1569 	sorwakeup(so);
1570 	sowwakeup(so);
1571 #endif
1572 }
1573 
1574 static int
1575 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1576 {
1577 	int error, i, m, n, pcb_count;
1578 	struct inpcb *inp, **inp_list;
1579 	inp_gen_t gencnt;
1580 	struct xinpgen xig;
1581 
1582 	/*
1583 	 * The process of preparing the TCB list is too time-consuming and
1584 	 * resource-intensive to repeat twice on every request.
1585 	 */
1586 	if (req->oldptr == NULL) {
1587 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1588 		n += imax(n / 8, 10);
1589 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1590 		return (0);
1591 	}
1592 
1593 	if (req->newptr != NULL)
1594 		return (EPERM);
1595 
1596 	/*
1597 	 * OK, now we're committed to doing something.
1598 	 */
1599 	INP_LIST_RLOCK(&V_tcbinfo);
1600 	gencnt = V_tcbinfo.ipi_gencnt;
1601 	n = V_tcbinfo.ipi_count;
1602 	INP_LIST_RUNLOCK(&V_tcbinfo);
1603 
1604 	m = syncache_pcbcount();
1605 
1606 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1607 		+ (n + m) * sizeof(struct xtcpcb));
1608 	if (error != 0)
1609 		return (error);
1610 
1611 	xig.xig_len = sizeof xig;
1612 	xig.xig_count = n + m;
1613 	xig.xig_gen = gencnt;
1614 	xig.xig_sogen = so_gencnt;
1615 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1616 	if (error)
1617 		return (error);
1618 
1619 	error = syncache_pcblist(req, m, &pcb_count);
1620 	if (error)
1621 		return (error);
1622 
1623 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1624 	if (inp_list == NULL)
1625 		return (ENOMEM);
1626 
1627 	INP_INFO_WLOCK(&V_tcbinfo);
1628 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1629 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1630 		INP_WLOCK(inp);
1631 		if (inp->inp_gencnt <= gencnt) {
1632 			/*
1633 			 * XXX: This use of cr_cansee(), introduced with
1634 			 * TCP state changes, is not quite right, but for
1635 			 * now, better than nothing.
1636 			 */
1637 			if (inp->inp_flags & INP_TIMEWAIT) {
1638 				if (intotw(inp) != NULL)
1639 					error = cr_cansee(req->td->td_ucred,
1640 					    intotw(inp)->tw_cred);
1641 				else
1642 					error = EINVAL;	/* Skip this inp. */
1643 			} else
1644 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1645 			if (error == 0) {
1646 				in_pcbref(inp);
1647 				inp_list[i++] = inp;
1648 			}
1649 		}
1650 		INP_WUNLOCK(inp);
1651 	}
1652 	INP_INFO_WUNLOCK(&V_tcbinfo);
1653 	n = i;
1654 
1655 	error = 0;
1656 	for (i = 0; i < n; i++) {
1657 		inp = inp_list[i];
1658 		INP_RLOCK(inp);
1659 		if (inp->inp_gencnt <= gencnt) {
1660 			struct xtcpcb xt;
1661 			void *inp_ppcb;
1662 
1663 			bzero(&xt, sizeof(xt));
1664 			xt.xt_len = sizeof xt;
1665 			/* XXX should avoid extra copy */
1666 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1667 			inp_ppcb = inp->inp_ppcb;
1668 			if (inp_ppcb == NULL)
1669 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1670 			else if (inp->inp_flags & INP_TIMEWAIT) {
1671 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1672 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1673 			} else {
1674 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1675 				if (xt.xt_tp.t_timers)
1676 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1677 			}
1678 			if (inp->inp_socket != NULL)
1679 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1680 			else {
1681 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1682 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1683 			}
1684 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1685 			INP_RUNLOCK(inp);
1686 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1687 		} else
1688 			INP_RUNLOCK(inp);
1689 	}
1690 	INP_INFO_RLOCK(&V_tcbinfo);
1691 	for (i = 0; i < n; i++) {
1692 		inp = inp_list[i];
1693 		INP_RLOCK(inp);
1694 		if (!in_pcbrele_rlocked(inp))
1695 			INP_RUNLOCK(inp);
1696 	}
1697 	INP_INFO_RUNLOCK(&V_tcbinfo);
1698 
1699 	if (!error) {
1700 		/*
1701 		 * Give the user an updated idea of our state.
1702 		 * If the generation differs from what we told
1703 		 * her before, she knows that something happened
1704 		 * while we were processing this request, and it
1705 		 * might be necessary to retry.
1706 		 */
1707 		INP_LIST_RLOCK(&V_tcbinfo);
1708 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1709 		xig.xig_sogen = so_gencnt;
1710 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1711 		INP_LIST_RUNLOCK(&V_tcbinfo);
1712 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1713 	}
1714 	free(inp_list, M_TEMP);
1715 	return (error);
1716 }
1717 
1718 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1719     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1720     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1721 
1722 #ifdef INET
1723 static int
1724 tcp_getcred(SYSCTL_HANDLER_ARGS)
1725 {
1726 	struct xucred xuc;
1727 	struct sockaddr_in addrs[2];
1728 	struct inpcb *inp;
1729 	int error;
1730 
1731 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1732 	if (error)
1733 		return (error);
1734 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1735 	if (error)
1736 		return (error);
1737 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1738 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1739 	if (inp != NULL) {
1740 		if (inp->inp_socket == NULL)
1741 			error = ENOENT;
1742 		if (error == 0)
1743 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1744 		if (error == 0)
1745 			cru2x(inp->inp_cred, &xuc);
1746 		INP_RUNLOCK(inp);
1747 	} else
1748 		error = ENOENT;
1749 	if (error == 0)
1750 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1751 	return (error);
1752 }
1753 
1754 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1755     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1756     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1757 #endif /* INET */
1758 
1759 #ifdef INET6
1760 static int
1761 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1762 {
1763 	struct xucred xuc;
1764 	struct sockaddr_in6 addrs[2];
1765 	struct inpcb *inp;
1766 	int error;
1767 #ifdef INET
1768 	int mapped = 0;
1769 #endif
1770 
1771 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1772 	if (error)
1773 		return (error);
1774 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1775 	if (error)
1776 		return (error);
1777 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1778 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1779 		return (error);
1780 	}
1781 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1782 #ifdef INET
1783 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1784 			mapped = 1;
1785 		else
1786 #endif
1787 			return (EINVAL);
1788 	}
1789 
1790 #ifdef INET
1791 	if (mapped == 1)
1792 		inp = in_pcblookup(&V_tcbinfo,
1793 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1794 			addrs[1].sin6_port,
1795 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1796 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1797 	else
1798 #endif
1799 		inp = in6_pcblookup(&V_tcbinfo,
1800 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1801 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1802 			INPLOOKUP_RLOCKPCB, NULL);
1803 	if (inp != NULL) {
1804 		if (inp->inp_socket == NULL)
1805 			error = ENOENT;
1806 		if (error == 0)
1807 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1808 		if (error == 0)
1809 			cru2x(inp->inp_cred, &xuc);
1810 		INP_RUNLOCK(inp);
1811 	} else
1812 		error = ENOENT;
1813 	if (error == 0)
1814 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1815 	return (error);
1816 }
1817 
1818 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1819     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1820     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1821 #endif /* INET6 */
1822 
1823 
1824 #ifdef INET
1825 void
1826 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1827 {
1828 	struct ip *ip = vip;
1829 	struct tcphdr *th;
1830 	struct in_addr faddr;
1831 	struct inpcb *inp;
1832 	struct tcpcb *tp;
1833 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1834 	struct icmp *icp;
1835 	struct in_conninfo inc;
1836 	tcp_seq icmp_tcp_seq;
1837 	int mtu;
1838 
1839 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1840 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1841 		return;
1842 
1843 	if (cmd == PRC_MSGSIZE)
1844 		notify = tcp_mtudisc_notify;
1845 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1846 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1847 		notify = tcp_drop_syn_sent;
1848 	/*
1849 	 * Redirects don't need to be handled up here.
1850 	 */
1851 	else if (PRC_IS_REDIRECT(cmd))
1852 		return;
1853 	/*
1854 	 * Hostdead is ugly because it goes linearly through all PCBs.
1855 	 * XXX: We never get this from ICMP, otherwise it makes an
1856 	 * excellent DoS attack on machines with many connections.
1857 	 */
1858 	else if (cmd == PRC_HOSTDEAD)
1859 		ip = NULL;
1860 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1861 		return;
1862 
1863 	if (ip == NULL) {
1864 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1865 		return;
1866 	}
1867 
1868 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1869 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1870 	INP_INFO_RLOCK(&V_tcbinfo);
1871 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1872 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1873 	if (inp != NULL)  {
1874 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1875 		    !(inp->inp_flags & INP_DROPPED) &&
1876 		    !(inp->inp_socket == NULL)) {
1877 			icmp_tcp_seq = ntohl(th->th_seq);
1878 			tp = intotcpcb(inp);
1879 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1880 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1881 				if (cmd == PRC_MSGSIZE) {
1882 					/*
1883 					 * MTU discovery:
1884 					 * If we got a needfrag set the MTU
1885 					 * in the route to the suggested new
1886 					 * value (if given) and then notify.
1887 					 */
1888 				    	mtu = ntohs(icp->icmp_nextmtu);
1889 					/*
1890 					 * If no alternative MTU was
1891 					 * proposed, try the next smaller
1892 					 * one.
1893 					 */
1894 					if (!mtu)
1895 						mtu = ip_next_mtu(
1896 						    ntohs(ip->ip_len), 1);
1897 					if (mtu < V_tcp_minmss +
1898 					    sizeof(struct tcpiphdr))
1899 						mtu = V_tcp_minmss +
1900 						    sizeof(struct tcpiphdr);
1901 					/*
1902 					 * Only process the offered MTU if it
1903 					 * is smaller than the current one.
1904 					 */
1905 					if (mtu < tp->t_maxseg +
1906 					    sizeof(struct tcpiphdr)) {
1907 						bzero(&inc, sizeof(inc));
1908 						inc.inc_faddr = faddr;
1909 						inc.inc_fibnum =
1910 						    inp->inp_inc.inc_fibnum;
1911 						tcp_hc_updatemtu(&inc, mtu);
1912 						tcp_mtudisc(inp, mtu);
1913 					}
1914 				} else
1915 					inp = (*notify)(inp,
1916 					    inetctlerrmap[cmd]);
1917 			}
1918 		}
1919 		if (inp != NULL)
1920 			INP_WUNLOCK(inp);
1921 	} else {
1922 		bzero(&inc, sizeof(inc));
1923 		inc.inc_fport = th->th_dport;
1924 		inc.inc_lport = th->th_sport;
1925 		inc.inc_faddr = faddr;
1926 		inc.inc_laddr = ip->ip_src;
1927 		syncache_unreach(&inc, th);
1928 	}
1929 	INP_INFO_RUNLOCK(&V_tcbinfo);
1930 }
1931 #endif /* INET */
1932 
1933 #ifdef INET6
1934 void
1935 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1936 {
1937 	struct tcphdr th;
1938 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1939 	struct ip6_hdr *ip6;
1940 	struct mbuf *m;
1941 	struct ip6ctlparam *ip6cp = NULL;
1942 	const struct sockaddr_in6 *sa6_src = NULL;
1943 	int off;
1944 	struct tcp_portonly {
1945 		u_int16_t th_sport;
1946 		u_int16_t th_dport;
1947 	} *thp;
1948 
1949 	if (sa->sa_family != AF_INET6 ||
1950 	    sa->sa_len != sizeof(struct sockaddr_in6))
1951 		return;
1952 
1953 	if (cmd == PRC_MSGSIZE)
1954 		notify = tcp_mtudisc_notify;
1955 	else if (!PRC_IS_REDIRECT(cmd) &&
1956 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1957 		return;
1958 
1959 	/* if the parameter is from icmp6, decode it. */
1960 	if (d != NULL) {
1961 		ip6cp = (struct ip6ctlparam *)d;
1962 		m = ip6cp->ip6c_m;
1963 		ip6 = ip6cp->ip6c_ip6;
1964 		off = ip6cp->ip6c_off;
1965 		sa6_src = ip6cp->ip6c_src;
1966 	} else {
1967 		m = NULL;
1968 		ip6 = NULL;
1969 		off = 0;	/* fool gcc */
1970 		sa6_src = &sa6_any;
1971 	}
1972 
1973 	if (ip6 != NULL) {
1974 		struct in_conninfo inc;
1975 		/*
1976 		 * XXX: We assume that when IPV6 is non NULL,
1977 		 * M and OFF are valid.
1978 		 */
1979 
1980 		/* check if we can safely examine src and dst ports */
1981 		if (m->m_pkthdr.len < off + sizeof(*thp))
1982 			return;
1983 
1984 		bzero(&th, sizeof(th));
1985 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1986 
1987 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1988 		    (struct sockaddr *)ip6cp->ip6c_src,
1989 		    th.th_sport, cmd, NULL, notify);
1990 
1991 		bzero(&inc, sizeof(inc));
1992 		inc.inc_fport = th.th_dport;
1993 		inc.inc_lport = th.th_sport;
1994 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1995 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1996 		inc.inc_flags |= INC_ISIPV6;
1997 		INP_INFO_RLOCK(&V_tcbinfo);
1998 		syncache_unreach(&inc, &th);
1999 		INP_INFO_RUNLOCK(&V_tcbinfo);
2000 	} else
2001 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2002 			      0, cmd, NULL, notify);
2003 }
2004 #endif /* INET6 */
2005 
2006 
2007 /*
2008  * Following is where TCP initial sequence number generation occurs.
2009  *
2010  * There are two places where we must use initial sequence numbers:
2011  * 1.  In SYN-ACK packets.
2012  * 2.  In SYN packets.
2013  *
2014  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2015  * tcp_syncache.c for details.
2016  *
2017  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2018  * depends on this property.  In addition, these ISNs should be
2019  * unguessable so as to prevent connection hijacking.  To satisfy
2020  * the requirements of this situation, the algorithm outlined in
2021  * RFC 1948 is used, with only small modifications.
2022  *
2023  * Implementation details:
2024  *
2025  * Time is based off the system timer, and is corrected so that it
2026  * increases by one megabyte per second.  This allows for proper
2027  * recycling on high speed LANs while still leaving over an hour
2028  * before rollover.
2029  *
2030  * As reading the *exact* system time is too expensive to be done
2031  * whenever setting up a TCP connection, we increment the time
2032  * offset in two ways.  First, a small random positive increment
2033  * is added to isn_offset for each connection that is set up.
2034  * Second, the function tcp_isn_tick fires once per clock tick
2035  * and increments isn_offset as necessary so that sequence numbers
2036  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2037  * random positive increments serve only to ensure that the same
2038  * exact sequence number is never sent out twice (as could otherwise
2039  * happen when a port is recycled in less than the system tick
2040  * interval.)
2041  *
2042  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2043  * between seeding of isn_secret.  This is normally set to zero,
2044  * as reseeding should not be necessary.
2045  *
2046  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2047  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2048  * general, this means holding an exclusive (write) lock.
2049  */
2050 
2051 #define ISN_BYTES_PER_SECOND 1048576
2052 #define ISN_STATIC_INCREMENT 4096
2053 #define ISN_RANDOM_INCREMENT (4096 - 1)
2054 
2055 static VNET_DEFINE(u_char, isn_secret[32]);
2056 static VNET_DEFINE(int, isn_last);
2057 static VNET_DEFINE(int, isn_last_reseed);
2058 static VNET_DEFINE(u_int32_t, isn_offset);
2059 static VNET_DEFINE(u_int32_t, isn_offset_old);
2060 
2061 #define	V_isn_secret			VNET(isn_secret)
2062 #define	V_isn_last			VNET(isn_last)
2063 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2064 #define	V_isn_offset			VNET(isn_offset)
2065 #define	V_isn_offset_old		VNET(isn_offset_old)
2066 
2067 tcp_seq
2068 tcp_new_isn(struct tcpcb *tp)
2069 {
2070 	MD5_CTX isn_ctx;
2071 	u_int32_t md5_buffer[4];
2072 	tcp_seq new_isn;
2073 	u_int32_t projected_offset;
2074 
2075 	INP_WLOCK_ASSERT(tp->t_inpcb);
2076 
2077 	ISN_LOCK();
2078 	/* Seed if this is the first use, reseed if requested. */
2079 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2080 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2081 		< (u_int)ticks))) {
2082 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2083 		V_isn_last_reseed = ticks;
2084 	}
2085 
2086 	/* Compute the md5 hash and return the ISN. */
2087 	MD5Init(&isn_ctx);
2088 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2089 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2090 #ifdef INET6
2091 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2092 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2093 			  sizeof(struct in6_addr));
2094 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2095 			  sizeof(struct in6_addr));
2096 	} else
2097 #endif
2098 	{
2099 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2100 			  sizeof(struct in_addr));
2101 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2102 			  sizeof(struct in_addr));
2103 	}
2104 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2105 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2106 	new_isn = (tcp_seq) md5_buffer[0];
2107 	V_isn_offset += ISN_STATIC_INCREMENT +
2108 		(arc4random() & ISN_RANDOM_INCREMENT);
2109 	if (ticks != V_isn_last) {
2110 		projected_offset = V_isn_offset_old +
2111 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2112 		if (SEQ_GT(projected_offset, V_isn_offset))
2113 			V_isn_offset = projected_offset;
2114 		V_isn_offset_old = V_isn_offset;
2115 		V_isn_last = ticks;
2116 	}
2117 	new_isn += V_isn_offset;
2118 	ISN_UNLOCK();
2119 	return (new_isn);
2120 }
2121 
2122 /*
2123  * When a specific ICMP unreachable message is received and the
2124  * connection state is SYN-SENT, drop the connection.  This behavior
2125  * is controlled by the icmp_may_rst sysctl.
2126  */
2127 struct inpcb *
2128 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2129 {
2130 	struct tcpcb *tp;
2131 
2132 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2133 	INP_WLOCK_ASSERT(inp);
2134 
2135 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2136 	    (inp->inp_flags & INP_DROPPED))
2137 		return (inp);
2138 
2139 	tp = intotcpcb(inp);
2140 	if (tp->t_state != TCPS_SYN_SENT)
2141 		return (inp);
2142 
2143 	tp = tcp_drop(tp, errno);
2144 	if (tp != NULL)
2145 		return (inp);
2146 	else
2147 		return (NULL);
2148 }
2149 
2150 /*
2151  * When `need fragmentation' ICMP is received, update our idea of the MSS
2152  * based on the new value. Also nudge TCP to send something, since we
2153  * know the packet we just sent was dropped.
2154  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2155  */
2156 static struct inpcb *
2157 tcp_mtudisc_notify(struct inpcb *inp, int error)
2158 {
2159 
2160 	tcp_mtudisc(inp, -1);
2161 	return (inp);
2162 }
2163 
2164 static void
2165 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2166 {
2167 	struct tcpcb *tp;
2168 	struct socket *so;
2169 
2170 	INP_WLOCK_ASSERT(inp);
2171 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2172 	    (inp->inp_flags & INP_DROPPED))
2173 		return;
2174 
2175 	tp = intotcpcb(inp);
2176 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2177 
2178 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2179 
2180 	so = inp->inp_socket;
2181 	SOCKBUF_LOCK(&so->so_snd);
2182 	/* If the mss is larger than the socket buffer, decrease the mss. */
2183 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2184 		tp->t_maxseg = so->so_snd.sb_hiwat;
2185 	SOCKBUF_UNLOCK(&so->so_snd);
2186 
2187 	TCPSTAT_INC(tcps_mturesent);
2188 	tp->t_rtttime = 0;
2189 	tp->snd_nxt = tp->snd_una;
2190 	tcp_free_sackholes(tp);
2191 	tp->snd_recover = tp->snd_max;
2192 	if (tp->t_flags & TF_SACK_PERMIT)
2193 		EXIT_FASTRECOVERY(tp->t_flags);
2194 	tp->t_fb->tfb_tcp_output(tp);
2195 }
2196 
2197 #ifdef INET
2198 /*
2199  * Look-up the routing entry to the peer of this inpcb.  If no route
2200  * is found and it cannot be allocated, then return 0.  This routine
2201  * is called by TCP routines that access the rmx structure and by
2202  * tcp_mss_update to get the peer/interface MTU.
2203  */
2204 u_long
2205 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2206 {
2207 	struct route sro;
2208 	struct sockaddr_in *dst;
2209 	struct ifnet *ifp;
2210 	u_long maxmtu = 0;
2211 
2212 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2213 
2214 	bzero(&sro, sizeof(sro));
2215 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2216 	        dst = (struct sockaddr_in *)&sro.ro_dst;
2217 		dst->sin_family = AF_INET;
2218 		dst->sin_len = sizeof(*dst);
2219 		dst->sin_addr = inc->inc_faddr;
2220 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
2221 	}
2222 	if (sro.ro_rt != NULL) {
2223 		ifp = sro.ro_rt->rt_ifp;
2224 		if (sro.ro_rt->rt_mtu == 0)
2225 			maxmtu = ifp->if_mtu;
2226 		else
2227 			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
2228 
2229 		/* Report additional interface capabilities. */
2230 		if (cap != NULL) {
2231 			if (ifp->if_capenable & IFCAP_TSO4 &&
2232 			    ifp->if_hwassist & CSUM_TSO) {
2233 				cap->ifcap |= CSUM_TSO;
2234 				cap->tsomax = ifp->if_hw_tsomax;
2235 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2236 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2237 			}
2238 		}
2239 		RTFREE(sro.ro_rt);
2240 	}
2241 	return (maxmtu);
2242 }
2243 #endif /* INET */
2244 
2245 #ifdef INET6
2246 u_long
2247 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2248 {
2249 	struct route_in6 sro6;
2250 	struct ifnet *ifp;
2251 	u_long maxmtu = 0;
2252 
2253 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2254 
2255 	bzero(&sro6, sizeof(sro6));
2256 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2257 		sro6.ro_dst.sin6_family = AF_INET6;
2258 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
2259 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
2260 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
2261 	}
2262 	if (sro6.ro_rt != NULL) {
2263 		ifp = sro6.ro_rt->rt_ifp;
2264 		if (sro6.ro_rt->rt_mtu == 0)
2265 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
2266 		else
2267 			maxmtu = min(sro6.ro_rt->rt_mtu,
2268 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
2269 
2270 		/* Report additional interface capabilities. */
2271 		if (cap != NULL) {
2272 			if (ifp->if_capenable & IFCAP_TSO6 &&
2273 			    ifp->if_hwassist & CSUM_TSO) {
2274 				cap->ifcap |= CSUM_TSO;
2275 				cap->tsomax = ifp->if_hw_tsomax;
2276 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2277 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2278 			}
2279 		}
2280 		RTFREE(sro6.ro_rt);
2281 	}
2282 
2283 	return (maxmtu);
2284 }
2285 #endif /* INET6 */
2286 
2287 /*
2288  * Calculate effective SMSS per RFC5681 definition for a given TCP
2289  * connection at its current state, taking into account SACK and etc.
2290  */
2291 u_int
2292 tcp_maxseg(const struct tcpcb *tp)
2293 {
2294 	u_int optlen;
2295 
2296 	if (tp->t_flags & TF_NOOPT)
2297 		return (tp->t_maxseg);
2298 
2299 	/*
2300 	 * Here we have a simplified code from tcp_addoptions(),
2301 	 * without a proper loop, and having most of paddings hardcoded.
2302 	 * We might make mistakes with padding here in some edge cases,
2303 	 * but this is harmless, since result of tcp_maxseg() is used
2304 	 * only in cwnd and ssthresh estimations.
2305 	 */
2306 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2307 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2308 		if (tp->t_flags & TF_RCVD_TSTMP)
2309 			optlen = TCPOLEN_TSTAMP_APPA;
2310 		else
2311 			optlen = 0;
2312 #ifdef TCP_SIGNATURE
2313 		if (tp->t_flags & TF_SIGNATURE)
2314 			optlen += PAD(TCPOLEN_SIGNATURE);
2315 #endif
2316 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2317 			optlen += TCPOLEN_SACKHDR;
2318 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2319 			optlen = PAD(optlen);
2320 		}
2321 	} else {
2322 		if (tp->t_flags & TF_REQ_TSTMP)
2323 			optlen = TCPOLEN_TSTAMP_APPA;
2324 		else
2325 			optlen = PAD(TCPOLEN_MAXSEG);
2326 		if (tp->t_flags & TF_REQ_SCALE)
2327 			optlen += PAD(TCPOLEN_WINDOW);
2328 #ifdef TCP_SIGNATURE
2329 		if (tp->t_flags & TF_SIGNATURE)
2330 			optlen += PAD(TCPOLEN_SIGNATURE);
2331 #endif
2332 		if (tp->t_flags & TF_SACK_PERMIT)
2333 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2334 	}
2335 #undef PAD
2336 	optlen = min(optlen, TCP_MAXOLEN);
2337 	return (tp->t_maxseg - optlen);
2338 }
2339 
2340 #ifdef IPSEC
2341 /* compute ESP/AH header size for TCP, including outer IP header. */
2342 size_t
2343 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2344 {
2345 	struct inpcb *inp;
2346 	struct mbuf *m;
2347 	size_t hdrsiz;
2348 	struct ip *ip;
2349 #ifdef INET6
2350 	struct ip6_hdr *ip6;
2351 #endif
2352 	struct tcphdr *th;
2353 
2354 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2355 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2356 		return (0);
2357 	m = m_gethdr(M_NOWAIT, MT_DATA);
2358 	if (!m)
2359 		return (0);
2360 
2361 #ifdef INET6
2362 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2363 		ip6 = mtod(m, struct ip6_hdr *);
2364 		th = (struct tcphdr *)(ip6 + 1);
2365 		m->m_pkthdr.len = m->m_len =
2366 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2367 		tcpip_fillheaders(inp, ip6, th);
2368 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2369 	} else
2370 #endif /* INET6 */
2371 	{
2372 		ip = mtod(m, struct ip *);
2373 		th = (struct tcphdr *)(ip + 1);
2374 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2375 		tcpip_fillheaders(inp, ip, th);
2376 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2377 	}
2378 
2379 	m_free(m);
2380 	return (hdrsiz);
2381 }
2382 #endif /* IPSEC */
2383 
2384 #ifdef TCP_SIGNATURE
2385 /*
2386  * Callback function invoked by m_apply() to digest TCP segment data
2387  * contained within an mbuf chain.
2388  */
2389 static int
2390 tcp_signature_apply(void *fstate, void *data, u_int len)
2391 {
2392 
2393 	MD5Update(fstate, (u_char *)data, len);
2394 	return (0);
2395 }
2396 
2397 /*
2398  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2399  * search with the destination IP address, and a 'magic SPI' to be
2400  * determined by the application. This is hardcoded elsewhere to 1179
2401 */
2402 struct secasvar *
2403 tcp_get_sav(struct mbuf *m, u_int direction)
2404 {
2405 	union sockaddr_union dst;
2406 	struct secasvar *sav;
2407 	struct ip *ip;
2408 #ifdef INET6
2409 	struct ip6_hdr *ip6;
2410 	char ip6buf[INET6_ADDRSTRLEN];
2411 #endif
2412 
2413 	/* Extract the destination from the IP header in the mbuf. */
2414 	bzero(&dst, sizeof(union sockaddr_union));
2415 	ip = mtod(m, struct ip *);
2416 #ifdef INET6
2417 	ip6 = NULL;	/* Make the compiler happy. */
2418 #endif
2419 	switch (ip->ip_v) {
2420 #ifdef INET
2421 	case IPVERSION:
2422 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2423 		dst.sa.sa_family = AF_INET;
2424 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2425 		    ip->ip_src : ip->ip_dst;
2426 		break;
2427 #endif
2428 #ifdef INET6
2429 	case (IPV6_VERSION >> 4):
2430 		ip6 = mtod(m, struct ip6_hdr *);
2431 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2432 		dst.sa.sa_family = AF_INET6;
2433 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2434 		    ip6->ip6_src : ip6->ip6_dst;
2435 		break;
2436 #endif
2437 	default:
2438 		return (NULL);
2439 		/* NOTREACHED */
2440 		break;
2441 	}
2442 
2443 	/* Look up an SADB entry which matches the address of the peer. */
2444 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2445 	if (sav == NULL) {
2446 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2447 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2448 #ifdef INET6
2449 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2450 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2451 #endif
2452 			"(unsupported)"));
2453 	}
2454 
2455 	return (sav);
2456 }
2457 
2458 /*
2459  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2460  *
2461  * Parameters:
2462  * m		pointer to head of mbuf chain
2463  * len		length of TCP segment data, excluding options
2464  * optlen	length of TCP segment options
2465  * buf		pointer to storage for computed MD5 digest
2466  * sav		pointer to security assosiation
2467  *
2468  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2469  * When called from tcp_input(), we can be sure that th_sum has been
2470  * zeroed out and verified already.
2471  *
2472  * Releases reference to SADB key before return.
2473  *
2474  * Return 0 if successful, otherwise return -1.
2475  *
2476  */
2477 int
2478 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2479     u_char *buf, struct secasvar *sav)
2480 {
2481 #ifdef INET
2482 	struct ippseudo ippseudo;
2483 #endif
2484 	MD5_CTX ctx;
2485 	int doff;
2486 	struct ip *ip;
2487 #ifdef INET
2488 	struct ipovly *ipovly;
2489 #endif
2490 	struct tcphdr *th;
2491 #ifdef INET6
2492 	struct ip6_hdr *ip6;
2493 	struct in6_addr in6;
2494 	uint32_t plen;
2495 	uint16_t nhdr;
2496 #endif
2497 	u_short savecsum;
2498 
2499 	KASSERT(m != NULL, ("NULL mbuf chain"));
2500 	KASSERT(buf != NULL, ("NULL signature pointer"));
2501 
2502 	/* Extract the destination from the IP header in the mbuf. */
2503 	ip = mtod(m, struct ip *);
2504 #ifdef INET6
2505 	ip6 = NULL;	/* Make the compiler happy. */
2506 #endif
2507 
2508 	MD5Init(&ctx);
2509 	/*
2510 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2511 	 *
2512 	 * XXX The ippseudo header MUST be digested in network byte order,
2513 	 * or else we'll fail the regression test. Assume all fields we've
2514 	 * been doing arithmetic on have been in host byte order.
2515 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2516 	 * tcp_output(), the underlying ip_len member has not yet been set.
2517 	 */
2518 	switch (ip->ip_v) {
2519 #ifdef INET
2520 	case IPVERSION:
2521 		ipovly = (struct ipovly *)ip;
2522 		ippseudo.ippseudo_src = ipovly->ih_src;
2523 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2524 		ippseudo.ippseudo_pad = 0;
2525 		ippseudo.ippseudo_p = IPPROTO_TCP;
2526 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2527 		    optlen);
2528 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2529 
2530 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2531 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2532 		break;
2533 #endif
2534 #ifdef INET6
2535 	/*
2536 	 * RFC 2385, 2.0  Proposal
2537 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2538 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2539 	 * extended next header value (to form 32 bits), and 32-bit segment
2540 	 * length.
2541 	 * Note: Upper-Layer Packet Length comes before Next Header.
2542 	 */
2543 	case (IPV6_VERSION >> 4):
2544 		in6 = ip6->ip6_src;
2545 		in6_clearscope(&in6);
2546 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2547 		in6 = ip6->ip6_dst;
2548 		in6_clearscope(&in6);
2549 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2550 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2551 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2552 		nhdr = 0;
2553 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2554 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2555 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2556 		nhdr = IPPROTO_TCP;
2557 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2558 
2559 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2560 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2561 		break;
2562 #endif
2563 	default:
2564 		KEY_FREESAV(&sav);
2565 		return (-1);
2566 		/* NOTREACHED */
2567 		break;
2568 	}
2569 
2570 
2571 	/*
2572 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2573 	 * The TCP checksum must be set to zero.
2574 	 */
2575 	savecsum = th->th_sum;
2576 	th->th_sum = 0;
2577 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2578 	th->th_sum = savecsum;
2579 
2580 	/*
2581 	 * Step 3: Update MD5 hash with TCP segment data.
2582 	 *         Use m_apply() to avoid an early m_pullup().
2583 	 */
2584 	if (len > 0)
2585 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2586 
2587 	/*
2588 	 * Step 4: Update MD5 hash with shared secret.
2589 	 */
2590 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2591 	MD5Final(buf, &ctx);
2592 
2593 	key_sa_recordxfer(sav, m);
2594 	KEY_FREESAV(&sav);
2595 	return (0);
2596 }
2597 
2598 /*
2599  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2600  *
2601  * Return 0 if successful, otherwise return -1.
2602  */
2603 int
2604 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2605     u_char *buf, u_int direction)
2606 {
2607 	struct secasvar *sav;
2608 
2609 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2610 		return (-1);
2611 
2612 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2613 }
2614 
2615 /*
2616  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2617  *
2618  * Parameters:
2619  * m		pointer to head of mbuf chain
2620  * len		length of TCP segment data, excluding options
2621  * optlen	length of TCP segment options
2622  * buf		pointer to storage for computed MD5 digest
2623  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2624  *
2625  * Return 1 if successful, otherwise return 0.
2626  */
2627 int
2628 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2629     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2630 {
2631 	char tmpdigest[TCP_SIGLEN];
2632 
2633 	if (tcp_sig_checksigs == 0)
2634 		return (1);
2635 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2636 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2637 
2638 			/*
2639 			 * If this socket is not expecting signature but
2640 			 * the segment contains signature just fail.
2641 			 */
2642 			TCPSTAT_INC(tcps_sig_err_sigopt);
2643 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2644 			return (0);
2645 		}
2646 
2647 		/* Signature is not expected, and not present in segment. */
2648 		return (1);
2649 	}
2650 
2651 	/*
2652 	 * If this socket is expecting signature but the segment does not
2653 	 * contain any just fail.
2654 	 */
2655 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2656 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2657 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2658 		return (0);
2659 	}
2660 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2661 	    IPSEC_DIR_INBOUND) == -1) {
2662 		TCPSTAT_INC(tcps_sig_err_buildsig);
2663 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2664 		return (0);
2665 	}
2666 
2667 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2668 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2669 		return (0);
2670 	}
2671 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2672 	return (1);
2673 }
2674 #endif /* TCP_SIGNATURE */
2675 
2676 static int
2677 sysctl_drop(SYSCTL_HANDLER_ARGS)
2678 {
2679 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2680 	struct sockaddr_storage addrs[2];
2681 	struct inpcb *inp;
2682 	struct tcpcb *tp;
2683 	struct tcptw *tw;
2684 	struct sockaddr_in *fin, *lin;
2685 #ifdef INET6
2686 	struct sockaddr_in6 *fin6, *lin6;
2687 #endif
2688 	int error;
2689 
2690 	inp = NULL;
2691 	fin = lin = NULL;
2692 #ifdef INET6
2693 	fin6 = lin6 = NULL;
2694 #endif
2695 	error = 0;
2696 
2697 	if (req->oldptr != NULL || req->oldlen != 0)
2698 		return (EINVAL);
2699 	if (req->newptr == NULL)
2700 		return (EPERM);
2701 	if (req->newlen < sizeof(addrs))
2702 		return (ENOMEM);
2703 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2704 	if (error)
2705 		return (error);
2706 
2707 	switch (addrs[0].ss_family) {
2708 #ifdef INET6
2709 	case AF_INET6:
2710 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2711 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2712 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2713 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2714 			return (EINVAL);
2715 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2716 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2717 				return (EINVAL);
2718 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2719 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2720 			fin = (struct sockaddr_in *)&addrs[0];
2721 			lin = (struct sockaddr_in *)&addrs[1];
2722 			break;
2723 		}
2724 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2725 		if (error)
2726 			return (error);
2727 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2728 		if (error)
2729 			return (error);
2730 		break;
2731 #endif
2732 #ifdef INET
2733 	case AF_INET:
2734 		fin = (struct sockaddr_in *)&addrs[0];
2735 		lin = (struct sockaddr_in *)&addrs[1];
2736 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2737 		    lin->sin_len != sizeof(struct sockaddr_in))
2738 			return (EINVAL);
2739 		break;
2740 #endif
2741 	default:
2742 		return (EINVAL);
2743 	}
2744 	INP_INFO_RLOCK(&V_tcbinfo);
2745 	switch (addrs[0].ss_family) {
2746 #ifdef INET6
2747 	case AF_INET6:
2748 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2749 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2750 		    INPLOOKUP_WLOCKPCB, NULL);
2751 		break;
2752 #endif
2753 #ifdef INET
2754 	case AF_INET:
2755 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2756 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2757 		break;
2758 #endif
2759 	}
2760 	if (inp != NULL) {
2761 		if (inp->inp_flags & INP_TIMEWAIT) {
2762 			/*
2763 			 * XXXRW: There currently exists a state where an
2764 			 * inpcb is present, but its timewait state has been
2765 			 * discarded.  For now, don't allow dropping of this
2766 			 * type of inpcb.
2767 			 */
2768 			tw = intotw(inp);
2769 			if (tw != NULL)
2770 				tcp_twclose(tw, 0);
2771 			else
2772 				INP_WUNLOCK(inp);
2773 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2774 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2775 			tp = intotcpcb(inp);
2776 			tp = tcp_drop(tp, ECONNABORTED);
2777 			if (tp != NULL)
2778 				INP_WUNLOCK(inp);
2779 		} else
2780 			INP_WUNLOCK(inp);
2781 	} else
2782 		error = ESRCH;
2783 	INP_INFO_RUNLOCK(&V_tcbinfo);
2784 	return (error);
2785 }
2786 
2787 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2788     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2789     0, sysctl_drop, "", "Drop TCP connection");
2790 
2791 /*
2792  * Generate a standardized TCP log line for use throughout the
2793  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2794  * allow use in the interrupt context.
2795  *
2796  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2797  * NB: The function may return NULL if memory allocation failed.
2798  *
2799  * Due to header inclusion and ordering limitations the struct ip
2800  * and ip6_hdr pointers have to be passed as void pointers.
2801  */
2802 char *
2803 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2804     const void *ip6hdr)
2805 {
2806 
2807 	/* Is logging enabled? */
2808 	if (tcp_log_in_vain == 0)
2809 		return (NULL);
2810 
2811 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2812 }
2813 
2814 char *
2815 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2816     const void *ip6hdr)
2817 {
2818 
2819 	/* Is logging enabled? */
2820 	if (tcp_log_debug == 0)
2821 		return (NULL);
2822 
2823 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2824 }
2825 
2826 static char *
2827 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2828     const void *ip6hdr)
2829 {
2830 	char *s, *sp;
2831 	size_t size;
2832 	struct ip *ip;
2833 #ifdef INET6
2834 	const struct ip6_hdr *ip6;
2835 
2836 	ip6 = (const struct ip6_hdr *)ip6hdr;
2837 #endif /* INET6 */
2838 	ip = (struct ip *)ip4hdr;
2839 
2840 	/*
2841 	 * The log line looks like this:
2842 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2843 	 */
2844 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2845 	    sizeof(PRINT_TH_FLAGS) + 1 +
2846 #ifdef INET6
2847 	    2 * INET6_ADDRSTRLEN;
2848 #else
2849 	    2 * INET_ADDRSTRLEN;
2850 #endif /* INET6 */
2851 
2852 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2853 	if (s == NULL)
2854 		return (NULL);
2855 
2856 	strcat(s, "TCP: [");
2857 	sp = s + strlen(s);
2858 
2859 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2860 		inet_ntoa_r(inc->inc_faddr, sp);
2861 		sp = s + strlen(s);
2862 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2863 		sp = s + strlen(s);
2864 		inet_ntoa_r(inc->inc_laddr, sp);
2865 		sp = s + strlen(s);
2866 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2867 #ifdef INET6
2868 	} else if (inc) {
2869 		ip6_sprintf(sp, &inc->inc6_faddr);
2870 		sp = s + strlen(s);
2871 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2872 		sp = s + strlen(s);
2873 		ip6_sprintf(sp, &inc->inc6_laddr);
2874 		sp = s + strlen(s);
2875 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2876 	} else if (ip6 && th) {
2877 		ip6_sprintf(sp, &ip6->ip6_src);
2878 		sp = s + strlen(s);
2879 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2880 		sp = s + strlen(s);
2881 		ip6_sprintf(sp, &ip6->ip6_dst);
2882 		sp = s + strlen(s);
2883 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2884 #endif /* INET6 */
2885 #ifdef INET
2886 	} else if (ip && th) {
2887 		inet_ntoa_r(ip->ip_src, sp);
2888 		sp = s + strlen(s);
2889 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2890 		sp = s + strlen(s);
2891 		inet_ntoa_r(ip->ip_dst, sp);
2892 		sp = s + strlen(s);
2893 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2894 #endif /* INET */
2895 	} else {
2896 		free(s, M_TCPLOG);
2897 		return (NULL);
2898 	}
2899 	sp = s + strlen(s);
2900 	if (th)
2901 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2902 	if (*(s + size - 1) != '\0')
2903 		panic("%s: string too long", __func__);
2904 	return (s);
2905 }
2906 
2907 /*
2908  * A subroutine which makes it easy to track TCP state changes with DTrace.
2909  * This function shouldn't be called for t_state initializations that don't
2910  * correspond to actual TCP state transitions.
2911  */
2912 void
2913 tcp_state_change(struct tcpcb *tp, int newstate)
2914 {
2915 #if defined(KDTRACE_HOOKS)
2916 	int pstate = tp->t_state;
2917 #endif
2918 
2919 	tp->t_state = newstate;
2920 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2921 }
2922