1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_ipsec.h" 36 #include "opt_kern_tls.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/arb.h> 41 #include <sys/callout.h> 42 #include <sys/eventhandler.h> 43 #ifdef TCP_HHOOK 44 #include <sys/hhook.h> 45 #endif 46 #include <sys/kernel.h> 47 #ifdef TCP_HHOOK 48 #include <sys/khelp.h> 49 #endif 50 #ifdef KERN_TLS 51 #include <sys/ktls.h> 52 #endif 53 #include <sys/qmath.h> 54 #include <sys/stats.h> 55 #include <sys/sysctl.h> 56 #include <sys/jail.h> 57 #include <sys/malloc.h> 58 #include <sys/refcount.h> 59 #include <sys/mbuf.h> 60 #include <sys/priv.h> 61 #include <sys/sdt.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/protosw.h> 65 #include <sys/random.h> 66 67 #include <vm/uma.h> 68 69 #include <net/route.h> 70 #include <net/route/nhop.h> 71 #include <net/if.h> 72 #include <net/if_var.h> 73 #include <net/if_private.h> 74 #include <net/vnet.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_fib.h> 78 #include <netinet/in_kdtrace.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_icmp.h> 84 #include <netinet/ip_var.h> 85 #ifdef INET6 86 #include <netinet/icmp6.h> 87 #include <netinet/ip6.h> 88 #include <netinet6/in6_fib.h> 89 #include <netinet6/in6_pcb.h> 90 #include <netinet6/ip6_var.h> 91 #include <netinet6/scope6_var.h> 92 #include <netinet6/nd6.h> 93 #endif 94 95 #include <netinet/tcp.h> 96 #ifdef INVARIANTS 97 #define TCPSTATES 98 #endif 99 #include <netinet/tcp_fsm.h> 100 #include <netinet/tcp_seq.h> 101 #include <netinet/tcp_timer.h> 102 #include <netinet/tcp_var.h> 103 #include <netinet/tcp_ecn.h> 104 #include <netinet/tcp_log_buf.h> 105 #include <netinet/tcp_syncache.h> 106 #include <netinet/tcp_hpts.h> 107 #include <netinet/tcp_lro.h> 108 #include <netinet/cc/cc.h> 109 #include <netinet/tcpip.h> 110 #include <netinet/tcp_fastopen.h> 111 #include <netinet/tcp_accounting.h> 112 #ifdef TCP_OFFLOAD 113 #include <netinet/tcp_offload.h> 114 #endif 115 #include <netinet/udp.h> 116 #include <netinet/udp_var.h> 117 #ifdef INET6 118 #include <netinet6/tcp6_var.h> 119 #endif 120 121 #include <netipsec/ipsec_support.h> 122 123 #include <machine/in_cksum.h> 124 #include <crypto/siphash/siphash.h> 125 126 #include <security/mac/mac_framework.h> 127 128 #ifdef INET6 129 static ip6proto_ctlinput_t tcp6_ctlinput; 130 static udp_tun_icmp_t tcp6_ctlinput_viaudp; 131 #endif 132 133 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 134 #ifdef INET6 135 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 136 #endif 137 138 VNET_DEFINE(uint32_t, tcp_ack_war_time_window) = 1000; 139 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_timewindow, 140 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ack_war_time_window), 0, 141 "Time interval in ms used to limit the number (ack_war_cnt) of challenge ACKs sent per TCP connection"); 142 VNET_DEFINE(uint32_t, tcp_ack_war_cnt) = 5; 143 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, ack_war_cnt, CTLFLAG_VNET | CTLFLAG_RW, 144 &VNET_NAME(tcp_ack_war_cnt), 0, 145 "Maximum number of challenge ACKs sent per TCP connection during the time interval (ack_war_timewindow)"); 146 147 struct rwlock tcp_function_lock; 148 149 static int 150 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error, new; 153 154 new = V_tcp_mssdflt; 155 error = sysctl_handle_int(oidp, &new, 0, req); 156 if (error == 0 && req->newptr) { 157 if (new < TCP_MINMSS) 158 error = EINVAL; 159 else 160 V_tcp_mssdflt = new; 161 } 162 return (error); 163 } 164 165 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 166 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 167 &VNET_NAME(tcp_mssdflt), 0, &sysctl_net_inet_tcp_mss_check, "I", 168 "Default TCP Maximum Segment Size"); 169 170 #ifdef INET6 171 static int 172 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 173 { 174 int error, new; 175 176 new = V_tcp_v6mssdflt; 177 error = sysctl_handle_int(oidp, &new, 0, req); 178 if (error == 0 && req->newptr) { 179 if (new < TCP_MINMSS) 180 error = EINVAL; 181 else 182 V_tcp_v6mssdflt = new; 183 } 184 return (error); 185 } 186 187 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(tcp_v6mssdflt), 0, &sysctl_net_inet_tcp_mss_v6_check, "I", 190 "Default TCP Maximum Segment Size for IPv6"); 191 #endif /* INET6 */ 192 193 /* 194 * Minimum MSS we accept and use. This prevents DoS attacks where 195 * we are forced to a ridiculous low MSS like 20 and send hundreds 196 * of packets instead of one. The effect scales with the available 197 * bandwidth and quickly saturates the CPU and network interface 198 * with packet generation and sending. Set to zero to disable MINMSS 199 * checking. This setting prevents us from sending too small packets. 200 */ 201 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(tcp_minmss), 0, 204 "Minimum TCP Maximum Segment Size"); 205 206 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 207 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 208 &VNET_NAME(tcp_do_rfc1323), 0, 209 "Enable rfc1323 (high performance TCP) extensions"); 210 211 /* 212 * As of June 2021, several TCP stacks violate RFC 7323 from September 2014. 213 * Some stacks negotiate TS, but never send them after connection setup. Some 214 * stacks negotiate TS, but don't send them when sending keep-alive segments. 215 * These include modern widely deployed TCP stacks. 216 * Therefore tolerating violations for now... 217 */ 218 VNET_DEFINE(int, tcp_tolerate_missing_ts) = 1; 219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tolerate_missing_ts, CTLFLAG_VNET | CTLFLAG_RW, 220 &VNET_NAME(tcp_tolerate_missing_ts), 0, 221 "Tolerate missing TCP timestamps"); 222 223 VNET_DEFINE(int, tcp_ts_offset_per_conn) = 1; 224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, ts_offset_per_conn, CTLFLAG_VNET | CTLFLAG_RW, 225 &VNET_NAME(tcp_ts_offset_per_conn), 0, 226 "Initialize TCP timestamps per connection instead of per host pair"); 227 228 /* How many connections are pacing */ 229 static volatile uint32_t number_of_tcp_connections_pacing = 0; 230 static uint32_t shadow_num_connections = 0; 231 static counter_u64_t tcp_pacing_failures; 232 static counter_u64_t tcp_dgp_failures; 233 static uint32_t shadow_tcp_pacing_dgp = 0; 234 static volatile uint32_t number_of_dgp_connections = 0; 235 236 static int tcp_pacing_limit = 10000; 237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pacing_limit, CTLFLAG_RW, 238 &tcp_pacing_limit, 1000, 239 "If the TCP stack does pacing, is there a limit (-1 = no, 0 = no pacing N = number of connections)"); 240 241 static int tcp_dgp_limit = -1; 242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dgp_limit, CTLFLAG_RW, 243 &tcp_dgp_limit, -1, 244 "If the TCP stack does DGP, is there a limit (-1 = no, 0 = no dgp N = number of connections)"); 245 246 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pacing_count, CTLFLAG_RD, 247 &shadow_num_connections, 0, "Number of TCP connections being paced"); 248 249 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, pacing_failures, CTLFLAG_RD, 250 &tcp_pacing_failures, "Number of times we failed to enable pacing to avoid exceeding the limit"); 251 252 SYSCTL_COUNTER_U64(_net_inet_tcp, OID_AUTO, dgp_failures, CTLFLAG_RD, 253 &tcp_dgp_failures, "Number of times we failed to enable dgp to avoid exceeding the limit"); 254 255 static int tcp_log_debug = 0; 256 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 257 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 258 259 /* 260 * Target size of TCP PCB hash tables. Must be a power of two. 261 * 262 * Note that this can be overridden by the kernel environment 263 * variable net.inet.tcp.tcbhashsize 264 */ 265 #ifndef TCBHASHSIZE 266 #define TCBHASHSIZE 0 267 #endif 268 static int tcp_tcbhashsize = TCBHASHSIZE; 269 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN, 270 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 271 272 static int do_tcpdrain = 1; 273 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 274 "Enable tcp_drain routine for extra help when low on mbufs"); 275 276 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 277 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 278 279 VNET_DEFINE_STATIC(int, icmp_may_rst) = 1; 280 #define V_icmp_may_rst VNET(icmp_may_rst) 281 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 282 &VNET_NAME(icmp_may_rst), 0, 283 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 284 285 VNET_DEFINE_STATIC(int, tcp_isn_reseed_interval) = 0; 286 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 288 &VNET_NAME(tcp_isn_reseed_interval), 0, 289 "Seconds between reseeding of ISN secret"); 290 291 static int tcp_soreceive_stream; 292 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 293 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 294 295 VNET_DEFINE(uma_zone_t, sack_hole_zone); 296 #define V_sack_hole_zone VNET(sack_hole_zone) 297 VNET_DEFINE(uint32_t, tcp_map_entries_limit) = 0; /* unlimited */ 298 static int 299 sysctl_net_inet_tcp_map_limit_check(SYSCTL_HANDLER_ARGS) 300 { 301 int error; 302 uint32_t new; 303 304 new = V_tcp_map_entries_limit; 305 error = sysctl_handle_int(oidp, &new, 0, req); 306 if (error == 0 && req->newptr) { 307 /* only allow "0" and value > minimum */ 308 if (new > 0 && new < TCP_MIN_MAP_ENTRIES_LIMIT) 309 error = EINVAL; 310 else 311 V_tcp_map_entries_limit = new; 312 } 313 return (error); 314 } 315 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, map_limit, 316 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 317 &VNET_NAME(tcp_map_entries_limit), 0, 318 &sysctl_net_inet_tcp_map_limit_check, "IU", 319 "Total sendmap entries limit"); 320 321 VNET_DEFINE(uint32_t, tcp_map_split_limit) = 0; /* unlimited */ 322 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, split_limit, CTLFLAG_VNET | CTLFLAG_RW, 323 &VNET_NAME(tcp_map_split_limit), 0, 324 "Total sendmap split entries limit"); 325 326 #ifdef TCP_HHOOK 327 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 328 #endif 329 330 #define TS_OFFSET_SECRET_LENGTH SIPHASH_KEY_LENGTH 331 VNET_DEFINE_STATIC(u_char, ts_offset_secret[TS_OFFSET_SECRET_LENGTH]); 332 #define V_ts_offset_secret VNET(ts_offset_secret) 333 334 static int tcp_default_fb_init(struct tcpcb *tp, void **ptr); 335 static void tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged); 336 static int tcp_default_handoff_ok(struct tcpcb *tp); 337 static struct inpcb *tcp_notify(struct inpcb *, int); 338 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 339 static struct inpcb *tcp_mtudisc(struct inpcb *, int); 340 static struct inpcb *tcp_drop_syn_sent(struct inpcb *, int); 341 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 342 const void *ip4hdr, const void *ip6hdr); 343 static void tcp_default_switch_failed(struct tcpcb *tp); 344 static ipproto_ctlinput_t tcp_ctlinput; 345 static udp_tun_icmp_t tcp_ctlinput_viaudp; 346 347 static struct tcp_function_block tcp_def_funcblk = { 348 .tfb_tcp_block_name = "freebsd", 349 .tfb_tcp_output = tcp_default_output, 350 .tfb_tcp_do_segment = tcp_do_segment, 351 .tfb_tcp_ctloutput = tcp_default_ctloutput, 352 .tfb_tcp_handoff_ok = tcp_default_handoff_ok, 353 .tfb_tcp_fb_init = tcp_default_fb_init, 354 .tfb_tcp_fb_fini = tcp_default_fb_fini, 355 .tfb_switch_failed = tcp_default_switch_failed, 356 .tfb_flags = TCP_FUNC_DEFAULT_OK, 357 }; 358 359 static int tcp_fb_cnt = 0; 360 struct tcp_funchead t_functions; 361 VNET_DEFINE_STATIC(struct tcp_function_block *, tcp_func_set_ptr) = &tcp_def_funcblk; 362 #define V_tcp_func_set_ptr VNET(tcp_func_set_ptr) 363 364 void 365 tcp_record_dsack(struct tcpcb *tp, tcp_seq start, tcp_seq end, int tlp) 366 { 367 TCPSTAT_INC(tcps_dsack_count); 368 tp->t_dsack_pack++; 369 if (tlp == 0) { 370 if (SEQ_GT(end, start)) { 371 tp->t_dsack_bytes += (end - start); 372 TCPSTAT_ADD(tcps_dsack_bytes, (end - start)); 373 } else { 374 tp->t_dsack_tlp_bytes += (start - end); 375 TCPSTAT_ADD(tcps_dsack_bytes, (start - end)); 376 } 377 } else { 378 if (SEQ_GT(end, start)) { 379 tp->t_dsack_bytes += (end - start); 380 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (end - start)); 381 } else { 382 tp->t_dsack_tlp_bytes += (start - end); 383 TCPSTAT_ADD(tcps_dsack_tlp_bytes, (start - end)); 384 } 385 } 386 } 387 388 static struct tcp_function_block * 389 find_tcp_functions_locked(struct tcp_function_set *fs) 390 { 391 struct tcp_function *f; 392 struct tcp_function_block *blk = NULL; 393 394 rw_assert(&tcp_function_lock, RA_LOCKED); 395 TAILQ_FOREACH(f, &t_functions, tf_next) { 396 if (strcmp(f->tf_name, fs->function_set_name) == 0) { 397 blk = f->tf_fb; 398 break; 399 } 400 } 401 return (blk); 402 } 403 404 static struct tcp_function_block * 405 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 406 { 407 struct tcp_function_block *rblk = NULL; 408 struct tcp_function *f; 409 410 rw_assert(&tcp_function_lock, RA_LOCKED); 411 TAILQ_FOREACH(f, &t_functions, tf_next) { 412 if (f->tf_fb == blk) { 413 rblk = blk; 414 if (s) { 415 *s = f; 416 } 417 break; 418 } 419 } 420 return (rblk); 421 } 422 423 struct tcp_function_block * 424 find_and_ref_tcp_functions(struct tcp_function_set *fs) 425 { 426 struct tcp_function_block *blk; 427 428 rw_rlock(&tcp_function_lock); 429 blk = find_tcp_functions_locked(fs); 430 if (blk) 431 refcount_acquire(&blk->tfb_refcnt); 432 rw_runlock(&tcp_function_lock); 433 return (blk); 434 } 435 436 struct tcp_function_block * 437 find_and_ref_tcp_fb(struct tcp_function_block *blk) 438 { 439 struct tcp_function_block *rblk; 440 441 rw_rlock(&tcp_function_lock); 442 rblk = find_tcp_fb_locked(blk, NULL); 443 if (rblk) 444 refcount_acquire(&rblk->tfb_refcnt); 445 rw_runlock(&tcp_function_lock); 446 return (rblk); 447 } 448 449 /* Find a matching alias for the given tcp_function_block. */ 450 int 451 find_tcp_function_alias(struct tcp_function_block *blk, 452 struct tcp_function_set *fs) 453 { 454 struct tcp_function *f; 455 int found; 456 457 found = 0; 458 rw_rlock(&tcp_function_lock); 459 TAILQ_FOREACH(f, &t_functions, tf_next) { 460 if ((f->tf_fb == blk) && 461 (strncmp(f->tf_name, blk->tfb_tcp_block_name, 462 TCP_FUNCTION_NAME_LEN_MAX) != 0)) { 463 /* Matching function block with different name. */ 464 strncpy(fs->function_set_name, f->tf_name, 465 TCP_FUNCTION_NAME_LEN_MAX); 466 found = 1; 467 break; 468 } 469 } 470 /* Null terminate the string appropriately. */ 471 if (found) { 472 fs->function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; 473 } else { 474 fs->function_set_name[0] = '\0'; 475 } 476 rw_runlock(&tcp_function_lock); 477 return (found); 478 } 479 480 static struct tcp_function_block * 481 find_and_ref_tcp_default_fb(void) 482 { 483 struct tcp_function_block *rblk; 484 485 rw_rlock(&tcp_function_lock); 486 rblk = V_tcp_func_set_ptr; 487 refcount_acquire(&rblk->tfb_refcnt); 488 rw_runlock(&tcp_function_lock); 489 return (rblk); 490 } 491 492 void 493 tcp_switch_back_to_default(struct tcpcb *tp) 494 { 495 struct tcp_function_block *tfb; 496 void *ptr = NULL; 497 498 KASSERT(tp->t_fb != &tcp_def_funcblk, 499 ("%s: called by the built-in default stack", __func__)); 500 501 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 502 tp->t_fb->tfb_tcp_timer_stop_all(tp); 503 504 /* 505 * Now, we'll find a new function block to use. 506 * Start by trying the current user-selected 507 * default, unless this stack is the user-selected 508 * default. 509 */ 510 tfb = find_and_ref_tcp_default_fb(); 511 if (tfb == tp->t_fb) { 512 refcount_release(&tfb->tfb_refcnt); 513 tfb = NULL; 514 } 515 /* Does the stack accept this connection? */ 516 if (tfb != NULL && (*tfb->tfb_tcp_handoff_ok)(tp)) { 517 refcount_release(&tfb->tfb_refcnt); 518 tfb = NULL; 519 } 520 /* Try to use that stack. */ 521 if (tfb != NULL) { 522 /* Initialize the new stack. If it succeeds, we are done. */ 523 if (tfb->tfb_tcp_fb_init == NULL || 524 (*tfb->tfb_tcp_fb_init)(tp, &ptr) == 0) { 525 /* Release the old stack */ 526 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 527 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 528 refcount_release(&tp->t_fb->tfb_refcnt); 529 /* Now set in all the pointers */ 530 tp->t_fb = tfb; 531 tp->t_fb_ptr = ptr; 532 return; 533 } 534 /* 535 * Initialization failed. Release the reference count on 536 * the looked up default stack. 537 */ 538 refcount_release(&tfb->tfb_refcnt); 539 } 540 541 /* 542 * If that wasn't feasible, use the built-in default 543 * stack which is not allowed to reject anyone. 544 */ 545 tfb = find_and_ref_tcp_fb(&tcp_def_funcblk); 546 if (tfb == NULL) { 547 /* there always should be a default */ 548 panic("Can't refer to tcp_def_funcblk"); 549 } 550 if ((*tfb->tfb_tcp_handoff_ok)(tp)) { 551 /* The default stack cannot say no */ 552 panic("Default stack rejects a new session?"); 553 } 554 if (tfb->tfb_tcp_fb_init != NULL && 555 (*tfb->tfb_tcp_fb_init)(tp, &ptr)) { 556 /* The default stack cannot fail */ 557 panic("Default stack initialization failed"); 558 } 559 /* Now release the old stack */ 560 if (tp->t_fb->tfb_tcp_fb_fini != NULL) 561 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); 562 refcount_release(&tp->t_fb->tfb_refcnt); 563 /* And set in the pointers to the new */ 564 tp->t_fb = tfb; 565 tp->t_fb_ptr = ptr; 566 } 567 568 static bool 569 tcp_recv_udp_tunneled_packet(struct mbuf *m, int off, struct inpcb *inp, 570 const struct sockaddr *sa, void *ctx) 571 { 572 struct ip *iph; 573 #ifdef INET6 574 struct ip6_hdr *ip6; 575 #endif 576 struct udphdr *uh; 577 struct tcphdr *th; 578 int thlen; 579 uint16_t port; 580 581 TCPSTAT_INC(tcps_tunneled_pkts); 582 if ((m->m_flags & M_PKTHDR) == 0) { 583 /* Can't handle one that is not a pkt hdr */ 584 TCPSTAT_INC(tcps_tunneled_errs); 585 goto out; 586 } 587 thlen = sizeof(struct tcphdr); 588 if (m->m_len < off + sizeof(struct udphdr) + thlen && 589 (m = m_pullup(m, off + sizeof(struct udphdr) + thlen)) == NULL) { 590 TCPSTAT_INC(tcps_tunneled_errs); 591 goto out; 592 } 593 iph = mtod(m, struct ip *); 594 uh = (struct udphdr *)((caddr_t)iph + off); 595 th = (struct tcphdr *)(uh + 1); 596 thlen = th->th_off << 2; 597 if (m->m_len < off + sizeof(struct udphdr) + thlen) { 598 m = m_pullup(m, off + sizeof(struct udphdr) + thlen); 599 if (m == NULL) { 600 TCPSTAT_INC(tcps_tunneled_errs); 601 goto out; 602 } else { 603 iph = mtod(m, struct ip *); 604 uh = (struct udphdr *)((caddr_t)iph + off); 605 th = (struct tcphdr *)(uh + 1); 606 } 607 } 608 m->m_pkthdr.tcp_tun_port = port = uh->uh_sport; 609 bcopy(th, uh, m->m_len - off); 610 m->m_len -= sizeof(struct udphdr); 611 m->m_pkthdr.len -= sizeof(struct udphdr); 612 /* 613 * We use the same algorithm for 614 * both UDP and TCP for c-sum. So 615 * the code in tcp_input will skip 616 * the checksum. So we do nothing 617 * with the flag (m->m_pkthdr.csum_flags). 618 */ 619 switch (iph->ip_v) { 620 #ifdef INET 621 case IPVERSION: 622 iph->ip_len = htons(ntohs(iph->ip_len) - sizeof(struct udphdr)); 623 tcp_input_with_port(&m, &off, IPPROTO_TCP, port); 624 break; 625 #endif 626 #ifdef INET6 627 case IPV6_VERSION >> 4: 628 ip6 = mtod(m, struct ip6_hdr *); 629 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - sizeof(struct udphdr)); 630 tcp6_input_with_port(&m, &off, IPPROTO_TCP, port); 631 break; 632 #endif 633 default: 634 goto out; 635 break; 636 } 637 return (true); 638 out: 639 m_freem(m); 640 641 return (true); 642 } 643 644 static int 645 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 646 { 647 int error = ENOENT; 648 struct tcp_function_set fs; 649 struct tcp_function_block *blk; 650 651 memset(&fs, 0, sizeof(fs)); 652 rw_rlock(&tcp_function_lock); 653 blk = find_tcp_fb_locked(V_tcp_func_set_ptr, NULL); 654 if (blk) { 655 /* Found him */ 656 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 657 fs.pcbcnt = blk->tfb_refcnt; 658 } 659 rw_runlock(&tcp_function_lock); 660 error = sysctl_handle_string(oidp, fs.function_set_name, 661 sizeof(fs.function_set_name), req); 662 663 /* Check for error or no change */ 664 if (error != 0 || req->newptr == NULL) 665 return (error); 666 667 rw_wlock(&tcp_function_lock); 668 blk = find_tcp_functions_locked(&fs); 669 if ((blk == NULL) || 670 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 671 error = ENOENT; 672 goto done; 673 } 674 if ((blk->tfb_flags & TCP_FUNC_DEFAULT_OK) == 0) { 675 error = EINVAL; 676 goto done; 677 } 678 V_tcp_func_set_ptr = blk; 679 done: 680 rw_wunlock(&tcp_function_lock); 681 return (error); 682 } 683 684 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 685 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 686 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 687 "Set/get the default TCP functions"); 688 689 static int 690 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 691 { 692 int error, cnt, linesz; 693 struct tcp_function *f; 694 char *buffer, *cp; 695 size_t bufsz, outsz; 696 bool alias; 697 698 cnt = 0; 699 rw_rlock(&tcp_function_lock); 700 TAILQ_FOREACH(f, &t_functions, tf_next) { 701 cnt++; 702 } 703 rw_runlock(&tcp_function_lock); 704 705 bufsz = (cnt+2) * ((TCP_FUNCTION_NAME_LEN_MAX * 2) + 13) + 1; 706 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 707 708 error = 0; 709 cp = buffer; 710 711 linesz = snprintf(cp, bufsz, "\n%-32s%c %-32s %s\n", "Stack", 'D', 712 "Alias", "PCB count"); 713 cp += linesz; 714 bufsz -= linesz; 715 outsz = linesz; 716 717 rw_rlock(&tcp_function_lock); 718 TAILQ_FOREACH(f, &t_functions, tf_next) { 719 alias = (f->tf_name != f->tf_fb->tfb_tcp_block_name); 720 linesz = snprintf(cp, bufsz, "%-32s%c %-32s %u\n", 721 f->tf_fb->tfb_tcp_block_name, 722 (f->tf_fb == V_tcp_func_set_ptr) ? '*' : ' ', 723 alias ? f->tf_name : "-", 724 f->tf_fb->tfb_refcnt); 725 if (linesz >= bufsz) { 726 error = EOVERFLOW; 727 break; 728 } 729 cp += linesz; 730 bufsz -= linesz; 731 outsz += linesz; 732 } 733 rw_runlock(&tcp_function_lock); 734 if (error == 0) 735 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 736 free(buffer, M_TEMP); 737 return (error); 738 } 739 740 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 741 CTLFLAG_VNET | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 742 NULL, 0, sysctl_net_inet_list_available, "A", 743 "list available TCP Function sets"); 744 745 VNET_DEFINE(int, tcp_udp_tunneling_port) = TCP_TUNNELING_PORT_DEFAULT; 746 747 #ifdef INET 748 VNET_DEFINE(struct socket *, udp4_tun_socket) = NULL; 749 #define V_udp4_tun_socket VNET(udp4_tun_socket) 750 #endif 751 #ifdef INET6 752 VNET_DEFINE(struct socket *, udp6_tun_socket) = NULL; 753 #define V_udp6_tun_socket VNET(udp6_tun_socket) 754 #endif 755 756 static struct sx tcpoudp_lock; 757 758 static void 759 tcp_over_udp_stop(void) 760 { 761 762 sx_assert(&tcpoudp_lock, SA_XLOCKED); 763 764 #ifdef INET 765 if (V_udp4_tun_socket != NULL) { 766 soclose(V_udp4_tun_socket); 767 V_udp4_tun_socket = NULL; 768 } 769 #endif 770 #ifdef INET6 771 if (V_udp6_tun_socket != NULL) { 772 soclose(V_udp6_tun_socket); 773 V_udp6_tun_socket = NULL; 774 } 775 #endif 776 } 777 778 static int 779 tcp_over_udp_start(void) 780 { 781 uint16_t port; 782 int ret; 783 #ifdef INET 784 struct sockaddr_in sin; 785 #endif 786 #ifdef INET6 787 struct sockaddr_in6 sin6; 788 #endif 789 790 sx_assert(&tcpoudp_lock, SA_XLOCKED); 791 792 port = V_tcp_udp_tunneling_port; 793 if (ntohs(port) == 0) { 794 /* Must have a port set */ 795 return (EINVAL); 796 } 797 #ifdef INET 798 if (V_udp4_tun_socket != NULL) { 799 /* Already running -- must stop first */ 800 return (EALREADY); 801 } 802 #endif 803 #ifdef INET6 804 if (V_udp6_tun_socket != NULL) { 805 /* Already running -- must stop first */ 806 return (EALREADY); 807 } 808 #endif 809 #ifdef INET 810 if ((ret = socreate(PF_INET, &V_udp4_tun_socket, 811 SOCK_DGRAM, IPPROTO_UDP, 812 curthread->td_ucred, curthread))) { 813 tcp_over_udp_stop(); 814 return (ret); 815 } 816 /* Call the special UDP hook. */ 817 if ((ret = udp_set_kernel_tunneling(V_udp4_tun_socket, 818 tcp_recv_udp_tunneled_packet, 819 tcp_ctlinput_viaudp, 820 NULL))) { 821 tcp_over_udp_stop(); 822 return (ret); 823 } 824 /* Ok, we have a socket, bind it to the port. */ 825 memset(&sin, 0, sizeof(struct sockaddr_in)); 826 sin.sin_len = sizeof(struct sockaddr_in); 827 sin.sin_family = AF_INET; 828 sin.sin_port = htons(port); 829 if ((ret = sobind(V_udp4_tun_socket, 830 (struct sockaddr *)&sin, curthread))) { 831 tcp_over_udp_stop(); 832 return (ret); 833 } 834 #endif 835 #ifdef INET6 836 if ((ret = socreate(PF_INET6, &V_udp6_tun_socket, 837 SOCK_DGRAM, IPPROTO_UDP, 838 curthread->td_ucred, curthread))) { 839 tcp_over_udp_stop(); 840 return (ret); 841 } 842 /* Call the special UDP hook. */ 843 if ((ret = udp_set_kernel_tunneling(V_udp6_tun_socket, 844 tcp_recv_udp_tunneled_packet, 845 tcp6_ctlinput_viaudp, 846 NULL))) { 847 tcp_over_udp_stop(); 848 return (ret); 849 } 850 /* Ok, we have a socket, bind it to the port. */ 851 memset(&sin6, 0, sizeof(struct sockaddr_in6)); 852 sin6.sin6_len = sizeof(struct sockaddr_in6); 853 sin6.sin6_family = AF_INET6; 854 sin6.sin6_port = htons(port); 855 if ((ret = sobind(V_udp6_tun_socket, 856 (struct sockaddr *)&sin6, curthread))) { 857 tcp_over_udp_stop(); 858 return (ret); 859 } 860 #endif 861 return (0); 862 } 863 864 static int 865 sysctl_net_inet_tcp_udp_tunneling_port_check(SYSCTL_HANDLER_ARGS) 866 { 867 int error; 868 uint32_t old, new; 869 870 old = V_tcp_udp_tunneling_port; 871 new = old; 872 error = sysctl_handle_int(oidp, &new, 0, req); 873 if ((error == 0) && 874 (req->newptr != NULL)) { 875 if ((new < TCP_TUNNELING_PORT_MIN) || 876 (new > TCP_TUNNELING_PORT_MAX)) { 877 error = EINVAL; 878 } else { 879 sx_xlock(&tcpoudp_lock); 880 V_tcp_udp_tunneling_port = new; 881 if (old != 0) { 882 tcp_over_udp_stop(); 883 } 884 if (new != 0) { 885 error = tcp_over_udp_start(); 886 if (error != 0) { 887 V_tcp_udp_tunneling_port = 0; 888 } 889 } 890 sx_xunlock(&tcpoudp_lock); 891 } 892 } 893 return (error); 894 } 895 896 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_port, 897 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 898 &VNET_NAME(tcp_udp_tunneling_port), 899 0, &sysctl_net_inet_tcp_udp_tunneling_port_check, "IU", 900 "Tunneling port for tcp over udp"); 901 902 VNET_DEFINE(int, tcp_udp_tunneling_overhead) = TCP_TUNNELING_OVERHEAD_DEFAULT; 903 904 static int 905 sysctl_net_inet_tcp_udp_tunneling_overhead_check(SYSCTL_HANDLER_ARGS) 906 { 907 int error, new; 908 909 new = V_tcp_udp_tunneling_overhead; 910 error = sysctl_handle_int(oidp, &new, 0, req); 911 if (error == 0 && req->newptr) { 912 if ((new < TCP_TUNNELING_OVERHEAD_MIN) || 913 (new > TCP_TUNNELING_OVERHEAD_MAX)) 914 error = EINVAL; 915 else 916 V_tcp_udp_tunneling_overhead = new; 917 } 918 return (error); 919 } 920 921 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, udp_tunneling_overhead, 922 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 923 &VNET_NAME(tcp_udp_tunneling_overhead), 924 0, &sysctl_net_inet_tcp_udp_tunneling_overhead_check, "IU", 925 "MSS reduction when using tcp over udp"); 926 927 /* 928 * Exports one (struct tcp_function_info) for each alias/name. 929 */ 930 static int 931 sysctl_net_inet_list_func_info(SYSCTL_HANDLER_ARGS) 932 { 933 int cnt, error; 934 struct tcp_function *f; 935 struct tcp_function_info tfi; 936 937 /* 938 * We don't allow writes. 939 */ 940 if (req->newptr != NULL) 941 return (EINVAL); 942 943 /* 944 * Wire the old buffer so we can directly copy the functions to 945 * user space without dropping the lock. 946 */ 947 if (req->oldptr != NULL) { 948 error = sysctl_wire_old_buffer(req, 0); 949 if (error) 950 return (error); 951 } 952 953 /* 954 * Walk the list and copy out matching entries. If INVARIANTS 955 * is compiled in, also walk the list to verify the length of 956 * the list matches what we have recorded. 957 */ 958 rw_rlock(&tcp_function_lock); 959 960 cnt = 0; 961 #ifndef INVARIANTS 962 if (req->oldptr == NULL) { 963 cnt = tcp_fb_cnt; 964 goto skip_loop; 965 } 966 #endif 967 TAILQ_FOREACH(f, &t_functions, tf_next) { 968 #ifdef INVARIANTS 969 cnt++; 970 #endif 971 if (req->oldptr != NULL) { 972 bzero(&tfi, sizeof(tfi)); 973 tfi.tfi_refcnt = f->tf_fb->tfb_refcnt; 974 tfi.tfi_id = f->tf_fb->tfb_id; 975 (void)strlcpy(tfi.tfi_alias, f->tf_name, 976 sizeof(tfi.tfi_alias)); 977 (void)strlcpy(tfi.tfi_name, 978 f->tf_fb->tfb_tcp_block_name, sizeof(tfi.tfi_name)); 979 error = SYSCTL_OUT(req, &tfi, sizeof(tfi)); 980 /* 981 * Don't stop on error, as that is the 982 * mechanism we use to accumulate length 983 * information if the buffer was too short. 984 */ 985 } 986 } 987 KASSERT(cnt == tcp_fb_cnt, 988 ("%s: cnt (%d) != tcp_fb_cnt (%d)", __func__, cnt, tcp_fb_cnt)); 989 #ifndef INVARIANTS 990 skip_loop: 991 #endif 992 rw_runlock(&tcp_function_lock); 993 if (req->oldptr == NULL) 994 error = SYSCTL_OUT(req, NULL, 995 (cnt + 1) * sizeof(struct tcp_function_info)); 996 997 return (error); 998 } 999 1000 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, function_info, 1001 CTLTYPE_OPAQUE | CTLFLAG_SKIP | CTLFLAG_RD | CTLFLAG_MPSAFE, 1002 NULL, 0, sysctl_net_inet_list_func_info, "S,tcp_function_info", 1003 "List TCP function block name-to-ID mappings"); 1004 1005 /* 1006 * tfb_tcp_handoff_ok() function for the default stack. 1007 * Note that we'll basically try to take all comers. 1008 */ 1009 static int 1010 tcp_default_handoff_ok(struct tcpcb *tp) 1011 { 1012 1013 return (0); 1014 } 1015 1016 /* 1017 * tfb_tcp_fb_init() function for the default stack. 1018 * 1019 * This handles making sure we have appropriate timers set if you are 1020 * transitioning a socket that has some amount of setup done. 1021 * 1022 * The init() fuction from the default can *never* return non-zero i.e. 1023 * it is required to always succeed since it is the stack of last resort! 1024 */ 1025 static int 1026 tcp_default_fb_init(struct tcpcb *tp, void **ptr) 1027 { 1028 struct socket *so = tptosocket(tp); 1029 int rexmt; 1030 1031 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1032 /* We don't use the pointer */ 1033 *ptr = NULL; 1034 1035 KASSERT(tp->t_state < TCPS_TIME_WAIT, 1036 ("%s: connection %p in unexpected state %d", __func__, tp, 1037 tp->t_state)); 1038 1039 /* Make sure we get no interesting mbuf queuing behavior */ 1040 /* All mbuf queue/ack compress flags should be off */ 1041 tcp_lro_features_off(tp); 1042 1043 /* Cancel the GP measurement in progress */ 1044 tp->t_flags &= ~TF_GPUTINPROG; 1045 /* Validate the timers are not in usec, if they are convert */ 1046 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 1047 if ((tp->t_state == TCPS_SYN_SENT) || 1048 (tp->t_state == TCPS_SYN_RECEIVED)) 1049 rexmt = tcp_rexmit_initial * tcp_backoff[tp->t_rxtshift]; 1050 else 1051 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; 1052 if (tp->t_rxtshift == 0) 1053 tp->t_rxtcur = rexmt; 1054 else 1055 TCPT_RANGESET(tp->t_rxtcur, rexmt, tp->t_rttmin, TCPTV_REXMTMAX); 1056 1057 /* 1058 * Nothing to do for ESTABLISHED or LISTEN states. And, we don't 1059 * know what to do for unexpected states (which includes TIME_WAIT). 1060 */ 1061 if (tp->t_state <= TCPS_LISTEN || tp->t_state >= TCPS_TIME_WAIT) 1062 return (0); 1063 1064 /* 1065 * Make sure some kind of transmission timer is set if there is 1066 * outstanding data. 1067 */ 1068 if ((!TCPS_HAVEESTABLISHED(tp->t_state) || sbavail(&so->so_snd) || 1069 tp->snd_una != tp->snd_max) && !(tcp_timer_active(tp, TT_REXMT) || 1070 tcp_timer_active(tp, TT_PERSIST))) { 1071 /* 1072 * If the session has established and it looks like it should 1073 * be in the persist state, set the persist timer. Otherwise, 1074 * set the retransmit timer. 1075 */ 1076 if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->snd_wnd == 0 && 1077 (int32_t)(tp->snd_nxt - tp->snd_una) < 1078 (int32_t)sbavail(&so->so_snd)) 1079 tcp_setpersist(tp); 1080 else 1081 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp)); 1082 } 1083 1084 /* All non-embryonic sessions get a keepalive timer. */ 1085 if (!tcp_timer_active(tp, TT_KEEP)) 1086 tcp_timer_activate(tp, TT_KEEP, 1087 TCPS_HAVEESTABLISHED(tp->t_state) ? TP_KEEPIDLE(tp) : 1088 TP_KEEPINIT(tp)); 1089 1090 /* 1091 * Make sure critical variables are initialized 1092 * if transitioning while in Recovery. 1093 */ 1094 if IN_FASTRECOVERY(tp->t_flags) { 1095 if (tp->sackhint.recover_fs == 0) 1096 tp->sackhint.recover_fs = max(1, 1097 tp->snd_nxt - tp->snd_una); 1098 } 1099 1100 return (0); 1101 } 1102 1103 /* 1104 * tfb_tcp_fb_fini() function for the default stack. 1105 * 1106 * This changes state as necessary (or prudent) to prepare for another stack 1107 * to assume responsibility for the connection. 1108 */ 1109 static void 1110 tcp_default_fb_fini(struct tcpcb *tp, int tcb_is_purged) 1111 { 1112 1113 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1114 1115 #ifdef TCP_BLACKBOX 1116 tcp_log_flowend(tp); 1117 #endif 1118 tp->t_acktime = 0; 1119 return; 1120 } 1121 1122 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 1123 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 1124 1125 static struct mtx isn_mtx; 1126 1127 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 1128 #define ISN_LOCK() mtx_lock(&isn_mtx) 1129 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 1130 1131 INPCBSTORAGE_DEFINE(tcpcbstor, tcpcb, "tcpinp", "tcp_inpcb", "tcp", "tcphash"); 1132 1133 /* 1134 * Take a value and get the next power of 2 that doesn't overflow. 1135 * Used to size the tcp_inpcb hash buckets. 1136 */ 1137 static int 1138 maketcp_hashsize(int size) 1139 { 1140 int hashsize; 1141 1142 /* 1143 * auto tune. 1144 * get the next power of 2 higher than maxsockets. 1145 */ 1146 hashsize = 1 << fls(size); 1147 /* catch overflow, and just go one power of 2 smaller */ 1148 if (hashsize < size) { 1149 hashsize = 1 << (fls(size) - 1); 1150 } 1151 return (hashsize); 1152 } 1153 1154 static volatile int next_tcp_stack_id = 1; 1155 1156 /* 1157 * Register a TCP function block with the name provided in the names 1158 * array. (Note that this function does NOT automatically register 1159 * blk->tfb_tcp_block_name as a stack name. Therefore, you should 1160 * explicitly include blk->tfb_tcp_block_name in the list of names if 1161 * you wish to register the stack with that name.) 1162 * 1163 * Either all name registrations will succeed or all will fail. If 1164 * a name registration fails, the function will update the num_names 1165 * argument to point to the array index of the name that encountered 1166 * the failure. 1167 * 1168 * Returns 0 on success, or an error code on failure. 1169 */ 1170 int 1171 register_tcp_functions_as_names(struct tcp_function_block *blk, int wait, 1172 const char *names[], int *num_names) 1173 { 1174 struct tcp_function *f[TCP_FUNCTION_NAME_NUM_MAX]; 1175 struct tcp_function_set fs; 1176 int error, i, num_registered; 1177 1178 KASSERT(names != NULL, ("%s: Called with NULL name list", __func__)); 1179 KASSERT(*num_names > 0, 1180 ("%s: Called with non-positive length of name list", __func__)); 1181 KASSERT(rw_initialized(&tcp_function_lock), 1182 ("%s: called too early", __func__)); 1183 1184 if (*num_names > TCP_FUNCTION_NAME_NUM_MAX) { 1185 /* Too many names. */ 1186 *num_names = 0; 1187 return (E2BIG); 1188 } 1189 if ((blk->tfb_tcp_output == NULL) || 1190 (blk->tfb_tcp_do_segment == NULL) || 1191 (blk->tfb_tcp_ctloutput == NULL) || 1192 (blk->tfb_tcp_handoff_ok == NULL) || 1193 (strlen(blk->tfb_tcp_block_name) == 0)) { 1194 /* These functions are required and a name is needed. */ 1195 *num_names = 0; 1196 return (EINVAL); 1197 } 1198 1199 for (i = 0; i < *num_names; i++) { 1200 f[i] = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 1201 if (f[i] == NULL) { 1202 while (--i >= 0) 1203 free(f[i], M_TCPFUNCTIONS); 1204 *num_names = 0; 1205 return (ENOMEM); 1206 } 1207 } 1208 1209 num_registered = 0; 1210 rw_wlock(&tcp_function_lock); 1211 if (find_tcp_fb_locked(blk, NULL) != NULL) { 1212 /* A TCP function block can only be registered once. */ 1213 error = EALREADY; 1214 goto cleanup; 1215 } 1216 if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { 1217 error = EINVAL; 1218 goto cleanup; 1219 } 1220 refcount_init(&blk->tfb_refcnt, 0); 1221 blk->tfb_id = atomic_fetchadd_int(&next_tcp_stack_id, 1); 1222 for (i = 0; i < *num_names; i++) { 1223 (void)strlcpy(fs.function_set_name, names[i], 1224 sizeof(fs.function_set_name)); 1225 if (find_tcp_functions_locked(&fs) != NULL) { 1226 /* Duplicate name space not allowed */ 1227 error = EALREADY; 1228 goto cleanup; 1229 } 1230 f[i]->tf_fb = blk; 1231 (void)strlcpy(f[i]->tf_name, names[i], sizeof(f[i]->tf_name)); 1232 TAILQ_INSERT_TAIL(&t_functions, f[i], tf_next); 1233 tcp_fb_cnt++; 1234 num_registered++; 1235 } 1236 rw_wunlock(&tcp_function_lock); 1237 return (0); 1238 1239 cleanup: 1240 /* Remove the entries just added. */ 1241 for (i = 0; i < *num_names; i++) { 1242 if (i < num_registered) { 1243 TAILQ_REMOVE(&t_functions, f[i], tf_next); 1244 tcp_fb_cnt--; 1245 } 1246 f[i]->tf_fb = NULL; 1247 free(f[i], M_TCPFUNCTIONS); 1248 } 1249 rw_wunlock(&tcp_function_lock); 1250 *num_names = num_registered; 1251 return (error); 1252 } 1253 1254 /* 1255 * Register a TCP function block using the name provided in the name 1256 * argument. 1257 * 1258 * Returns 0 on success, or an error code on failure. 1259 */ 1260 int 1261 register_tcp_functions_as_name(struct tcp_function_block *blk, const char *name, 1262 int wait) 1263 { 1264 const char *name_list[1]; 1265 int num_names, rv; 1266 1267 num_names = 1; 1268 if (name != NULL) 1269 name_list[0] = name; 1270 else 1271 name_list[0] = blk->tfb_tcp_block_name; 1272 rv = register_tcp_functions_as_names(blk, wait, name_list, &num_names); 1273 return (rv); 1274 } 1275 1276 /* 1277 * Register a TCP function block using the name defined in 1278 * blk->tfb_tcp_block_name. 1279 * 1280 * Returns 0 on success, or an error code on failure. 1281 */ 1282 int 1283 register_tcp_functions(struct tcp_function_block *blk, int wait) 1284 { 1285 1286 return (register_tcp_functions_as_name(blk, NULL, wait)); 1287 } 1288 1289 /* 1290 * Deregister all names associated with a function block. This 1291 * functionally removes the function block from use within the system. 1292 * 1293 * When called with a true quiesce argument, mark the function block 1294 * as being removed so no more stacks will use it and determine 1295 * whether the removal would succeed. 1296 * 1297 * When called with a false quiesce argument, actually attempt the 1298 * removal. 1299 * 1300 * When called with a force argument, attempt to switch all TCBs to 1301 * use the default stack instead of returning EBUSY. 1302 * 1303 * Returns 0 on success (or if the removal would succeed), or an error 1304 * code on failure. 1305 */ 1306 int 1307 deregister_tcp_functions(struct tcp_function_block *blk, bool quiesce, 1308 bool force) 1309 { 1310 struct tcp_function *f; 1311 VNET_ITERATOR_DECL(vnet_iter); 1312 1313 if (blk == &tcp_def_funcblk) { 1314 /* You can't un-register the default */ 1315 return (EPERM); 1316 } 1317 rw_wlock(&tcp_function_lock); 1318 VNET_LIST_RLOCK_NOSLEEP(); 1319 VNET_FOREACH(vnet_iter) { 1320 CURVNET_SET(vnet_iter); 1321 if (blk == V_tcp_func_set_ptr) { 1322 /* You can't free the current default in some vnet. */ 1323 CURVNET_RESTORE(); 1324 VNET_LIST_RUNLOCK_NOSLEEP(); 1325 rw_wunlock(&tcp_function_lock); 1326 return (EBUSY); 1327 } 1328 CURVNET_RESTORE(); 1329 } 1330 VNET_LIST_RUNLOCK_NOSLEEP(); 1331 /* Mark the block so no more stacks can use it. */ 1332 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 1333 /* 1334 * If TCBs are still attached to the stack, attempt to switch them 1335 * to the default stack. 1336 */ 1337 if (force && blk->tfb_refcnt) { 1338 struct inpcb *inp; 1339 struct tcpcb *tp; 1340 VNET_ITERATOR_DECL(vnet_iter); 1341 1342 rw_wunlock(&tcp_function_lock); 1343 1344 VNET_LIST_RLOCK(); 1345 VNET_FOREACH(vnet_iter) { 1346 CURVNET_SET(vnet_iter); 1347 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1348 INPLOOKUP_WLOCKPCB); 1349 1350 while ((inp = inp_next(&inpi)) != NULL) { 1351 tp = intotcpcb(inp); 1352 if (tp == NULL || tp->t_fb != blk) 1353 continue; 1354 tcp_switch_back_to_default(tp); 1355 } 1356 CURVNET_RESTORE(); 1357 } 1358 VNET_LIST_RUNLOCK(); 1359 1360 rw_wlock(&tcp_function_lock); 1361 } 1362 if (blk->tfb_refcnt) { 1363 /* TCBs still attached. */ 1364 rw_wunlock(&tcp_function_lock); 1365 return (EBUSY); 1366 } 1367 if (quiesce) { 1368 /* Skip removal. */ 1369 rw_wunlock(&tcp_function_lock); 1370 return (0); 1371 } 1372 /* Remove any function names that map to this function block. */ 1373 while (find_tcp_fb_locked(blk, &f) != NULL) { 1374 TAILQ_REMOVE(&t_functions, f, tf_next); 1375 tcp_fb_cnt--; 1376 f->tf_fb = NULL; 1377 free(f, M_TCPFUNCTIONS); 1378 } 1379 rw_wunlock(&tcp_function_lock); 1380 return (0); 1381 } 1382 1383 static void 1384 tcp_drain(void *ctx __unused, int flags __unused) 1385 { 1386 struct epoch_tracker et; 1387 VNET_ITERATOR_DECL(vnet_iter); 1388 1389 if (!do_tcpdrain) 1390 return; 1391 1392 NET_EPOCH_ENTER(et); 1393 VNET_LIST_RLOCK_NOSLEEP(); 1394 VNET_FOREACH(vnet_iter) { 1395 CURVNET_SET(vnet_iter); 1396 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 1397 INPLOOKUP_WLOCKPCB); 1398 struct inpcb *inpb; 1399 struct tcpcb *tcpb; 1400 1401 /* 1402 * Walk the tcpbs, if existing, and flush the reassembly queue, 1403 * if there is one... 1404 * XXX: The "Net/3" implementation doesn't imply that the TCP 1405 * reassembly queue should be flushed, but in a situation 1406 * where we're really low on mbufs, this is potentially 1407 * useful. 1408 */ 1409 while ((inpb = inp_next(&inpi)) != NULL) { 1410 if ((tcpb = intotcpcb(inpb)) != NULL) { 1411 tcp_reass_flush(tcpb); 1412 tcp_clean_sackreport(tcpb); 1413 #ifdef TCP_BLACKBOX 1414 tcp_log_drain(tcpb); 1415 #endif 1416 } 1417 } 1418 CURVNET_RESTORE(); 1419 } 1420 VNET_LIST_RUNLOCK_NOSLEEP(); 1421 NET_EPOCH_EXIT(et); 1422 } 1423 1424 static void 1425 tcp_vnet_init(void *arg __unused) 1426 { 1427 1428 #ifdef TCP_HHOOK 1429 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 1430 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1431 printf("%s: WARNING: unable to register helper hook\n", __func__); 1432 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 1433 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 1434 printf("%s: WARNING: unable to register helper hook\n", __func__); 1435 #endif 1436 #ifdef STATS 1437 if (tcp_stats_init()) 1438 printf("%s: WARNING: unable to initialise TCP stats\n", 1439 __func__); 1440 #endif 1441 in_pcbinfo_init(&V_tcbinfo, &tcpcbstor, tcp_tcbhashsize, 1442 tcp_tcbhashsize); 1443 1444 syncache_init(); 1445 tcp_hc_init(); 1446 1447 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 1448 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 1449 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1450 1451 tcp_fastopen_init(); 1452 1453 COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); 1454 VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); 1455 1456 V_tcp_msl = TCPTV_MSL; 1457 arc4rand(&V_ts_offset_secret, sizeof(V_ts_offset_secret), 0); 1458 } 1459 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 1460 tcp_vnet_init, NULL); 1461 1462 static void 1463 tcp_init(void *arg __unused) 1464 { 1465 int hashsize; 1466 1467 tcp_reass_global_init(); 1468 1469 /* XXX virtualize those below? */ 1470 tcp_delacktime = TCPTV_DELACK; 1471 tcp_keepinit = TCPTV_KEEP_INIT; 1472 tcp_keepidle = TCPTV_KEEP_IDLE; 1473 tcp_keepintvl = TCPTV_KEEPINTVL; 1474 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 1475 tcp_rexmit_initial = TCPTV_RTOBASE; 1476 if (tcp_rexmit_initial < 1) 1477 tcp_rexmit_initial = 1; 1478 tcp_rexmit_min = TCPTV_MIN; 1479 if (tcp_rexmit_min < 1) 1480 tcp_rexmit_min = 1; 1481 tcp_persmin = TCPTV_PERSMIN; 1482 tcp_persmax = TCPTV_PERSMAX; 1483 tcp_rexmit_slop = TCPTV_CPU_VAR; 1484 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 1485 1486 /* Setup the tcp function block list */ 1487 TAILQ_INIT(&t_functions); 1488 rw_init(&tcp_function_lock, "tcp_func_lock"); 1489 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 1490 sx_init(&tcpoudp_lock, "TCP over UDP configuration"); 1491 #ifdef TCP_BLACKBOX 1492 /* Initialize the TCP logging data. */ 1493 tcp_log_init(); 1494 #endif 1495 1496 if (tcp_soreceive_stream) { 1497 #ifdef INET 1498 tcp_protosw.pr_soreceive = soreceive_stream; 1499 #endif 1500 #ifdef INET6 1501 tcp6_protosw.pr_soreceive = soreceive_stream; 1502 #endif /* INET6 */ 1503 } 1504 1505 #ifdef INET6 1506 max_protohdr_grow(sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); 1507 #else /* INET6 */ 1508 max_protohdr_grow(sizeof(struct tcpiphdr)); 1509 #endif /* INET6 */ 1510 1511 ISN_LOCK_INIT(); 1512 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 1513 SHUTDOWN_PRI_DEFAULT); 1514 EVENTHANDLER_REGISTER(vm_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1515 EVENTHANDLER_REGISTER(mbuf_lowmem, tcp_drain, NULL, LOWMEM_PRI_DEFAULT); 1516 1517 tcp_inp_lro_direct_queue = counter_u64_alloc(M_WAITOK); 1518 tcp_inp_lro_wokeup_queue = counter_u64_alloc(M_WAITOK); 1519 tcp_inp_lro_compressed = counter_u64_alloc(M_WAITOK); 1520 tcp_inp_lro_locks_taken = counter_u64_alloc(M_WAITOK); 1521 tcp_extra_mbuf = counter_u64_alloc(M_WAITOK); 1522 tcp_would_have_but = counter_u64_alloc(M_WAITOK); 1523 tcp_comp_total = counter_u64_alloc(M_WAITOK); 1524 tcp_uncomp_total = counter_u64_alloc(M_WAITOK); 1525 tcp_bad_csums = counter_u64_alloc(M_WAITOK); 1526 tcp_pacing_failures = counter_u64_alloc(M_WAITOK); 1527 tcp_dgp_failures = counter_u64_alloc(M_WAITOK); 1528 1529 hashsize = tcp_tcbhashsize; 1530 if (hashsize == 0) { 1531 /* 1532 * Auto tune the hash size based on maxsockets. 1533 * A perfect hash would have a 1:1 mapping 1534 * (hashsize = maxsockets) however it's been 1535 * suggested that O(2) average is better. 1536 */ 1537 hashsize = maketcp_hashsize(maxsockets / 4); 1538 /* 1539 * Our historical default is 512, 1540 * do not autotune lower than this. 1541 */ 1542 if (hashsize < 512) 1543 hashsize = 512; 1544 if (bootverbose) 1545 printf("%s: %s auto tuned to %d\n", __func__, 1546 "net.inet.tcp.tcbhashsize", hashsize); 1547 } 1548 /* 1549 * We require a hashsize to be a power of two. 1550 * Previously if it was not a power of two we would just reset it 1551 * back to 512, which could be a nasty surprise if you did not notice 1552 * the error message. 1553 * Instead what we do is clip it to the closest power of two lower 1554 * than the specified hash value. 1555 */ 1556 if (!powerof2(hashsize)) { 1557 int oldhashsize = hashsize; 1558 1559 hashsize = maketcp_hashsize(hashsize); 1560 /* prevent absurdly low value */ 1561 if (hashsize < 16) 1562 hashsize = 16; 1563 printf("%s: WARNING: TCB hash size not a power of 2, " 1564 "clipped from %d to %d.\n", __func__, oldhashsize, 1565 hashsize); 1566 } 1567 tcp_tcbhashsize = hashsize; 1568 1569 #ifdef INET 1570 IPPROTO_REGISTER(IPPROTO_TCP, tcp_input, tcp_ctlinput); 1571 #endif 1572 #ifdef INET6 1573 IP6PROTO_REGISTER(IPPROTO_TCP, tcp6_input, tcp6_ctlinput); 1574 #endif 1575 } 1576 SYSINIT(tcp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, tcp_init, NULL); 1577 1578 #ifdef VIMAGE 1579 static void 1580 tcp_destroy(void *unused __unused) 1581 { 1582 #ifdef TCP_HHOOK 1583 int error; 1584 #endif 1585 1586 tcp_hc_destroy(); 1587 syncache_destroy(); 1588 in_pcbinfo_destroy(&V_tcbinfo); 1589 /* tcp_discardcb() clears the sack_holes up. */ 1590 uma_zdestroy(V_sack_hole_zone); 1591 1592 /* 1593 * Cannot free the zone until all tcpcbs are released as we attach 1594 * the allocations to them. 1595 */ 1596 tcp_fastopen_destroy(); 1597 1598 COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); 1599 VNET_PCPUSTAT_FREE(tcpstat); 1600 1601 #ifdef TCP_HHOOK 1602 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 1603 if (error != 0) { 1604 printf("%s: WARNING: unable to deregister helper hook " 1605 "type=%d, id=%d: error %d returned\n", __func__, 1606 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 1607 } 1608 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 1609 if (error != 0) { 1610 printf("%s: WARNING: unable to deregister helper hook " 1611 "type=%d, id=%d: error %d returned\n", __func__, 1612 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 1613 } 1614 #endif 1615 } 1616 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 1617 #endif 1618 1619 void 1620 tcp_fini(void *xtp) 1621 { 1622 1623 } 1624 1625 /* 1626 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 1627 * tcp_template used to store this data in mbufs, but we now recopy it out 1628 * of the tcpcb each time to conserve mbufs. 1629 */ 1630 void 1631 tcpip_fillheaders(struct inpcb *inp, uint16_t port, void *ip_ptr, void *tcp_ptr) 1632 { 1633 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 1634 1635 INP_WLOCK_ASSERT(inp); 1636 1637 #ifdef INET6 1638 if ((inp->inp_vflag & INP_IPV6) != 0) { 1639 struct ip6_hdr *ip6; 1640 1641 ip6 = (struct ip6_hdr *)ip_ptr; 1642 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 1643 (inp->inp_flow & IPV6_FLOWINFO_MASK); 1644 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 1645 (IPV6_VERSION & IPV6_VERSION_MASK); 1646 if (port == 0) 1647 ip6->ip6_nxt = IPPROTO_TCP; 1648 else 1649 ip6->ip6_nxt = IPPROTO_UDP; 1650 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 1651 ip6->ip6_src = inp->in6p_laddr; 1652 ip6->ip6_dst = inp->in6p_faddr; 1653 } 1654 #endif /* INET6 */ 1655 #if defined(INET6) && defined(INET) 1656 else 1657 #endif 1658 #ifdef INET 1659 { 1660 struct ip *ip; 1661 1662 ip = (struct ip *)ip_ptr; 1663 ip->ip_v = IPVERSION; 1664 ip->ip_hl = 5; 1665 ip->ip_tos = inp->inp_ip_tos; 1666 ip->ip_len = 0; 1667 ip->ip_id = 0; 1668 ip->ip_off = 0; 1669 ip->ip_ttl = inp->inp_ip_ttl; 1670 ip->ip_sum = 0; 1671 if (port == 0) 1672 ip->ip_p = IPPROTO_TCP; 1673 else 1674 ip->ip_p = IPPROTO_UDP; 1675 ip->ip_src = inp->inp_laddr; 1676 ip->ip_dst = inp->inp_faddr; 1677 } 1678 #endif /* INET */ 1679 th->th_sport = inp->inp_lport; 1680 th->th_dport = inp->inp_fport; 1681 th->th_seq = 0; 1682 th->th_ack = 0; 1683 th->th_off = 5; 1684 tcp_set_flags(th, 0); 1685 th->th_win = 0; 1686 th->th_urp = 0; 1687 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 1688 } 1689 1690 /* 1691 * Create template to be used to send tcp packets on a connection. 1692 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 1693 * use for this function is in keepalives, which use tcp_respond. 1694 */ 1695 struct tcptemp * 1696 tcpip_maketemplate(struct inpcb *inp) 1697 { 1698 struct tcptemp *t; 1699 1700 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 1701 if (t == NULL) 1702 return (NULL); 1703 tcpip_fillheaders(inp, 0, (void *)&t->tt_ipgen, (void *)&t->tt_t); 1704 return (t); 1705 } 1706 1707 /* 1708 * Send a single message to the TCP at address specified by 1709 * the given TCP/IP header. If m == NULL, then we make a copy 1710 * of the tcpiphdr at th and send directly to the addressed host. 1711 * This is used to force keep alive messages out using the TCP 1712 * template for a connection. If flags are given then we send 1713 * a message back to the TCP which originated the segment th, 1714 * and discard the mbuf containing it and any other attached mbufs. 1715 * 1716 * In any case the ack and sequence number of the transmitted 1717 * segment are as specified by the parameters. 1718 * 1719 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 1720 */ 1721 1722 void 1723 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 1724 tcp_seq ack, tcp_seq seq, uint16_t flags) 1725 { 1726 struct tcpopt to; 1727 struct inpcb *inp; 1728 struct ip *ip; 1729 struct mbuf *optm; 1730 struct udphdr *uh = NULL; 1731 struct tcphdr *nth; 1732 struct tcp_log_buffer *lgb; 1733 u_char *optp; 1734 #ifdef INET6 1735 struct ip6_hdr *ip6; 1736 int isipv6; 1737 #endif /* INET6 */ 1738 int optlen, tlen, win, ulen; 1739 int ect = 0; 1740 bool incl_opts; 1741 uint16_t port; 1742 int output_ret; 1743 #ifdef INVARIANTS 1744 int thflags = tcp_get_flags(th); 1745 #endif 1746 1747 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 1748 NET_EPOCH_ASSERT(); 1749 1750 #ifdef INET6 1751 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 1752 ip6 = ipgen; 1753 #endif /* INET6 */ 1754 ip = ipgen; 1755 1756 if (tp != NULL) { 1757 inp = tptoinpcb(tp); 1758 INP_LOCK_ASSERT(inp); 1759 } else 1760 inp = NULL; 1761 1762 if (m != NULL) { 1763 #ifdef INET6 1764 if (isipv6 && ip6 && (ip6->ip6_nxt == IPPROTO_UDP)) 1765 port = m->m_pkthdr.tcp_tun_port; 1766 else 1767 #endif 1768 if (ip && (ip->ip_p == IPPROTO_UDP)) 1769 port = m->m_pkthdr.tcp_tun_port; 1770 else 1771 port = 0; 1772 } else 1773 port = tp->t_port; 1774 1775 incl_opts = false; 1776 win = 0; 1777 if (tp != NULL) { 1778 if (!(flags & TH_RST)) { 1779 win = sbspace(&inp->inp_socket->so_rcv); 1780 if (win > TCP_MAXWIN << tp->rcv_scale) 1781 win = TCP_MAXWIN << tp->rcv_scale; 1782 } 1783 if ((tp->t_flags & TF_NOOPT) == 0) 1784 incl_opts = true; 1785 } 1786 if (m == NULL) { 1787 m = m_gethdr(M_NOWAIT, MT_DATA); 1788 if (m == NULL) 1789 return; 1790 m->m_data += max_linkhdr; 1791 #ifdef INET6 1792 if (isipv6) { 1793 bcopy((caddr_t)ip6, mtod(m, caddr_t), 1794 sizeof(struct ip6_hdr)); 1795 ip6 = mtod(m, struct ip6_hdr *); 1796 nth = (struct tcphdr *)(ip6 + 1); 1797 if (port) { 1798 /* Insert a UDP header */ 1799 uh = (struct udphdr *)nth; 1800 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1801 uh->uh_dport = port; 1802 nth = (struct tcphdr *)(uh + 1); 1803 } 1804 } else 1805 #endif /* INET6 */ 1806 { 1807 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 1808 ip = mtod(m, struct ip *); 1809 nth = (struct tcphdr *)(ip + 1); 1810 if (port) { 1811 /* Insert a UDP header */ 1812 uh = (struct udphdr *)nth; 1813 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1814 uh->uh_dport = port; 1815 nth = (struct tcphdr *)(uh + 1); 1816 } 1817 } 1818 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1819 flags = TH_ACK; 1820 } else if ((!M_WRITABLE(m)) || (port != 0)) { 1821 struct mbuf *n; 1822 1823 /* Can't reuse 'm', allocate a new mbuf. */ 1824 n = m_gethdr(M_NOWAIT, MT_DATA); 1825 if (n == NULL) { 1826 m_freem(m); 1827 return; 1828 } 1829 1830 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 1831 m_freem(m); 1832 m_freem(n); 1833 return; 1834 } 1835 1836 n->m_data += max_linkhdr; 1837 /* m_len is set later */ 1838 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 1839 #ifdef INET6 1840 if (isipv6) { 1841 bcopy((caddr_t)ip6, mtod(n, caddr_t), 1842 sizeof(struct ip6_hdr)); 1843 ip6 = mtod(n, struct ip6_hdr *); 1844 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1845 nth = (struct tcphdr *)(ip6 + 1); 1846 if (port) { 1847 /* Insert a UDP header */ 1848 uh = (struct udphdr *)nth; 1849 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1850 uh->uh_dport = port; 1851 nth = (struct tcphdr *)(uh + 1); 1852 } 1853 } else 1854 #endif /* INET6 */ 1855 { 1856 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 1857 ip = mtod(n, struct ip *); 1858 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1859 nth = (struct tcphdr *)(ip + 1); 1860 if (port) { 1861 /* Insert a UDP header */ 1862 uh = (struct udphdr *)nth; 1863 uh->uh_sport = htons(V_tcp_udp_tunneling_port); 1864 uh->uh_dport = port; 1865 nth = (struct tcphdr *)(uh + 1); 1866 } 1867 } 1868 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 1869 xchg(nth->th_dport, nth->th_sport, uint16_t); 1870 th = nth; 1871 m_freem(m); 1872 m = n; 1873 } else { 1874 /* 1875 * reuse the mbuf. 1876 * XXX MRT We inherit the FIB, which is lucky. 1877 */ 1878 m_freem(m->m_next); 1879 m->m_next = NULL; 1880 m->m_data = (caddr_t)ipgen; 1881 /* clear any receive flags for proper bpf timestamping */ 1882 m->m_flags &= ~(M_TSTMP | M_TSTMP_LRO); 1883 /* m_len is set later */ 1884 #ifdef INET6 1885 if (isipv6) { 1886 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 1887 nth = (struct tcphdr *)(ip6 + 1); 1888 } else 1889 #endif /* INET6 */ 1890 { 1891 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 1892 nth = (struct tcphdr *)(ip + 1); 1893 } 1894 if (th != nth) { 1895 /* 1896 * this is usually a case when an extension header 1897 * exists between the IPv6 header and the 1898 * TCP header. 1899 */ 1900 nth->th_sport = th->th_sport; 1901 nth->th_dport = th->th_dport; 1902 } 1903 xchg(nth->th_dport, nth->th_sport, uint16_t); 1904 #undef xchg 1905 } 1906 tlen = 0; 1907 #ifdef INET6 1908 if (isipv6) 1909 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1910 #endif 1911 #if defined(INET) && defined(INET6) 1912 else 1913 #endif 1914 #ifdef INET 1915 tlen = sizeof (struct tcpiphdr); 1916 #endif 1917 if (port) 1918 tlen += sizeof (struct udphdr); 1919 #ifdef INVARIANTS 1920 m->m_len = 0; 1921 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1922 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1923 m, tlen, (long)M_TRAILINGSPACE(m))); 1924 #endif 1925 m->m_len = tlen; 1926 to.to_flags = 0; 1927 if (incl_opts) { 1928 ect = tcp_ecn_output_established(tp, &flags, 0, false); 1929 /* Make sure we have room. */ 1930 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1931 m->m_next = m_get(M_NOWAIT, MT_DATA); 1932 if (m->m_next) { 1933 optp = mtod(m->m_next, u_char *); 1934 optm = m->m_next; 1935 } else 1936 incl_opts = false; 1937 } else { 1938 optp = (u_char *) (nth + 1); 1939 optm = m; 1940 } 1941 } 1942 if (incl_opts) { 1943 /* Timestamps. */ 1944 if (tp->t_flags & TF_RCVD_TSTMP) { 1945 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 1946 to.to_tsecr = tp->ts_recent; 1947 to.to_flags |= TOF_TS; 1948 } 1949 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 1950 /* TCP-MD5 (RFC2385). */ 1951 if (tp->t_flags & TF_SIGNATURE) 1952 to.to_flags |= TOF_SIGNATURE; 1953 #endif 1954 /* Add the options. */ 1955 tlen += optlen = tcp_addoptions(&to, optp); 1956 1957 /* Update m_len in the correct mbuf. */ 1958 optm->m_len += optlen; 1959 } else 1960 optlen = 0; 1961 #ifdef INET6 1962 if (isipv6) { 1963 if (uh) { 1964 ulen = tlen - sizeof(struct ip6_hdr); 1965 uh->uh_ulen = htons(ulen); 1966 } 1967 ip6->ip6_flow = htonl(ect << IPV6_FLOWLABEL_LEN); 1968 ip6->ip6_vfc = IPV6_VERSION; 1969 if (port) 1970 ip6->ip6_nxt = IPPROTO_UDP; 1971 else 1972 ip6->ip6_nxt = IPPROTO_TCP; 1973 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 1974 } 1975 #endif 1976 #if defined(INET) && defined(INET6) 1977 else 1978 #endif 1979 #ifdef INET 1980 { 1981 if (uh) { 1982 ulen = tlen - sizeof(struct ip); 1983 uh->uh_ulen = htons(ulen); 1984 } 1985 ip->ip_len = htons(tlen); 1986 if (inp != NULL) { 1987 ip->ip_tos = inp->inp_ip_tos & ~IPTOS_ECN_MASK; 1988 ip->ip_ttl = inp->inp_ip_ttl; 1989 } else { 1990 ip->ip_tos = 0; 1991 ip->ip_ttl = V_ip_defttl; 1992 } 1993 ip->ip_tos |= ect; 1994 if (port) { 1995 ip->ip_p = IPPROTO_UDP; 1996 } else { 1997 ip->ip_p = IPPROTO_TCP; 1998 } 1999 if (V_path_mtu_discovery) 2000 ip->ip_off |= htons(IP_DF); 2001 } 2002 #endif 2003 m->m_pkthdr.len = tlen; 2004 m->m_pkthdr.rcvif = NULL; 2005 #ifdef MAC 2006 if (inp != NULL) { 2007 /* 2008 * Packet is associated with a socket, so allow the 2009 * label of the response to reflect the socket label. 2010 */ 2011 INP_LOCK_ASSERT(inp); 2012 mac_inpcb_create_mbuf(inp, m); 2013 } else { 2014 /* 2015 * Packet is not associated with a socket, so possibly 2016 * update the label in place. 2017 */ 2018 mac_netinet_tcp_reply(m); 2019 } 2020 #endif 2021 nth->th_seq = htonl(seq); 2022 nth->th_ack = htonl(ack); 2023 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 2024 tcp_set_flags(nth, flags); 2025 if (tp && (flags & TH_RST)) { 2026 /* Log the reset */ 2027 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); 2028 } 2029 if (tp != NULL) 2030 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 2031 else 2032 nth->th_win = htons((u_short)win); 2033 nth->th_urp = 0; 2034 2035 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 2036 if (to.to_flags & TOF_SIGNATURE) { 2037 if (!TCPMD5_ENABLED() || 2038 TCPMD5_OUTPUT(m, nth, to.to_signature) != 0) { 2039 m_freem(m); 2040 return; 2041 } 2042 } 2043 #endif 2044 2045 #ifdef INET6 2046 if (isipv6) { 2047 if (port) { 2048 m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; 2049 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2050 uh->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); 2051 nth->th_sum = 0; 2052 } else { 2053 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 2054 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2055 nth->th_sum = in6_cksum_pseudo(ip6, 2056 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 2057 } 2058 ip6->ip6_hlim = in6_selecthlim(inp, NULL); 2059 } 2060 #endif /* INET6 */ 2061 #if defined(INET6) && defined(INET) 2062 else 2063 #endif 2064 #ifdef INET 2065 { 2066 if (port) { 2067 uh->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2068 htons(ulen + IPPROTO_UDP)); 2069 m->m_pkthdr.csum_flags = CSUM_UDP; 2070 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 2071 nth->th_sum = 0; 2072 } else { 2073 m->m_pkthdr.csum_flags = CSUM_TCP; 2074 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 2075 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 2076 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 2077 } 2078 } 2079 #endif /* INET */ 2080 TCP_PROBE3(debug__output, tp, th, m); 2081 if (flags & TH_RST) 2082 TCP_PROBE5(accept__refused, NULL, NULL, m, tp, nth); 2083 lgb = NULL; 2084 if ((tp != NULL) && tcp_bblogging_on(tp)) { 2085 if (INP_WLOCKED(inp)) { 2086 union tcp_log_stackspecific log; 2087 struct timeval tv; 2088 2089 memset(&log, 0, sizeof(log)); 2090 log.u_bbr.inhpts = tcp_in_hpts(tp); 2091 log.u_bbr.flex8 = 4; 2092 log.u_bbr.pkts_out = tp->t_maxseg; 2093 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 2094 log.u_bbr.delivered = 0; 2095 lgb = tcp_log_event(tp, nth, NULL, NULL, TCP_LOG_OUT, 2096 ERRNO_UNK, 0, &log, false, NULL, NULL, 0, &tv); 2097 } else { 2098 /* 2099 * We can not log the packet, since we only own the 2100 * read lock, but a write lock is needed. The read lock 2101 * is not upgraded to a write lock, since only getting 2102 * the read lock was done intentionally to improve the 2103 * handling of SYN flooding attacks. 2104 * This happens only for pure SYN segments received in 2105 * the initial CLOSED state, or received in a more 2106 * advanced state than listen and the UDP encapsulation 2107 * port is unexpected. 2108 * The incoming SYN segments do not really belong to 2109 * the TCP connection and the handling does not change 2110 * the state of the TCP connection. Therefore, the 2111 * sending of the RST segments is not logged. Please 2112 * note that also the incoming SYN segments are not 2113 * logged. 2114 * 2115 * The following code ensures that the above description 2116 * is and stays correct. 2117 */ 2118 KASSERT((thflags & (TH_ACK|TH_SYN)) == TH_SYN && 2119 (tp->t_state == TCPS_CLOSED || 2120 (tp->t_state > TCPS_LISTEN && tp->t_port != port)), 2121 ("%s: Logging of TCP segment with flags 0x%b and " 2122 "UDP encapsulation port %u skipped in state %s", 2123 __func__, thflags, PRINT_TH_FLAGS, 2124 ntohs(port), tcpstates[tp->t_state])); 2125 } 2126 } 2127 2128 if (flags & TH_ACK) 2129 TCPSTAT_INC(tcps_sndacks); 2130 else if (flags & (TH_SYN|TH_FIN|TH_RST)) 2131 TCPSTAT_INC(tcps_sndctrl); 2132 TCPSTAT_INC(tcps_sndtotal); 2133 2134 #ifdef INET6 2135 if (isipv6) { 2136 TCP_PROBE5(send, NULL, tp, ip6, tp, nth); 2137 output_ret = ip6_output(m, inp ? inp->in6p_outputopts : NULL, 2138 NULL, 0, NULL, NULL, inp); 2139 } 2140 #endif /* INET6 */ 2141 #if defined(INET) && defined(INET6) 2142 else 2143 #endif 2144 #ifdef INET 2145 { 2146 TCP_PROBE5(send, NULL, tp, ip, tp, nth); 2147 output_ret = ip_output(m, NULL, NULL, 0, NULL, inp); 2148 } 2149 #endif 2150 if (lgb != NULL) 2151 lgb->tlb_errno = output_ret; 2152 } 2153 2154 /* 2155 * Send a challenge ack (no data, no SACK option), but not more than 2156 * V_tcp_ack_war_cnt per V_tcp_ack_war_time_window (per TCP connection). 2157 */ 2158 void 2159 tcp_send_challenge_ack(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m) 2160 { 2161 sbintime_t now; 2162 bool send_challenge_ack; 2163 2164 if (V_tcp_ack_war_time_window == 0 || V_tcp_ack_war_cnt == 0) { 2165 /* ACK war protection is disabled. */ 2166 send_challenge_ack = true; 2167 } else { 2168 /* Start new epoch, if the previous one is already over. */ 2169 now = getsbinuptime(); 2170 if (tp->t_challenge_ack_end < now) { 2171 tp->t_challenge_ack_cnt = 0; 2172 tp->t_challenge_ack_end = now + 2173 V_tcp_ack_war_time_window * SBT_1MS; 2174 } 2175 /* 2176 * Send a challenge ACK, if less than tcp_ack_war_cnt have been 2177 * sent in the current epoch. 2178 */ 2179 if (tp->t_challenge_ack_cnt < V_tcp_ack_war_cnt) { 2180 send_challenge_ack = true; 2181 tp->t_challenge_ack_cnt++; 2182 } else { 2183 send_challenge_ack = false; 2184 } 2185 } 2186 if (send_challenge_ack) { 2187 tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, 2188 tp->snd_nxt, TH_ACK); 2189 tp->last_ack_sent = tp->rcv_nxt; 2190 } 2191 } 2192 2193 /* 2194 * Create a new TCP control block, making an empty reassembly queue and hooking 2195 * it to the argument protocol control block. The `inp' parameter must have 2196 * come from the zone allocator set up by tcpcbstor declaration. 2197 * The caller can provide a pointer to a tcpcb of the listener to inherit the 2198 * TCP function block from the listener. 2199 */ 2200 struct tcpcb * 2201 tcp_newtcpcb(struct inpcb *inp, struct tcpcb *listening_tcb) 2202 { 2203 struct tcpcb *tp = intotcpcb(inp); 2204 #ifdef INET6 2205 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2206 #endif /* INET6 */ 2207 2208 /* 2209 * Historically allocation was done with M_ZERO. There is a lot of 2210 * code that rely on that. For now take safe approach and zero whole 2211 * tcpcb. This definitely can be optimized. 2212 */ 2213 bzero(&tp->t_start_zero, t_zero_size); 2214 2215 /* Initialise cc_var struct for this tcpcb. */ 2216 tp->t_ccv.tp = tp; 2217 rw_rlock(&tcp_function_lock); 2218 if (listening_tcb != NULL) { 2219 INP_LOCK_ASSERT(tptoinpcb(listening_tcb)); 2220 KASSERT(listening_tcb->t_fb != NULL, 2221 ("tcp_newtcpcb: listening_tcb->t_fb is NULL")); 2222 if (listening_tcb->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) { 2223 rw_runlock(&tcp_function_lock); 2224 return (NULL); 2225 } 2226 tp->t_fb = listening_tcb->t_fb; 2227 } else { 2228 tp->t_fb = V_tcp_func_set_ptr; 2229 } 2230 refcount_acquire(&tp->t_fb->tfb_refcnt); 2231 KASSERT((tp->t_fb->tfb_flags & TCP_FUNC_BEING_REMOVED) == 0, 2232 ("tcp_newtcpcb: using TFB being removed")); 2233 rw_runlock(&tcp_function_lock); 2234 CC_LIST_RLOCK(); 2235 if (listening_tcb != NULL) { 2236 if (CC_ALGO(listening_tcb)->flags & CC_MODULE_BEING_REMOVED) { 2237 CC_LIST_RUNLOCK(); 2238 if (tp->t_fb->tfb_tcp_fb_fini) 2239 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2240 refcount_release(&tp->t_fb->tfb_refcnt); 2241 return (NULL); 2242 } 2243 CC_ALGO(tp) = CC_ALGO(listening_tcb); 2244 } else 2245 CC_ALGO(tp) = CC_DEFAULT_ALGO(); 2246 cc_refer(CC_ALGO(tp)); 2247 CC_LIST_RUNLOCK(); 2248 if (CC_ALGO(tp)->cb_init != NULL) 2249 if (CC_ALGO(tp)->cb_init(&tp->t_ccv, NULL) > 0) { 2250 cc_detach(tp); 2251 if (tp->t_fb->tfb_tcp_fb_fini) 2252 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2253 refcount_release(&tp->t_fb->tfb_refcnt); 2254 return (NULL); 2255 } 2256 2257 #ifdef TCP_HHOOK 2258 if (khelp_init_osd(HELPER_CLASS_TCP, &tp->t_osd)) { 2259 if (CC_ALGO(tp)->cb_destroy != NULL) 2260 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2261 CC_DATA(tp) = NULL; 2262 cc_detach(tp); 2263 if (tp->t_fb->tfb_tcp_fb_fini) 2264 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2265 refcount_release(&tp->t_fb->tfb_refcnt); 2266 return (NULL); 2267 } 2268 #endif 2269 2270 TAILQ_INIT(&tp->t_segq); 2271 STAILQ_INIT(&tp->t_inqueue); 2272 tp->t_maxseg = 2273 #ifdef INET6 2274 isipv6 ? V_tcp_v6mssdflt : 2275 #endif /* INET6 */ 2276 V_tcp_mssdflt; 2277 2278 /* All mbuf queue/ack compress flags should be off */ 2279 tcp_lro_features_off(tp); 2280 2281 tp->t_hpts_cpu = HPTS_CPU_NONE; 2282 tp->t_lro_cpu = HPTS_CPU_NONE; 2283 2284 callout_init_rw(&tp->t_callout, &inp->inp_lock, 2285 CALLOUT_TRYLOCK | CALLOUT_RETURNUNLOCKED); 2286 for (int i = 0; i < TT_N; i++) 2287 tp->t_timers[i] = SBT_MAX; 2288 2289 switch (V_tcp_do_rfc1323) { 2290 case 0: 2291 break; 2292 default: 2293 case 1: 2294 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 2295 break; 2296 case 2: 2297 tp->t_flags = TF_REQ_SCALE; 2298 break; 2299 case 3: 2300 tp->t_flags = TF_REQ_TSTMP; 2301 break; 2302 } 2303 if (V_tcp_do_sack) 2304 tp->t_flags |= TF_SACK_PERMIT; 2305 TAILQ_INIT(&tp->snd_holes); 2306 2307 /* 2308 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 2309 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 2310 * reasonable initial retransmit time. 2311 */ 2312 tp->t_srtt = TCPTV_SRTTBASE; 2313 tp->t_rttvar = ((tcp_rexmit_initial - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 2314 tp->t_rttmin = tcp_rexmit_min; 2315 tp->t_rxtcur = tcp_rexmit_initial; 2316 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2317 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 2318 tp->t_rcvtime = ticks; 2319 /* We always start with ticks granularity */ 2320 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 2321 /* 2322 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 2323 * because the socket may be bound to an IPv6 wildcard address, 2324 * which may match an IPv4-mapped IPv6 address. 2325 */ 2326 inp->inp_ip_ttl = V_ip_defttl; 2327 #ifdef TCP_BLACKBOX 2328 /* Initialize the per-TCPCB log data. */ 2329 tcp_log_tcpcbinit(tp); 2330 #endif 2331 tp->t_pacing_rate = -1; 2332 if (tp->t_fb->tfb_tcp_fb_init) { 2333 if ((*tp->t_fb->tfb_tcp_fb_init)(tp, &tp->t_fb_ptr)) { 2334 if (CC_ALGO(tp)->cb_destroy != NULL) 2335 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2336 CC_DATA(tp) = NULL; 2337 cc_detach(tp); 2338 #ifdef TCP_HHOOK 2339 khelp_destroy_osd(&tp->t_osd); 2340 #endif 2341 refcount_release(&tp->t_fb->tfb_refcnt); 2342 return (NULL); 2343 } 2344 } 2345 #ifdef STATS 2346 if (V_tcp_perconn_stats_enable == 1) 2347 tp->t_stats = stats_blob_alloc(V_tcp_perconn_stats_dflt_tpl, 0); 2348 #endif 2349 if (V_tcp_do_lrd) 2350 tp->t_flags |= TF_LRD; 2351 2352 return (tp); 2353 } 2354 2355 /* 2356 * Drop a TCP connection, reporting 2357 * the specified error. If connection is synchronized, 2358 * then send a RST to peer. 2359 */ 2360 struct tcpcb * 2361 tcp_drop(struct tcpcb *tp, int errno) 2362 { 2363 struct socket *so = tptosocket(tp); 2364 2365 NET_EPOCH_ASSERT(); 2366 INP_WLOCK_ASSERT(tptoinpcb(tp)); 2367 2368 if (TCPS_HAVERCVDSYN(tp->t_state)) { 2369 tcp_state_change(tp, TCPS_CLOSED); 2370 /* Don't use tcp_output() here due to possible recursion. */ 2371 (void)tcp_output_nodrop(tp); 2372 TCPSTAT_INC(tcps_drops); 2373 } else 2374 TCPSTAT_INC(tcps_conndrops); 2375 if (errno == ETIMEDOUT && tp->t_softerror) 2376 errno = tp->t_softerror; 2377 so->so_error = errno; 2378 return (tcp_close(tp)); 2379 } 2380 2381 void 2382 tcp_discardcb(struct tcpcb *tp) 2383 { 2384 struct inpcb *inp = tptoinpcb(tp); 2385 struct socket *so = tptosocket(tp); 2386 struct mbuf *m; 2387 #ifdef INET6 2388 bool isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 2389 #endif 2390 2391 INP_WLOCK_ASSERT(inp); 2392 MPASS(!callout_active(&tp->t_callout)); 2393 MPASS(TAILQ_EMPTY(&tp->snd_holes)); 2394 2395 /* free the reassembly queue, if any */ 2396 tcp_reass_flush(tp); 2397 2398 #ifdef TCP_OFFLOAD 2399 /* Disconnect offload device, if any. */ 2400 if (tp->t_flags & TF_TOE) 2401 tcp_offload_detach(tp); 2402 #endif 2403 2404 /* Allow the CC algorithm to clean up after itself. */ 2405 if (CC_ALGO(tp)->cb_destroy != NULL) 2406 CC_ALGO(tp)->cb_destroy(&tp->t_ccv); 2407 CC_DATA(tp) = NULL; 2408 /* Detach from the CC algorithm */ 2409 cc_detach(tp); 2410 2411 #ifdef TCP_HHOOK 2412 khelp_destroy_osd(&tp->t_osd); 2413 #endif 2414 #ifdef STATS 2415 stats_blob_destroy(tp->t_stats); 2416 #endif 2417 2418 CC_ALGO(tp) = NULL; 2419 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) { 2420 struct mbuf *prev; 2421 2422 STAILQ_INIT(&tp->t_inqueue); 2423 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev) 2424 m_freem(m); 2425 } 2426 TCPSTATES_DEC(tp->t_state); 2427 2428 if (tp->t_fb->tfb_tcp_fb_fini) 2429 (*tp->t_fb->tfb_tcp_fb_fini)(tp, 1); 2430 MPASS(!tcp_in_hpts(tp)); 2431 #ifdef TCP_BLACKBOX 2432 tcp_log_tcpcbfini(tp); 2433 #endif 2434 2435 /* 2436 * If we got enough samples through the srtt filter, 2437 * save the rtt and rttvar in the routing entry. 2438 * 'Enough' is arbitrarily defined as 4 rtt samples. 2439 * 4 samples is enough for the srtt filter to converge 2440 * to within enough % of the correct value; fewer samples 2441 * and we could save a bogus rtt. The danger is not high 2442 * as tcp quickly recovers from everything. 2443 * XXX: Works very well but needs some more statistics! 2444 * 2445 * XXXRRS: Updating must be after the stack fini() since 2446 * that may be converting some internal representation of 2447 * say srtt etc into the general one used by other stacks. 2448 */ 2449 if (tp->t_rttupdated >= 4) { 2450 struct hc_metrics_lite metrics; 2451 uint32_t ssthresh; 2452 2453 bzero(&metrics, sizeof(metrics)); 2454 /* 2455 * Update the ssthresh always when the conditions below 2456 * are satisfied. This gives us better new start value 2457 * for the congestion avoidance for new connections. 2458 * ssthresh is only set if packet loss occurred on a session. 2459 */ 2460 ssthresh = tp->snd_ssthresh; 2461 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 2462 /* 2463 * convert the limit from user data bytes to 2464 * packets then to packet data bytes. 2465 */ 2466 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 2467 if (ssthresh < 2) 2468 ssthresh = 2; 2469 ssthresh *= (tp->t_maxseg + 2470 #ifdef INET6 2471 (isipv6 ? sizeof (struct ip6_hdr) + 2472 sizeof (struct tcphdr) : 2473 #endif 2474 sizeof (struct tcpiphdr) 2475 #ifdef INET6 2476 ) 2477 #endif 2478 ); 2479 } else 2480 ssthresh = 0; 2481 metrics.hc_ssthresh = ssthresh; 2482 2483 metrics.hc_rtt = tp->t_srtt; 2484 metrics.hc_rttvar = tp->t_rttvar; 2485 metrics.hc_cwnd = tp->snd_cwnd; 2486 metrics.hc_sendpipe = 0; 2487 metrics.hc_recvpipe = 0; 2488 2489 tcp_hc_update(&inp->inp_inc, &metrics); 2490 } 2491 2492 refcount_release(&tp->t_fb->tfb_refcnt); 2493 } 2494 2495 /* 2496 * Attempt to close a TCP control block, marking it as dropped, and freeing 2497 * the socket if we hold the only reference. 2498 */ 2499 struct tcpcb * 2500 tcp_close(struct tcpcb *tp) 2501 { 2502 struct inpcb *inp = tptoinpcb(tp); 2503 struct socket *so = tptosocket(tp); 2504 2505 INP_WLOCK_ASSERT(inp); 2506 2507 #ifdef TCP_OFFLOAD 2508 if (tp->t_state == TCPS_LISTEN) 2509 tcp_offload_listen_stop(tp); 2510 #endif 2511 /* 2512 * This releases the TFO pending counter resource for TFO listen 2513 * sockets as well as passively-created TFO sockets that transition 2514 * from SYN_RECEIVED to CLOSED. 2515 */ 2516 if (tp->t_tfo_pending) { 2517 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 2518 tp->t_tfo_pending = NULL; 2519 } 2520 tcp_timer_stop(tp); 2521 if (tp->t_fb->tfb_tcp_timer_stop_all != NULL) 2522 tp->t_fb->tfb_tcp_timer_stop_all(tp); 2523 in_pcbdrop(inp); 2524 TCPSTAT_INC(tcps_closed); 2525 if (tp->t_state != TCPS_CLOSED) 2526 tcp_state_change(tp, TCPS_CLOSED); 2527 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 2528 tcp_free_sackholes(tp); 2529 soisdisconnected(so); 2530 if (inp->inp_flags & INP_SOCKREF) { 2531 inp->inp_flags &= ~INP_SOCKREF; 2532 INP_WUNLOCK(inp); 2533 sorele(so); 2534 return (NULL); 2535 } 2536 return (tp); 2537 } 2538 2539 /* 2540 * Notify a tcp user of an asynchronous error; 2541 * store error as soft error, but wake up user 2542 * (for now, won't do anything until can select for soft error). 2543 * 2544 * Do not wake up user since there currently is no mechanism for 2545 * reporting soft errors (yet - a kqueue filter may be added). 2546 */ 2547 static struct inpcb * 2548 tcp_notify(struct inpcb *inp, int error) 2549 { 2550 struct tcpcb *tp; 2551 2552 INP_WLOCK_ASSERT(inp); 2553 2554 tp = intotcpcb(inp); 2555 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 2556 2557 /* 2558 * Ignore some errors if we are hooked up. 2559 * If connection hasn't completed, has retransmitted several times, 2560 * and receives a second error, give up now. This is better 2561 * than waiting a long time to establish a connection that 2562 * can never complete. 2563 */ 2564 if (tp->t_state == TCPS_ESTABLISHED && 2565 (error == EHOSTUNREACH || error == ENETUNREACH || 2566 error == EHOSTDOWN)) { 2567 if (inp->inp_route.ro_nh) { 2568 NH_FREE(inp->inp_route.ro_nh); 2569 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 2570 } 2571 return (inp); 2572 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 2573 tp->t_softerror) { 2574 tp = tcp_drop(tp, error); 2575 if (tp != NULL) 2576 return (inp); 2577 else 2578 return (NULL); 2579 } else { 2580 tp->t_softerror = error; 2581 return (inp); 2582 } 2583 #if 0 2584 wakeup( &so->so_timeo); 2585 sorwakeup(so); 2586 sowwakeup(so); 2587 #endif 2588 } 2589 2590 static int 2591 tcp_pcblist(SYSCTL_HANDLER_ARGS) 2592 { 2593 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2594 INPLOOKUP_RLOCKPCB); 2595 struct xinpgen xig; 2596 struct inpcb *inp; 2597 int error; 2598 2599 if (req->newptr != NULL) 2600 return (EPERM); 2601 2602 if (req->oldptr == NULL) { 2603 int n; 2604 2605 n = V_tcbinfo.ipi_count + 2606 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2607 n += imax(n / 8, 10); 2608 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 2609 return (0); 2610 } 2611 2612 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 2613 return (error); 2614 2615 bzero(&xig, sizeof(xig)); 2616 xig.xig_len = sizeof xig; 2617 xig.xig_count = V_tcbinfo.ipi_count + 2618 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2619 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2620 xig.xig_sogen = so_gencnt; 2621 error = SYSCTL_OUT(req, &xig, sizeof xig); 2622 if (error) 2623 return (error); 2624 2625 error = syncache_pcblist(req); 2626 if (error) 2627 return (error); 2628 2629 while ((inp = inp_next(&inpi)) != NULL) { 2630 if (inp->inp_gencnt <= xig.xig_gen && 2631 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 2632 struct xtcpcb xt; 2633 2634 tcp_inptoxtp(inp, &xt); 2635 error = SYSCTL_OUT(req, &xt, sizeof xt); 2636 if (error) { 2637 INP_RUNLOCK(inp); 2638 break; 2639 } else 2640 continue; 2641 } 2642 } 2643 2644 if (!error) { 2645 /* 2646 * Give the user an updated idea of our state. 2647 * If the generation differs from what we told 2648 * her before, she knows that something happened 2649 * while we were processing this request, and it 2650 * might be necessary to retry. 2651 */ 2652 xig.xig_gen = V_tcbinfo.ipi_gencnt; 2653 xig.xig_sogen = so_gencnt; 2654 xig.xig_count = V_tcbinfo.ipi_count + 2655 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 2656 error = SYSCTL_OUT(req, &xig, sizeof xig); 2657 } 2658 2659 return (error); 2660 } 2661 2662 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 2663 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 2664 NULL, 0, tcp_pcblist, "S,xtcpcb", 2665 "List of active TCP connections"); 2666 2667 #ifdef INET 2668 static int 2669 tcp_getcred(SYSCTL_HANDLER_ARGS) 2670 { 2671 struct xucred xuc; 2672 struct sockaddr_in addrs[2]; 2673 struct epoch_tracker et; 2674 struct inpcb *inp; 2675 int error; 2676 2677 if (req->newptr == NULL) 2678 return (EINVAL); 2679 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2680 if (error) 2681 return (error); 2682 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2683 if (error) 2684 return (error); 2685 NET_EPOCH_ENTER(et); 2686 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 2687 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 2688 NET_EPOCH_EXIT(et); 2689 if (inp != NULL) { 2690 if (error == 0) 2691 error = cr_canseeinpcb(req->td->td_ucred, inp); 2692 if (error == 0) 2693 cru2x(inp->inp_cred, &xuc); 2694 INP_RUNLOCK(inp); 2695 } else 2696 error = ENOENT; 2697 if (error == 0) 2698 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2699 return (error); 2700 } 2701 2702 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 2703 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2704 0, 0, tcp_getcred, "S,xucred", 2705 "Get the xucred of a TCP connection"); 2706 #endif /* INET */ 2707 2708 #ifdef INET6 2709 static int 2710 tcp6_getcred(SYSCTL_HANDLER_ARGS) 2711 { 2712 struct epoch_tracker et; 2713 struct xucred xuc; 2714 struct sockaddr_in6 addrs[2]; 2715 struct inpcb *inp; 2716 int error; 2717 #ifdef INET 2718 int mapped = 0; 2719 #endif 2720 2721 if (req->newptr == NULL) 2722 return (EINVAL); 2723 error = priv_check(req->td, PRIV_NETINET_GETCRED); 2724 if (error) 2725 return (error); 2726 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 2727 if (error) 2728 return (error); 2729 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 2730 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 2731 return (error); 2732 } 2733 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 2734 #ifdef INET 2735 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 2736 mapped = 1; 2737 else 2738 #endif 2739 return (EINVAL); 2740 } 2741 2742 NET_EPOCH_ENTER(et); 2743 #ifdef INET 2744 if (mapped == 1) 2745 inp = in_pcblookup(&V_tcbinfo, 2746 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 2747 addrs[1].sin6_port, 2748 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 2749 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 2750 else 2751 #endif 2752 inp = in6_pcblookup(&V_tcbinfo, 2753 &addrs[1].sin6_addr, addrs[1].sin6_port, 2754 &addrs[0].sin6_addr, addrs[0].sin6_port, 2755 INPLOOKUP_RLOCKPCB, NULL); 2756 NET_EPOCH_EXIT(et); 2757 if (inp != NULL) { 2758 if (error == 0) 2759 error = cr_canseeinpcb(req->td->td_ucred, inp); 2760 if (error == 0) 2761 cru2x(inp->inp_cred, &xuc); 2762 INP_RUNLOCK(inp); 2763 } else 2764 error = ENOENT; 2765 if (error == 0) 2766 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 2767 return (error); 2768 } 2769 2770 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 2771 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_NEEDGIANT, 2772 0, 0, tcp6_getcred, "S,xucred", 2773 "Get the xucred of a TCP6 connection"); 2774 #endif /* INET6 */ 2775 2776 #ifdef INET 2777 /* Path MTU to try next when a fragmentation-needed message is received. */ 2778 static inline int 2779 tcp_next_pmtu(const struct icmp *icp, const struct ip *ip) 2780 { 2781 int mtu = ntohs(icp->icmp_nextmtu); 2782 2783 /* If no alternative MTU was proposed, try the next smaller one. */ 2784 if (!mtu) 2785 mtu = ip_next_mtu(ntohs(ip->ip_len), 1); 2786 if (mtu < V_tcp_minmss + sizeof(struct tcpiphdr)) 2787 mtu = V_tcp_minmss + sizeof(struct tcpiphdr); 2788 2789 return (mtu); 2790 } 2791 2792 static void 2793 tcp_ctlinput_with_port(struct icmp *icp, uint16_t port) 2794 { 2795 struct ip *ip; 2796 struct tcphdr *th; 2797 struct inpcb *inp; 2798 struct tcpcb *tp; 2799 struct inpcb *(*notify)(struct inpcb *, int); 2800 struct in_conninfo inc; 2801 tcp_seq icmp_tcp_seq; 2802 int errno, mtu; 2803 2804 errno = icmp_errmap(icp); 2805 switch (errno) { 2806 case 0: 2807 return; 2808 case EMSGSIZE: 2809 notify = tcp_mtudisc_notify; 2810 break; 2811 case ECONNREFUSED: 2812 if (V_icmp_may_rst) 2813 notify = tcp_drop_syn_sent; 2814 else 2815 notify = tcp_notify; 2816 break; 2817 case EHOSTUNREACH: 2818 if (V_icmp_may_rst && icp->icmp_type == ICMP_TIMXCEED) 2819 notify = tcp_drop_syn_sent; 2820 else 2821 notify = tcp_notify; 2822 break; 2823 default: 2824 notify = tcp_notify; 2825 } 2826 2827 ip = &icp->icmp_ip; 2828 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 2829 icmp_tcp_seq = th->th_seq; 2830 inp = in_pcblookup(&V_tcbinfo, ip->ip_dst, th->th_dport, ip->ip_src, 2831 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 2832 if (inp != NULL) { 2833 tp = intotcpcb(inp); 2834 #ifdef TCP_OFFLOAD 2835 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 2836 /* 2837 * MTU discovery for offloaded connections. Let 2838 * the TOE driver verify seq# and process it. 2839 */ 2840 mtu = tcp_next_pmtu(icp, ip); 2841 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 2842 goto out; 2843 } 2844 #endif 2845 if (tp->t_port != port) 2846 goto out; 2847 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 2848 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 2849 if (errno == EMSGSIZE) { 2850 /* 2851 * MTU discovery: we got a needfrag and 2852 * will potentially try a lower MTU. 2853 */ 2854 mtu = tcp_next_pmtu(icp, ip); 2855 2856 /* 2857 * Only process the offered MTU if it 2858 * is smaller than the current one. 2859 */ 2860 if (mtu < tp->t_maxseg + 2861 sizeof(struct tcpiphdr)) { 2862 bzero(&inc, sizeof(inc)); 2863 inc.inc_faddr = ip->ip_dst; 2864 inc.inc_fibnum = 2865 inp->inp_inc.inc_fibnum; 2866 tcp_hc_updatemtu(&inc, mtu); 2867 inp = tcp_mtudisc(inp, mtu); 2868 } 2869 } else 2870 inp = (*notify)(inp, errno); 2871 } 2872 } else { 2873 bzero(&inc, sizeof(inc)); 2874 inc.inc_fport = th->th_dport; 2875 inc.inc_lport = th->th_sport; 2876 inc.inc_faddr = ip->ip_dst; 2877 inc.inc_laddr = ip->ip_src; 2878 syncache_unreach(&inc, icmp_tcp_seq, port); 2879 } 2880 out: 2881 if (inp != NULL) 2882 INP_WUNLOCK(inp); 2883 } 2884 2885 static void 2886 tcp_ctlinput(struct icmp *icmp) 2887 { 2888 tcp_ctlinput_with_port(icmp, htons(0)); 2889 } 2890 2891 static void 2892 tcp_ctlinput_viaudp(udp_tun_icmp_param_t param) 2893 { 2894 /* Its a tunneled TCP over UDP icmp */ 2895 struct icmp *icmp = param.icmp; 2896 struct ip *outer_ip, *inner_ip; 2897 struct udphdr *udp; 2898 struct tcphdr *th, ttemp; 2899 int i_hlen, o_len; 2900 uint16_t port; 2901 2902 outer_ip = (struct ip *)((caddr_t)icmp - sizeof(struct ip)); 2903 inner_ip = &icmp->icmp_ip; 2904 i_hlen = inner_ip->ip_hl << 2; 2905 o_len = ntohs(outer_ip->ip_len); 2906 if (o_len < 2907 (sizeof(struct ip) + 8 + i_hlen + sizeof(struct udphdr) + offsetof(struct tcphdr, th_ack))) { 2908 /* Not enough data present */ 2909 return; 2910 } 2911 /* Ok lets strip out the inner udphdr header by copying up on top of it the tcp hdr */ 2912 udp = (struct udphdr *)(((caddr_t)inner_ip) + i_hlen); 2913 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 2914 return; 2915 } 2916 port = udp->uh_dport; 2917 th = (struct tcphdr *)(udp + 1); 2918 memcpy(&ttemp, th, sizeof(struct tcphdr)); 2919 memcpy(udp, &ttemp, sizeof(struct tcphdr)); 2920 /* Now adjust down the size of the outer IP header */ 2921 o_len -= sizeof(struct udphdr); 2922 outer_ip->ip_len = htons(o_len); 2923 /* Now call in to the normal handling code */ 2924 tcp_ctlinput_with_port(icmp, port); 2925 } 2926 #endif /* INET */ 2927 2928 #ifdef INET6 2929 static inline int 2930 tcp6_next_pmtu(const struct icmp6_hdr *icmp6) 2931 { 2932 int mtu = ntohl(icmp6->icmp6_mtu); 2933 2934 /* 2935 * If no alternative MTU was proposed, or the proposed MTU was too 2936 * small, set to the min. 2937 */ 2938 if (mtu < IPV6_MMTU) 2939 mtu = IPV6_MMTU - 8; /* XXXNP: what is the adjustment for? */ 2940 return (mtu); 2941 } 2942 2943 static void 2944 tcp6_ctlinput_with_port(struct ip6ctlparam *ip6cp, uint16_t port) 2945 { 2946 struct in6_addr *dst; 2947 struct inpcb *(*notify)(struct inpcb *, int); 2948 struct ip6_hdr *ip6; 2949 struct mbuf *m; 2950 struct inpcb *inp; 2951 struct tcpcb *tp; 2952 struct icmp6_hdr *icmp6; 2953 struct in_conninfo inc; 2954 struct tcp_ports { 2955 uint16_t th_sport; 2956 uint16_t th_dport; 2957 } t_ports; 2958 tcp_seq icmp_tcp_seq; 2959 unsigned int mtu; 2960 unsigned int off; 2961 int errno; 2962 2963 icmp6 = ip6cp->ip6c_icmp6; 2964 m = ip6cp->ip6c_m; 2965 ip6 = ip6cp->ip6c_ip6; 2966 off = ip6cp->ip6c_off; 2967 dst = &ip6cp->ip6c_finaldst->sin6_addr; 2968 2969 errno = icmp6_errmap(icmp6); 2970 switch (errno) { 2971 case 0: 2972 return; 2973 case EMSGSIZE: 2974 notify = tcp_mtudisc_notify; 2975 break; 2976 case ECONNREFUSED: 2977 if (V_icmp_may_rst) 2978 notify = tcp_drop_syn_sent; 2979 else 2980 notify = tcp_notify; 2981 break; 2982 case EHOSTUNREACH: 2983 /* 2984 * There are only four ICMPs that may reset connection: 2985 * - administratively prohibited 2986 * - port unreachable 2987 * - time exceeded in transit 2988 * - unknown next header 2989 */ 2990 if (V_icmp_may_rst && 2991 ((icmp6->icmp6_type == ICMP6_DST_UNREACH && 2992 (icmp6->icmp6_code == ICMP6_DST_UNREACH_ADMIN || 2993 icmp6->icmp6_code == ICMP6_DST_UNREACH_NOPORT)) || 2994 (icmp6->icmp6_type == ICMP6_TIME_EXCEEDED && 2995 icmp6->icmp6_code == ICMP6_TIME_EXCEED_TRANSIT) || 2996 (icmp6->icmp6_type == ICMP6_PARAM_PROB && 2997 icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER))) 2998 notify = tcp_drop_syn_sent; 2999 else 3000 notify = tcp_notify; 3001 break; 3002 default: 3003 notify = tcp_notify; 3004 } 3005 3006 /* Check if we can safely get the ports from the tcp hdr */ 3007 if (m == NULL || 3008 (m->m_pkthdr.len < 3009 (int32_t) (off + sizeof(struct tcp_ports)))) { 3010 return; 3011 } 3012 bzero(&t_ports, sizeof(struct tcp_ports)); 3013 m_copydata(m, off, sizeof(struct tcp_ports), (caddr_t)&t_ports); 3014 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_dst, t_ports.th_dport, 3015 &ip6->ip6_src, t_ports.th_sport, INPLOOKUP_WLOCKPCB, NULL); 3016 off += sizeof(struct tcp_ports); 3017 if (m->m_pkthdr.len < (int32_t) (off + sizeof(tcp_seq))) { 3018 goto out; 3019 } 3020 m_copydata(m, off, sizeof(tcp_seq), (caddr_t)&icmp_tcp_seq); 3021 if (inp != NULL) { 3022 tp = intotcpcb(inp); 3023 #ifdef TCP_OFFLOAD 3024 if (tp->t_flags & TF_TOE && errno == EMSGSIZE) { 3025 /* MTU discovery for offloaded connections. */ 3026 mtu = tcp6_next_pmtu(icmp6); 3027 tcp_offload_pmtu_update(tp, icmp_tcp_seq, mtu); 3028 goto out; 3029 } 3030 #endif 3031 if (tp->t_port != port) 3032 goto out; 3033 if (SEQ_GEQ(ntohl(icmp_tcp_seq), tp->snd_una) && 3034 SEQ_LT(ntohl(icmp_tcp_seq), tp->snd_max)) { 3035 if (errno == EMSGSIZE) { 3036 /* 3037 * MTU discovery: 3038 * If we got a needfrag set the MTU 3039 * in the route to the suggested new 3040 * value (if given) and then notify. 3041 */ 3042 mtu = tcp6_next_pmtu(icmp6); 3043 3044 bzero(&inc, sizeof(inc)); 3045 inc.inc_fibnum = M_GETFIB(m); 3046 inc.inc_flags |= INC_ISIPV6; 3047 inc.inc6_faddr = *dst; 3048 if (in6_setscope(&inc.inc6_faddr, 3049 m->m_pkthdr.rcvif, NULL)) 3050 goto out; 3051 /* 3052 * Only process the offered MTU if it 3053 * is smaller than the current one. 3054 */ 3055 if (mtu < tp->t_maxseg + 3056 sizeof (struct tcphdr) + 3057 sizeof (struct ip6_hdr)) { 3058 tcp_hc_updatemtu(&inc, mtu); 3059 tcp_mtudisc(inp, mtu); 3060 ICMP6STAT_INC(icp6s_pmtuchg); 3061 } 3062 } else 3063 inp = (*notify)(inp, errno); 3064 } 3065 } else { 3066 bzero(&inc, sizeof(inc)); 3067 inc.inc_fibnum = M_GETFIB(m); 3068 inc.inc_flags |= INC_ISIPV6; 3069 inc.inc_fport = t_ports.th_dport; 3070 inc.inc_lport = t_ports.th_sport; 3071 inc.inc6_faddr = *dst; 3072 inc.inc6_laddr = ip6->ip6_src; 3073 syncache_unreach(&inc, icmp_tcp_seq, port); 3074 } 3075 out: 3076 if (inp != NULL) 3077 INP_WUNLOCK(inp); 3078 } 3079 3080 static void 3081 tcp6_ctlinput(struct ip6ctlparam *ctl) 3082 { 3083 tcp6_ctlinput_with_port(ctl, htons(0)); 3084 } 3085 3086 static void 3087 tcp6_ctlinput_viaudp(udp_tun_icmp_param_t param) 3088 { 3089 struct ip6ctlparam *ip6cp = param.ip6cp; 3090 struct mbuf *m; 3091 struct udphdr *udp; 3092 uint16_t port; 3093 3094 m = m_pulldown(ip6cp->ip6c_m, ip6cp->ip6c_off, sizeof(struct udphdr), NULL); 3095 if (m == NULL) { 3096 return; 3097 } 3098 udp = mtod(m, struct udphdr *); 3099 if (ntohs(udp->uh_sport) != V_tcp_udp_tunneling_port) { 3100 return; 3101 } 3102 port = udp->uh_dport; 3103 m_adj(m, sizeof(struct udphdr)); 3104 if ((m->m_flags & M_PKTHDR) == 0) { 3105 ip6cp->ip6c_m->m_pkthdr.len -= sizeof(struct udphdr); 3106 } 3107 /* Now call in to the normal handling code */ 3108 tcp6_ctlinput_with_port(ip6cp, port); 3109 } 3110 3111 #endif /* INET6 */ 3112 3113 static uint32_t 3114 tcp_keyed_hash(struct in_conninfo *inc, u_char *key, u_int len) 3115 { 3116 SIPHASH_CTX ctx; 3117 uint32_t hash[2]; 3118 3119 KASSERT(len >= SIPHASH_KEY_LENGTH, 3120 ("%s: keylen %u too short ", __func__, len)); 3121 SipHash24_Init(&ctx); 3122 SipHash_SetKey(&ctx, (uint8_t *)key); 3123 SipHash_Update(&ctx, &inc->inc_fport, sizeof(uint16_t)); 3124 SipHash_Update(&ctx, &inc->inc_lport, sizeof(uint16_t)); 3125 switch (inc->inc_flags & INC_ISIPV6) { 3126 #ifdef INET 3127 case 0: 3128 SipHash_Update(&ctx, &inc->inc_faddr, sizeof(struct in_addr)); 3129 SipHash_Update(&ctx, &inc->inc_laddr, sizeof(struct in_addr)); 3130 break; 3131 #endif 3132 #ifdef INET6 3133 case INC_ISIPV6: 3134 SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(struct in6_addr)); 3135 SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(struct in6_addr)); 3136 break; 3137 #endif 3138 } 3139 SipHash_Final((uint8_t *)hash, &ctx); 3140 3141 return (hash[0] ^ hash[1]); 3142 } 3143 3144 uint32_t 3145 tcp_new_ts_offset(struct in_conninfo *inc) 3146 { 3147 struct in_conninfo inc_store, *local_inc; 3148 3149 if (!V_tcp_ts_offset_per_conn) { 3150 memcpy(&inc_store, inc, sizeof(struct in_conninfo)); 3151 inc_store.inc_lport = 0; 3152 inc_store.inc_fport = 0; 3153 local_inc = &inc_store; 3154 } else { 3155 local_inc = inc; 3156 } 3157 return (tcp_keyed_hash(local_inc, V_ts_offset_secret, 3158 sizeof(V_ts_offset_secret))); 3159 } 3160 3161 /* 3162 * Following is where TCP initial sequence number generation occurs. 3163 * 3164 * There are two places where we must use initial sequence numbers: 3165 * 1. In SYN-ACK packets. 3166 * 2. In SYN packets. 3167 * 3168 * All ISNs for SYN-ACK packets are generated by the syncache. See 3169 * tcp_syncache.c for details. 3170 * 3171 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 3172 * depends on this property. In addition, these ISNs should be 3173 * unguessable so as to prevent connection hijacking. To satisfy 3174 * the requirements of this situation, the algorithm outlined in 3175 * RFC 1948 is used, with only small modifications. 3176 * 3177 * Implementation details: 3178 * 3179 * Time is based off the system timer, and is corrected so that it 3180 * increases by one megabyte per second. This allows for proper 3181 * recycling on high speed LANs while still leaving over an hour 3182 * before rollover. 3183 * 3184 * As reading the *exact* system time is too expensive to be done 3185 * whenever setting up a TCP connection, we increment the time 3186 * offset in two ways. First, a small random positive increment 3187 * is added to isn_offset for each connection that is set up. 3188 * Second, the function tcp_isn_tick fires once per clock tick 3189 * and increments isn_offset as necessary so that sequence numbers 3190 * are incremented at approximately ISN_BYTES_PER_SECOND. The 3191 * random positive increments serve only to ensure that the same 3192 * exact sequence number is never sent out twice (as could otherwise 3193 * happen when a port is recycled in less than the system tick 3194 * interval.) 3195 * 3196 * net.inet.tcp.isn_reseed_interval controls the number of seconds 3197 * between seeding of isn_secret. This is normally set to zero, 3198 * as reseeding should not be necessary. 3199 * 3200 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 3201 * isn_offset_old, and isn_ctx is performed using the ISN lock. In 3202 * general, this means holding an exclusive (write) lock. 3203 */ 3204 3205 #define ISN_BYTES_PER_SECOND 1048576 3206 #define ISN_STATIC_INCREMENT 4096 3207 #define ISN_RANDOM_INCREMENT (4096 - 1) 3208 #define ISN_SECRET_LENGTH SIPHASH_KEY_LENGTH 3209 3210 VNET_DEFINE_STATIC(u_char, isn_secret[ISN_SECRET_LENGTH]); 3211 VNET_DEFINE_STATIC(int, isn_last); 3212 VNET_DEFINE_STATIC(int, isn_last_reseed); 3213 VNET_DEFINE_STATIC(u_int32_t, isn_offset); 3214 VNET_DEFINE_STATIC(u_int32_t, isn_offset_old); 3215 3216 #define V_isn_secret VNET(isn_secret) 3217 #define V_isn_last VNET(isn_last) 3218 #define V_isn_last_reseed VNET(isn_last_reseed) 3219 #define V_isn_offset VNET(isn_offset) 3220 #define V_isn_offset_old VNET(isn_offset_old) 3221 3222 tcp_seq 3223 tcp_new_isn(struct in_conninfo *inc) 3224 { 3225 tcp_seq new_isn; 3226 u_int32_t projected_offset; 3227 3228 ISN_LOCK(); 3229 /* Seed if this is the first use, reseed if requested. */ 3230 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 3231 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 3232 < (u_int)ticks))) { 3233 arc4rand(&V_isn_secret, sizeof(V_isn_secret), 0); 3234 V_isn_last_reseed = ticks; 3235 } 3236 3237 /* Compute the hash and return the ISN. */ 3238 new_isn = (tcp_seq)tcp_keyed_hash(inc, V_isn_secret, 3239 sizeof(V_isn_secret)); 3240 V_isn_offset += ISN_STATIC_INCREMENT + 3241 (arc4random() & ISN_RANDOM_INCREMENT); 3242 if (ticks != V_isn_last) { 3243 projected_offset = V_isn_offset_old + 3244 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 3245 if (SEQ_GT(projected_offset, V_isn_offset)) 3246 V_isn_offset = projected_offset; 3247 V_isn_offset_old = V_isn_offset; 3248 V_isn_last = ticks; 3249 } 3250 new_isn += V_isn_offset; 3251 ISN_UNLOCK(); 3252 return (new_isn); 3253 } 3254 3255 /* 3256 * When a specific ICMP unreachable message is received and the 3257 * connection state is SYN-SENT, drop the connection. This behavior 3258 * is controlled by the icmp_may_rst sysctl. 3259 */ 3260 static struct inpcb * 3261 tcp_drop_syn_sent(struct inpcb *inp, int errno) 3262 { 3263 struct tcpcb *tp; 3264 3265 NET_EPOCH_ASSERT(); 3266 INP_WLOCK_ASSERT(inp); 3267 3268 tp = intotcpcb(inp); 3269 if (tp->t_state != TCPS_SYN_SENT) 3270 return (inp); 3271 3272 if (tp->t_flags & TF_FASTOPEN) 3273 tcp_fastopen_disable_path(tp); 3274 3275 tp = tcp_drop(tp, errno); 3276 if (tp != NULL) 3277 return (inp); 3278 else 3279 return (NULL); 3280 } 3281 3282 /* 3283 * When `need fragmentation' ICMP is received, update our idea of the MSS 3284 * based on the new value. Also nudge TCP to send something, since we 3285 * know the packet we just sent was dropped. 3286 * This duplicates some code in the tcp_mss() function in tcp_input.c. 3287 */ 3288 static struct inpcb * 3289 tcp_mtudisc_notify(struct inpcb *inp, int error) 3290 { 3291 3292 return (tcp_mtudisc(inp, -1)); 3293 } 3294 3295 static struct inpcb * 3296 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 3297 { 3298 struct tcpcb *tp; 3299 struct socket *so; 3300 3301 INP_WLOCK_ASSERT(inp); 3302 3303 tp = intotcpcb(inp); 3304 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 3305 3306 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 3307 3308 so = inp->inp_socket; 3309 SOCK_SENDBUF_LOCK(so); 3310 /* If the mss is larger than the socket buffer, decrease the mss. */ 3311 if (so->so_snd.sb_hiwat < tp->t_maxseg) { 3312 tp->t_maxseg = so->so_snd.sb_hiwat; 3313 if (tp->t_maxseg < V_tcp_mssdflt) { 3314 /* 3315 * The MSS is so small we should not process incoming 3316 * SACK's since we are subject to attack in such a 3317 * case. 3318 */ 3319 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3320 } else { 3321 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3322 } 3323 } 3324 SOCK_SENDBUF_UNLOCK(so); 3325 3326 TCPSTAT_INC(tcps_mturesent); 3327 tp->t_rtttime = 0; 3328 tp->snd_nxt = tp->snd_una; 3329 tcp_free_sackholes(tp); 3330 tp->snd_recover = tp->snd_max; 3331 if (tp->t_flags & TF_SACK_PERMIT) 3332 EXIT_FASTRECOVERY(tp->t_flags); 3333 if (tp->t_fb->tfb_tcp_mtu_chg != NULL) { 3334 /* 3335 * Conceptually the snd_nxt setting 3336 * and freeing sack holes should 3337 * be done by the default stacks 3338 * own tfb_tcp_mtu_chg(). 3339 */ 3340 tp->t_fb->tfb_tcp_mtu_chg(tp); 3341 } 3342 if (tcp_output(tp) < 0) 3343 return (NULL); 3344 else 3345 return (inp); 3346 } 3347 3348 #ifdef INET 3349 /* 3350 * Look-up the routing entry to the peer of this inpcb. If no route 3351 * is found and it cannot be allocated, then return 0. This routine 3352 * is called by TCP routines that access the rmx structure and by 3353 * tcp_mss_update to get the peer/interface MTU. 3354 */ 3355 uint32_t 3356 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 3357 { 3358 struct nhop_object *nh; 3359 struct ifnet *ifp; 3360 uint32_t maxmtu = 0; 3361 3362 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 3363 3364 if (inc->inc_faddr.s_addr != INADDR_ANY) { 3365 nh = fib4_lookup(inc->inc_fibnum, inc->inc_faddr, 0, NHR_NONE, 0); 3366 if (nh == NULL) 3367 return (0); 3368 3369 ifp = nh->nh_ifp; 3370 maxmtu = nh->nh_mtu; 3371 3372 /* Report additional interface capabilities. */ 3373 if (cap != NULL) { 3374 if (ifp->if_capenable & IFCAP_TSO4 && 3375 ifp->if_hwassist & CSUM_TSO) { 3376 cap->ifcap |= CSUM_TSO; 3377 cap->tsomax = ifp->if_hw_tsomax; 3378 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3379 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3380 /* XXXKIB IFCAP2_IPSEC_OFFLOAD_TSO */ 3381 cap->ipsec_tso = (ifp->if_capenable2 & 3382 IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD)) != 0; 3383 } 3384 } 3385 } 3386 return (maxmtu); 3387 } 3388 #endif /* INET */ 3389 3390 #ifdef INET6 3391 uint32_t 3392 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 3393 { 3394 struct nhop_object *nh; 3395 struct in6_addr dst6; 3396 uint32_t scopeid; 3397 struct ifnet *ifp; 3398 uint32_t maxmtu = 0; 3399 3400 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 3401 3402 if (inc->inc_flags & INC_IPV6MINMTU) 3403 return (IPV6_MMTU); 3404 3405 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 3406 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 3407 nh = fib6_lookup(inc->inc_fibnum, &dst6, scopeid, NHR_NONE, 0); 3408 if (nh == NULL) 3409 return (0); 3410 3411 ifp = nh->nh_ifp; 3412 maxmtu = nh->nh_mtu; 3413 3414 /* Report additional interface capabilities. */ 3415 if (cap != NULL) { 3416 if (ifp->if_capenable & IFCAP_TSO6 && 3417 ifp->if_hwassist & CSUM_TSO) { 3418 cap->ifcap |= CSUM_TSO; 3419 cap->tsomax = ifp->if_hw_tsomax; 3420 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 3421 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 3422 cap->ipsec_tso = false; /* XXXKIB */ 3423 } 3424 } 3425 } 3426 3427 return (maxmtu); 3428 } 3429 3430 /* 3431 * Handle setsockopt(IPV6_USE_MIN_MTU) by a TCP stack. 3432 * 3433 * XXXGL: we are updating inpcb here with INC_IPV6MINMTU flag. 3434 * The right place to do that is ip6_setpktopt() that has just been 3435 * executed. By the way it just filled ip6po_minmtu for us. 3436 */ 3437 void 3438 tcp6_use_min_mtu(struct tcpcb *tp) 3439 { 3440 struct inpcb *inp = tptoinpcb(tp); 3441 3442 INP_WLOCK_ASSERT(inp); 3443 /* 3444 * In case of the IPV6_USE_MIN_MTU socket 3445 * option, the INC_IPV6MINMTU flag to announce 3446 * a corresponding MSS during the initial 3447 * handshake. If the TCP connection is not in 3448 * the front states, just reduce the MSS being 3449 * used. This avoids the sending of TCP 3450 * segments which will be fragmented at the 3451 * IPv6 layer. 3452 */ 3453 inp->inp_inc.inc_flags |= INC_IPV6MINMTU; 3454 if ((tp->t_state >= TCPS_SYN_SENT) && 3455 (inp->inp_inc.inc_flags & INC_ISIPV6)) { 3456 struct ip6_pktopts *opt; 3457 3458 opt = inp->in6p_outputopts; 3459 if (opt != NULL && opt->ip6po_minmtu == IP6PO_MINMTU_ALL && 3460 tp->t_maxseg > TCP6_MSS) { 3461 tp->t_maxseg = TCP6_MSS; 3462 if (tp->t_maxseg < V_tcp_mssdflt) { 3463 /* 3464 * The MSS is so small we should not process incoming 3465 * SACK's since we are subject to attack in such a 3466 * case. 3467 */ 3468 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT; 3469 } else { 3470 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT; 3471 } 3472 } 3473 } 3474 } 3475 #endif /* INET6 */ 3476 3477 /* 3478 * Calculate effective SMSS per RFC5681 definition for a given TCP 3479 * connection at its current state, taking into account SACK and etc. 3480 */ 3481 u_int 3482 tcp_maxseg(const struct tcpcb *tp) 3483 { 3484 u_int optlen; 3485 3486 if (tp->t_flags & TF_NOOPT) 3487 return (tp->t_maxseg); 3488 3489 /* 3490 * Here we have a simplified code from tcp_addoptions(), 3491 * without a proper loop, and having most of paddings hardcoded. 3492 * We might make mistakes with padding here in some edge cases, 3493 * but this is harmless, since result of tcp_maxseg() is used 3494 * only in cwnd and ssthresh estimations. 3495 */ 3496 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3497 if (tp->t_flags & TF_RCVD_TSTMP) 3498 optlen = TCPOLEN_TSTAMP_APPA; 3499 else 3500 optlen = 0; 3501 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3502 if (tp->t_flags & TF_SIGNATURE) 3503 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3504 #endif 3505 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 3506 optlen += TCPOLEN_SACKHDR; 3507 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 3508 optlen = PADTCPOLEN(optlen); 3509 } 3510 } else { 3511 if (tp->t_flags & TF_REQ_TSTMP) 3512 optlen = TCPOLEN_TSTAMP_APPA; 3513 else 3514 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3515 if (tp->t_flags & TF_REQ_SCALE) 3516 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3517 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3518 if (tp->t_flags & TF_SIGNATURE) 3519 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3520 #endif 3521 if (tp->t_flags & TF_SACK_PERMIT) 3522 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3523 } 3524 optlen = min(optlen, TCP_MAXOLEN); 3525 return (tp->t_maxseg - optlen); 3526 } 3527 3528 3529 u_int 3530 tcp_fixed_maxseg(const struct tcpcb *tp) 3531 { 3532 int optlen; 3533 3534 if (tp->t_flags & TF_NOOPT) 3535 return (tp->t_maxseg); 3536 3537 /* 3538 * Here we have a simplified code from tcp_addoptions(), 3539 * without a proper loop, and having most of paddings hardcoded. 3540 * We only consider fixed options that we would send every 3541 * time I.e. SACK is not considered. This is important 3542 * for cc modules to figure out what the modulo of the 3543 * cwnd should be. 3544 */ 3545 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 3546 if (tp->t_flags & TF_RCVD_TSTMP) 3547 optlen = TCPOLEN_TSTAMP_APPA; 3548 else 3549 optlen = 0; 3550 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3551 if (tp->t_flags & TF_SIGNATURE) 3552 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3553 #endif 3554 } else { 3555 if (tp->t_flags & TF_REQ_TSTMP) 3556 optlen = TCPOLEN_TSTAMP_APPA; 3557 else 3558 optlen = PADTCPOLEN(TCPOLEN_MAXSEG); 3559 if (tp->t_flags & TF_REQ_SCALE) 3560 optlen += PADTCPOLEN(TCPOLEN_WINDOW); 3561 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) 3562 if (tp->t_flags & TF_SIGNATURE) 3563 optlen += PADTCPOLEN(TCPOLEN_SIGNATURE); 3564 #endif 3565 if (tp->t_flags & TF_SACK_PERMIT) 3566 optlen += PADTCPOLEN(TCPOLEN_SACK_PERMITTED); 3567 } 3568 optlen = min(optlen, TCP_MAXOLEN); 3569 return (tp->t_maxseg - optlen); 3570 } 3571 3572 3573 3574 static int 3575 sysctl_drop(SYSCTL_HANDLER_ARGS) 3576 { 3577 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3578 struct sockaddr_storage addrs[2]; 3579 struct inpcb *inp; 3580 struct tcpcb *tp; 3581 #ifdef INET 3582 struct sockaddr_in *fin = NULL, *lin = NULL; 3583 #endif 3584 struct epoch_tracker et; 3585 #ifdef INET6 3586 struct sockaddr_in6 *fin6, *lin6; 3587 #endif 3588 int error; 3589 3590 inp = NULL; 3591 #ifdef INET6 3592 fin6 = lin6 = NULL; 3593 #endif 3594 error = 0; 3595 3596 if (req->oldptr != NULL || req->oldlen != 0) 3597 return (EINVAL); 3598 if (req->newptr == NULL) 3599 return (EPERM); 3600 if (req->newlen < sizeof(addrs)) 3601 return (ENOMEM); 3602 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3603 if (error) 3604 return (error); 3605 3606 switch (addrs[0].ss_family) { 3607 #ifdef INET6 3608 case AF_INET6: 3609 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3610 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3611 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3612 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3613 return (EINVAL); 3614 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3615 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3616 return (EINVAL); 3617 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3618 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3619 #ifdef INET 3620 fin = (struct sockaddr_in *)&addrs[0]; 3621 lin = (struct sockaddr_in *)&addrs[1]; 3622 #endif 3623 break; 3624 } 3625 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3626 if (error) 3627 return (error); 3628 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3629 if (error) 3630 return (error); 3631 break; 3632 #endif 3633 #ifdef INET 3634 case AF_INET: 3635 fin = (struct sockaddr_in *)&addrs[0]; 3636 lin = (struct sockaddr_in *)&addrs[1]; 3637 if (fin->sin_len != sizeof(struct sockaddr_in) || 3638 lin->sin_len != sizeof(struct sockaddr_in)) 3639 return (EINVAL); 3640 break; 3641 #endif 3642 default: 3643 return (EINVAL); 3644 } 3645 NET_EPOCH_ENTER(et); 3646 switch (addrs[0].ss_family) { 3647 #ifdef INET6 3648 case AF_INET6: 3649 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3650 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3651 INPLOOKUP_WLOCKPCB, NULL); 3652 break; 3653 #endif 3654 #ifdef INET 3655 case AF_INET: 3656 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3657 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3658 break; 3659 #endif 3660 } 3661 if (inp != NULL) { 3662 if (!SOLISTENING(inp->inp_socket)) { 3663 tp = intotcpcb(inp); 3664 tp = tcp_drop(tp, ECONNABORTED); 3665 if (tp != NULL) 3666 INP_WUNLOCK(inp); 3667 } else 3668 INP_WUNLOCK(inp); 3669 } else 3670 error = ESRCH; 3671 NET_EPOCH_EXIT(et); 3672 return (error); 3673 } 3674 3675 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 3676 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3677 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_drop, "", 3678 "Drop TCP connection"); 3679 3680 static int 3681 tcp_sysctl_setsockopt(SYSCTL_HANDLER_ARGS) 3682 { 3683 return (sysctl_setsockopt(oidp, arg1, arg2, req, &V_tcbinfo, 3684 &tcp_ctloutput_set)); 3685 } 3686 3687 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, setsockopt, 3688 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3689 CTLFLAG_MPSAFE, NULL, 0, tcp_sysctl_setsockopt, "", 3690 "Set socket option for TCP endpoint"); 3691 3692 #ifdef KERN_TLS 3693 static int 3694 sysctl_switch_tls(SYSCTL_HANDLER_ARGS) 3695 { 3696 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 3697 struct sockaddr_storage addrs[2]; 3698 struct inpcb *inp; 3699 #ifdef INET 3700 struct sockaddr_in *fin = NULL, *lin = NULL; 3701 #endif 3702 struct epoch_tracker et; 3703 #ifdef INET6 3704 struct sockaddr_in6 *fin6, *lin6; 3705 #endif 3706 int error; 3707 3708 inp = NULL; 3709 #ifdef INET6 3710 fin6 = lin6 = NULL; 3711 #endif 3712 error = 0; 3713 3714 if (req->oldptr != NULL || req->oldlen != 0) 3715 return (EINVAL); 3716 if (req->newptr == NULL) 3717 return (EPERM); 3718 if (req->newlen < sizeof(addrs)) 3719 return (ENOMEM); 3720 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 3721 if (error) 3722 return (error); 3723 3724 switch (addrs[0].ss_family) { 3725 #ifdef INET6 3726 case AF_INET6: 3727 fin6 = (struct sockaddr_in6 *)&addrs[0]; 3728 lin6 = (struct sockaddr_in6 *)&addrs[1]; 3729 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 3730 lin6->sin6_len != sizeof(struct sockaddr_in6)) 3731 return (EINVAL); 3732 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 3733 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 3734 return (EINVAL); 3735 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 3736 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 3737 #ifdef INET 3738 fin = (struct sockaddr_in *)&addrs[0]; 3739 lin = (struct sockaddr_in *)&addrs[1]; 3740 #endif 3741 break; 3742 } 3743 error = sa6_embedscope(fin6, V_ip6_use_defzone); 3744 if (error) 3745 return (error); 3746 error = sa6_embedscope(lin6, V_ip6_use_defzone); 3747 if (error) 3748 return (error); 3749 break; 3750 #endif 3751 #ifdef INET 3752 case AF_INET: 3753 fin = (struct sockaddr_in *)&addrs[0]; 3754 lin = (struct sockaddr_in *)&addrs[1]; 3755 if (fin->sin_len != sizeof(struct sockaddr_in) || 3756 lin->sin_len != sizeof(struct sockaddr_in)) 3757 return (EINVAL); 3758 break; 3759 #endif 3760 default: 3761 return (EINVAL); 3762 } 3763 NET_EPOCH_ENTER(et); 3764 switch (addrs[0].ss_family) { 3765 #ifdef INET6 3766 case AF_INET6: 3767 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 3768 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 3769 INPLOOKUP_WLOCKPCB, NULL); 3770 break; 3771 #endif 3772 #ifdef INET 3773 case AF_INET: 3774 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 3775 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 3776 break; 3777 #endif 3778 } 3779 NET_EPOCH_EXIT(et); 3780 if (inp != NULL) { 3781 struct socket *so; 3782 3783 so = inp->inp_socket; 3784 soref(so); 3785 error = ktls_set_tx_mode(so, 3786 arg2 == 0 ? TCP_TLS_MODE_SW : TCP_TLS_MODE_IFNET); 3787 INP_WUNLOCK(inp); 3788 sorele(so); 3789 } else 3790 error = ESRCH; 3791 return (error); 3792 } 3793 3794 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_sw_tls, 3795 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3796 CTLFLAG_NEEDGIANT, NULL, 0, sysctl_switch_tls, "", 3797 "Switch TCP connection to SW TLS"); 3798 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, switch_to_ifnet_tls, 3799 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP | 3800 CTLFLAG_NEEDGIANT, NULL, 1, sysctl_switch_tls, "", 3801 "Switch TCP connection to ifnet TLS"); 3802 #endif 3803 3804 /* 3805 * Generate a standardized TCP log line for use throughout the 3806 * tcp subsystem. Memory allocation is done with M_NOWAIT to 3807 * allow use in the interrupt context. 3808 * 3809 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 3810 * NB: The function may return NULL if memory allocation failed. 3811 * 3812 * Due to header inclusion and ordering limitations the struct ip 3813 * and ip6_hdr pointers have to be passed as void pointers. 3814 */ 3815 char * 3816 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3817 const void *ip6hdr) 3818 { 3819 3820 /* Is logging enabled? */ 3821 if (V_tcp_log_in_vain == 0) 3822 return (NULL); 3823 3824 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3825 } 3826 3827 char * 3828 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3829 const void *ip6hdr) 3830 { 3831 3832 /* Is logging enabled? */ 3833 if (tcp_log_debug == 0) 3834 return (NULL); 3835 3836 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 3837 } 3838 3839 static char * 3840 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, const void *ip4hdr, 3841 const void *ip6hdr) 3842 { 3843 char *s, *sp; 3844 size_t size; 3845 #ifdef INET 3846 const struct ip *ip = (const struct ip *)ip4hdr; 3847 #endif 3848 #ifdef INET6 3849 const struct ip6_hdr *ip6 = (const struct ip6_hdr *)ip6hdr; 3850 #endif /* INET6 */ 3851 3852 /* 3853 * The log line looks like this: 3854 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 3855 */ 3856 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 3857 sizeof(PRINT_TH_FLAGS) + 1 + 3858 #ifdef INET6 3859 2 * INET6_ADDRSTRLEN; 3860 #else 3861 2 * INET_ADDRSTRLEN; 3862 #endif /* INET6 */ 3863 3864 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 3865 if (s == NULL) 3866 return (NULL); 3867 3868 strcat(s, "TCP: ["); 3869 sp = s + strlen(s); 3870 3871 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 3872 inet_ntoa_r(inc->inc_faddr, sp); 3873 sp = s + strlen(s); 3874 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3875 sp = s + strlen(s); 3876 inet_ntoa_r(inc->inc_laddr, sp); 3877 sp = s + strlen(s); 3878 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3879 #ifdef INET6 3880 } else if (inc) { 3881 ip6_sprintf(sp, &inc->inc6_faddr); 3882 sp = s + strlen(s); 3883 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 3884 sp = s + strlen(s); 3885 ip6_sprintf(sp, &inc->inc6_laddr); 3886 sp = s + strlen(s); 3887 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 3888 } else if (ip6 && th) { 3889 ip6_sprintf(sp, &ip6->ip6_src); 3890 sp = s + strlen(s); 3891 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3892 sp = s + strlen(s); 3893 ip6_sprintf(sp, &ip6->ip6_dst); 3894 sp = s + strlen(s); 3895 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3896 #endif /* INET6 */ 3897 #ifdef INET 3898 } else if (ip && th) { 3899 inet_ntoa_r(ip->ip_src, sp); 3900 sp = s + strlen(s); 3901 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 3902 sp = s + strlen(s); 3903 inet_ntoa_r(ip->ip_dst, sp); 3904 sp = s + strlen(s); 3905 sprintf(sp, "]:%i", ntohs(th->th_dport)); 3906 #endif /* INET */ 3907 } else { 3908 free(s, M_TCPLOG); 3909 return (NULL); 3910 } 3911 sp = s + strlen(s); 3912 if (th) 3913 sprintf(sp, " tcpflags 0x%b", tcp_get_flags(th), PRINT_TH_FLAGS); 3914 if (*(s + size - 1) != '\0') 3915 panic("%s: string too long", __func__); 3916 return (s); 3917 } 3918 3919 /* 3920 * A subroutine which makes it easy to track TCP state changes with DTrace. 3921 * This function shouldn't be called for t_state initializations that don't 3922 * correspond to actual TCP state transitions. 3923 */ 3924 void 3925 tcp_state_change(struct tcpcb *tp, int newstate) 3926 { 3927 #if defined(KDTRACE_HOOKS) 3928 int pstate = tp->t_state; 3929 #endif 3930 3931 TCPSTATES_DEC(tp->t_state); 3932 TCPSTATES_INC(newstate); 3933 tp->t_state = newstate; 3934 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3935 } 3936 3937 /* 3938 * Create an external-format (``xtcpcb'') structure using the information in 3939 * the kernel-format tcpcb structure pointed to by tp. This is done to 3940 * reduce the spew of irrelevant information over this interface, to isolate 3941 * user code from changes in the kernel structure, and potentially to provide 3942 * information-hiding if we decide that some of this information should be 3943 * hidden from users. 3944 */ 3945 void 3946 tcp_inptoxtp(const struct inpcb *inp, struct xtcpcb *xt) 3947 { 3948 struct tcpcb *tp = intotcpcb(inp); 3949 sbintime_t now; 3950 3951 bzero(xt, sizeof(*xt)); 3952 xt->t_state = tp->t_state; 3953 xt->t_logstate = tcp_get_bblog_state(tp); 3954 xt->t_flags = tp->t_flags; 3955 xt->t_sndzerowin = tp->t_sndzerowin; 3956 xt->t_sndrexmitpack = tp->t_sndrexmitpack; 3957 xt->t_rcvoopack = tp->t_rcvoopack; 3958 xt->t_rcv_wnd = tp->rcv_wnd; 3959 xt->t_snd_wnd = tp->snd_wnd; 3960 xt->t_snd_cwnd = tp->snd_cwnd; 3961 xt->t_snd_ssthresh = tp->snd_ssthresh; 3962 xt->t_dsack_bytes = tp->t_dsack_bytes; 3963 xt->t_dsack_tlp_bytes = tp->t_dsack_tlp_bytes; 3964 xt->t_dsack_pack = tp->t_dsack_pack; 3965 xt->t_maxseg = tp->t_maxseg; 3966 xt->xt_ecn = (tp->t_flags2 & TF2_ECN_PERMIT) ? 1 : 0 + 3967 (tp->t_flags2 & TF2_ACE_PERMIT) ? 2 : 0; 3968 3969 now = getsbinuptime(); 3970 #define COPYTIMER(which,where) do { \ 3971 if (tp->t_timers[which] != SBT_MAX) \ 3972 xt->where = (tp->t_timers[which] - now) / SBT_1MS; \ 3973 else \ 3974 xt->where = 0; \ 3975 } while (0) 3976 COPYTIMER(TT_DELACK, tt_delack); 3977 COPYTIMER(TT_REXMT, tt_rexmt); 3978 COPYTIMER(TT_PERSIST, tt_persist); 3979 COPYTIMER(TT_KEEP, tt_keep); 3980 COPYTIMER(TT_2MSL, tt_2msl); 3981 #undef COPYTIMER 3982 xt->t_rcvtime = 1000 * (ticks - tp->t_rcvtime) / hz; 3983 3984 xt->xt_encaps_port = tp->t_port; 3985 bcopy(tp->t_fb->tfb_tcp_block_name, xt->xt_stack, 3986 TCP_FUNCTION_NAME_LEN_MAX); 3987 bcopy(CC_ALGO(tp)->name, xt->xt_cc, TCP_CA_NAME_MAX); 3988 #ifdef TCP_BLACKBOX 3989 (void)tcp_log_get_id(tp, xt->xt_logid); 3990 #endif 3991 3992 xt->xt_len = sizeof(struct xtcpcb); 3993 in_pcbtoxinpcb(inp, &xt->xt_inp); 3994 } 3995 3996 void 3997 tcp_log_end_status(struct tcpcb *tp, uint8_t status) 3998 { 3999 uint32_t bit, i; 4000 4001 if ((tp == NULL) || 4002 (status > TCP_EI_STATUS_MAX_VALUE) || 4003 (status == 0)) { 4004 /* Invalid */ 4005 return; 4006 } 4007 if (status > (sizeof(uint32_t) * 8)) { 4008 /* Should this be a KASSERT? */ 4009 return; 4010 } 4011 bit = 1U << (status - 1); 4012 if (bit & tp->t_end_info_status) { 4013 /* already logged */ 4014 return; 4015 } 4016 for (i = 0; i < TCP_END_BYTE_INFO; i++) { 4017 if (tp->t_end_info_bytes[i] == TCP_EI_EMPTY_SLOT) { 4018 tp->t_end_info_bytes[i] = status; 4019 tp->t_end_info_status |= bit; 4020 break; 4021 } 4022 } 4023 } 4024 4025 int 4026 tcp_can_enable_pacing(void) 4027 { 4028 4029 if ((tcp_pacing_limit == -1) || 4030 (tcp_pacing_limit > number_of_tcp_connections_pacing)) { 4031 atomic_fetchadd_int(&number_of_tcp_connections_pacing, 1); 4032 shadow_num_connections = number_of_tcp_connections_pacing; 4033 return (1); 4034 } else { 4035 counter_u64_add(tcp_pacing_failures, 1); 4036 return (0); 4037 } 4038 } 4039 4040 int 4041 tcp_incr_dgp_pacing_cnt(void) 4042 { 4043 if ((tcp_dgp_limit == -1) || 4044 (tcp_dgp_limit > number_of_dgp_connections)) { 4045 atomic_fetchadd_int(&number_of_dgp_connections, 1); 4046 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4047 return (1); 4048 } else { 4049 counter_u64_add(tcp_dgp_failures, 1); 4050 return (0); 4051 } 4052 } 4053 4054 static uint8_t tcp_dgp_warning = 0; 4055 4056 void 4057 tcp_dec_dgp_pacing_cnt(void) 4058 { 4059 uint32_t ret; 4060 4061 ret = atomic_fetchadd_int(&number_of_dgp_connections, -1); 4062 shadow_tcp_pacing_dgp = number_of_dgp_connections; 4063 KASSERT(ret != 0, ("number_of_dgp_connections -1 would cause wrap?")); 4064 if (ret == 0) { 4065 if (tcp_dgp_limit != -1) { 4066 printf("Warning all DGP is now disabled, count decrements invalidly!\n"); 4067 tcp_dgp_limit = 0; 4068 tcp_dgp_warning = 1; 4069 } else if (tcp_dgp_warning == 0) { 4070 printf("Warning DGP pacing is invalid, invalid decrement\n"); 4071 tcp_dgp_warning = 1; 4072 } 4073 } 4074 4075 } 4076 4077 static uint8_t tcp_pacing_warning = 0; 4078 4079 void 4080 tcp_decrement_paced_conn(void) 4081 { 4082 uint32_t ret; 4083 4084 ret = atomic_fetchadd_int(&number_of_tcp_connections_pacing, -1); 4085 shadow_num_connections = number_of_tcp_connections_pacing; 4086 KASSERT(ret != 0, ("tcp_paced_connection_exits -1 would cause wrap?")); 4087 if (ret == 0) { 4088 if (tcp_pacing_limit != -1) { 4089 printf("Warning all pacing is now disabled, count decrements invalidly!\n"); 4090 tcp_pacing_limit = 0; 4091 } else if (tcp_pacing_warning == 0) { 4092 printf("Warning pacing count is invalid, invalid decrement\n"); 4093 tcp_pacing_warning = 1; 4094 } 4095 } 4096 } 4097 4098 static void 4099 tcp_default_switch_failed(struct tcpcb *tp) 4100 { 4101 /* 4102 * If a switch fails we only need to 4103 * care about two things: 4104 * a) The t_flags2 4105 * and 4106 * b) The timer granularity. 4107 * Timeouts, at least for now, don't use the 4108 * old callout system in the other stacks so 4109 * those are hopefully safe. 4110 */ 4111 tcp_lro_features_off(tp); 4112 tcp_change_time_units(tp, TCP_TMR_GRANULARITY_TICKS); 4113 } 4114 4115 #ifdef TCP_ACCOUNTING 4116 int 4117 tcp_do_ack_accounting(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to, uint32_t tiwin, int mss) 4118 { 4119 if (SEQ_LT(th->th_ack, tp->snd_una)) { 4120 /* Do we have a SACK? */ 4121 if (to->to_flags & TOF_SACK) { 4122 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4123 tp->tcp_cnt_counters[ACK_SACK]++; 4124 } 4125 return (ACK_SACK); 4126 } else { 4127 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4128 tp->tcp_cnt_counters[ACK_BEHIND]++; 4129 } 4130 return (ACK_BEHIND); 4131 } 4132 } else if (th->th_ack == tp->snd_una) { 4133 /* Do we have a SACK? */ 4134 if (to->to_flags & TOF_SACK) { 4135 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4136 tp->tcp_cnt_counters[ACK_SACK]++; 4137 } 4138 return (ACK_SACK); 4139 } else if (tiwin != tp->snd_wnd) { 4140 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4141 tp->tcp_cnt_counters[ACK_RWND]++; 4142 } 4143 return (ACK_RWND); 4144 } else { 4145 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4146 tp->tcp_cnt_counters[ACK_DUPACK]++; 4147 } 4148 return (ACK_DUPACK); 4149 } 4150 } else { 4151 if (!SEQ_GT(th->th_ack, tp->snd_max)) { 4152 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4153 tp->tcp_cnt_counters[CNT_OF_ACKS_IN] += (((th->th_ack - tp->snd_una) + mss - 1)/mss); 4154 } 4155 } 4156 if (to->to_flags & TOF_SACK) { 4157 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4158 tp->tcp_cnt_counters[ACK_CUMACK_SACK]++; 4159 } 4160 return (ACK_CUMACK_SACK); 4161 } else { 4162 if (tp->t_flags2 & TF2_TCP_ACCOUNTING) { 4163 tp->tcp_cnt_counters[ACK_CUMACK]++; 4164 } 4165 return (ACK_CUMACK); 4166 } 4167 } 4168 } 4169 #endif 4170 4171 void 4172 tcp_change_time_units(struct tcpcb *tp, int granularity) 4173 { 4174 if (tp->t_tmr_granularity == granularity) { 4175 /* We are there */ 4176 return; 4177 } 4178 if (granularity == TCP_TMR_GRANULARITY_USEC) { 4179 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS), 4180 ("Granularity is not TICKS its %u in tp:%p", 4181 tp->t_tmr_granularity, tp)); 4182 tp->t_rttlow = TICKS_2_USEC(tp->t_rttlow); 4183 if (tp->t_srtt > 1) { 4184 uint32_t val, frac; 4185 4186 val = tp->t_srtt >> TCP_RTT_SHIFT; 4187 frac = tp->t_srtt & 0x1f; 4188 tp->t_srtt = TICKS_2_USEC(val); 4189 /* 4190 * frac is the fractional part of the srtt (if any) 4191 * but its in ticks and every bit represents 4192 * 1/32nd of a hz. 4193 */ 4194 if (frac) { 4195 if (hz == 1000) { 4196 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4197 } else { 4198 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4199 } 4200 tp->t_srtt += frac; 4201 } 4202 } 4203 if (tp->t_rttvar) { 4204 uint32_t val, frac; 4205 4206 val = tp->t_rttvar >> TCP_RTTVAR_SHIFT; 4207 frac = tp->t_rttvar & 0x1f; 4208 tp->t_rttvar = TICKS_2_USEC(val); 4209 /* 4210 * frac is the fractional part of the srtt (if any) 4211 * but its in ticks and every bit represents 4212 * 1/32nd of a hz. 4213 */ 4214 if (frac) { 4215 if (hz == 1000) { 4216 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_MSEC) / (uint64_t)TCP_RTT_SCALE); 4217 } else { 4218 frac = (((uint64_t)frac * (uint64_t)HPTS_USEC_IN_SEC) / ((uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE)); 4219 } 4220 tp->t_rttvar += frac; 4221 } 4222 } 4223 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_USEC; 4224 } else if (granularity == TCP_TMR_GRANULARITY_TICKS) { 4225 /* Convert back to ticks, with */ 4226 KASSERT((tp->t_tmr_granularity == TCP_TMR_GRANULARITY_USEC), 4227 ("Granularity is not USEC its %u in tp:%p", 4228 tp->t_tmr_granularity, tp)); 4229 if (tp->t_srtt > 1) { 4230 uint32_t val, frac; 4231 4232 val = USEC_2_TICKS(tp->t_srtt); 4233 frac = tp->t_srtt % (HPTS_USEC_IN_SEC / hz); 4234 tp->t_srtt = val << TCP_RTT_SHIFT; 4235 /* 4236 * frac is the fractional part here is left 4237 * over from converting to hz and shifting. 4238 * We need to convert this to the 5 bit 4239 * remainder. 4240 */ 4241 if (frac) { 4242 if (hz == 1000) { 4243 frac = (((uint64_t)frac * (uint64_t)TCP_RTT_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4244 } else { 4245 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTT_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4246 } 4247 tp->t_srtt += frac; 4248 } 4249 } 4250 if (tp->t_rttvar) { 4251 uint32_t val, frac; 4252 4253 val = USEC_2_TICKS(tp->t_rttvar); 4254 frac = tp->t_rttvar % (HPTS_USEC_IN_SEC / hz); 4255 tp->t_rttvar = val << TCP_RTTVAR_SHIFT; 4256 /* 4257 * frac is the fractional part here is left 4258 * over from converting to hz and shifting. 4259 * We need to convert this to the 4 bit 4260 * remainder. 4261 */ 4262 if (frac) { 4263 if (hz == 1000) { 4264 frac = (((uint64_t)frac * (uint64_t)TCP_RTTVAR_SCALE) / (uint64_t)HPTS_USEC_IN_MSEC); 4265 } else { 4266 frac = (((uint64_t)frac * (uint64_t)(hz) * (uint64_t)TCP_RTTVAR_SCALE) /(uint64_t)HPTS_USEC_IN_SEC); 4267 } 4268 tp->t_rttvar += frac; 4269 } 4270 } 4271 tp->t_rttlow = USEC_2_TICKS(tp->t_rttlow); 4272 tp->t_tmr_granularity = TCP_TMR_GRANULARITY_TICKS; 4273 } 4274 #ifdef INVARIANTS 4275 else { 4276 panic("Unknown granularity:%d tp:%p", 4277 granularity, tp); 4278 } 4279 #endif 4280 } 4281 4282 void 4283 tcp_handle_orphaned_packets(struct tcpcb *tp) 4284 { 4285 struct mbuf *save, *m, *prev; 4286 /* 4287 * Called when a stack switch is occuring from the fini() 4288 * of the old stack. We assue the init() as already been 4289 * run of the new stack and it has set the t_flags2 to 4290 * what it supports. This function will then deal with any 4291 * differences i.e. cleanup packets that maybe queued that 4292 * the newstack does not support. 4293 */ 4294 4295 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 4296 return; 4297 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) == 0 && 4298 !STAILQ_EMPTY(&tp->t_inqueue)) { 4299 /* 4300 * It is unsafe to process the packets since a 4301 * reset may be lurking in them (its rare but it 4302 * can occur). If we were to find a RST, then we 4303 * would end up dropping the connection and the 4304 * INP lock, so when we return the caller (tcp_usrreq) 4305 * will blow up when it trys to unlock the inp. 4306 * This new stack does not do any fancy LRO features 4307 * so all we can do is toss the packets. 4308 */ 4309 m = STAILQ_FIRST(&tp->t_inqueue); 4310 STAILQ_INIT(&tp->t_inqueue); 4311 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) 4312 m_freem(m); 4313 } else { 4314 /* 4315 * Here we have a stack that does mbuf queuing but 4316 * does not support compressed ack's. We must 4317 * walk all the mbufs and discard any compressed acks. 4318 */ 4319 STAILQ_FOREACH_SAFE(m, &tp->t_inqueue, m_stailqpkt, save) { 4320 if (m->m_flags & M_ACKCMP) { 4321 if (m == STAILQ_FIRST(&tp->t_inqueue)) 4322 STAILQ_REMOVE_HEAD(&tp->t_inqueue, 4323 m_stailqpkt); 4324 else 4325 STAILQ_REMOVE_AFTER(&tp->t_inqueue, 4326 prev, m_stailqpkt); 4327 m_freem(m); 4328 } else 4329 prev = m; 4330 } 4331 } 4332 } 4333 4334 #ifdef TCP_REQUEST_TRK 4335 uint32_t 4336 tcp_estimate_tls_overhead(struct socket *so, uint64_t tls_usr_bytes) 4337 { 4338 #ifdef KERN_TLS 4339 struct ktls_session *tls; 4340 uint32_t rec_oh, records; 4341 4342 tls = so->so_snd.sb_tls_info; 4343 if (tls == NULL) 4344 return (0); 4345 4346 rec_oh = tls->params.tls_hlen + tls->params.tls_tlen; 4347 records = ((tls_usr_bytes + tls->params.max_frame_len - 1)/tls->params.max_frame_len); 4348 return (records * rec_oh); 4349 #else 4350 return (0); 4351 #endif 4352 } 4353 4354 extern uint32_t tcp_stale_entry_time; 4355 uint32_t tcp_stale_entry_time = 250000; 4356 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, usrlog_stale, CTLFLAG_RW, 4357 &tcp_stale_entry_time, 250000, "Time that a tcpreq entry without a sendfile ages out"); 4358 4359 void 4360 tcp_req_log_req_info(struct tcpcb *tp, struct tcp_sendfile_track *req, 4361 uint16_t slot, uint8_t val, uint64_t offset, uint64_t nbytes) 4362 { 4363 if (tcp_bblogging_on(tp)) { 4364 union tcp_log_stackspecific log; 4365 struct timeval tv; 4366 4367 memset(&log, 0, sizeof(log)); 4368 log.u_bbr.inhpts = tcp_in_hpts(tp); 4369 log.u_bbr.flex8 = val; 4370 log.u_bbr.rttProp = req->timestamp; 4371 log.u_bbr.delRate = req->start; 4372 log.u_bbr.cur_del_rate = req->end; 4373 log.u_bbr.flex1 = req->start_seq; 4374 log.u_bbr.flex2 = req->end_seq; 4375 log.u_bbr.flex3 = req->flags; 4376 log.u_bbr.flex4 = ((req->localtime >> 32) & 0x00000000ffffffff); 4377 log.u_bbr.flex5 = (req->localtime & 0x00000000ffffffff); 4378 log.u_bbr.flex7 = slot; 4379 log.u_bbr.bw_inuse = offset; 4380 /* nbytes = flex6 | epoch */ 4381 log.u_bbr.flex6 = ((nbytes >> 32) & 0x00000000ffffffff); 4382 log.u_bbr.epoch = (nbytes & 0x00000000ffffffff); 4383 /* cspr = lt_epoch | pkts_out */ 4384 log.u_bbr.lt_epoch = ((req->cspr >> 32) & 0x00000000ffffffff); 4385 log.u_bbr.pkts_out |= (req->cspr & 0x00000000ffffffff); 4386 log.u_bbr.applimited = tp->t_tcpreq_closed; 4387 log.u_bbr.applimited <<= 8; 4388 log.u_bbr.applimited |= tp->t_tcpreq_open; 4389 log.u_bbr.applimited <<= 8; 4390 log.u_bbr.applimited |= tp->t_tcpreq_req; 4391 log.u_bbr.timeStamp = tcp_get_usecs(&tv); 4392 TCP_LOG_EVENTP(tp, NULL, 4393 &tptosocket(tp)->so_rcv, 4394 &tptosocket(tp)->so_snd, 4395 TCP_LOG_REQ_T, 0, 4396 0, &log, false, &tv); 4397 } 4398 } 4399 4400 void 4401 tcp_req_free_a_slot(struct tcpcb *tp, struct tcp_sendfile_track *ent) 4402 { 4403 if (tp->t_tcpreq_req > 0) 4404 tp->t_tcpreq_req--; 4405 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4406 if (tp->t_tcpreq_open > 0) 4407 tp->t_tcpreq_open--; 4408 } else { 4409 if (tp->t_tcpreq_closed > 0) 4410 tp->t_tcpreq_closed--; 4411 } 4412 ent->flags = TCP_TRK_TRACK_FLG_EMPTY; 4413 } 4414 4415 static void 4416 tcp_req_check_for_stale_entries(struct tcpcb *tp, uint64_t ts, int rm_oldest) 4417 { 4418 struct tcp_sendfile_track *ent; 4419 uint64_t time_delta, oldest_delta; 4420 int i, oldest, oldest_set = 0, cnt_rm = 0; 4421 4422 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4423 ent = &tp->t_tcpreq_info[i]; 4424 if (ent->flags != TCP_TRK_TRACK_FLG_USED) { 4425 /* 4426 * We only care about closed end ranges 4427 * that are allocated and have no sendfile 4428 * ever touching them. They would be in 4429 * state USED. 4430 */ 4431 continue; 4432 } 4433 if (ts >= ent->localtime) 4434 time_delta = ts - ent->localtime; 4435 else 4436 time_delta = 0; 4437 if (time_delta && 4438 ((oldest_delta < time_delta) || (oldest_set == 0))) { 4439 oldest_set = 1; 4440 oldest = i; 4441 oldest_delta = time_delta; 4442 } 4443 if (tcp_stale_entry_time && (time_delta >= tcp_stale_entry_time)) { 4444 /* 4445 * No sendfile in a our time-limit 4446 * time to purge it. 4447 */ 4448 cnt_rm++; 4449 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4450 time_delta, 0); 4451 tcp_req_free_a_slot(tp, ent); 4452 } 4453 } 4454 if ((cnt_rm == 0) && rm_oldest && oldest_set) { 4455 ent = &tp->t_tcpreq_info[oldest]; 4456 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], i, TCP_TRK_REQ_LOG_STALE, 4457 oldest_delta, 1); 4458 tcp_req_free_a_slot(tp, ent); 4459 } 4460 } 4461 4462 int 4463 tcp_req_check_for_comp(struct tcpcb *tp, tcp_seq ack_point) 4464 { 4465 int i, ret = 0; 4466 struct tcp_sendfile_track *ent; 4467 4468 /* Clean up any old closed end requests that are now completed */ 4469 if (tp->t_tcpreq_req == 0) 4470 return (0); 4471 if (tp->t_tcpreq_closed == 0) 4472 return (0); 4473 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4474 ent = &tp->t_tcpreq_info[i]; 4475 /* Skip empty ones */ 4476 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4477 continue; 4478 /* Skip open ones */ 4479 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) 4480 continue; 4481 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4482 /* We are past it -- free it */ 4483 tcp_req_log_req_info(tp, ent, 4484 i, TCP_TRK_REQ_LOG_FREED, 0, 0); 4485 tcp_req_free_a_slot(tp, ent); 4486 ret++; 4487 } 4488 } 4489 return (ret); 4490 } 4491 4492 int 4493 tcp_req_is_entry_comp(struct tcpcb *tp, struct tcp_sendfile_track *ent, tcp_seq ack_point) 4494 { 4495 if (tp->t_tcpreq_req == 0) 4496 return (-1); 4497 if (tp->t_tcpreq_closed == 0) 4498 return (-1); 4499 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4500 return (-1); 4501 if (SEQ_GEQ(ack_point, ent->end_seq)) { 4502 return (1); 4503 } 4504 return (0); 4505 } 4506 4507 struct tcp_sendfile_track * 4508 tcp_req_find_a_req_that_is_completed_by(struct tcpcb *tp, tcp_seq th_ack, int *ip) 4509 { 4510 /* 4511 * Given an ack point (th_ack) walk through our entries and 4512 * return the first one found that th_ack goes past the 4513 * end_seq. 4514 */ 4515 struct tcp_sendfile_track *ent; 4516 int i; 4517 4518 if (tp->t_tcpreq_req == 0) { 4519 /* none open */ 4520 return (NULL); 4521 } 4522 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4523 ent = &tp->t_tcpreq_info[i]; 4524 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) 4525 continue; 4526 if ((ent->flags & TCP_TRK_TRACK_FLG_OPEN) == 0) { 4527 if (SEQ_GEQ(th_ack, ent->end_seq)) { 4528 *ip = i; 4529 return (ent); 4530 } 4531 } 4532 } 4533 return (NULL); 4534 } 4535 4536 struct tcp_sendfile_track * 4537 tcp_req_find_req_for_seq(struct tcpcb *tp, tcp_seq seq) 4538 { 4539 struct tcp_sendfile_track *ent; 4540 int i; 4541 4542 if (tp->t_tcpreq_req == 0) { 4543 /* none open */ 4544 return (NULL); 4545 } 4546 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4547 ent = &tp->t_tcpreq_info[i]; 4548 tcp_req_log_req_info(tp, ent, i, TCP_TRK_REQ_LOG_SEARCH, 4549 (uint64_t)seq, 0); 4550 if (ent->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4551 continue; 4552 } 4553 if (ent->flags & TCP_TRK_TRACK_FLG_OPEN) { 4554 /* 4555 * An open end request only needs to 4556 * match the beginning seq or be 4557 * all we have (once we keep going on 4558 * a open end request we may have a seq 4559 * wrap). 4560 */ 4561 if ((SEQ_GEQ(seq, ent->start_seq)) || 4562 (tp->t_tcpreq_closed == 0)) 4563 return (ent); 4564 } else { 4565 /* 4566 * For this one we need to 4567 * be a bit more careful if its 4568 * completed at least. 4569 */ 4570 if ((SEQ_GEQ(seq, ent->start_seq)) && 4571 (SEQ_LT(seq, ent->end_seq))) { 4572 return (ent); 4573 } 4574 } 4575 } 4576 return (NULL); 4577 } 4578 4579 /* Should this be in its own file tcp_req.c ? */ 4580 struct tcp_sendfile_track * 4581 tcp_req_alloc_req_full(struct tcpcb *tp, struct tcp_snd_req *req, uint64_t ts, int rec_dups) 4582 { 4583 struct tcp_sendfile_track *fil; 4584 int i, allocated; 4585 4586 /* In case the stack does not check for completions do so now */ 4587 tcp_req_check_for_comp(tp, tp->snd_una); 4588 /* Check for stale entries */ 4589 if (tp->t_tcpreq_req) 4590 tcp_req_check_for_stale_entries(tp, ts, 4591 (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ)); 4592 /* Check to see if this is a duplicate of one not started */ 4593 if (tp->t_tcpreq_req) { 4594 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4595 fil = &tp->t_tcpreq_info[i]; 4596 if ((fil->flags & TCP_TRK_TRACK_FLG_USED) == 0) 4597 continue; 4598 if ((fil->timestamp == req->timestamp) && 4599 (fil->start == req->start) && 4600 ((fil->flags & TCP_TRK_TRACK_FLG_OPEN) || 4601 (fil->end == req->end))) { 4602 /* 4603 * We already have this request 4604 * and it has not been started with sendfile. 4605 * This probably means the user was returned 4606 * a 4xx of some sort and its going to age 4607 * out, lets not duplicate it. 4608 */ 4609 return (fil); 4610 } 4611 } 4612 } 4613 /* Ok if there is no room at the inn we are in trouble */ 4614 if (tp->t_tcpreq_req >= MAX_TCP_TRK_REQ) { 4615 tcp_trace_point(tp, TCP_TP_REQ_LOG_FAIL); 4616 for (i = 0; i < MAX_TCP_TRK_REQ; i++) { 4617 tcp_req_log_req_info(tp, &tp->t_tcpreq_info[i], 4618 i, TCP_TRK_REQ_LOG_ALLOCFAIL, 0, 0); 4619 } 4620 return (NULL); 4621 } 4622 for (i = 0, allocated = 0; i < MAX_TCP_TRK_REQ; i++) { 4623 fil = &tp->t_tcpreq_info[i]; 4624 if (fil->flags == TCP_TRK_TRACK_FLG_EMPTY) { 4625 allocated = 1; 4626 fil->flags = TCP_TRK_TRACK_FLG_USED; 4627 fil->timestamp = req->timestamp; 4628 fil->playout_ms = req->playout_ms; 4629 fil->localtime = ts; 4630 fil->start = req->start; 4631 if (req->flags & TCP_LOG_HTTPD_RANGE_END) { 4632 fil->end = req->end; 4633 } else { 4634 fil->end = 0; 4635 fil->flags |= TCP_TRK_TRACK_FLG_OPEN; 4636 } 4637 /* 4638 * We can set the min boundaries to the TCP Sequence space, 4639 * but it might be found to be further up when sendfile 4640 * actually runs on this range (if it ever does). 4641 */ 4642 fil->sbcc_at_s = tptosocket(tp)->so_snd.sb_ccc; 4643 fil->start_seq = tp->snd_una + 4644 tptosocket(tp)->so_snd.sb_ccc; 4645 if (req->flags & TCP_LOG_HTTPD_RANGE_END) 4646 fil->end_seq = (fil->start_seq + ((uint32_t)(fil->end - fil->start))); 4647 else 4648 fil->end_seq = 0; 4649 if (tptosocket(tp)->so_snd.sb_tls_info) { 4650 /* 4651 * This session is doing TLS. Take a swag guess 4652 * at the overhead. 4653 */ 4654 fil->end_seq += tcp_estimate_tls_overhead( 4655 tptosocket(tp), (fil->end - fil->start)); 4656 } 4657 tp->t_tcpreq_req++; 4658 if (fil->flags & TCP_TRK_TRACK_FLG_OPEN) 4659 tp->t_tcpreq_open++; 4660 else 4661 tp->t_tcpreq_closed++; 4662 tcp_req_log_req_info(tp, fil, i, 4663 TCP_TRK_REQ_LOG_NEW, 0, 0); 4664 break; 4665 } else 4666 fil = NULL; 4667 } 4668 return (fil); 4669 } 4670 4671 void 4672 tcp_req_alloc_req(struct tcpcb *tp, union tcp_log_userdata *user, uint64_t ts) 4673 { 4674 (void)tcp_req_alloc_req_full(tp, &user->tcp_req, ts, 1); 4675 } 4676 #endif 4677 4678 void 4679 tcp_log_socket_option(struct tcpcb *tp, uint32_t option_num, uint32_t option_val, int err) 4680 { 4681 if (tcp_bblogging_on(tp)) { 4682 struct tcp_log_buffer *l; 4683 4684 l = tcp_log_event(tp, NULL, 4685 &tptosocket(tp)->so_rcv, 4686 &tptosocket(tp)->so_snd, 4687 TCP_LOG_SOCKET_OPT, 4688 err, 0, NULL, 1, 4689 NULL, NULL, 0, NULL); 4690 if (l) { 4691 l->tlb_flex1 = option_num; 4692 l->tlb_flex2 = option_val; 4693 } 4694 } 4695 } 4696 4697 uint32_t 4698 tcp_get_srtt(struct tcpcb *tp, int granularity) 4699 { 4700 uint32_t srtt; 4701 4702 KASSERT(granularity == TCP_TMR_GRANULARITY_USEC || 4703 granularity == TCP_TMR_GRANULARITY_TICKS, 4704 ("%s: called with unexpected granularity %d", __func__, 4705 granularity)); 4706 4707 srtt = tp->t_srtt; 4708 4709 /* 4710 * We only support two granularities. If the stored granularity 4711 * does not match the granularity requested by the caller, 4712 * convert the stored value to the requested unit of granularity. 4713 */ 4714 if (tp->t_tmr_granularity != granularity) { 4715 if (granularity == TCP_TMR_GRANULARITY_USEC) 4716 srtt = TICKS_2_USEC(srtt); 4717 else 4718 srtt = USEC_2_TICKS(srtt); 4719 } 4720 4721 /* 4722 * If the srtt is stored with ticks granularity, we need to 4723 * unshift to get the actual value. We do this after the 4724 * conversion above (if one was necessary) in order to maximize 4725 * precision. 4726 */ 4727 if (tp->t_tmr_granularity == TCP_TMR_GRANULARITY_TICKS) 4728 srtt = srtt >> TCP_RTT_SHIFT; 4729 4730 return (srtt); 4731 } 4732 4733 void 4734 tcp_account_for_send(struct tcpcb *tp, uint32_t len, uint8_t is_rxt, 4735 uint8_t is_tlp, bool hw_tls) 4736 { 4737 4738 if (is_tlp) { 4739 tp->t_sndtlppack++; 4740 tp->t_sndtlpbyte += len; 4741 } 4742 /* To get total bytes sent you must add t_snd_rxt_bytes to t_sndbytes */ 4743 if (is_rxt) 4744 tp->t_snd_rxt_bytes += len; 4745 else 4746 tp->t_sndbytes += len; 4747 4748 #ifdef KERN_TLS 4749 if (hw_tls && is_rxt && len != 0) { 4750 uint64_t rexmit_percent; 4751 4752 rexmit_percent = (1000ULL * tp->t_snd_rxt_bytes) / 4753 (10ULL * (tp->t_snd_rxt_bytes + tp->t_sndbytes)); 4754 if (rexmit_percent > ktls_ifnet_max_rexmit_pct) 4755 ktls_disable_ifnet(tp); 4756 } 4757 #endif 4758 } 4759