1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/eventhandler.h> 45 #include <sys/hhook.h> 46 #include <sys/kernel.h> 47 #include <sys/khelp.h> 48 #include <sys/sysctl.h> 49 #include <sys/jail.h> 50 #include <sys/malloc.h> 51 #include <sys/refcount.h> 52 #include <sys/mbuf.h> 53 #ifdef INET6 54 #include <sys/domain.h> 55 #endif 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/protosw.h> 62 #include <sys/random.h> 63 64 #include <vm/uma.h> 65 66 #include <net/route.h> 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/vnet.h> 70 71 #include <netinet/cc.h> 72 #include <netinet/in.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_var.h> 80 #ifdef INET6 81 #include <netinet/ip6.h> 82 #include <netinet6/in6_pcb.h> 83 #include <netinet6/ip6_var.h> 84 #include <netinet6/scope6_var.h> 85 #include <netinet6/nd6.h> 86 #endif 87 88 #ifdef TCP_RFC7413 89 #include <netinet/tcp_fastopen.h> 90 #endif 91 #include <netinet/tcp_fsm.h> 92 #include <netinet/tcp_seq.h> 93 #include <netinet/tcp_timer.h> 94 #include <netinet/tcp_var.h> 95 #include <netinet/tcp_syncache.h> 96 #ifdef INET6 97 #include <netinet6/tcp6_var.h> 98 #endif 99 #include <netinet/tcpip.h> 100 #ifdef TCPPCAP 101 #include <netinet/tcp_pcap.h> 102 #endif 103 #ifdef TCPDEBUG 104 #include <netinet/tcp_debug.h> 105 #endif 106 #ifdef INET6 107 #include <netinet6/ip6protosw.h> 108 #endif 109 #ifdef TCP_OFFLOAD 110 #include <netinet/tcp_offload.h> 111 #endif 112 113 #ifdef IPSEC 114 #include <netipsec/ipsec.h> 115 #include <netipsec/xform.h> 116 #ifdef INET6 117 #include <netipsec/ipsec6.h> 118 #endif 119 #include <netipsec/key.h> 120 #include <sys/syslog.h> 121 #endif /*IPSEC*/ 122 123 #include <machine/in_cksum.h> 124 #include <sys/md5.h> 125 126 #include <security/mac/mac_framework.h> 127 128 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 129 #ifdef INET6 130 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 131 #endif 132 133 struct rwlock tcp_function_lock; 134 135 static int 136 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 137 { 138 int error, new; 139 140 new = V_tcp_mssdflt; 141 error = sysctl_handle_int(oidp, &new, 0, req); 142 if (error == 0 && req->newptr) { 143 if (new < TCP_MINMSS) 144 error = EINVAL; 145 else 146 V_tcp_mssdflt = new; 147 } 148 return (error); 149 } 150 151 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 152 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 153 &sysctl_net_inet_tcp_mss_check, "I", 154 "Default TCP Maximum Segment Size"); 155 156 #ifdef INET6 157 static int 158 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 159 { 160 int error, new; 161 162 new = V_tcp_v6mssdflt; 163 error = sysctl_handle_int(oidp, &new, 0, req); 164 if (error == 0 && req->newptr) { 165 if (new < TCP_MINMSS) 166 error = EINVAL; 167 else 168 V_tcp_v6mssdflt = new; 169 } 170 return (error); 171 } 172 173 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 174 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 175 &sysctl_net_inet_tcp_mss_v6_check, "I", 176 "Default TCP Maximum Segment Size for IPv6"); 177 #endif /* INET6 */ 178 179 /* 180 * Minimum MSS we accept and use. This prevents DoS attacks where 181 * we are forced to a ridiculous low MSS like 20 and send hundreds 182 * of packets instead of one. The effect scales with the available 183 * bandwidth and quickly saturates the CPU and network interface 184 * with packet generation and sending. Set to zero to disable MINMSS 185 * checking. This setting prevents us from sending too small packets. 186 */ 187 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 189 &VNET_NAME(tcp_minmss), 0, 190 "Minimum TCP Maximum Segment Size"); 191 192 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 193 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(tcp_do_rfc1323), 0, 195 "Enable rfc1323 (high performance TCP) extensions"); 196 197 static int tcp_log_debug = 0; 198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 199 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 200 201 static int tcp_tcbhashsize; 202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 203 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 204 205 static int do_tcpdrain = 1; 206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 207 "Enable tcp_drain routine for extra help when low on mbufs"); 208 209 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 210 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 211 212 static VNET_DEFINE(int, icmp_may_rst) = 1; 213 #define V_icmp_may_rst VNET(icmp_may_rst) 214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 215 &VNET_NAME(icmp_may_rst), 0, 216 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 217 218 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 219 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 221 &VNET_NAME(tcp_isn_reseed_interval), 0, 222 "Seconds between reseeding of ISN secret"); 223 224 static int tcp_soreceive_stream; 225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 226 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 227 228 #ifdef TCP_SIGNATURE 229 static int tcp_sig_checksigs = 1; 230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 231 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 232 #endif 233 234 VNET_DEFINE(uma_zone_t, sack_hole_zone); 235 #define V_sack_hole_zone VNET(sack_hole_zone) 236 237 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 238 239 static struct inpcb *tcp_notify(struct inpcb *, int); 240 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 241 static void tcp_mtudisc(struct inpcb *, int); 242 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 243 void *ip4hdr, const void *ip6hdr); 244 static void tcp_timer_discard(struct tcpcb *, uint32_t); 245 246 247 static struct tcp_function_block tcp_def_funcblk = { 248 "default", 249 tcp_output, 250 tcp_do_segment, 251 tcp_default_ctloutput, 252 NULL, 253 NULL, 254 NULL, 255 NULL, 256 NULL, 257 NULL, 258 NULL, 259 0, 260 0 261 }; 262 263 struct tcp_funchead t_functions; 264 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; 265 266 static struct tcp_function_block * 267 find_tcp_functions_locked(struct tcp_function_set *fs) 268 { 269 struct tcp_function *f; 270 struct tcp_function_block *blk=NULL; 271 272 TAILQ_FOREACH(f, &t_functions, tf_next) { 273 if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) { 274 blk = f->tf_fb; 275 break; 276 } 277 } 278 return(blk); 279 } 280 281 static struct tcp_function_block * 282 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 283 { 284 struct tcp_function_block *rblk=NULL; 285 struct tcp_function *f; 286 287 TAILQ_FOREACH(f, &t_functions, tf_next) { 288 if (f->tf_fb == blk) { 289 rblk = blk; 290 if (s) { 291 *s = f; 292 } 293 break; 294 } 295 } 296 return (rblk); 297 } 298 299 struct tcp_function_block * 300 find_and_ref_tcp_functions(struct tcp_function_set *fs) 301 { 302 struct tcp_function_block *blk; 303 304 rw_rlock(&tcp_function_lock); 305 blk = find_tcp_functions_locked(fs); 306 if (blk) 307 refcount_acquire(&blk->tfb_refcnt); 308 rw_runlock(&tcp_function_lock); 309 return(blk); 310 } 311 312 struct tcp_function_block * 313 find_and_ref_tcp_fb(struct tcp_function_block *blk) 314 { 315 struct tcp_function_block *rblk; 316 317 rw_rlock(&tcp_function_lock); 318 rblk = find_tcp_fb_locked(blk, NULL); 319 if (rblk) 320 refcount_acquire(&rblk->tfb_refcnt); 321 rw_runlock(&tcp_function_lock); 322 return(rblk); 323 } 324 325 326 static int 327 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 328 { 329 int error=ENOENT; 330 struct tcp_function_set fs; 331 struct tcp_function_block *blk; 332 333 memset(&fs, 0, sizeof(fs)); 334 rw_rlock(&tcp_function_lock); 335 blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); 336 if (blk) { 337 /* Found him */ 338 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 339 fs.pcbcnt = blk->tfb_refcnt; 340 } 341 rw_runlock(&tcp_function_lock); 342 error = sysctl_handle_string(oidp, fs.function_set_name, 343 sizeof(fs.function_set_name), req); 344 345 /* Check for error or no change */ 346 if (error != 0 || req->newptr == NULL) 347 return(error); 348 349 rw_wlock(&tcp_function_lock); 350 blk = find_tcp_functions_locked(&fs); 351 if ((blk == NULL) || 352 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 353 error = ENOENT; 354 goto done; 355 } 356 tcp_func_set_ptr = blk; 357 done: 358 rw_wunlock(&tcp_function_lock); 359 return (error); 360 } 361 362 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 363 CTLTYPE_STRING | CTLFLAG_RW, 364 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 365 "Set/get the default TCP functions"); 366 367 static int 368 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 369 { 370 int error, cnt, linesz; 371 struct tcp_function *f; 372 char *buffer, *cp; 373 size_t bufsz, outsz; 374 375 cnt = 0; 376 rw_rlock(&tcp_function_lock); 377 TAILQ_FOREACH(f, &t_functions, tf_next) { 378 cnt++; 379 } 380 rw_runlock(&tcp_function_lock); 381 382 bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1; 383 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 384 385 error = 0; 386 cp = buffer; 387 388 linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count"); 389 cp += linesz; 390 bufsz -= linesz; 391 outsz = linesz; 392 393 rw_rlock(&tcp_function_lock); 394 TAILQ_FOREACH(f, &t_functions, tf_next) { 395 linesz = snprintf(cp, bufsz, "%-32s%c %u\n", 396 f->tf_fb->tfb_tcp_block_name, 397 (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', 398 f->tf_fb->tfb_refcnt); 399 if (linesz >= bufsz) { 400 error = EOVERFLOW; 401 break; 402 } 403 cp += linesz; 404 bufsz -= linesz; 405 outsz += linesz; 406 } 407 rw_runlock(&tcp_function_lock); 408 if (error == 0) 409 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 410 free(buffer, M_TEMP); 411 return (error); 412 } 413 414 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 415 CTLTYPE_STRING|CTLFLAG_RD, 416 NULL, 0, sysctl_net_inet_list_available, "A", 417 "list available TCP Function sets"); 418 419 /* 420 * Target size of TCP PCB hash tables. Must be a power of two. 421 * 422 * Note that this can be overridden by the kernel environment 423 * variable net.inet.tcp.tcbhashsize 424 */ 425 #ifndef TCBHASHSIZE 426 #define TCBHASHSIZE 0 427 #endif 428 429 /* 430 * XXX 431 * Callouts should be moved into struct tcp directly. They are currently 432 * separate because the tcpcb structure is exported to userland for sysctl 433 * parsing purposes, which do not know about callouts. 434 */ 435 struct tcpcb_mem { 436 struct tcpcb tcb; 437 struct tcp_timer tt; 438 struct cc_var ccv; 439 struct osd osd; 440 }; 441 442 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 443 #define V_tcpcb_zone VNET(tcpcb_zone) 444 445 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 446 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 447 448 static struct mtx isn_mtx; 449 450 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 451 #define ISN_LOCK() mtx_lock(&isn_mtx) 452 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 453 454 /* 455 * TCP initialization. 456 */ 457 static void 458 tcp_zone_change(void *tag) 459 { 460 461 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 462 uma_zone_set_max(V_tcpcb_zone, maxsockets); 463 tcp_tw_zone_change(); 464 } 465 466 static int 467 tcp_inpcb_init(void *mem, int size, int flags) 468 { 469 struct inpcb *inp = mem; 470 471 INP_LOCK_INIT(inp, "inp", "tcpinp"); 472 return (0); 473 } 474 475 /* 476 * Take a value and get the next power of 2 that doesn't overflow. 477 * Used to size the tcp_inpcb hash buckets. 478 */ 479 static int 480 maketcp_hashsize(int size) 481 { 482 int hashsize; 483 484 /* 485 * auto tune. 486 * get the next power of 2 higher than maxsockets. 487 */ 488 hashsize = 1 << fls(size); 489 /* catch overflow, and just go one power of 2 smaller */ 490 if (hashsize < size) { 491 hashsize = 1 << (fls(size) - 1); 492 } 493 return (hashsize); 494 } 495 496 int 497 register_tcp_functions(struct tcp_function_block *blk, int wait) 498 { 499 struct tcp_function_block *lblk; 500 struct tcp_function *n; 501 struct tcp_function_set fs; 502 503 if ((blk->tfb_tcp_output == NULL) || 504 (blk->tfb_tcp_do_segment == NULL) || 505 (blk->tfb_tcp_ctloutput == NULL) || 506 (strlen(blk->tfb_tcp_block_name) == 0)) { 507 /* 508 * These functions are required and you 509 * need a name. 510 */ 511 return (EINVAL); 512 } 513 if (blk->tfb_tcp_timer_stop_all || 514 blk->tfb_tcp_timers_left || 515 blk->tfb_tcp_timer_activate || 516 blk->tfb_tcp_timer_active || 517 blk->tfb_tcp_timer_stop) { 518 /* 519 * If you define one timer function you 520 * must have them all. 521 */ 522 if ((blk->tfb_tcp_timer_stop_all == NULL) || 523 (blk->tfb_tcp_timers_left == NULL) || 524 (blk->tfb_tcp_timer_activate == NULL) || 525 (blk->tfb_tcp_timer_active == NULL) || 526 (blk->tfb_tcp_timer_stop == NULL)) { 527 return (EINVAL); 528 } 529 } 530 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 531 if (n == NULL) { 532 return (ENOMEM); 533 } 534 n->tf_fb = blk; 535 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 536 rw_wlock(&tcp_function_lock); 537 lblk = find_tcp_functions_locked(&fs); 538 if (lblk) { 539 /* Duplicate name space not allowed */ 540 rw_wunlock(&tcp_function_lock); 541 free(n, M_TCPFUNCTIONS); 542 return (EALREADY); 543 } 544 refcount_init(&blk->tfb_refcnt, 0); 545 blk->tfb_flags = 0; 546 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 547 rw_wunlock(&tcp_function_lock); 548 return(0); 549 } 550 551 int 552 deregister_tcp_functions(struct tcp_function_block *blk) 553 { 554 struct tcp_function_block *lblk; 555 struct tcp_function *f; 556 int error=ENOENT; 557 558 if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { 559 /* You can't un-register the default */ 560 return (EPERM); 561 } 562 rw_wlock(&tcp_function_lock); 563 if (blk == tcp_func_set_ptr) { 564 /* You can't free the current default */ 565 rw_wunlock(&tcp_function_lock); 566 return (EBUSY); 567 } 568 if (blk->tfb_refcnt) { 569 /* Still tcb attached, mark it. */ 570 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 571 rw_wunlock(&tcp_function_lock); 572 return (EBUSY); 573 } 574 lblk = find_tcp_fb_locked(blk, &f); 575 if (lblk) { 576 /* Found */ 577 TAILQ_REMOVE(&t_functions, f, tf_next); 578 f->tf_fb = NULL; 579 free(f, M_TCPFUNCTIONS); 580 error = 0; 581 } 582 rw_wunlock(&tcp_function_lock); 583 return (error); 584 } 585 586 void 587 tcp_init(void) 588 { 589 const char *tcbhash_tuneable; 590 int hashsize; 591 592 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 593 594 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 595 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 596 printf("%s: WARNING: unable to register helper hook\n", __func__); 597 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 598 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 599 printf("%s: WARNING: unable to register helper hook\n", __func__); 600 hashsize = TCBHASHSIZE; 601 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 602 if (hashsize == 0) { 603 /* 604 * Auto tune the hash size based on maxsockets. 605 * A perfect hash would have a 1:1 mapping 606 * (hashsize = maxsockets) however it's been 607 * suggested that O(2) average is better. 608 */ 609 hashsize = maketcp_hashsize(maxsockets / 4); 610 /* 611 * Our historical default is 512, 612 * do not autotune lower than this. 613 */ 614 if (hashsize < 512) 615 hashsize = 512; 616 if (bootverbose && IS_DEFAULT_VNET(curvnet)) 617 printf("%s: %s auto tuned to %d\n", __func__, 618 tcbhash_tuneable, hashsize); 619 } 620 /* 621 * We require a hashsize to be a power of two. 622 * Previously if it was not a power of two we would just reset it 623 * back to 512, which could be a nasty surprise if you did not notice 624 * the error message. 625 * Instead what we do is clip it to the closest power of two lower 626 * than the specified hash value. 627 */ 628 if (!powerof2(hashsize)) { 629 int oldhashsize = hashsize; 630 631 hashsize = maketcp_hashsize(hashsize); 632 /* prevent absurdly low value */ 633 if (hashsize < 16) 634 hashsize = 16; 635 printf("%s: WARNING: TCB hash size not a power of 2, " 636 "clipped from %d to %d.\n", __func__, oldhashsize, 637 hashsize); 638 } 639 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 640 "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE, 641 IPI_HASHFIELDS_4TUPLE); 642 643 /* 644 * These have to be type stable for the benefit of the timers. 645 */ 646 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 647 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 648 uma_zone_set_max(V_tcpcb_zone, maxsockets); 649 uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); 650 651 tcp_tw_init(); 652 syncache_init(); 653 tcp_hc_init(); 654 655 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 656 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 657 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 658 659 /* Skip initialization of globals for non-default instances. */ 660 if (!IS_DEFAULT_VNET(curvnet)) 661 return; 662 663 tcp_reass_global_init(); 664 665 /* XXX virtualize those bellow? */ 666 tcp_delacktime = TCPTV_DELACK; 667 tcp_keepinit = TCPTV_KEEP_INIT; 668 tcp_keepidle = TCPTV_KEEP_IDLE; 669 tcp_keepintvl = TCPTV_KEEPINTVL; 670 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 671 tcp_msl = TCPTV_MSL; 672 tcp_rexmit_min = TCPTV_MIN; 673 if (tcp_rexmit_min < 1) 674 tcp_rexmit_min = 1; 675 tcp_rexmit_slop = TCPTV_CPU_VAR; 676 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 677 tcp_tcbhashsize = hashsize; 678 /* Setup the tcp function block list */ 679 TAILQ_INIT(&t_functions); 680 rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); 681 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 682 683 if (tcp_soreceive_stream) { 684 #ifdef INET 685 tcp_usrreqs.pru_soreceive = soreceive_stream; 686 #endif 687 #ifdef INET6 688 tcp6_usrreqs.pru_soreceive = soreceive_stream; 689 #endif /* INET6 */ 690 } 691 692 #ifdef INET6 693 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 694 #else /* INET6 */ 695 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 696 #endif /* INET6 */ 697 if (max_protohdr < TCP_MINPROTOHDR) 698 max_protohdr = TCP_MINPROTOHDR; 699 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 700 panic("tcp_init"); 701 #undef TCP_MINPROTOHDR 702 703 ISN_LOCK_INIT(); 704 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 705 SHUTDOWN_PRI_DEFAULT); 706 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 707 EVENTHANDLER_PRI_ANY); 708 #ifdef TCPPCAP 709 tcp_pcap_init(); 710 #endif 711 712 #ifdef TCP_RFC7413 713 tcp_fastopen_init(); 714 #endif 715 } 716 717 #ifdef VIMAGE 718 void 719 tcp_destroy(void) 720 { 721 int error; 722 723 #ifdef TCP_RFC7413 724 tcp_fastopen_destroy(); 725 #endif 726 tcp_hc_destroy(); 727 syncache_destroy(); 728 tcp_tw_destroy(); 729 in_pcbinfo_destroy(&V_tcbinfo); 730 uma_zdestroy(V_sack_hole_zone); 731 uma_zdestroy(V_tcpcb_zone); 732 733 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 734 if (error != 0) { 735 printf("%s: WARNING: unable to deregister helper hook " 736 "type=%d, id=%d: error %d returned\n", __func__, 737 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 738 } 739 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 740 if (error != 0) { 741 printf("%s: WARNING: unable to deregister helper hook " 742 "type=%d, id=%d: error %d returned\n", __func__, 743 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 744 } 745 } 746 #endif 747 748 void 749 tcp_fini(void *xtp) 750 { 751 752 } 753 754 /* 755 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 756 * tcp_template used to store this data in mbufs, but we now recopy it out 757 * of the tcpcb each time to conserve mbufs. 758 */ 759 void 760 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 761 { 762 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 763 764 INP_WLOCK_ASSERT(inp); 765 766 #ifdef INET6 767 if ((inp->inp_vflag & INP_IPV6) != 0) { 768 struct ip6_hdr *ip6; 769 770 ip6 = (struct ip6_hdr *)ip_ptr; 771 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 772 (inp->inp_flow & IPV6_FLOWINFO_MASK); 773 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 774 (IPV6_VERSION & IPV6_VERSION_MASK); 775 ip6->ip6_nxt = IPPROTO_TCP; 776 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 777 ip6->ip6_src = inp->in6p_laddr; 778 ip6->ip6_dst = inp->in6p_faddr; 779 } 780 #endif /* INET6 */ 781 #if defined(INET6) && defined(INET) 782 else 783 #endif 784 #ifdef INET 785 { 786 struct ip *ip; 787 788 ip = (struct ip *)ip_ptr; 789 ip->ip_v = IPVERSION; 790 ip->ip_hl = 5; 791 ip->ip_tos = inp->inp_ip_tos; 792 ip->ip_len = 0; 793 ip->ip_id = 0; 794 ip->ip_off = 0; 795 ip->ip_ttl = inp->inp_ip_ttl; 796 ip->ip_sum = 0; 797 ip->ip_p = IPPROTO_TCP; 798 ip->ip_src = inp->inp_laddr; 799 ip->ip_dst = inp->inp_faddr; 800 } 801 #endif /* INET */ 802 th->th_sport = inp->inp_lport; 803 th->th_dport = inp->inp_fport; 804 th->th_seq = 0; 805 th->th_ack = 0; 806 th->th_x2 = 0; 807 th->th_off = 5; 808 th->th_flags = 0; 809 th->th_win = 0; 810 th->th_urp = 0; 811 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 812 } 813 814 /* 815 * Create template to be used to send tcp packets on a connection. 816 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 817 * use for this function is in keepalives, which use tcp_respond. 818 */ 819 struct tcptemp * 820 tcpip_maketemplate(struct inpcb *inp) 821 { 822 struct tcptemp *t; 823 824 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 825 if (t == NULL) 826 return (NULL); 827 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 828 return (t); 829 } 830 831 /* 832 * Send a single message to the TCP at address specified by 833 * the given TCP/IP header. If m == NULL, then we make a copy 834 * of the tcpiphdr at th and send directly to the addressed host. 835 * This is used to force keep alive messages out using the TCP 836 * template for a connection. If flags are given then we send 837 * a message back to the TCP which originated the segment th, 838 * and discard the mbuf containing it and any other attached mbufs. 839 * 840 * In any case the ack and sequence number of the transmitted 841 * segment are as specified by the parameters. 842 * 843 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 844 */ 845 void 846 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 847 tcp_seq ack, tcp_seq seq, int flags) 848 { 849 int tlen; 850 int win = 0; 851 struct ip *ip; 852 struct tcphdr *nth; 853 #ifdef INET6 854 struct ip6_hdr *ip6; 855 int isipv6; 856 #endif /* INET6 */ 857 int ipflags = 0; 858 struct inpcb *inp; 859 860 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 861 862 #ifdef INET6 863 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 864 ip6 = ipgen; 865 #endif /* INET6 */ 866 ip = ipgen; 867 868 if (tp != NULL) { 869 inp = tp->t_inpcb; 870 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 871 INP_WLOCK_ASSERT(inp); 872 } else 873 inp = NULL; 874 875 if (tp != NULL) { 876 if (!(flags & TH_RST)) { 877 win = sbspace(&inp->inp_socket->so_rcv); 878 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 879 win = (long)TCP_MAXWIN << tp->rcv_scale; 880 } 881 } 882 if (m == NULL) { 883 m = m_gethdr(M_NOWAIT, MT_DATA); 884 if (m == NULL) 885 return; 886 tlen = 0; 887 m->m_data += max_linkhdr; 888 #ifdef INET6 889 if (isipv6) { 890 bcopy((caddr_t)ip6, mtod(m, caddr_t), 891 sizeof(struct ip6_hdr)); 892 ip6 = mtod(m, struct ip6_hdr *); 893 nth = (struct tcphdr *)(ip6 + 1); 894 } else 895 #endif /* INET6 */ 896 { 897 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 898 ip = mtod(m, struct ip *); 899 nth = (struct tcphdr *)(ip + 1); 900 } 901 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 902 flags = TH_ACK; 903 } else { 904 /* 905 * reuse the mbuf. 906 * XXX MRT We inherrit the FIB, which is lucky. 907 */ 908 m_freem(m->m_next); 909 m->m_next = NULL; 910 m->m_data = (caddr_t)ipgen; 911 /* m_len is set later */ 912 tlen = 0; 913 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 914 #ifdef INET6 915 if (isipv6) { 916 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 917 nth = (struct tcphdr *)(ip6 + 1); 918 } else 919 #endif /* INET6 */ 920 { 921 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 922 nth = (struct tcphdr *)(ip + 1); 923 } 924 if (th != nth) { 925 /* 926 * this is usually a case when an extension header 927 * exists between the IPv6 header and the 928 * TCP header. 929 */ 930 nth->th_sport = th->th_sport; 931 nth->th_dport = th->th_dport; 932 } 933 xchg(nth->th_dport, nth->th_sport, uint16_t); 934 #undef xchg 935 } 936 #ifdef INET6 937 if (isipv6) { 938 ip6->ip6_flow = 0; 939 ip6->ip6_vfc = IPV6_VERSION; 940 ip6->ip6_nxt = IPPROTO_TCP; 941 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 942 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 943 } 944 #endif 945 #if defined(INET) && defined(INET6) 946 else 947 #endif 948 #ifdef INET 949 { 950 tlen += sizeof (struct tcpiphdr); 951 ip->ip_len = htons(tlen); 952 ip->ip_ttl = V_ip_defttl; 953 if (V_path_mtu_discovery) 954 ip->ip_off |= htons(IP_DF); 955 } 956 #endif 957 m->m_len = tlen; 958 m->m_pkthdr.len = tlen; 959 m->m_pkthdr.rcvif = NULL; 960 #ifdef MAC 961 if (inp != NULL) { 962 /* 963 * Packet is associated with a socket, so allow the 964 * label of the response to reflect the socket label. 965 */ 966 INP_WLOCK_ASSERT(inp); 967 mac_inpcb_create_mbuf(inp, m); 968 } else { 969 /* 970 * Packet is not associated with a socket, so possibly 971 * update the label in place. 972 */ 973 mac_netinet_tcp_reply(m); 974 } 975 #endif 976 nth->th_seq = htonl(seq); 977 nth->th_ack = htonl(ack); 978 nth->th_x2 = 0; 979 nth->th_off = sizeof (struct tcphdr) >> 2; 980 nth->th_flags = flags; 981 if (tp != NULL) 982 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 983 else 984 nth->th_win = htons((u_short)win); 985 nth->th_urp = 0; 986 987 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 988 #ifdef INET6 989 if (isipv6) { 990 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 991 nth->th_sum = in6_cksum_pseudo(ip6, 992 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 993 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 994 NULL, NULL); 995 } 996 #endif /* INET6 */ 997 #if defined(INET6) && defined(INET) 998 else 999 #endif 1000 #ifdef INET 1001 { 1002 m->m_pkthdr.csum_flags = CSUM_TCP; 1003 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1004 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 1005 } 1006 #endif /* INET */ 1007 #ifdef TCPDEBUG 1008 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 1009 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 1010 #endif 1011 TCP_PROBE3(debug__input, tp, th, mtod(m, const char *)); 1012 if (flags & TH_RST) 1013 TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *), 1014 tp, nth); 1015 1016 TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth); 1017 #ifdef INET6 1018 if (isipv6) 1019 (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp); 1020 #endif /* INET6 */ 1021 #if defined(INET) && defined(INET6) 1022 else 1023 #endif 1024 #ifdef INET 1025 (void) ip_output(m, NULL, NULL, ipflags, NULL, inp); 1026 #endif 1027 } 1028 1029 /* 1030 * Create a new TCP control block, making an 1031 * empty reassembly queue and hooking it to the argument 1032 * protocol control block. The `inp' parameter must have 1033 * come from the zone allocator set up in tcp_init(). 1034 */ 1035 struct tcpcb * 1036 tcp_newtcpcb(struct inpcb *inp) 1037 { 1038 struct tcpcb_mem *tm; 1039 struct tcpcb *tp; 1040 #ifdef INET6 1041 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1042 #endif /* INET6 */ 1043 1044 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 1045 if (tm == NULL) 1046 return (NULL); 1047 tp = &tm->tcb; 1048 1049 /* Initialise cc_var struct for this tcpcb. */ 1050 tp->ccv = &tm->ccv; 1051 tp->ccv->type = IPPROTO_TCP; 1052 tp->ccv->ccvc.tcp = tp; 1053 rw_rlock(&tcp_function_lock); 1054 tp->t_fb = tcp_func_set_ptr; 1055 refcount_acquire(&tp->t_fb->tfb_refcnt); 1056 rw_runlock(&tcp_function_lock); 1057 if (tp->t_fb->tfb_tcp_fb_init) { 1058 (*tp->t_fb->tfb_tcp_fb_init)(tp); 1059 } 1060 /* 1061 * Use the current system default CC algorithm. 1062 */ 1063 CC_LIST_RLOCK(); 1064 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 1065 CC_ALGO(tp) = CC_DEFAULT(); 1066 CC_LIST_RUNLOCK(); 1067 1068 if (CC_ALGO(tp)->cb_init != NULL) 1069 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 1070 if (tp->t_fb->tfb_tcp_fb_fini) 1071 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1072 refcount_release(&tp->t_fb->tfb_refcnt); 1073 uma_zfree(V_tcpcb_zone, tm); 1074 return (NULL); 1075 } 1076 1077 tp->osd = &tm->osd; 1078 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 1079 if (tp->t_fb->tfb_tcp_fb_fini) 1080 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1081 refcount_release(&tp->t_fb->tfb_refcnt); 1082 uma_zfree(V_tcpcb_zone, tm); 1083 return (NULL); 1084 } 1085 1086 #ifdef VIMAGE 1087 tp->t_vnet = inp->inp_vnet; 1088 #endif 1089 tp->t_timers = &tm->tt; 1090 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 1091 tp->t_maxseg = 1092 #ifdef INET6 1093 isipv6 ? V_tcp_v6mssdflt : 1094 #endif /* INET6 */ 1095 V_tcp_mssdflt; 1096 1097 /* Set up our timeouts. */ 1098 callout_init(&tp->t_timers->tt_rexmt, 1); 1099 callout_init(&tp->t_timers->tt_persist, 1); 1100 callout_init(&tp->t_timers->tt_keep, 1); 1101 callout_init(&tp->t_timers->tt_2msl, 1); 1102 callout_init(&tp->t_timers->tt_delack, 1); 1103 1104 if (V_tcp_do_rfc1323) 1105 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 1106 if (V_tcp_do_sack) 1107 tp->t_flags |= TF_SACK_PERMIT; 1108 TAILQ_INIT(&tp->snd_holes); 1109 /* 1110 * The tcpcb will hold a reference on its inpcb until tcp_discardcb() 1111 * is called. 1112 */ 1113 in_pcbref(inp); /* Reference for tcpcb */ 1114 tp->t_inpcb = inp; 1115 1116 /* 1117 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 1118 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 1119 * reasonable initial retransmit time. 1120 */ 1121 tp->t_srtt = TCPTV_SRTTBASE; 1122 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 1123 tp->t_rttmin = tcp_rexmit_min; 1124 tp->t_rxtcur = TCPTV_RTOBASE; 1125 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1126 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1127 tp->t_rcvtime = ticks; 1128 /* 1129 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 1130 * because the socket may be bound to an IPv6 wildcard address, 1131 * which may match an IPv4-mapped IPv6 address. 1132 */ 1133 inp->inp_ip_ttl = V_ip_defttl; 1134 inp->inp_ppcb = tp; 1135 #ifdef TCPPCAP 1136 /* 1137 * Init the TCP PCAP queues. 1138 */ 1139 tcp_pcap_tcpcb_init(tp); 1140 #endif 1141 return (tp); /* XXX */ 1142 } 1143 1144 /* 1145 * Switch the congestion control algorithm back to NewReno for any active 1146 * control blocks using an algorithm which is about to go away. 1147 * This ensures the CC framework can allow the unload to proceed without leaving 1148 * any dangling pointers which would trigger a panic. 1149 * Returning non-zero would inform the CC framework that something went wrong 1150 * and it would be unsafe to allow the unload to proceed. However, there is no 1151 * way for this to occur with this implementation so we always return zero. 1152 */ 1153 int 1154 tcp_ccalgounload(struct cc_algo *unload_algo) 1155 { 1156 struct cc_algo *tmpalgo; 1157 struct inpcb *inp; 1158 struct tcpcb *tp; 1159 VNET_ITERATOR_DECL(vnet_iter); 1160 1161 /* 1162 * Check all active control blocks across all network stacks and change 1163 * any that are using "unload_algo" back to NewReno. If "unload_algo" 1164 * requires cleanup code to be run, call it. 1165 */ 1166 VNET_LIST_RLOCK(); 1167 VNET_FOREACH(vnet_iter) { 1168 CURVNET_SET(vnet_iter); 1169 INP_INFO_WLOCK(&V_tcbinfo); 1170 /* 1171 * New connections already part way through being initialised 1172 * with the CC algo we're removing will not race with this code 1173 * because the INP_INFO_WLOCK is held during initialisation. We 1174 * therefore don't enter the loop below until the connection 1175 * list has stabilised. 1176 */ 1177 LIST_FOREACH(inp, &V_tcb, inp_list) { 1178 INP_WLOCK(inp); 1179 /* Important to skip tcptw structs. */ 1180 if (!(inp->inp_flags & INP_TIMEWAIT) && 1181 (tp = intotcpcb(inp)) != NULL) { 1182 /* 1183 * By holding INP_WLOCK here, we are assured 1184 * that the connection is not currently 1185 * executing inside the CC module's functions 1186 * i.e. it is safe to make the switch back to 1187 * NewReno. 1188 */ 1189 if (CC_ALGO(tp) == unload_algo) { 1190 tmpalgo = CC_ALGO(tp); 1191 /* NewReno does not require any init. */ 1192 CC_ALGO(tp) = &newreno_cc_algo; 1193 if (tmpalgo->cb_destroy != NULL) 1194 tmpalgo->cb_destroy(tp->ccv); 1195 } 1196 } 1197 INP_WUNLOCK(inp); 1198 } 1199 INP_INFO_WUNLOCK(&V_tcbinfo); 1200 CURVNET_RESTORE(); 1201 } 1202 VNET_LIST_RUNLOCK(); 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Drop a TCP connection, reporting 1209 * the specified error. If connection is synchronized, 1210 * then send a RST to peer. 1211 */ 1212 struct tcpcb * 1213 tcp_drop(struct tcpcb *tp, int errno) 1214 { 1215 struct socket *so = tp->t_inpcb->inp_socket; 1216 1217 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1218 INP_WLOCK_ASSERT(tp->t_inpcb); 1219 1220 if (TCPS_HAVERCVDSYN(tp->t_state)) { 1221 tcp_state_change(tp, TCPS_CLOSED); 1222 (void) tp->t_fb->tfb_tcp_output(tp); 1223 TCPSTAT_INC(tcps_drops); 1224 } else 1225 TCPSTAT_INC(tcps_conndrops); 1226 if (errno == ETIMEDOUT && tp->t_softerror) 1227 errno = tp->t_softerror; 1228 so->so_error = errno; 1229 return (tcp_close(tp)); 1230 } 1231 1232 void 1233 tcp_discardcb(struct tcpcb *tp) 1234 { 1235 struct inpcb *inp = tp->t_inpcb; 1236 struct socket *so = inp->inp_socket; 1237 #ifdef INET6 1238 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1239 #endif /* INET6 */ 1240 int released; 1241 1242 INP_WLOCK_ASSERT(inp); 1243 1244 /* 1245 * Make sure that all of our timers are stopped before we delete the 1246 * PCB. 1247 * 1248 * If stopping a timer fails, we schedule a discard function in same 1249 * callout, and the last discard function called will take care of 1250 * deleting the tcpcb. 1251 */ 1252 tcp_timer_stop(tp, TT_REXMT); 1253 tcp_timer_stop(tp, TT_PERSIST); 1254 tcp_timer_stop(tp, TT_KEEP); 1255 tcp_timer_stop(tp, TT_2MSL); 1256 tcp_timer_stop(tp, TT_DELACK); 1257 if (tp->t_fb->tfb_tcp_timer_stop_all) { 1258 /* Call the stop-all function of the methods */ 1259 tp->t_fb->tfb_tcp_timer_stop_all(tp); 1260 } 1261 1262 /* 1263 * If we got enough samples through the srtt filter, 1264 * save the rtt and rttvar in the routing entry. 1265 * 'Enough' is arbitrarily defined as 4 rtt samples. 1266 * 4 samples is enough for the srtt filter to converge 1267 * to within enough % of the correct value; fewer samples 1268 * and we could save a bogus rtt. The danger is not high 1269 * as tcp quickly recovers from everything. 1270 * XXX: Works very well but needs some more statistics! 1271 */ 1272 if (tp->t_rttupdated >= 4) { 1273 struct hc_metrics_lite metrics; 1274 u_long ssthresh; 1275 1276 bzero(&metrics, sizeof(metrics)); 1277 /* 1278 * Update the ssthresh always when the conditions below 1279 * are satisfied. This gives us better new start value 1280 * for the congestion avoidance for new connections. 1281 * ssthresh is only set if packet loss occured on a session. 1282 * 1283 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 1284 * being torn down. Ideally this code would not use 'so'. 1285 */ 1286 ssthresh = tp->snd_ssthresh; 1287 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 1288 /* 1289 * convert the limit from user data bytes to 1290 * packets then to packet data bytes. 1291 */ 1292 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 1293 if (ssthresh < 2) 1294 ssthresh = 2; 1295 ssthresh *= (u_long)(tp->t_maxseg + 1296 #ifdef INET6 1297 (isipv6 ? sizeof (struct ip6_hdr) + 1298 sizeof (struct tcphdr) : 1299 #endif 1300 sizeof (struct tcpiphdr) 1301 #ifdef INET6 1302 ) 1303 #endif 1304 ); 1305 } else 1306 ssthresh = 0; 1307 metrics.rmx_ssthresh = ssthresh; 1308 1309 metrics.rmx_rtt = tp->t_srtt; 1310 metrics.rmx_rttvar = tp->t_rttvar; 1311 metrics.rmx_cwnd = tp->snd_cwnd; 1312 metrics.rmx_sendpipe = 0; 1313 metrics.rmx_recvpipe = 0; 1314 1315 tcp_hc_update(&inp->inp_inc, &metrics); 1316 } 1317 1318 /* free the reassembly queue, if any */ 1319 tcp_reass_flush(tp); 1320 1321 #ifdef TCP_OFFLOAD 1322 /* Disconnect offload device, if any. */ 1323 if (tp->t_flags & TF_TOE) 1324 tcp_offload_detach(tp); 1325 #endif 1326 1327 tcp_free_sackholes(tp); 1328 1329 #ifdef TCPPCAP 1330 /* Free the TCP PCAP queues. */ 1331 tcp_pcap_drain(&(tp->t_inpkts)); 1332 tcp_pcap_drain(&(tp->t_outpkts)); 1333 #endif 1334 1335 /* Allow the CC algorithm to clean up after itself. */ 1336 if (CC_ALGO(tp)->cb_destroy != NULL) 1337 CC_ALGO(tp)->cb_destroy(tp->ccv); 1338 1339 khelp_destroy_osd(tp->osd); 1340 1341 CC_ALGO(tp) = NULL; 1342 inp->inp_ppcb = NULL; 1343 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1344 /* We own the last reference on tcpcb, let's free it. */ 1345 if ((tp->t_fb->tfb_tcp_timers_left) && 1346 (tp->t_fb->tfb_tcp_timers_left(tp))) { 1347 /* Some fb timers left running! */ 1348 return; 1349 } 1350 if (tp->t_fb->tfb_tcp_fb_fini) 1351 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1352 refcount_release(&tp->t_fb->tfb_refcnt); 1353 tp->t_inpcb = NULL; 1354 uma_zfree(V_tcpcb_zone, tp); 1355 released = in_pcbrele_wlocked(inp); 1356 KASSERT(!released, ("%s: inp %p should not have been released " 1357 "here", __func__, inp)); 1358 } 1359 } 1360 1361 void 1362 tcp_timer_2msl_discard(void *xtp) 1363 { 1364 1365 tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL); 1366 } 1367 1368 void 1369 tcp_timer_keep_discard(void *xtp) 1370 { 1371 1372 tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP); 1373 } 1374 1375 void 1376 tcp_timer_persist_discard(void *xtp) 1377 { 1378 1379 tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST); 1380 } 1381 1382 void 1383 tcp_timer_rexmt_discard(void *xtp) 1384 { 1385 1386 tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT); 1387 } 1388 1389 void 1390 tcp_timer_delack_discard(void *xtp) 1391 { 1392 1393 tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK); 1394 } 1395 1396 void 1397 tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type) 1398 { 1399 struct inpcb *inp; 1400 1401 CURVNET_SET(tp->t_vnet); 1402 INP_INFO_RLOCK(&V_tcbinfo); 1403 inp = tp->t_inpcb; 1404 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", 1405 __func__, tp)); 1406 INP_WLOCK(inp); 1407 KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, 1408 ("%s: tcpcb has to be stopped here", __func__)); 1409 KASSERT((tp->t_timers->tt_flags & timer_type) != 0, 1410 ("%s: discard callout should be running", __func__)); 1411 tp->t_timers->tt_flags &= ~timer_type; 1412 if ((tp->t_timers->tt_flags & TT_MASK) == 0) { 1413 /* We own the last reference on this tcpcb, let's free it. */ 1414 if ((tp->t_fb->tfb_tcp_timers_left) && 1415 (tp->t_fb->tfb_tcp_timers_left(tp))) { 1416 /* Some fb timers left running! */ 1417 goto leave; 1418 } 1419 if (tp->t_fb->tfb_tcp_fb_fini) 1420 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1421 refcount_release(&tp->t_fb->tfb_refcnt); 1422 tp->t_inpcb = NULL; 1423 uma_zfree(V_tcpcb_zone, tp); 1424 if (in_pcbrele_wlocked(inp)) { 1425 INP_INFO_RUNLOCK(&V_tcbinfo); 1426 CURVNET_RESTORE(); 1427 return; 1428 } 1429 } 1430 leave: 1431 INP_WUNLOCK(inp); 1432 INP_INFO_RUNLOCK(&V_tcbinfo); 1433 CURVNET_RESTORE(); 1434 } 1435 1436 /* 1437 * Attempt to close a TCP control block, marking it as dropped, and freeing 1438 * the socket if we hold the only reference. 1439 */ 1440 struct tcpcb * 1441 tcp_close(struct tcpcb *tp) 1442 { 1443 struct inpcb *inp = tp->t_inpcb; 1444 struct socket *so; 1445 1446 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1447 INP_WLOCK_ASSERT(inp); 1448 1449 #ifdef TCP_OFFLOAD 1450 if (tp->t_state == TCPS_LISTEN) 1451 tcp_offload_listen_stop(tp); 1452 #endif 1453 #ifdef TCP_RFC7413 1454 /* 1455 * This releases the TFO pending counter resource for TFO listen 1456 * sockets as well as passively-created TFO sockets that transition 1457 * from SYN_RECEIVED to CLOSED. 1458 */ 1459 if (tp->t_tfo_pending) { 1460 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 1461 tp->t_tfo_pending = NULL; 1462 } 1463 #endif 1464 in_pcbdrop(inp); 1465 TCPSTAT_INC(tcps_closed); 1466 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 1467 so = inp->inp_socket; 1468 soisdisconnected(so); 1469 if (inp->inp_flags & INP_SOCKREF) { 1470 KASSERT(so->so_state & SS_PROTOREF, 1471 ("tcp_close: !SS_PROTOREF")); 1472 inp->inp_flags &= ~INP_SOCKREF; 1473 INP_WUNLOCK(inp); 1474 ACCEPT_LOCK(); 1475 SOCK_LOCK(so); 1476 so->so_state &= ~SS_PROTOREF; 1477 sofree(so); 1478 return (NULL); 1479 } 1480 return (tp); 1481 } 1482 1483 void 1484 tcp_drain(void) 1485 { 1486 VNET_ITERATOR_DECL(vnet_iter); 1487 1488 if (!do_tcpdrain) 1489 return; 1490 1491 VNET_LIST_RLOCK_NOSLEEP(); 1492 VNET_FOREACH(vnet_iter) { 1493 CURVNET_SET(vnet_iter); 1494 struct inpcb *inpb; 1495 struct tcpcb *tcpb; 1496 1497 /* 1498 * Walk the tcpbs, if existing, and flush the reassembly queue, 1499 * if there is one... 1500 * XXX: The "Net/3" implementation doesn't imply that the TCP 1501 * reassembly queue should be flushed, but in a situation 1502 * where we're really low on mbufs, this is potentially 1503 * useful. 1504 */ 1505 INP_INFO_WLOCK(&V_tcbinfo); 1506 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1507 if (inpb->inp_flags & INP_TIMEWAIT) 1508 continue; 1509 INP_WLOCK(inpb); 1510 if ((tcpb = intotcpcb(inpb)) != NULL) { 1511 tcp_reass_flush(tcpb); 1512 tcp_clean_sackreport(tcpb); 1513 } 1514 INP_WUNLOCK(inpb); 1515 } 1516 INP_INFO_WUNLOCK(&V_tcbinfo); 1517 CURVNET_RESTORE(); 1518 } 1519 VNET_LIST_RUNLOCK_NOSLEEP(); 1520 } 1521 1522 /* 1523 * Notify a tcp user of an asynchronous error; 1524 * store error as soft error, but wake up user 1525 * (for now, won't do anything until can select for soft error). 1526 * 1527 * Do not wake up user since there currently is no mechanism for 1528 * reporting soft errors (yet - a kqueue filter may be added). 1529 */ 1530 static struct inpcb * 1531 tcp_notify(struct inpcb *inp, int error) 1532 { 1533 struct tcpcb *tp; 1534 1535 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1536 INP_WLOCK_ASSERT(inp); 1537 1538 if ((inp->inp_flags & INP_TIMEWAIT) || 1539 (inp->inp_flags & INP_DROPPED)) 1540 return (inp); 1541 1542 tp = intotcpcb(inp); 1543 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1544 1545 /* 1546 * Ignore some errors if we are hooked up. 1547 * If connection hasn't completed, has retransmitted several times, 1548 * and receives a second error, give up now. This is better 1549 * than waiting a long time to establish a connection that 1550 * can never complete. 1551 */ 1552 if (tp->t_state == TCPS_ESTABLISHED && 1553 (error == EHOSTUNREACH || error == ENETUNREACH || 1554 error == EHOSTDOWN)) { 1555 return (inp); 1556 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1557 tp->t_softerror) { 1558 tp = tcp_drop(tp, error); 1559 if (tp != NULL) 1560 return (inp); 1561 else 1562 return (NULL); 1563 } else { 1564 tp->t_softerror = error; 1565 return (inp); 1566 } 1567 #if 0 1568 wakeup( &so->so_timeo); 1569 sorwakeup(so); 1570 sowwakeup(so); 1571 #endif 1572 } 1573 1574 static int 1575 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1576 { 1577 int error, i, m, n, pcb_count; 1578 struct inpcb *inp, **inp_list; 1579 inp_gen_t gencnt; 1580 struct xinpgen xig; 1581 1582 /* 1583 * The process of preparing the TCB list is too time-consuming and 1584 * resource-intensive to repeat twice on every request. 1585 */ 1586 if (req->oldptr == NULL) { 1587 n = V_tcbinfo.ipi_count + syncache_pcbcount(); 1588 n += imax(n / 8, 10); 1589 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1590 return (0); 1591 } 1592 1593 if (req->newptr != NULL) 1594 return (EPERM); 1595 1596 /* 1597 * OK, now we're committed to doing something. 1598 */ 1599 INP_LIST_RLOCK(&V_tcbinfo); 1600 gencnt = V_tcbinfo.ipi_gencnt; 1601 n = V_tcbinfo.ipi_count; 1602 INP_LIST_RUNLOCK(&V_tcbinfo); 1603 1604 m = syncache_pcbcount(); 1605 1606 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1607 + (n + m) * sizeof(struct xtcpcb)); 1608 if (error != 0) 1609 return (error); 1610 1611 xig.xig_len = sizeof xig; 1612 xig.xig_count = n + m; 1613 xig.xig_gen = gencnt; 1614 xig.xig_sogen = so_gencnt; 1615 error = SYSCTL_OUT(req, &xig, sizeof xig); 1616 if (error) 1617 return (error); 1618 1619 error = syncache_pcblist(req, m, &pcb_count); 1620 if (error) 1621 return (error); 1622 1623 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1624 if (inp_list == NULL) 1625 return (ENOMEM); 1626 1627 INP_INFO_WLOCK(&V_tcbinfo); 1628 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1629 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1630 INP_WLOCK(inp); 1631 if (inp->inp_gencnt <= gencnt) { 1632 /* 1633 * XXX: This use of cr_cansee(), introduced with 1634 * TCP state changes, is not quite right, but for 1635 * now, better than nothing. 1636 */ 1637 if (inp->inp_flags & INP_TIMEWAIT) { 1638 if (intotw(inp) != NULL) 1639 error = cr_cansee(req->td->td_ucred, 1640 intotw(inp)->tw_cred); 1641 else 1642 error = EINVAL; /* Skip this inp. */ 1643 } else 1644 error = cr_canseeinpcb(req->td->td_ucred, inp); 1645 if (error == 0) { 1646 in_pcbref(inp); 1647 inp_list[i++] = inp; 1648 } 1649 } 1650 INP_WUNLOCK(inp); 1651 } 1652 INP_INFO_WUNLOCK(&V_tcbinfo); 1653 n = i; 1654 1655 error = 0; 1656 for (i = 0; i < n; i++) { 1657 inp = inp_list[i]; 1658 INP_RLOCK(inp); 1659 if (inp->inp_gencnt <= gencnt) { 1660 struct xtcpcb xt; 1661 void *inp_ppcb; 1662 1663 bzero(&xt, sizeof(xt)); 1664 xt.xt_len = sizeof xt; 1665 /* XXX should avoid extra copy */ 1666 bcopy(inp, &xt.xt_inp, sizeof *inp); 1667 inp_ppcb = inp->inp_ppcb; 1668 if (inp_ppcb == NULL) 1669 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1670 else if (inp->inp_flags & INP_TIMEWAIT) { 1671 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1672 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1673 } else { 1674 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1675 if (xt.xt_tp.t_timers) 1676 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1677 } 1678 if (inp->inp_socket != NULL) 1679 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1680 else { 1681 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1682 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1683 } 1684 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1685 INP_RUNLOCK(inp); 1686 error = SYSCTL_OUT(req, &xt, sizeof xt); 1687 } else 1688 INP_RUNLOCK(inp); 1689 } 1690 INP_INFO_RLOCK(&V_tcbinfo); 1691 for (i = 0; i < n; i++) { 1692 inp = inp_list[i]; 1693 INP_RLOCK(inp); 1694 if (!in_pcbrele_rlocked(inp)) 1695 INP_RUNLOCK(inp); 1696 } 1697 INP_INFO_RUNLOCK(&V_tcbinfo); 1698 1699 if (!error) { 1700 /* 1701 * Give the user an updated idea of our state. 1702 * If the generation differs from what we told 1703 * her before, she knows that something happened 1704 * while we were processing this request, and it 1705 * might be necessary to retry. 1706 */ 1707 INP_LIST_RLOCK(&V_tcbinfo); 1708 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1709 xig.xig_sogen = so_gencnt; 1710 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1711 INP_LIST_RUNLOCK(&V_tcbinfo); 1712 error = SYSCTL_OUT(req, &xig, sizeof xig); 1713 } 1714 free(inp_list, M_TEMP); 1715 return (error); 1716 } 1717 1718 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1719 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1720 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1721 1722 #ifdef INET 1723 static int 1724 tcp_getcred(SYSCTL_HANDLER_ARGS) 1725 { 1726 struct xucred xuc; 1727 struct sockaddr_in addrs[2]; 1728 struct inpcb *inp; 1729 int error; 1730 1731 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1732 if (error) 1733 return (error); 1734 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1735 if (error) 1736 return (error); 1737 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1738 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1739 if (inp != NULL) { 1740 if (inp->inp_socket == NULL) 1741 error = ENOENT; 1742 if (error == 0) 1743 error = cr_canseeinpcb(req->td->td_ucred, inp); 1744 if (error == 0) 1745 cru2x(inp->inp_cred, &xuc); 1746 INP_RUNLOCK(inp); 1747 } else 1748 error = ENOENT; 1749 if (error == 0) 1750 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1751 return (error); 1752 } 1753 1754 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1755 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1756 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1757 #endif /* INET */ 1758 1759 #ifdef INET6 1760 static int 1761 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1762 { 1763 struct xucred xuc; 1764 struct sockaddr_in6 addrs[2]; 1765 struct inpcb *inp; 1766 int error; 1767 #ifdef INET 1768 int mapped = 0; 1769 #endif 1770 1771 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1772 if (error) 1773 return (error); 1774 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1775 if (error) 1776 return (error); 1777 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1778 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1779 return (error); 1780 } 1781 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1782 #ifdef INET 1783 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1784 mapped = 1; 1785 else 1786 #endif 1787 return (EINVAL); 1788 } 1789 1790 #ifdef INET 1791 if (mapped == 1) 1792 inp = in_pcblookup(&V_tcbinfo, 1793 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1794 addrs[1].sin6_port, 1795 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1796 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1797 else 1798 #endif 1799 inp = in6_pcblookup(&V_tcbinfo, 1800 &addrs[1].sin6_addr, addrs[1].sin6_port, 1801 &addrs[0].sin6_addr, addrs[0].sin6_port, 1802 INPLOOKUP_RLOCKPCB, NULL); 1803 if (inp != NULL) { 1804 if (inp->inp_socket == NULL) 1805 error = ENOENT; 1806 if (error == 0) 1807 error = cr_canseeinpcb(req->td->td_ucred, inp); 1808 if (error == 0) 1809 cru2x(inp->inp_cred, &xuc); 1810 INP_RUNLOCK(inp); 1811 } else 1812 error = ENOENT; 1813 if (error == 0) 1814 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1815 return (error); 1816 } 1817 1818 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1819 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1820 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1821 #endif /* INET6 */ 1822 1823 1824 #ifdef INET 1825 void 1826 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1827 { 1828 struct ip *ip = vip; 1829 struct tcphdr *th; 1830 struct in_addr faddr; 1831 struct inpcb *inp; 1832 struct tcpcb *tp; 1833 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1834 struct icmp *icp; 1835 struct in_conninfo inc; 1836 tcp_seq icmp_tcp_seq; 1837 int mtu; 1838 1839 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1840 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1841 return; 1842 1843 if (cmd == PRC_MSGSIZE) 1844 notify = tcp_mtudisc_notify; 1845 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1846 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1847 notify = tcp_drop_syn_sent; 1848 /* 1849 * Redirects don't need to be handled up here. 1850 */ 1851 else if (PRC_IS_REDIRECT(cmd)) 1852 return; 1853 /* 1854 * Hostdead is ugly because it goes linearly through all PCBs. 1855 * XXX: We never get this from ICMP, otherwise it makes an 1856 * excellent DoS attack on machines with many connections. 1857 */ 1858 else if (cmd == PRC_HOSTDEAD) 1859 ip = NULL; 1860 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1861 return; 1862 1863 if (ip == NULL) { 1864 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1865 return; 1866 } 1867 1868 icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); 1869 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 1870 INP_INFO_RLOCK(&V_tcbinfo); 1871 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, 1872 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1873 if (inp != NULL) { 1874 if (!(inp->inp_flags & INP_TIMEWAIT) && 1875 !(inp->inp_flags & INP_DROPPED) && 1876 !(inp->inp_socket == NULL)) { 1877 icmp_tcp_seq = ntohl(th->th_seq); 1878 tp = intotcpcb(inp); 1879 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1880 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1881 if (cmd == PRC_MSGSIZE) { 1882 /* 1883 * MTU discovery: 1884 * If we got a needfrag set the MTU 1885 * in the route to the suggested new 1886 * value (if given) and then notify. 1887 */ 1888 mtu = ntohs(icp->icmp_nextmtu); 1889 /* 1890 * If no alternative MTU was 1891 * proposed, try the next smaller 1892 * one. 1893 */ 1894 if (!mtu) 1895 mtu = ip_next_mtu( 1896 ntohs(ip->ip_len), 1); 1897 if (mtu < V_tcp_minmss + 1898 sizeof(struct tcpiphdr)) 1899 mtu = V_tcp_minmss + 1900 sizeof(struct tcpiphdr); 1901 /* 1902 * Only process the offered MTU if it 1903 * is smaller than the current one. 1904 */ 1905 if (mtu < tp->t_maxseg + 1906 sizeof(struct tcpiphdr)) { 1907 bzero(&inc, sizeof(inc)); 1908 inc.inc_faddr = faddr; 1909 inc.inc_fibnum = 1910 inp->inp_inc.inc_fibnum; 1911 tcp_hc_updatemtu(&inc, mtu); 1912 tcp_mtudisc(inp, mtu); 1913 } 1914 } else 1915 inp = (*notify)(inp, 1916 inetctlerrmap[cmd]); 1917 } 1918 } 1919 if (inp != NULL) 1920 INP_WUNLOCK(inp); 1921 } else { 1922 bzero(&inc, sizeof(inc)); 1923 inc.inc_fport = th->th_dport; 1924 inc.inc_lport = th->th_sport; 1925 inc.inc_faddr = faddr; 1926 inc.inc_laddr = ip->ip_src; 1927 syncache_unreach(&inc, th); 1928 } 1929 INP_INFO_RUNLOCK(&V_tcbinfo); 1930 } 1931 #endif /* INET */ 1932 1933 #ifdef INET6 1934 void 1935 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 1936 { 1937 struct tcphdr th; 1938 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1939 struct ip6_hdr *ip6; 1940 struct mbuf *m; 1941 struct ip6ctlparam *ip6cp = NULL; 1942 const struct sockaddr_in6 *sa6_src = NULL; 1943 int off; 1944 struct tcp_portonly { 1945 u_int16_t th_sport; 1946 u_int16_t th_dport; 1947 } *thp; 1948 1949 if (sa->sa_family != AF_INET6 || 1950 sa->sa_len != sizeof(struct sockaddr_in6)) 1951 return; 1952 1953 if (cmd == PRC_MSGSIZE) 1954 notify = tcp_mtudisc_notify; 1955 else if (!PRC_IS_REDIRECT(cmd) && 1956 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1957 return; 1958 1959 /* if the parameter is from icmp6, decode it. */ 1960 if (d != NULL) { 1961 ip6cp = (struct ip6ctlparam *)d; 1962 m = ip6cp->ip6c_m; 1963 ip6 = ip6cp->ip6c_ip6; 1964 off = ip6cp->ip6c_off; 1965 sa6_src = ip6cp->ip6c_src; 1966 } else { 1967 m = NULL; 1968 ip6 = NULL; 1969 off = 0; /* fool gcc */ 1970 sa6_src = &sa6_any; 1971 } 1972 1973 if (ip6 != NULL) { 1974 struct in_conninfo inc; 1975 /* 1976 * XXX: We assume that when IPV6 is non NULL, 1977 * M and OFF are valid. 1978 */ 1979 1980 /* check if we can safely examine src and dst ports */ 1981 if (m->m_pkthdr.len < off + sizeof(*thp)) 1982 return; 1983 1984 bzero(&th, sizeof(th)); 1985 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1986 1987 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 1988 (struct sockaddr *)ip6cp->ip6c_src, 1989 th.th_sport, cmd, NULL, notify); 1990 1991 bzero(&inc, sizeof(inc)); 1992 inc.inc_fport = th.th_dport; 1993 inc.inc_lport = th.th_sport; 1994 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1995 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1996 inc.inc_flags |= INC_ISIPV6; 1997 INP_INFO_RLOCK(&V_tcbinfo); 1998 syncache_unreach(&inc, &th); 1999 INP_INFO_RUNLOCK(&V_tcbinfo); 2000 } else 2001 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 2002 0, cmd, NULL, notify); 2003 } 2004 #endif /* INET6 */ 2005 2006 2007 /* 2008 * Following is where TCP initial sequence number generation occurs. 2009 * 2010 * There are two places where we must use initial sequence numbers: 2011 * 1. In SYN-ACK packets. 2012 * 2. In SYN packets. 2013 * 2014 * All ISNs for SYN-ACK packets are generated by the syncache. See 2015 * tcp_syncache.c for details. 2016 * 2017 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 2018 * depends on this property. In addition, these ISNs should be 2019 * unguessable so as to prevent connection hijacking. To satisfy 2020 * the requirements of this situation, the algorithm outlined in 2021 * RFC 1948 is used, with only small modifications. 2022 * 2023 * Implementation details: 2024 * 2025 * Time is based off the system timer, and is corrected so that it 2026 * increases by one megabyte per second. This allows for proper 2027 * recycling on high speed LANs while still leaving over an hour 2028 * before rollover. 2029 * 2030 * As reading the *exact* system time is too expensive to be done 2031 * whenever setting up a TCP connection, we increment the time 2032 * offset in two ways. First, a small random positive increment 2033 * is added to isn_offset for each connection that is set up. 2034 * Second, the function tcp_isn_tick fires once per clock tick 2035 * and increments isn_offset as necessary so that sequence numbers 2036 * are incremented at approximately ISN_BYTES_PER_SECOND. The 2037 * random positive increments serve only to ensure that the same 2038 * exact sequence number is never sent out twice (as could otherwise 2039 * happen when a port is recycled in less than the system tick 2040 * interval.) 2041 * 2042 * net.inet.tcp.isn_reseed_interval controls the number of seconds 2043 * between seeding of isn_secret. This is normally set to zero, 2044 * as reseeding should not be necessary. 2045 * 2046 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 2047 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 2048 * general, this means holding an exclusive (write) lock. 2049 */ 2050 2051 #define ISN_BYTES_PER_SECOND 1048576 2052 #define ISN_STATIC_INCREMENT 4096 2053 #define ISN_RANDOM_INCREMENT (4096 - 1) 2054 2055 static VNET_DEFINE(u_char, isn_secret[32]); 2056 static VNET_DEFINE(int, isn_last); 2057 static VNET_DEFINE(int, isn_last_reseed); 2058 static VNET_DEFINE(u_int32_t, isn_offset); 2059 static VNET_DEFINE(u_int32_t, isn_offset_old); 2060 2061 #define V_isn_secret VNET(isn_secret) 2062 #define V_isn_last VNET(isn_last) 2063 #define V_isn_last_reseed VNET(isn_last_reseed) 2064 #define V_isn_offset VNET(isn_offset) 2065 #define V_isn_offset_old VNET(isn_offset_old) 2066 2067 tcp_seq 2068 tcp_new_isn(struct tcpcb *tp) 2069 { 2070 MD5_CTX isn_ctx; 2071 u_int32_t md5_buffer[4]; 2072 tcp_seq new_isn; 2073 u_int32_t projected_offset; 2074 2075 INP_WLOCK_ASSERT(tp->t_inpcb); 2076 2077 ISN_LOCK(); 2078 /* Seed if this is the first use, reseed if requested. */ 2079 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 2080 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 2081 < (u_int)ticks))) { 2082 read_random(&V_isn_secret, sizeof(V_isn_secret)); 2083 V_isn_last_reseed = ticks; 2084 } 2085 2086 /* Compute the md5 hash and return the ISN. */ 2087 MD5Init(&isn_ctx); 2088 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 2089 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 2090 #ifdef INET6 2091 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 2092 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 2093 sizeof(struct in6_addr)); 2094 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 2095 sizeof(struct in6_addr)); 2096 } else 2097 #endif 2098 { 2099 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 2100 sizeof(struct in_addr)); 2101 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 2102 sizeof(struct in_addr)); 2103 } 2104 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 2105 MD5Final((u_char *) &md5_buffer, &isn_ctx); 2106 new_isn = (tcp_seq) md5_buffer[0]; 2107 V_isn_offset += ISN_STATIC_INCREMENT + 2108 (arc4random() & ISN_RANDOM_INCREMENT); 2109 if (ticks != V_isn_last) { 2110 projected_offset = V_isn_offset_old + 2111 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 2112 if (SEQ_GT(projected_offset, V_isn_offset)) 2113 V_isn_offset = projected_offset; 2114 V_isn_offset_old = V_isn_offset; 2115 V_isn_last = ticks; 2116 } 2117 new_isn += V_isn_offset; 2118 ISN_UNLOCK(); 2119 return (new_isn); 2120 } 2121 2122 /* 2123 * When a specific ICMP unreachable message is received and the 2124 * connection state is SYN-SENT, drop the connection. This behavior 2125 * is controlled by the icmp_may_rst sysctl. 2126 */ 2127 struct inpcb * 2128 tcp_drop_syn_sent(struct inpcb *inp, int errno) 2129 { 2130 struct tcpcb *tp; 2131 2132 INP_INFO_RLOCK_ASSERT(&V_tcbinfo); 2133 INP_WLOCK_ASSERT(inp); 2134 2135 if ((inp->inp_flags & INP_TIMEWAIT) || 2136 (inp->inp_flags & INP_DROPPED)) 2137 return (inp); 2138 2139 tp = intotcpcb(inp); 2140 if (tp->t_state != TCPS_SYN_SENT) 2141 return (inp); 2142 2143 tp = tcp_drop(tp, errno); 2144 if (tp != NULL) 2145 return (inp); 2146 else 2147 return (NULL); 2148 } 2149 2150 /* 2151 * When `need fragmentation' ICMP is received, update our idea of the MSS 2152 * based on the new value. Also nudge TCP to send something, since we 2153 * know the packet we just sent was dropped. 2154 * This duplicates some code in the tcp_mss() function in tcp_input.c. 2155 */ 2156 static struct inpcb * 2157 tcp_mtudisc_notify(struct inpcb *inp, int error) 2158 { 2159 2160 tcp_mtudisc(inp, -1); 2161 return (inp); 2162 } 2163 2164 static void 2165 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 2166 { 2167 struct tcpcb *tp; 2168 struct socket *so; 2169 2170 INP_WLOCK_ASSERT(inp); 2171 if ((inp->inp_flags & INP_TIMEWAIT) || 2172 (inp->inp_flags & INP_DROPPED)) 2173 return; 2174 2175 tp = intotcpcb(inp); 2176 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 2177 2178 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 2179 2180 so = inp->inp_socket; 2181 SOCKBUF_LOCK(&so->so_snd); 2182 /* If the mss is larger than the socket buffer, decrease the mss. */ 2183 if (so->so_snd.sb_hiwat < tp->t_maxseg) 2184 tp->t_maxseg = so->so_snd.sb_hiwat; 2185 SOCKBUF_UNLOCK(&so->so_snd); 2186 2187 TCPSTAT_INC(tcps_mturesent); 2188 tp->t_rtttime = 0; 2189 tp->snd_nxt = tp->snd_una; 2190 tcp_free_sackholes(tp); 2191 tp->snd_recover = tp->snd_max; 2192 if (tp->t_flags & TF_SACK_PERMIT) 2193 EXIT_FASTRECOVERY(tp->t_flags); 2194 tp->t_fb->tfb_tcp_output(tp); 2195 } 2196 2197 #ifdef INET 2198 /* 2199 * Look-up the routing entry to the peer of this inpcb. If no route 2200 * is found and it cannot be allocated, then return 0. This routine 2201 * is called by TCP routines that access the rmx structure and by 2202 * tcp_mss_update to get the peer/interface MTU. 2203 */ 2204 u_long 2205 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 2206 { 2207 struct route sro; 2208 struct sockaddr_in *dst; 2209 struct ifnet *ifp; 2210 u_long maxmtu = 0; 2211 2212 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 2213 2214 bzero(&sro, sizeof(sro)); 2215 if (inc->inc_faddr.s_addr != INADDR_ANY) { 2216 dst = (struct sockaddr_in *)&sro.ro_dst; 2217 dst->sin_family = AF_INET; 2218 dst->sin_len = sizeof(*dst); 2219 dst->sin_addr = inc->inc_faddr; 2220 in_rtalloc_ign(&sro, 0, inc->inc_fibnum); 2221 } 2222 if (sro.ro_rt != NULL) { 2223 ifp = sro.ro_rt->rt_ifp; 2224 if (sro.ro_rt->rt_mtu == 0) 2225 maxmtu = ifp->if_mtu; 2226 else 2227 maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu); 2228 2229 /* Report additional interface capabilities. */ 2230 if (cap != NULL) { 2231 if (ifp->if_capenable & IFCAP_TSO4 && 2232 ifp->if_hwassist & CSUM_TSO) { 2233 cap->ifcap |= CSUM_TSO; 2234 cap->tsomax = ifp->if_hw_tsomax; 2235 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2236 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2237 } 2238 } 2239 RTFREE(sro.ro_rt); 2240 } 2241 return (maxmtu); 2242 } 2243 #endif /* INET */ 2244 2245 #ifdef INET6 2246 u_long 2247 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 2248 { 2249 struct route_in6 sro6; 2250 struct ifnet *ifp; 2251 u_long maxmtu = 0; 2252 2253 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 2254 2255 bzero(&sro6, sizeof(sro6)); 2256 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 2257 sro6.ro_dst.sin6_family = AF_INET6; 2258 sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6); 2259 sro6.ro_dst.sin6_addr = inc->inc6_faddr; 2260 in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum); 2261 } 2262 if (sro6.ro_rt != NULL) { 2263 ifp = sro6.ro_rt->rt_ifp; 2264 if (sro6.ro_rt->rt_mtu == 0) 2265 maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp); 2266 else 2267 maxmtu = min(sro6.ro_rt->rt_mtu, 2268 IN6_LINKMTU(sro6.ro_rt->rt_ifp)); 2269 2270 /* Report additional interface capabilities. */ 2271 if (cap != NULL) { 2272 if (ifp->if_capenable & IFCAP_TSO6 && 2273 ifp->if_hwassist & CSUM_TSO) { 2274 cap->ifcap |= CSUM_TSO; 2275 cap->tsomax = ifp->if_hw_tsomax; 2276 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2277 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2278 } 2279 } 2280 RTFREE(sro6.ro_rt); 2281 } 2282 2283 return (maxmtu); 2284 } 2285 #endif /* INET6 */ 2286 2287 /* 2288 * Calculate effective SMSS per RFC5681 definition for a given TCP 2289 * connection at its current state, taking into account SACK and etc. 2290 */ 2291 u_int 2292 tcp_maxseg(const struct tcpcb *tp) 2293 { 2294 u_int optlen; 2295 2296 if (tp->t_flags & TF_NOOPT) 2297 return (tp->t_maxseg); 2298 2299 /* 2300 * Here we have a simplified code from tcp_addoptions(), 2301 * without a proper loop, and having most of paddings hardcoded. 2302 * We might make mistakes with padding here in some edge cases, 2303 * but this is harmless, since result of tcp_maxseg() is used 2304 * only in cwnd and ssthresh estimations. 2305 */ 2306 #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) 2307 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 2308 if (tp->t_flags & TF_RCVD_TSTMP) 2309 optlen = TCPOLEN_TSTAMP_APPA; 2310 else 2311 optlen = 0; 2312 #ifdef TCP_SIGNATURE 2313 if (tp->t_flags & TF_SIGNATURE) 2314 optlen += PAD(TCPOLEN_SIGNATURE); 2315 #endif 2316 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 2317 optlen += TCPOLEN_SACKHDR; 2318 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 2319 optlen = PAD(optlen); 2320 } 2321 } else { 2322 if (tp->t_flags & TF_REQ_TSTMP) 2323 optlen = TCPOLEN_TSTAMP_APPA; 2324 else 2325 optlen = PAD(TCPOLEN_MAXSEG); 2326 if (tp->t_flags & TF_REQ_SCALE) 2327 optlen += PAD(TCPOLEN_WINDOW); 2328 #ifdef TCP_SIGNATURE 2329 if (tp->t_flags & TF_SIGNATURE) 2330 optlen += PAD(TCPOLEN_SIGNATURE); 2331 #endif 2332 if (tp->t_flags & TF_SACK_PERMIT) 2333 optlen += PAD(TCPOLEN_SACK_PERMITTED); 2334 } 2335 #undef PAD 2336 optlen = min(optlen, TCP_MAXOLEN); 2337 return (tp->t_maxseg - optlen); 2338 } 2339 2340 #ifdef IPSEC 2341 /* compute ESP/AH header size for TCP, including outer IP header. */ 2342 size_t 2343 ipsec_hdrsiz_tcp(struct tcpcb *tp) 2344 { 2345 struct inpcb *inp; 2346 struct mbuf *m; 2347 size_t hdrsiz; 2348 struct ip *ip; 2349 #ifdef INET6 2350 struct ip6_hdr *ip6; 2351 #endif 2352 struct tcphdr *th; 2353 2354 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) || 2355 (!key_havesp(IPSEC_DIR_OUTBOUND))) 2356 return (0); 2357 m = m_gethdr(M_NOWAIT, MT_DATA); 2358 if (!m) 2359 return (0); 2360 2361 #ifdef INET6 2362 if ((inp->inp_vflag & INP_IPV6) != 0) { 2363 ip6 = mtod(m, struct ip6_hdr *); 2364 th = (struct tcphdr *)(ip6 + 1); 2365 m->m_pkthdr.len = m->m_len = 2366 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 2367 tcpip_fillheaders(inp, ip6, th); 2368 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2369 } else 2370 #endif /* INET6 */ 2371 { 2372 ip = mtod(m, struct ip *); 2373 th = (struct tcphdr *)(ip + 1); 2374 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 2375 tcpip_fillheaders(inp, ip, th); 2376 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2377 } 2378 2379 m_free(m); 2380 return (hdrsiz); 2381 } 2382 #endif /* IPSEC */ 2383 2384 #ifdef TCP_SIGNATURE 2385 /* 2386 * Callback function invoked by m_apply() to digest TCP segment data 2387 * contained within an mbuf chain. 2388 */ 2389 static int 2390 tcp_signature_apply(void *fstate, void *data, u_int len) 2391 { 2392 2393 MD5Update(fstate, (u_char *)data, len); 2394 return (0); 2395 } 2396 2397 /* 2398 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 2399 * search with the destination IP address, and a 'magic SPI' to be 2400 * determined by the application. This is hardcoded elsewhere to 1179 2401 */ 2402 struct secasvar * 2403 tcp_get_sav(struct mbuf *m, u_int direction) 2404 { 2405 union sockaddr_union dst; 2406 struct secasvar *sav; 2407 struct ip *ip; 2408 #ifdef INET6 2409 struct ip6_hdr *ip6; 2410 char ip6buf[INET6_ADDRSTRLEN]; 2411 #endif 2412 2413 /* Extract the destination from the IP header in the mbuf. */ 2414 bzero(&dst, sizeof(union sockaddr_union)); 2415 ip = mtod(m, struct ip *); 2416 #ifdef INET6 2417 ip6 = NULL; /* Make the compiler happy. */ 2418 #endif 2419 switch (ip->ip_v) { 2420 #ifdef INET 2421 case IPVERSION: 2422 dst.sa.sa_len = sizeof(struct sockaddr_in); 2423 dst.sa.sa_family = AF_INET; 2424 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2425 ip->ip_src : ip->ip_dst; 2426 break; 2427 #endif 2428 #ifdef INET6 2429 case (IPV6_VERSION >> 4): 2430 ip6 = mtod(m, struct ip6_hdr *); 2431 dst.sa.sa_len = sizeof(struct sockaddr_in6); 2432 dst.sa.sa_family = AF_INET6; 2433 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 2434 ip6->ip6_src : ip6->ip6_dst; 2435 break; 2436 #endif 2437 default: 2438 return (NULL); 2439 /* NOTREACHED */ 2440 break; 2441 } 2442 2443 /* Look up an SADB entry which matches the address of the peer. */ 2444 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2445 if (sav == NULL) { 2446 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 2447 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 2448 #ifdef INET6 2449 (ip->ip_v == (IPV6_VERSION >> 4)) ? 2450 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 2451 #endif 2452 "(unsupported)")); 2453 } 2454 2455 return (sav); 2456 } 2457 2458 /* 2459 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2460 * 2461 * Parameters: 2462 * m pointer to head of mbuf chain 2463 * len length of TCP segment data, excluding options 2464 * optlen length of TCP segment options 2465 * buf pointer to storage for computed MD5 digest 2466 * sav pointer to security assosiation 2467 * 2468 * We do this over ip, tcphdr, segment data, and the key in the SADB. 2469 * When called from tcp_input(), we can be sure that th_sum has been 2470 * zeroed out and verified already. 2471 * 2472 * Releases reference to SADB key before return. 2473 * 2474 * Return 0 if successful, otherwise return -1. 2475 * 2476 */ 2477 int 2478 tcp_signature_do_compute(struct mbuf *m, int len, int optlen, 2479 u_char *buf, struct secasvar *sav) 2480 { 2481 #ifdef INET 2482 struct ippseudo ippseudo; 2483 #endif 2484 MD5_CTX ctx; 2485 int doff; 2486 struct ip *ip; 2487 #ifdef INET 2488 struct ipovly *ipovly; 2489 #endif 2490 struct tcphdr *th; 2491 #ifdef INET6 2492 struct ip6_hdr *ip6; 2493 struct in6_addr in6; 2494 uint32_t plen; 2495 uint16_t nhdr; 2496 #endif 2497 u_short savecsum; 2498 2499 KASSERT(m != NULL, ("NULL mbuf chain")); 2500 KASSERT(buf != NULL, ("NULL signature pointer")); 2501 2502 /* Extract the destination from the IP header in the mbuf. */ 2503 ip = mtod(m, struct ip *); 2504 #ifdef INET6 2505 ip6 = NULL; /* Make the compiler happy. */ 2506 #endif 2507 2508 MD5Init(&ctx); 2509 /* 2510 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 2511 * 2512 * XXX The ippseudo header MUST be digested in network byte order, 2513 * or else we'll fail the regression test. Assume all fields we've 2514 * been doing arithmetic on have been in host byte order. 2515 * XXX One cannot depend on ipovly->ih_len here. When called from 2516 * tcp_output(), the underlying ip_len member has not yet been set. 2517 */ 2518 switch (ip->ip_v) { 2519 #ifdef INET 2520 case IPVERSION: 2521 ipovly = (struct ipovly *)ip; 2522 ippseudo.ippseudo_src = ipovly->ih_src; 2523 ippseudo.ippseudo_dst = ipovly->ih_dst; 2524 ippseudo.ippseudo_pad = 0; 2525 ippseudo.ippseudo_p = IPPROTO_TCP; 2526 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 2527 optlen); 2528 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2529 2530 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 2531 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 2532 break; 2533 #endif 2534 #ifdef INET6 2535 /* 2536 * RFC 2385, 2.0 Proposal 2537 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 2538 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 2539 * extended next header value (to form 32 bits), and 32-bit segment 2540 * length. 2541 * Note: Upper-Layer Packet Length comes before Next Header. 2542 */ 2543 case (IPV6_VERSION >> 4): 2544 in6 = ip6->ip6_src; 2545 in6_clearscope(&in6); 2546 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2547 in6 = ip6->ip6_dst; 2548 in6_clearscope(&in6); 2549 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2550 plen = htonl(len + sizeof(struct tcphdr) + optlen); 2551 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 2552 nhdr = 0; 2553 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2554 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2555 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2556 nhdr = IPPROTO_TCP; 2557 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2558 2559 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 2560 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 2561 break; 2562 #endif 2563 default: 2564 KEY_FREESAV(&sav); 2565 return (-1); 2566 /* NOTREACHED */ 2567 break; 2568 } 2569 2570 2571 /* 2572 * Step 2: Update MD5 hash with TCP header, excluding options. 2573 * The TCP checksum must be set to zero. 2574 */ 2575 savecsum = th->th_sum; 2576 th->th_sum = 0; 2577 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2578 th->th_sum = savecsum; 2579 2580 /* 2581 * Step 3: Update MD5 hash with TCP segment data. 2582 * Use m_apply() to avoid an early m_pullup(). 2583 */ 2584 if (len > 0) 2585 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2586 2587 /* 2588 * Step 4: Update MD5 hash with shared secret. 2589 */ 2590 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2591 MD5Final(buf, &ctx); 2592 2593 key_sa_recordxfer(sav, m); 2594 KEY_FREESAV(&sav); 2595 return (0); 2596 } 2597 2598 /* 2599 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2600 * 2601 * Return 0 if successful, otherwise return -1. 2602 */ 2603 int 2604 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 2605 u_char *buf, u_int direction) 2606 { 2607 struct secasvar *sav; 2608 2609 if ((sav = tcp_get_sav(m, direction)) == NULL) 2610 return (-1); 2611 2612 return (tcp_signature_do_compute(m, len, optlen, buf, sav)); 2613 } 2614 2615 /* 2616 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2617 * 2618 * Parameters: 2619 * m pointer to head of mbuf chain 2620 * len length of TCP segment data, excluding options 2621 * optlen length of TCP segment options 2622 * buf pointer to storage for computed MD5 digest 2623 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2624 * 2625 * Return 1 if successful, otherwise return 0. 2626 */ 2627 int 2628 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2629 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2630 { 2631 char tmpdigest[TCP_SIGLEN]; 2632 2633 if (tcp_sig_checksigs == 0) 2634 return (1); 2635 if ((tcpbflag & TF_SIGNATURE) == 0) { 2636 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2637 2638 /* 2639 * If this socket is not expecting signature but 2640 * the segment contains signature just fail. 2641 */ 2642 TCPSTAT_INC(tcps_sig_err_sigopt); 2643 TCPSTAT_INC(tcps_sig_rcvbadsig); 2644 return (0); 2645 } 2646 2647 /* Signature is not expected, and not present in segment. */ 2648 return (1); 2649 } 2650 2651 /* 2652 * If this socket is expecting signature but the segment does not 2653 * contain any just fail. 2654 */ 2655 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2656 TCPSTAT_INC(tcps_sig_err_nosigopt); 2657 TCPSTAT_INC(tcps_sig_rcvbadsig); 2658 return (0); 2659 } 2660 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2661 IPSEC_DIR_INBOUND) == -1) { 2662 TCPSTAT_INC(tcps_sig_err_buildsig); 2663 TCPSTAT_INC(tcps_sig_rcvbadsig); 2664 return (0); 2665 } 2666 2667 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2668 TCPSTAT_INC(tcps_sig_rcvbadsig); 2669 return (0); 2670 } 2671 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2672 return (1); 2673 } 2674 #endif /* TCP_SIGNATURE */ 2675 2676 static int 2677 sysctl_drop(SYSCTL_HANDLER_ARGS) 2678 { 2679 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2680 struct sockaddr_storage addrs[2]; 2681 struct inpcb *inp; 2682 struct tcpcb *tp; 2683 struct tcptw *tw; 2684 struct sockaddr_in *fin, *lin; 2685 #ifdef INET6 2686 struct sockaddr_in6 *fin6, *lin6; 2687 #endif 2688 int error; 2689 2690 inp = NULL; 2691 fin = lin = NULL; 2692 #ifdef INET6 2693 fin6 = lin6 = NULL; 2694 #endif 2695 error = 0; 2696 2697 if (req->oldptr != NULL || req->oldlen != 0) 2698 return (EINVAL); 2699 if (req->newptr == NULL) 2700 return (EPERM); 2701 if (req->newlen < sizeof(addrs)) 2702 return (ENOMEM); 2703 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2704 if (error) 2705 return (error); 2706 2707 switch (addrs[0].ss_family) { 2708 #ifdef INET6 2709 case AF_INET6: 2710 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2711 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2712 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2713 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2714 return (EINVAL); 2715 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2716 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2717 return (EINVAL); 2718 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2719 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2720 fin = (struct sockaddr_in *)&addrs[0]; 2721 lin = (struct sockaddr_in *)&addrs[1]; 2722 break; 2723 } 2724 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2725 if (error) 2726 return (error); 2727 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2728 if (error) 2729 return (error); 2730 break; 2731 #endif 2732 #ifdef INET 2733 case AF_INET: 2734 fin = (struct sockaddr_in *)&addrs[0]; 2735 lin = (struct sockaddr_in *)&addrs[1]; 2736 if (fin->sin_len != sizeof(struct sockaddr_in) || 2737 lin->sin_len != sizeof(struct sockaddr_in)) 2738 return (EINVAL); 2739 break; 2740 #endif 2741 default: 2742 return (EINVAL); 2743 } 2744 INP_INFO_RLOCK(&V_tcbinfo); 2745 switch (addrs[0].ss_family) { 2746 #ifdef INET6 2747 case AF_INET6: 2748 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2749 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2750 INPLOOKUP_WLOCKPCB, NULL); 2751 break; 2752 #endif 2753 #ifdef INET 2754 case AF_INET: 2755 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2756 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2757 break; 2758 #endif 2759 } 2760 if (inp != NULL) { 2761 if (inp->inp_flags & INP_TIMEWAIT) { 2762 /* 2763 * XXXRW: There currently exists a state where an 2764 * inpcb is present, but its timewait state has been 2765 * discarded. For now, don't allow dropping of this 2766 * type of inpcb. 2767 */ 2768 tw = intotw(inp); 2769 if (tw != NULL) 2770 tcp_twclose(tw, 0); 2771 else 2772 INP_WUNLOCK(inp); 2773 } else if (!(inp->inp_flags & INP_DROPPED) && 2774 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2775 tp = intotcpcb(inp); 2776 tp = tcp_drop(tp, ECONNABORTED); 2777 if (tp != NULL) 2778 INP_WUNLOCK(inp); 2779 } else 2780 INP_WUNLOCK(inp); 2781 } else 2782 error = ESRCH; 2783 INP_INFO_RUNLOCK(&V_tcbinfo); 2784 return (error); 2785 } 2786 2787 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2788 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 2789 0, sysctl_drop, "", "Drop TCP connection"); 2790 2791 /* 2792 * Generate a standardized TCP log line for use throughout the 2793 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2794 * allow use in the interrupt context. 2795 * 2796 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2797 * NB: The function may return NULL if memory allocation failed. 2798 * 2799 * Due to header inclusion and ordering limitations the struct ip 2800 * and ip6_hdr pointers have to be passed as void pointers. 2801 */ 2802 char * 2803 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2804 const void *ip6hdr) 2805 { 2806 2807 /* Is logging enabled? */ 2808 if (tcp_log_in_vain == 0) 2809 return (NULL); 2810 2811 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2812 } 2813 2814 char * 2815 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2816 const void *ip6hdr) 2817 { 2818 2819 /* Is logging enabled? */ 2820 if (tcp_log_debug == 0) 2821 return (NULL); 2822 2823 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2824 } 2825 2826 static char * 2827 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2828 const void *ip6hdr) 2829 { 2830 char *s, *sp; 2831 size_t size; 2832 struct ip *ip; 2833 #ifdef INET6 2834 const struct ip6_hdr *ip6; 2835 2836 ip6 = (const struct ip6_hdr *)ip6hdr; 2837 #endif /* INET6 */ 2838 ip = (struct ip *)ip4hdr; 2839 2840 /* 2841 * The log line looks like this: 2842 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2843 */ 2844 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2845 sizeof(PRINT_TH_FLAGS) + 1 + 2846 #ifdef INET6 2847 2 * INET6_ADDRSTRLEN; 2848 #else 2849 2 * INET_ADDRSTRLEN; 2850 #endif /* INET6 */ 2851 2852 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2853 if (s == NULL) 2854 return (NULL); 2855 2856 strcat(s, "TCP: ["); 2857 sp = s + strlen(s); 2858 2859 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2860 inet_ntoa_r(inc->inc_faddr, sp); 2861 sp = s + strlen(s); 2862 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2863 sp = s + strlen(s); 2864 inet_ntoa_r(inc->inc_laddr, sp); 2865 sp = s + strlen(s); 2866 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2867 #ifdef INET6 2868 } else if (inc) { 2869 ip6_sprintf(sp, &inc->inc6_faddr); 2870 sp = s + strlen(s); 2871 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2872 sp = s + strlen(s); 2873 ip6_sprintf(sp, &inc->inc6_laddr); 2874 sp = s + strlen(s); 2875 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2876 } else if (ip6 && th) { 2877 ip6_sprintf(sp, &ip6->ip6_src); 2878 sp = s + strlen(s); 2879 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2880 sp = s + strlen(s); 2881 ip6_sprintf(sp, &ip6->ip6_dst); 2882 sp = s + strlen(s); 2883 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2884 #endif /* INET6 */ 2885 #ifdef INET 2886 } else if (ip && th) { 2887 inet_ntoa_r(ip->ip_src, sp); 2888 sp = s + strlen(s); 2889 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2890 sp = s + strlen(s); 2891 inet_ntoa_r(ip->ip_dst, sp); 2892 sp = s + strlen(s); 2893 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2894 #endif /* INET */ 2895 } else { 2896 free(s, M_TCPLOG); 2897 return (NULL); 2898 } 2899 sp = s + strlen(s); 2900 if (th) 2901 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2902 if (*(s + size - 1) != '\0') 2903 panic("%s: string too long", __func__); 2904 return (s); 2905 } 2906 2907 /* 2908 * A subroutine which makes it easy to track TCP state changes with DTrace. 2909 * This function shouldn't be called for t_state initializations that don't 2910 * correspond to actual TCP state transitions. 2911 */ 2912 void 2913 tcp_state_change(struct tcpcb *tp, int newstate) 2914 { 2915 #if defined(KDTRACE_HOOKS) 2916 int pstate = tp->t_state; 2917 #endif 2918 2919 tp->t_state = newstate; 2920 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 2921 } 2922