xref: /freebsd/sys/netinet/tcp_subr.c (revision f6a4109212fd8fbabc731f07b2dd5c7e07fbec33)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet.h"
39 #include "opt_inet6.h"
40 #include "opt_ipsec.h"
41 #include "opt_mac.h"
42 #include "opt_tcpdebug.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/sysctl.h>
49 #include <sys/mac.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #ifdef INET6
53 #include <sys/domain.h>
54 #endif
55 #include <sys/proc.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/protosw.h>
59 #include <sys/random.h>
60 
61 #include <vm/uma.h>
62 
63 #include <net/route.h>
64 #include <net/if.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 #include <netinet/in_pcb.h>
73 #ifdef INET6
74 #include <netinet6/in6_pcb.h>
75 #endif
76 #include <netinet/in_var.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/tcp.h>
83 #include <netinet/tcp_fsm.h>
84 #include <netinet/tcp_seq.h>
85 #include <netinet/tcp_timer.h>
86 #include <netinet/tcp_var.h>
87 #ifdef INET6
88 #include <netinet6/tcp6_var.h>
89 #endif
90 #include <netinet/tcpip.h>
91 #ifdef TCPDEBUG
92 #include <netinet/tcp_debug.h>
93 #endif
94 #include <netinet6/ip6protosw.h>
95 
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #ifdef INET6
99 #include <netinet6/ipsec6.h>
100 #endif
101 #endif /*IPSEC*/
102 
103 #ifdef FAST_IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/xform.h>
106 #ifdef INET6
107 #include <netipsec/ipsec6.h>
108 #endif
109 #include <netipsec/key.h>
110 #define	IPSEC
111 #endif /*FAST_IPSEC*/
112 
113 #include <machine/in_cksum.h>
114 #include <sys/md5.h>
115 
116 int 	tcp_mssdflt = TCP_MSS;
117 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119 
120 #ifdef INET6
121 int	tcp_v6mssdflt = TCP6_MSS;
122 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124 	"Default TCP Maximum Segment Size for IPv6");
125 #endif
126 
127 /*
128  * Minimum MSS we accept and use. This prevents DoS attacks where
129  * we are forced to a ridiculous low MSS like 20 and send hundreds
130  * of packets instead of one. The effect scales with the available
131  * bandwidth and quickly saturates the CPU and network interface
132  * with packet generation and sending. Set to zero to disable MINMSS
133  * checking. This setting prevents us from sending too small packets.
134  */
135 int	tcp_minmss = TCP_MINMSS;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138 /*
139  * Number of TCP segments per second we accept from remote host
140  * before we start to calculate average segment size. If average
141  * segment size drops below the minimum TCP MSS we assume a DoS
142  * attack and reset+drop the connection. Care has to be taken not to
143  * set this value too small to not kill interactive type connections
144  * (telnet, SSH) which send many small packets.
145  */
146 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149     "be under the MINMSS Size");
150 
151 #if 0
152 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155 #endif
156 
157 int	tcp_do_rfc1323 = 1;
158 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160 
161 int	tcp_do_rfc1644 = 0;
162 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
163     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
164 
165 static int	tcp_tcbhashsize = 0;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
167      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
168 
169 static int	do_tcpdrain = 1;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
171      "Enable tcp_drain routine for extra help when low on mbufs");
172 
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
174     &tcbinfo.ipi_count, 0, "Number of active PCBs");
175 
176 static int	icmp_may_rst = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
178     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
179 
180 static int	tcp_isn_reseed_interval = 0;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
182     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
183 
184 /*
185  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
186  * 1024 exists only for debugging.  A good production default would be
187  * something like 6100.
188  */
189 static int	tcp_inflight_enable = 1;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
191     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
192 
193 static int	tcp_inflight_debug = 0;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
195     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
196 
197 static int	tcp_inflight_min = 6144;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
199     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
200 
201 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
203     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
204 static int	tcp_inflight_stab = 20;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
206     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
207 
208 static struct inpcb *tcp_notify(struct inpcb *, int);
209 static void	tcp_discardcb(struct tcpcb *);
210 
211 /*
212  * Target size of TCP PCB hash tables. Must be a power of two.
213  *
214  * Note that this can be overridden by the kernel environment
215  * variable net.inet.tcp.tcbhashsize
216  */
217 #ifndef TCBHASHSIZE
218 #define TCBHASHSIZE	512
219 #endif
220 
221 /*
222  * XXX
223  * Callouts should be moved into struct tcp directly.  They are currently
224  * separate because the tcpcb structure is exported to userland for sysctl
225  * parsing purposes, which do not know about callouts.
226  */
227 struct	tcpcb_mem {
228 	struct	tcpcb tcb;
229 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
230 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
231 };
232 
233 static uma_zone_t tcpcb_zone;
234 static uma_zone_t tcptw_zone;
235 
236 /*
237  * Tcp initialization
238  */
239 void
240 tcp_init()
241 {
242 	int hashsize = TCBHASHSIZE;
243 
244 	tcp_ccgen = 1;
245 
246 	tcp_delacktime = TCPTV_DELACK;
247 	tcp_keepinit = TCPTV_KEEP_INIT;
248 	tcp_keepidle = TCPTV_KEEP_IDLE;
249 	tcp_keepintvl = TCPTV_KEEPINTVL;
250 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
251 	tcp_msl = TCPTV_MSL;
252 	tcp_rexmit_min = TCPTV_MIN;
253 	tcp_rexmit_slop = TCPTV_CPU_VAR;
254 
255 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
256 	LIST_INIT(&tcb);
257 	tcbinfo.listhead = &tcb;
258 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
259 	if (!powerof2(hashsize)) {
260 		printf("WARNING: TCB hash size not a power of 2\n");
261 		hashsize = 512; /* safe default */
262 	}
263 	tcp_tcbhashsize = hashsize;
264 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
265 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
266 					&tcbinfo.porthashmask);
267 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
269 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
270 #ifdef INET6
271 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
272 #else /* INET6 */
273 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
274 #endif /* INET6 */
275 	if (max_protohdr < TCP_MINPROTOHDR)
276 		max_protohdr = TCP_MINPROTOHDR;
277 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
278 		panic("tcp_init");
279 #undef TCP_MINPROTOHDR
280 	/*
281 	 * These have to be type stable for the benefit of the timers.
282 	 */
283 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
284 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 	uma_zone_set_max(tcpcb_zone, maxsockets);
286 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
287 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
288 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
289 	tcp_timer_init();
290 	syncache_init();
291 	tcp_hc_init();
292 }
293 
294 /*
295  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
296  * tcp_template used to store this data in mbufs, but we now recopy it out
297  * of the tcpcb each time to conserve mbufs.
298  */
299 void
300 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
301 	struct inpcb *inp;
302 	void *ip_ptr;
303 	void *tcp_ptr;
304 {
305 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
306 
307 #ifdef INET6
308 	if ((inp->inp_vflag & INP_IPV6) != 0) {
309 		struct ip6_hdr *ip6;
310 
311 		ip6 = (struct ip6_hdr *)ip_ptr;
312 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
313 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
314 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
315 			(IPV6_VERSION & IPV6_VERSION_MASK);
316 		ip6->ip6_nxt = IPPROTO_TCP;
317 		ip6->ip6_plen = sizeof(struct tcphdr);
318 		ip6->ip6_src = inp->in6p_laddr;
319 		ip6->ip6_dst = inp->in6p_faddr;
320 	} else
321 #endif
322 	{
323 		struct ip *ip;
324 
325 		ip = (struct ip *)ip_ptr;
326 		ip->ip_v = IPVERSION;
327 		ip->ip_hl = 5;
328 		ip->ip_tos = inp->inp_ip_tos;
329 		ip->ip_len = 0;
330 		ip->ip_id = 0;
331 		ip->ip_off = 0;
332 		ip->ip_ttl = inp->inp_ip_ttl;
333 		ip->ip_sum = 0;
334 		ip->ip_p = IPPROTO_TCP;
335 		ip->ip_src = inp->inp_laddr;
336 		ip->ip_dst = inp->inp_faddr;
337 	}
338 	th->th_sport = inp->inp_lport;
339 	th->th_dport = inp->inp_fport;
340 	th->th_seq = 0;
341 	th->th_ack = 0;
342 	th->th_x2 = 0;
343 	th->th_off = 5;
344 	th->th_flags = 0;
345 	th->th_win = 0;
346 	th->th_urp = 0;
347 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
348 }
349 
350 /*
351  * Create template to be used to send tcp packets on a connection.
352  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
353  * use for this function is in keepalives, which use tcp_respond.
354  */
355 struct tcptemp *
356 tcpip_maketemplate(inp)
357 	struct inpcb *inp;
358 {
359 	struct mbuf *m;
360 	struct tcptemp *n;
361 
362 	m = m_get(M_DONTWAIT, MT_HEADER);
363 	if (m == NULL)
364 		return (0);
365 	m->m_len = sizeof(struct tcptemp);
366 	n = mtod(m, struct tcptemp *);
367 
368 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
369 	return (n);
370 }
371 
372 /*
373  * Send a single message to the TCP at address specified by
374  * the given TCP/IP header.  If m == 0, then we make a copy
375  * of the tcpiphdr at ti and send directly to the addressed host.
376  * This is used to force keep alive messages out using the TCP
377  * template for a connection.  If flags are given then we send
378  * a message back to the TCP which originated the * segment ti,
379  * and discard the mbuf containing it and any other attached mbufs.
380  *
381  * In any case the ack and sequence number of the transmitted
382  * segment are as specified by the parameters.
383  *
384  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
385  */
386 void
387 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
388 	struct tcpcb *tp;
389 	void *ipgen;
390 	register struct tcphdr *th;
391 	register struct mbuf *m;
392 	tcp_seq ack, seq;
393 	int flags;
394 {
395 	register int tlen;
396 	int win = 0;
397 	struct ip *ip;
398 	struct tcphdr *nth;
399 #ifdef INET6
400 	struct ip6_hdr *ip6;
401 	int isipv6;
402 #endif /* INET6 */
403 	int ipflags = 0;
404 	struct inpcb *inp = NULL;
405 
406 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
407 
408 #ifdef INET6
409 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
410 	ip6 = ipgen;
411 #endif /* INET6 */
412 	ip = ipgen;
413 
414 	if (tp) {
415 		inp = tp->t_inpcb;
416 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
417 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
418 		INP_LOCK_ASSERT(inp);
419 		if (!(flags & TH_RST)) {
420 			win = sbspace(&inp->inp_socket->so_rcv);
421 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
422 				win = (long)TCP_MAXWIN << tp->rcv_scale;
423 		}
424 	}
425 	if (m == 0) {
426 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
427 		if (m == NULL)
428 			return;
429 		tlen = 0;
430 		m->m_data += max_linkhdr;
431 #ifdef INET6
432 		if (isipv6) {
433 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
434 			      sizeof(struct ip6_hdr));
435 			ip6 = mtod(m, struct ip6_hdr *);
436 			nth = (struct tcphdr *)(ip6 + 1);
437 		} else
438 #endif /* INET6 */
439 	      {
440 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
441 		ip = mtod(m, struct ip *);
442 		nth = (struct tcphdr *)(ip + 1);
443 	      }
444 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
445 		flags = TH_ACK;
446 	} else {
447 		m_freem(m->m_next);
448 		m->m_next = 0;
449 		m->m_data = (caddr_t)ipgen;
450 		/* m_len is set later */
451 		tlen = 0;
452 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
453 #ifdef INET6
454 		if (isipv6) {
455 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
456 			nth = (struct tcphdr *)(ip6 + 1);
457 		} else
458 #endif /* INET6 */
459 	      {
460 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
461 		nth = (struct tcphdr *)(ip + 1);
462 	      }
463 		if (th != nth) {
464 			/*
465 			 * this is usually a case when an extension header
466 			 * exists between the IPv6 header and the
467 			 * TCP header.
468 			 */
469 			nth->th_sport = th->th_sport;
470 			nth->th_dport = th->th_dport;
471 		}
472 		xchg(nth->th_dport, nth->th_sport, n_short);
473 #undef xchg
474 	}
475 #ifdef INET6
476 	if (isipv6) {
477 		ip6->ip6_flow = 0;
478 		ip6->ip6_vfc = IPV6_VERSION;
479 		ip6->ip6_nxt = IPPROTO_TCP;
480 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
481 						tlen));
482 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
483 	} else
484 #endif
485       {
486 	tlen += sizeof (struct tcpiphdr);
487 	ip->ip_len = tlen;
488 	ip->ip_ttl = ip_defttl;
489 	if (path_mtu_discovery)
490 		ip->ip_off |= IP_DF;
491       }
492 	m->m_len = tlen;
493 	m->m_pkthdr.len = tlen;
494 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
495 #ifdef MAC
496 	if (inp != NULL) {
497 		/*
498 		 * Packet is associated with a socket, so allow the
499 		 * label of the response to reflect the socket label.
500 		 */
501 		mac_create_mbuf_from_socket(inp->inp_socket, m);
502 	} else {
503 		/*
504 		 * Packet is not associated with a socket, so possibly
505 		 * update the label in place.
506 		 */
507 		mac_reflect_mbuf_tcp(m);
508 	}
509 #endif
510 	nth->th_seq = htonl(seq);
511 	nth->th_ack = htonl(ack);
512 	nth->th_x2 = 0;
513 	nth->th_off = sizeof (struct tcphdr) >> 2;
514 	nth->th_flags = flags;
515 	if (tp)
516 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
517 	else
518 		nth->th_win = htons((u_short)win);
519 	nth->th_urp = 0;
520 #ifdef INET6
521 	if (isipv6) {
522 		nth->th_sum = 0;
523 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
524 					sizeof(struct ip6_hdr),
525 					tlen - sizeof(struct ip6_hdr));
526 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, NULL);
527 	} else
528 #endif /* INET6 */
529       {
530         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
531 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
532         m->m_pkthdr.csum_flags = CSUM_TCP;
533         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
534       }
535 #ifdef TCPDEBUG
536 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
537 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
538 #endif
539 #ifdef INET6
540 	if (isipv6)
541 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
542 	else
543 #endif /* INET6 */
544 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
545 }
546 
547 /*
548  * Create a new TCP control block, making an
549  * empty reassembly queue and hooking it to the argument
550  * protocol control block.  The `inp' parameter must have
551  * come from the zone allocator set up in tcp_init().
552  */
553 struct tcpcb *
554 tcp_newtcpcb(inp)
555 	struct inpcb *inp;
556 {
557 	struct tcpcb_mem *tm;
558 	struct tcpcb *tp;
559 #ifdef INET6
560 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
561 #endif /* INET6 */
562 
563 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
564 	if (tm == NULL)
565 		return (NULL);
566 	tp = &tm->tcb;
567 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
568 	tp->t_maxseg = tp->t_maxopd =
569 #ifdef INET6
570 		isipv6 ? tcp_v6mssdflt :
571 #endif /* INET6 */
572 		tcp_mssdflt;
573 
574 	/* Set up our timeouts. */
575 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, 0);
576 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, 0);
577 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, 0);
578 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, 0);
579 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, 0);
580 
581 	if (tcp_do_rfc1323)
582 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
583 	if (tcp_do_rfc1644)
584 		tp->t_flags |= TF_REQ_CC;
585 	tp->t_inpcb = inp;	/* XXX */
586 	/*
587 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
588 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
589 	 * reasonable initial retransmit time.
590 	 */
591 	tp->t_srtt = TCPTV_SRTTBASE;
592 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
593 	tp->t_rttmin = tcp_rexmit_min;
594 	tp->t_rxtcur = TCPTV_RTOBASE;
595 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
596 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
597 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
598 	tp->t_rcvtime = ticks;
599 	tp->t_bw_rtttime = ticks;
600         /*
601 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
602 	 * because the socket may be bound to an IPv6 wildcard address,
603 	 * which may match an IPv4-mapped IPv6 address.
604 	 */
605 	inp->inp_ip_ttl = ip_defttl;
606 	inp->inp_ppcb = (caddr_t)tp;
607 	return (tp);		/* XXX */
608 }
609 
610 /*
611  * Drop a TCP connection, reporting
612  * the specified error.  If connection is synchronized,
613  * then send a RST to peer.
614  */
615 struct tcpcb *
616 tcp_drop(tp, errno)
617 	register struct tcpcb *tp;
618 	int errno;
619 {
620 	struct socket *so = tp->t_inpcb->inp_socket;
621 
622 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
623 		tp->t_state = TCPS_CLOSED;
624 		(void) tcp_output(tp);
625 		tcpstat.tcps_drops++;
626 	} else
627 		tcpstat.tcps_conndrops++;
628 	if (errno == ETIMEDOUT && tp->t_softerror)
629 		errno = tp->t_softerror;
630 	so->so_error = errno;
631 	return (tcp_close(tp));
632 }
633 
634 static void
635 tcp_discardcb(tp)
636 	struct tcpcb *tp;
637 {
638 	struct tseg_qent *q;
639 	struct inpcb *inp = tp->t_inpcb;
640 	struct socket *so = inp->inp_socket;
641 #ifdef INET6
642 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
643 #endif /* INET6 */
644 
645 	/*
646 	 * Make sure that all of our timers are stopped before we
647 	 * delete the PCB.
648 	 */
649 	callout_stop(tp->tt_rexmt);
650 	callout_stop(tp->tt_persist);
651 	callout_stop(tp->tt_keep);
652 	callout_stop(tp->tt_2msl);
653 	callout_stop(tp->tt_delack);
654 
655 	/*
656 	 * If we got enough samples through the srtt filter,
657 	 * save the rtt and rttvar in the routing entry.
658 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
659 	 * 4 samples is enough for the srtt filter to converge
660 	 * to within enough % of the correct value; fewer samples
661 	 * and we could save a bogus rtt. The danger is not high
662 	 * as tcp quickly recovers from everything.
663 	 * XXX: Works very well but needs some more statistics!
664 	 */
665 	if (tp->t_rttupdated >= 4) {
666 		struct hc_metrics_lite metrics;
667 		u_long ssthresh;
668 
669 		bzero(&metrics, sizeof(metrics));
670 		/*
671 		 * Update the ssthresh always when the conditions below
672 		 * are satisfied. This gives us better new start value
673 		 * for the congestion avoidance for new connections.
674 		 * ssthresh is only set if packet loss occured on a session.
675 		 */
676 		ssthresh = tp->snd_ssthresh;
677 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
678 			/*
679 			 * convert the limit from user data bytes to
680 			 * packets then to packet data bytes.
681 			 */
682 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
683 			if (ssthresh < 2)
684 				ssthresh = 2;
685 			ssthresh *= (u_long)(tp->t_maxseg +
686 #ifdef INET6
687 				      (isipv6 ? sizeof (struct ip6_hdr) +
688 					       sizeof (struct tcphdr) :
689 #endif
690 				       sizeof (struct tcpiphdr)
691 #ifdef INET6
692 				       )
693 #endif
694 				      );
695 		} else
696 			ssthresh = 0;
697 		metrics.rmx_ssthresh = ssthresh;
698 
699 		metrics.rmx_rtt = tp->t_srtt;
700 		metrics.rmx_rttvar = tp->t_rttvar;
701 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
702 		metrics.rmx_bandwidth = tp->snd_bandwidth;
703 		metrics.rmx_cwnd = tp->snd_cwnd;
704 		metrics.rmx_sendpipe = 0;
705 		metrics.rmx_recvpipe = 0;
706 
707 		tcp_hc_update(&inp->inp_inc, &metrics);
708 	}
709 
710 	/* free the reassembly queue, if any */
711 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
712 		LIST_REMOVE(q, tqe_q);
713 		m_freem(q->tqe_m);
714 		FREE(q, M_TSEGQ);
715 	}
716 	inp->inp_ppcb = NULL;
717 	tp->t_inpcb = NULL;
718 	uma_zfree(tcpcb_zone, tp);
719 	soisdisconnected(so);
720 }
721 
722 /*
723  * Close a TCP control block:
724  *    discard all space held by the tcp
725  *    discard internet protocol block
726  *    wake up any sleepers
727  */
728 struct tcpcb *
729 tcp_close(tp)
730 	struct tcpcb *tp;
731 {
732 	struct inpcb *inp = tp->t_inpcb;
733 #ifdef INET6
734 	struct socket *so = inp->inp_socket;
735 #endif
736 
737 	tcp_discardcb(tp);
738 #ifdef INET6
739 	if (INP_CHECK_SOCKAF(so, AF_INET6))
740 		in6_pcbdetach(inp);
741 	else
742 #endif
743 		in_pcbdetach(inp);
744 	tcpstat.tcps_closed++;
745 	return ((struct tcpcb *)0);
746 }
747 
748 void
749 tcp_drain()
750 {
751 	if (do_tcpdrain)
752 	{
753 		struct inpcb *inpb;
754 		struct tcpcb *tcpb;
755 		struct tseg_qent *te;
756 
757 	/*
758 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
759 	 * if there is one...
760 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
761 	 *      reassembly queue should be flushed, but in a situation
762 	 * 	where we're really low on mbufs, this is potentially
763 	 *  	usefull.
764 	 */
765 		INP_INFO_RLOCK(&tcbinfo);
766 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
767 			if (inpb->inp_vflag & INP_TIMEWAIT)
768 				continue;
769 			INP_LOCK(inpb);
770 			if ((tcpb = intotcpcb(inpb))) {
771 				while ((te = LIST_FIRST(&tcpb->t_segq))
772 			            != NULL) {
773 					LIST_REMOVE(te, tqe_q);
774 					m_freem(te->tqe_m);
775 					FREE(te, M_TSEGQ);
776 				}
777 			}
778 			INP_UNLOCK(inpb);
779 		}
780 		INP_INFO_RUNLOCK(&tcbinfo);
781 	}
782 }
783 
784 /*
785  * Notify a tcp user of an asynchronous error;
786  * store error as soft error, but wake up user
787  * (for now, won't do anything until can select for soft error).
788  *
789  * Do not wake up user since there currently is no mechanism for
790  * reporting soft errors (yet - a kqueue filter may be added).
791  */
792 static struct inpcb *
793 tcp_notify(inp, error)
794 	struct inpcb *inp;
795 	int error;
796 {
797 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
798 
799 	/*
800 	 * Ignore some errors if we are hooked up.
801 	 * If connection hasn't completed, has retransmitted several times,
802 	 * and receives a second error, give up now.  This is better
803 	 * than waiting a long time to establish a connection that
804 	 * can never complete.
805 	 */
806 	if (tp->t_state == TCPS_ESTABLISHED &&
807 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
808 	     error == EHOSTDOWN)) {
809 		return inp;
810 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
811 	    tp->t_softerror) {
812 		tcp_drop(tp, error);
813 		return (struct inpcb *)0;
814 	} else {
815 		tp->t_softerror = error;
816 		return inp;
817 	}
818 #if 0
819 	wakeup( &so->so_timeo);
820 	sorwakeup(so);
821 	sowwakeup(so);
822 #endif
823 }
824 
825 static int
826 tcp_pcblist(SYSCTL_HANDLER_ARGS)
827 {
828 	int error, i, n, s;
829 	struct inpcb *inp, **inp_list;
830 	inp_gen_t gencnt;
831 	struct xinpgen xig;
832 
833 	/*
834 	 * The process of preparing the TCB list is too time-consuming and
835 	 * resource-intensive to repeat twice on every request.
836 	 */
837 	if (req->oldptr == 0) {
838 		n = tcbinfo.ipi_count;
839 		req->oldidx = 2 * (sizeof xig)
840 			+ (n + n/8) * sizeof(struct xtcpcb);
841 		return 0;
842 	}
843 
844 	if (req->newptr != 0)
845 		return EPERM;
846 
847 	/*
848 	 * OK, now we're committed to doing something.
849 	 */
850 	s = splnet();
851 	INP_INFO_RLOCK(&tcbinfo);
852 	gencnt = tcbinfo.ipi_gencnt;
853 	n = tcbinfo.ipi_count;
854 	INP_INFO_RUNLOCK(&tcbinfo);
855 	splx(s);
856 
857 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
858 		+ n * sizeof(struct xtcpcb));
859 
860 	xig.xig_len = sizeof xig;
861 	xig.xig_count = n;
862 	xig.xig_gen = gencnt;
863 	xig.xig_sogen = so_gencnt;
864 	error = SYSCTL_OUT(req, &xig, sizeof xig);
865 	if (error)
866 		return error;
867 
868 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
869 	if (inp_list == 0)
870 		return ENOMEM;
871 
872 	s = splnet();
873 	INP_INFO_RLOCK(&tcbinfo);
874 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
875 	     inp = LIST_NEXT(inp, inp_list)) {
876 		INP_LOCK(inp);
877 		if (inp->inp_gencnt <= gencnt) {
878 			/*
879 			 * XXX: This use of cr_cansee(), introduced with
880 			 * TCP state changes, is not quite right, but for
881 			 * now, better than nothing.
882 			 */
883 			if (inp->inp_vflag & INP_TIMEWAIT)
884 				error = cr_cansee(req->td->td_ucred,
885 				    intotw(inp)->tw_cred);
886 			else
887 				error = cr_canseesocket(req->td->td_ucred,
888 				    inp->inp_socket);
889 			if (error == 0)
890 				inp_list[i++] = inp;
891 		}
892 		INP_UNLOCK(inp);
893 	}
894 	INP_INFO_RUNLOCK(&tcbinfo);
895 	splx(s);
896 	n = i;
897 
898 	error = 0;
899 	for (i = 0; i < n; i++) {
900 		inp = inp_list[i];
901 		if (inp->inp_gencnt <= gencnt) {
902 			struct xtcpcb xt;
903 			caddr_t inp_ppcb;
904 			xt.xt_len = sizeof xt;
905 			/* XXX should avoid extra copy */
906 			bcopy(inp, &xt.xt_inp, sizeof *inp);
907 			inp_ppcb = inp->inp_ppcb;
908 			if (inp_ppcb == NULL)
909 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
910 			else if (inp->inp_vflag & INP_TIMEWAIT) {
911 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
912 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
913 			} else
914 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
915 			if (inp->inp_socket)
916 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
917 			else {
918 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
919 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
920 			}
921 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
922 			error = SYSCTL_OUT(req, &xt, sizeof xt);
923 		}
924 	}
925 	if (!error) {
926 		/*
927 		 * Give the user an updated idea of our state.
928 		 * If the generation differs from what we told
929 		 * her before, she knows that something happened
930 		 * while we were processing this request, and it
931 		 * might be necessary to retry.
932 		 */
933 		s = splnet();
934 		INP_INFO_RLOCK(&tcbinfo);
935 		xig.xig_gen = tcbinfo.ipi_gencnt;
936 		xig.xig_sogen = so_gencnt;
937 		xig.xig_count = tcbinfo.ipi_count;
938 		INP_INFO_RUNLOCK(&tcbinfo);
939 		splx(s);
940 		error = SYSCTL_OUT(req, &xig, sizeof xig);
941 	}
942 	free(inp_list, M_TEMP);
943 	return error;
944 }
945 
946 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
947 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
948 
949 static int
950 tcp_getcred(SYSCTL_HANDLER_ARGS)
951 {
952 	struct xucred xuc;
953 	struct sockaddr_in addrs[2];
954 	struct inpcb *inp;
955 	int error, s;
956 
957 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
958 	if (error)
959 		return (error);
960 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
961 	if (error)
962 		return (error);
963 	s = splnet();
964 	INP_INFO_RLOCK(&tcbinfo);
965 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
966 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
967 	if (inp == NULL) {
968 		error = ENOENT;
969 		goto outunlocked;
970 	}
971 	INP_LOCK(inp);
972 	if (inp->inp_socket == NULL) {
973 		error = ENOENT;
974 		goto out;
975 	}
976 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
977 	if (error)
978 		goto out;
979 	cru2x(inp->inp_socket->so_cred, &xuc);
980 out:
981 	INP_UNLOCK(inp);
982 outunlocked:
983 	INP_INFO_RUNLOCK(&tcbinfo);
984 	splx(s);
985 	if (error == 0)
986 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
987 	return (error);
988 }
989 
990 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
991     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
992     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
993 
994 #ifdef INET6
995 static int
996 tcp6_getcred(SYSCTL_HANDLER_ARGS)
997 {
998 	struct xucred xuc;
999 	struct sockaddr_in6 addrs[2];
1000 	struct inpcb *inp;
1001 	int error, s, mapped = 0;
1002 
1003 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1004 	if (error)
1005 		return (error);
1006 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1007 	if (error)
1008 		return (error);
1009 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1010 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1011 			mapped = 1;
1012 		else
1013 			return (EINVAL);
1014 	}
1015 	s = splnet();
1016 	INP_INFO_RLOCK(&tcbinfo);
1017 	if (mapped == 1)
1018 		inp = in_pcblookup_hash(&tcbinfo,
1019 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1020 			addrs[1].sin6_port,
1021 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1022 			addrs[0].sin6_port,
1023 			0, NULL);
1024 	else
1025 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1026 				 addrs[1].sin6_port,
1027 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1028 				 0, NULL);
1029 	if (inp == NULL) {
1030 		error = ENOENT;
1031 		goto outunlocked;
1032 	}
1033 	INP_LOCK(inp);
1034 	if (inp->inp_socket == NULL) {
1035 		error = ENOENT;
1036 		goto out;
1037 	}
1038 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1039 	if (error)
1040 		goto out;
1041 	cru2x(inp->inp_socket->so_cred, &xuc);
1042 out:
1043 	INP_UNLOCK(inp);
1044 outunlocked:
1045 	INP_INFO_RUNLOCK(&tcbinfo);
1046 	splx(s);
1047 	if (error == 0)
1048 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1049 	return (error);
1050 }
1051 
1052 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1053     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1054     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1055 #endif
1056 
1057 
1058 void
1059 tcp_ctlinput(cmd, sa, vip)
1060 	int cmd;
1061 	struct sockaddr *sa;
1062 	void *vip;
1063 {
1064 	struct ip *ip = vip;
1065 	struct tcphdr *th;
1066 	struct in_addr faddr;
1067 	struct inpcb *inp;
1068 	struct tcpcb *tp;
1069 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1070 	tcp_seq icmp_seq;
1071 	int s;
1072 
1073 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1074 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1075 		return;
1076 
1077 	if (cmd == PRC_QUENCH)
1078 		notify = tcp_quench;
1079 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1080 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1081 		notify = tcp_drop_syn_sent;
1082 	else if (cmd == PRC_MSGSIZE)
1083 		notify = tcp_mtudisc;
1084 	/*
1085 	 * Redirects don't need to be handled up here.
1086 	 */
1087 	else if (PRC_IS_REDIRECT(cmd))
1088 		return;
1089 	/*
1090 	 * Hostdead is ugly because it goes linearly through all PCBs.
1091 	 * XXX: We never get this from ICMP, otherwise it makes an
1092 	 * excellent DoS attack on machines with many connections.
1093 	 */
1094 	else if (cmd == PRC_HOSTDEAD)
1095 		ip = 0;
1096 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1097 		return;
1098 	if (ip) {
1099 		s = splnet();
1100 		th = (struct tcphdr *)((caddr_t)ip
1101 				       + (ip->ip_hl << 2));
1102 		INP_INFO_WLOCK(&tcbinfo);
1103 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1104 		    ip->ip_src, th->th_sport, 0, NULL);
1105 		if (inp != NULL)  {
1106 			INP_LOCK(inp);
1107 			if (inp->inp_socket != NULL) {
1108 				icmp_seq = htonl(th->th_seq);
1109 				tp = intotcpcb(inp);
1110 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1111 			    		SEQ_LT(icmp_seq, tp->snd_max))
1112 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1113 			}
1114 			if (inp)
1115 				INP_UNLOCK(inp);
1116 		} else {
1117 			struct in_conninfo inc;
1118 
1119 			inc.inc_fport = th->th_dport;
1120 			inc.inc_lport = th->th_sport;
1121 			inc.inc_faddr = faddr;
1122 			inc.inc_laddr = ip->ip_src;
1123 #ifdef INET6
1124 			inc.inc_isipv6 = 0;
1125 #endif
1126 			syncache_unreach(&inc, th);
1127 		}
1128 		INP_INFO_WUNLOCK(&tcbinfo);
1129 		splx(s);
1130 	} else
1131 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1132 }
1133 
1134 #ifdef INET6
1135 void
1136 tcp6_ctlinput(cmd, sa, d)
1137 	int cmd;
1138 	struct sockaddr *sa;
1139 	void *d;
1140 {
1141 	struct tcphdr th;
1142 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1143 	struct ip6_hdr *ip6;
1144 	struct mbuf *m;
1145 	struct ip6ctlparam *ip6cp = NULL;
1146 	const struct sockaddr_in6 *sa6_src = NULL;
1147 	int off;
1148 	struct tcp_portonly {
1149 		u_int16_t th_sport;
1150 		u_int16_t th_dport;
1151 	} *thp;
1152 
1153 	if (sa->sa_family != AF_INET6 ||
1154 	    sa->sa_len != sizeof(struct sockaddr_in6))
1155 		return;
1156 
1157 	if (cmd == PRC_QUENCH)
1158 		notify = tcp_quench;
1159 	else if (cmd == PRC_MSGSIZE)
1160 		notify = tcp_mtudisc;
1161 	else if (!PRC_IS_REDIRECT(cmd) &&
1162 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1163 		return;
1164 
1165 	/* if the parameter is from icmp6, decode it. */
1166 	if (d != NULL) {
1167 		ip6cp = (struct ip6ctlparam *)d;
1168 		m = ip6cp->ip6c_m;
1169 		ip6 = ip6cp->ip6c_ip6;
1170 		off = ip6cp->ip6c_off;
1171 		sa6_src = ip6cp->ip6c_src;
1172 	} else {
1173 		m = NULL;
1174 		ip6 = NULL;
1175 		off = 0;	/* fool gcc */
1176 		sa6_src = &sa6_any;
1177 	}
1178 
1179 	if (ip6) {
1180 		struct in_conninfo inc;
1181 		/*
1182 		 * XXX: We assume that when IPV6 is non NULL,
1183 		 * M and OFF are valid.
1184 		 */
1185 
1186 		/* check if we can safely examine src and dst ports */
1187 		if (m->m_pkthdr.len < off + sizeof(*thp))
1188 			return;
1189 
1190 		bzero(&th, sizeof(th));
1191 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1192 
1193 		in6_pcbnotify(&tcb, sa, th.th_dport,
1194 		    (struct sockaddr *)ip6cp->ip6c_src,
1195 		    th.th_sport, cmd, NULL, notify);
1196 
1197 		inc.inc_fport = th.th_dport;
1198 		inc.inc_lport = th.th_sport;
1199 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1200 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1201 		inc.inc_isipv6 = 1;
1202 		syncache_unreach(&inc, &th);
1203 	} else
1204 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1205 			      0, cmd, NULL, notify);
1206 }
1207 #endif /* INET6 */
1208 
1209 
1210 /*
1211  * Following is where TCP initial sequence number generation occurs.
1212  *
1213  * There are two places where we must use initial sequence numbers:
1214  * 1.  In SYN-ACK packets.
1215  * 2.  In SYN packets.
1216  *
1217  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1218  * tcp_syncache.c for details.
1219  *
1220  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1221  * depends on this property.  In addition, these ISNs should be
1222  * unguessable so as to prevent connection hijacking.  To satisfy
1223  * the requirements of this situation, the algorithm outlined in
1224  * RFC 1948 is used to generate sequence numbers.
1225  *
1226  * Implementation details:
1227  *
1228  * Time is based off the system timer, and is corrected so that it
1229  * increases by one megabyte per second.  This allows for proper
1230  * recycling on high speed LANs while still leaving over an hour
1231  * before rollover.
1232  *
1233  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1234  * between seeding of isn_secret.  This is normally set to zero,
1235  * as reseeding should not be necessary.
1236  *
1237  */
1238 
1239 #define ISN_BYTES_PER_SECOND 1048576
1240 
1241 u_char isn_secret[32];
1242 int isn_last_reseed;
1243 MD5_CTX isn_ctx;
1244 
1245 tcp_seq
1246 tcp_new_isn(tp)
1247 	struct tcpcb *tp;
1248 {
1249 	u_int32_t md5_buffer[4];
1250 	tcp_seq new_isn;
1251 
1252 	/* Seed if this is the first use, reseed if requested. */
1253 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1254 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1255 		< (u_int)ticks))) {
1256 		read_random(&isn_secret, sizeof(isn_secret));
1257 		isn_last_reseed = ticks;
1258 	}
1259 
1260 	/* Compute the md5 hash and return the ISN. */
1261 	MD5Init(&isn_ctx);
1262 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1263 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1264 #ifdef INET6
1265 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1266 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1267 			  sizeof(struct in6_addr));
1268 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1269 			  sizeof(struct in6_addr));
1270 	} else
1271 #endif
1272 	{
1273 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1274 			  sizeof(struct in_addr));
1275 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1276 			  sizeof(struct in_addr));
1277 	}
1278 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1279 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1280 	new_isn = (tcp_seq) md5_buffer[0];
1281 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1282 	return new_isn;
1283 }
1284 
1285 /*
1286  * When a source quench is received, close congestion window
1287  * to one segment.  We will gradually open it again as we proceed.
1288  */
1289 struct inpcb *
1290 tcp_quench(inp, errno)
1291 	struct inpcb *inp;
1292 	int errno;
1293 {
1294 	struct tcpcb *tp = intotcpcb(inp);
1295 
1296 	if (tp)
1297 		tp->snd_cwnd = tp->t_maxseg;
1298 	return (inp);
1299 }
1300 
1301 /*
1302  * When a specific ICMP unreachable message is received and the
1303  * connection state is SYN-SENT, drop the connection.  This behavior
1304  * is controlled by the icmp_may_rst sysctl.
1305  */
1306 struct inpcb *
1307 tcp_drop_syn_sent(inp, errno)
1308 	struct inpcb *inp;
1309 	int errno;
1310 {
1311 	struct tcpcb *tp = intotcpcb(inp);
1312 
1313 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1314 		tcp_drop(tp, errno);
1315 		return (struct inpcb *)0;
1316 	}
1317 	return inp;
1318 }
1319 
1320 /*
1321  * When `need fragmentation' ICMP is received, update our idea of the MSS
1322  * based on the new value in the route.  Also nudge TCP to send something,
1323  * since we know the packet we just sent was dropped.
1324  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1325  */
1326 struct inpcb *
1327 tcp_mtudisc(inp, errno)
1328 	struct inpcb *inp;
1329 	int errno;
1330 {
1331 	struct tcpcb *tp = intotcpcb(inp);
1332 	struct rmxp_tao tao;
1333 	struct socket *so = inp->inp_socket;
1334 	u_int maxmtu;
1335 	u_int romtu;
1336 	int mss;
1337 #ifdef INET6
1338 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1339 #endif /* INET6 */
1340 	bzero(&tao, sizeof(tao));
1341 
1342 	if (tp) {
1343 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1344 		romtu =
1345 #ifdef INET6
1346 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1347 #endif /* INET6 */
1348 		    tcp_maxmtu(&inp->inp_inc);
1349 		if (!maxmtu)
1350 			maxmtu = romtu;
1351 		else
1352 			maxmtu = min(maxmtu, romtu);
1353 		if (!maxmtu) {
1354 			tp->t_maxopd = tp->t_maxseg =
1355 #ifdef INET6
1356 				isipv6 ? tcp_v6mssdflt :
1357 #endif /* INET6 */
1358 				tcp_mssdflt;
1359 			return inp;
1360 		}
1361 		mss = maxmtu -
1362 #ifdef INET6
1363 			(isipv6 ?
1364 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1365 #endif /* INET6 */
1366 			 sizeof(struct tcpiphdr)
1367 #ifdef INET6
1368 			 )
1369 #endif /* INET6 */
1370 			;
1371 
1372 		if (tcp_do_rfc1644) {
1373 			tcp_hc_gettao(&inp->inp_inc, &tao);
1374 			if (tao.tao_mssopt)
1375 				mss = min(mss, tao.tao_mssopt);
1376 		}
1377 		/*
1378 		 * XXX - The above conditional probably violates the TCP
1379 		 * spec.  The problem is that, since we don't know the
1380 		 * other end's MSS, we are supposed to use a conservative
1381 		 * default.  But, if we do that, then MTU discovery will
1382 		 * never actually take place, because the conservative
1383 		 * default is much less than the MTUs typically seen
1384 		 * on the Internet today.  For the moment, we'll sweep
1385 		 * this under the carpet.
1386 		 *
1387 		 * The conservative default might not actually be a problem
1388 		 * if the only case this occurs is when sending an initial
1389 		 * SYN with options and data to a host we've never talked
1390 		 * to before.  Then, they will reply with an MSS value which
1391 		 * will get recorded and the new parameters should get
1392 		 * recomputed.  For Further Study.
1393 		 */
1394 		if (tp->t_maxopd <= mss)
1395 			return inp;
1396 		tp->t_maxopd = mss;
1397 
1398 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1399 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1400 			mss -= TCPOLEN_TSTAMP_APPA;
1401 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1402 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1403 			mss -= TCPOLEN_CC_APPA;
1404 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1405 		if (mss > MCLBYTES)
1406 			mss &= ~(MCLBYTES-1);
1407 #else
1408 		if (mss > MCLBYTES)
1409 			mss = mss / MCLBYTES * MCLBYTES;
1410 #endif
1411 		if (so->so_snd.sb_hiwat < mss)
1412 			mss = so->so_snd.sb_hiwat;
1413 
1414 		tp->t_maxseg = mss;
1415 
1416 		tcpstat.tcps_mturesent++;
1417 		tp->t_rtttime = 0;
1418 		tp->snd_nxt = tp->snd_una;
1419 		tcp_output(tp);
1420 	}
1421 	return inp;
1422 }
1423 
1424 /*
1425  * Look-up the routing entry to the peer of this inpcb.  If no route
1426  * is found and it cannot be allocated, then return NULL.  This routine
1427  * is called by TCP routines that access the rmx structure and by tcp_mss
1428  * to get the interface MTU.
1429  */
1430 u_long
1431 tcp_maxmtu(inc)
1432 	struct in_conninfo *inc;
1433 {
1434 	struct route sro;
1435 	struct sockaddr_in *dst;
1436 	struct ifnet *ifp;
1437 	u_long maxmtu = 0;
1438 
1439 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1440 
1441 	bzero(&sro, sizeof(sro));
1442 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1443 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1444 		dst->sin_family = AF_INET;
1445 		dst->sin_len = sizeof(*dst);
1446 		dst->sin_addr = inc->inc_faddr;
1447 		rtalloc_ign(&sro, RTF_CLONING);
1448 	}
1449 	if (sro.ro_rt != NULL) {
1450 		ifp = sro.ro_rt->rt_ifp;
1451 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1452 			maxmtu = ifp->if_mtu;
1453 		else
1454 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1455 		RTFREE(sro.ro_rt);
1456 	}
1457 	return (maxmtu);
1458 }
1459 
1460 #ifdef INET6
1461 u_long
1462 tcp_maxmtu6(inc)
1463 	struct in_conninfo *inc;
1464 {
1465 	struct route_in6 sro6;
1466 	struct ifnet *ifp;
1467 	u_long maxmtu = 0;
1468 
1469 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1470 
1471 	bzero(&sro6, sizeof(sro6));
1472 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1473 		sro6.ro_dst.sin6_family = AF_INET6;
1474 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1475 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1476 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1477 	}
1478 	if (sro6.ro_rt != NULL) {
1479 		ifp = sro6.ro_rt->rt_ifp;
1480 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1481 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1482 		else
1483 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1484 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1485 		RTFREE(sro6.ro_rt);
1486 	}
1487 
1488 	return (maxmtu);
1489 }
1490 #endif /* INET6 */
1491 
1492 #ifdef IPSEC
1493 /* compute ESP/AH header size for TCP, including outer IP header. */
1494 size_t
1495 ipsec_hdrsiz_tcp(tp)
1496 	struct tcpcb *tp;
1497 {
1498 	struct inpcb *inp;
1499 	struct mbuf *m;
1500 	size_t hdrsiz;
1501 	struct ip *ip;
1502 #ifdef INET6
1503 	struct ip6_hdr *ip6;
1504 #endif
1505 	struct tcphdr *th;
1506 
1507 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1508 		return 0;
1509 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1510 	if (!m)
1511 		return 0;
1512 
1513 #ifdef INET6
1514 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1515 		ip6 = mtod(m, struct ip6_hdr *);
1516 		th = (struct tcphdr *)(ip6 + 1);
1517 		m->m_pkthdr.len = m->m_len =
1518 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1519 		tcpip_fillheaders(inp, ip6, th);
1520 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1521 	} else
1522 #endif /* INET6 */
1523       {
1524 	ip = mtod(m, struct ip *);
1525 	th = (struct tcphdr *)(ip + 1);
1526 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1527 	tcpip_fillheaders(inp, ip, th);
1528 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1529       }
1530 
1531 	m_free(m);
1532 	return hdrsiz;
1533 }
1534 #endif /*IPSEC*/
1535 
1536 /*
1537  * Move a TCP connection into TIME_WAIT state.
1538  *    tcbinfo is unlocked.
1539  *    inp is locked, and is unlocked before returning.
1540  */
1541 void
1542 tcp_twstart(tp)
1543 	struct tcpcb *tp;
1544 {
1545 	struct tcptw *tw;
1546 	struct inpcb *inp;
1547 	int tw_time, acknow;
1548 	struct socket *so;
1549 
1550 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1551 	if (tw == NULL) {
1552 		tw = tcp_timer_2msl_tw(1);
1553 		if (tw == NULL) {
1554 			tcp_close(tp);
1555 			return;
1556 		}
1557 	}
1558 	inp = tp->t_inpcb;
1559 	tw->tw_inpcb = inp;
1560 
1561 	/*
1562 	 * Recover last window size sent.
1563 	 */
1564 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1565 
1566 	/*
1567 	 * Set t_recent if timestamps are used on the connection.
1568 	 */
1569         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1570             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1571 		tw->t_recent = tp->ts_recent;
1572 	else
1573 		tw->t_recent = 0;
1574 
1575 	tw->snd_nxt = tp->snd_nxt;
1576 	tw->rcv_nxt = tp->rcv_nxt;
1577 	tw->iss     = tp->iss;
1578 	tw->irs     = tp->irs;
1579 	tw->cc_recv = tp->cc_recv;
1580 	tw->cc_send = tp->cc_send;
1581 	tw->t_starttime = tp->t_starttime;
1582 	tw->tw_time = 0;
1583 
1584 /* XXX
1585  * If this code will
1586  * be used for fin-wait-2 state also, then we may need
1587  * a ts_recent from the last segment.
1588  */
1589 	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1590 	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1591 		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1592 		/* For T/TCP client, force ACK now. */
1593 		acknow = 1;
1594 	} else {
1595 		tw_time = 2 * tcp_msl;
1596 		acknow = tp->t_flags & TF_ACKNOW;
1597 	}
1598 	tcp_discardcb(tp);
1599 	so = inp->inp_socket;
1600 	so->so_pcb = NULL;
1601 	tw->tw_cred = crhold(so->so_cred);
1602 	tw->tw_so_options = so->so_options;
1603 	if (acknow)
1604 		tcp_twrespond(tw, so, NULL, TH_ACK);
1605 	sotryfree(so);
1606 	inp->inp_socket = NULL;
1607 	inp->inp_ppcb = (caddr_t)tw;
1608 	inp->inp_vflag |= INP_TIMEWAIT;
1609 	tcp_timer_2msl_reset(tw, tw_time);
1610 	INP_UNLOCK(inp);
1611 }
1612 
1613 /*
1614  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1615  * the actual rate is slightly higher due to the addition of
1616  * random positive increments.
1617  *
1618  * Most other new OSes use semi-randomized ISN values, so we
1619  * do not need to worry about them.
1620  */
1621 #define MS_ISN_BYTES_PER_SECOND		250000
1622 
1623 /*
1624  * Determine if the ISN we will generate has advanced beyond the last
1625  * sequence number used by the previous connection.  If so, indicate
1626  * that it is safe to recycle this tw socket by returning 1.
1627  */
1628 int
1629 tcp_twrecycleable(struct tcptw *tw)
1630 {
1631 	tcp_seq new_iss = tw->iss;
1632 	tcp_seq new_irs = tw->irs;
1633 
1634 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1635 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1636 
1637 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1638 		return 1;
1639 	else
1640 		return 0;
1641 }
1642 
1643 struct tcptw *
1644 tcp_twclose(struct tcptw *tw, int reuse)
1645 {
1646 	struct inpcb *inp;
1647 
1648 	inp = tw->tw_inpcb;
1649 	tw->tw_inpcb = NULL;
1650 	tcp_timer_2msl_stop(tw);
1651 	inp->inp_ppcb = NULL;
1652 #ifdef INET6
1653 	if (inp->inp_vflag & INP_IPV6PROTO)
1654 		in6_pcbdetach(inp);
1655 	else
1656 #endif
1657 		in_pcbdetach(inp);
1658 	tcpstat.tcps_closed++;
1659 	crfree(tw->tw_cred);
1660 	tw->tw_cred = NULL;
1661 	if (reuse)
1662 		return (tw);
1663 	uma_zfree(tcptw_zone, tw);
1664 	return (NULL);
1665 }
1666 
1667 /*
1668  * One of so and msrc must be non-NULL for use by the MAC Framework to
1669  * construct a label for ay resulting packet.
1670  */
1671 int
1672 tcp_twrespond(struct tcptw *tw, struct socket *so, struct mbuf *msrc,
1673     int flags)
1674 {
1675 	struct inpcb *inp = tw->tw_inpcb;
1676 	struct tcphdr *th;
1677 	struct mbuf *m;
1678 	struct ip *ip = NULL;
1679 	u_int8_t *optp;
1680 	u_int hdrlen, optlen;
1681 	int error;
1682 #ifdef INET6
1683 	struct ip6_hdr *ip6 = NULL;
1684 	int isipv6 = inp->inp_inc.inc_isipv6;
1685 #endif
1686 
1687 	KASSERT(so != NULL || msrc != NULL,
1688 	    ("tcp_twrespond: so and msrc NULL"));
1689 
1690 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1691 	if (m == NULL)
1692 		return (ENOBUFS);
1693 	m->m_data += max_linkhdr;
1694 
1695 #ifdef MAC
1696 	mac_create_mbuf_from_inpcb(inp, m);
1697 #endif
1698 
1699 #ifdef INET6
1700 	if (isipv6) {
1701 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1702 		ip6 = mtod(m, struct ip6_hdr *);
1703 		th = (struct tcphdr *)(ip6 + 1);
1704 		tcpip_fillheaders(inp, ip6, th);
1705 	} else
1706 #endif
1707 	{
1708 		hdrlen = sizeof(struct tcpiphdr);
1709 		ip = mtod(m, struct ip *);
1710 		th = (struct tcphdr *)(ip + 1);
1711 		tcpip_fillheaders(inp, ip, th);
1712 	}
1713 	optp = (u_int8_t *)(th + 1);
1714 
1715  	/*
1716 	 * Send a timestamp and echo-reply if both our side and our peer
1717 	 * have sent timestamps in our SYN's and this is not a RST.
1718  	 */
1719 	if (tw->t_recent && flags == TH_ACK) {
1720 		u_int32_t *lp = (u_int32_t *)optp;
1721 
1722  		/* Form timestamp option as shown in appendix A of RFC 1323. */
1723  		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1724  		*lp++ = htonl(ticks);
1725  		*lp   = htonl(tw->t_recent);
1726  		optp += TCPOLEN_TSTAMP_APPA;
1727  	}
1728 
1729  	/*
1730 	 * Send `CC-family' options if needed, and it's not a RST.
1731  	 */
1732 	if (tw->cc_recv != 0 && flags == TH_ACK) {
1733 		u_int32_t *lp = (u_int32_t *)optp;
1734 
1735 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1736 		*lp   = htonl(tw->cc_send);
1737 		optp += TCPOLEN_CC_APPA;
1738  	}
1739 	optlen = optp - (u_int8_t *)(th + 1);
1740 
1741 	m->m_len = hdrlen + optlen;
1742 	m->m_pkthdr.len = m->m_len;
1743 
1744 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1745 
1746 	th->th_seq = htonl(tw->snd_nxt);
1747 	th->th_ack = htonl(tw->rcv_nxt);
1748 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1749 	th->th_flags = flags;
1750 	th->th_win = htons(tw->last_win);
1751 
1752 #ifdef INET6
1753 	if (isipv6) {
1754 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1755 		    sizeof(struct tcphdr) + optlen);
1756 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1757 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1758 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1759 	} else
1760 #endif
1761 	{
1762 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1763                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1764 		m->m_pkthdr.csum_flags = CSUM_TCP;
1765 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1766 		ip->ip_len = m->m_pkthdr.len;
1767 		if (path_mtu_discovery)
1768 			ip->ip_off |= IP_DF;
1769 		error = ip_output(m, inp->inp_options, NULL,
1770 		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1771 	}
1772 	if (flags & TH_ACK)
1773 		tcpstat.tcps_sndacks++;
1774 	else
1775 		tcpstat.tcps_sndctrl++;
1776 	tcpstat.tcps_sndtotal++;
1777 	return (error);
1778 }
1779 
1780 /*
1781  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1782  *
1783  * This code attempts to calculate the bandwidth-delay product as a
1784  * means of determining the optimal window size to maximize bandwidth,
1785  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1786  * routers.  This code also does a fairly good job keeping RTTs in check
1787  * across slow links like modems.  We implement an algorithm which is very
1788  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1789  * transmitter side of a TCP connection and so only effects the transmit
1790  * side of the connection.
1791  *
1792  * BACKGROUND:  TCP makes no provision for the management of buffer space
1793  * at the end points or at the intermediate routers and switches.  A TCP
1794  * stream, whether using NewReno or not, will eventually buffer as
1795  * many packets as it is able and the only reason this typically works is
1796  * due to the fairly small default buffers made available for a connection
1797  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1798  * scaling it is now fairly easy for even a single TCP connection to blow-out
1799  * all available buffer space not only on the local interface, but on
1800  * intermediate routers and switches as well.  NewReno makes a misguided
1801  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1802  * then backing off, then steadily increasing the window again until another
1803  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1804  * is only made worse as network loads increase and the idea of intentionally
1805  * blowing out network buffers is, frankly, a terrible way to manage network
1806  * resources.
1807  *
1808  * It is far better to limit the transmit window prior to the failure
1809  * condition being achieved.  There are two general ways to do this:  First
1810  * you can 'scan' through different transmit window sizes and locate the
1811  * point where the RTT stops increasing, indicating that you have filled the
1812  * pipe, then scan backwards until you note that RTT stops decreasing, then
1813  * repeat ad-infinitum.  This method works in principle but has severe
1814  * implementation issues due to RTT variances, timer granularity, and
1815  * instability in the algorithm which can lead to many false positives and
1816  * create oscillations as well as interact badly with other TCP streams
1817  * implementing the same algorithm.
1818  *
1819  * The second method is to limit the window to the bandwidth delay product
1820  * of the link.  This is the method we implement.  RTT variances and our
1821  * own manipulation of the congestion window, bwnd, can potentially
1822  * destabilize the algorithm.  For this reason we have to stabilize the
1823  * elements used to calculate the window.  We do this by using the minimum
1824  * observed RTT, the long term average of the observed bandwidth, and
1825  * by adding two segments worth of slop.  It isn't perfect but it is able
1826  * to react to changing conditions and gives us a very stable basis on
1827  * which to extend the algorithm.
1828  */
1829 void
1830 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1831 {
1832 	u_long bw;
1833 	u_long bwnd;
1834 	int save_ticks;
1835 
1836 	/*
1837 	 * If inflight_enable is disabled in the middle of a tcp connection,
1838 	 * make sure snd_bwnd is effectively disabled.
1839 	 */
1840 	if (tcp_inflight_enable == 0) {
1841 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1842 		tp->snd_bandwidth = 0;
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * Figure out the bandwidth.  Due to the tick granularity this
1848 	 * is a very rough number and it MUST be averaged over a fairly
1849 	 * long period of time.  XXX we need to take into account a link
1850 	 * that is not using all available bandwidth, but for now our
1851 	 * slop will ramp us up if this case occurs and the bandwidth later
1852 	 * increases.
1853 	 *
1854 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1855 	 * effectively reset t_bw_rtttime for this case.
1856 	 */
1857 	save_ticks = ticks;
1858 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1859 		return;
1860 
1861 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1862 	    (save_ticks - tp->t_bw_rtttime);
1863 	tp->t_bw_rtttime = save_ticks;
1864 	tp->t_bw_rtseq = ack_seq;
1865 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1866 		return;
1867 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1868 
1869 	tp->snd_bandwidth = bw;
1870 
1871 	/*
1872 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1873 	 * segments.  The additional slop puts us squarely in the sweet
1874 	 * spot and also handles the bandwidth run-up case and stabilization.
1875 	 * Without the slop we could be locking ourselves into a lower
1876 	 * bandwidth.
1877 	 *
1878 	 * Situations Handled:
1879 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1880 	 *	    high speed LANs, allowing larger TCP buffers to be
1881 	 *	    specified, and also does a good job preventing
1882 	 *	    over-queueing of packets over choke points like modems
1883 	 *	    (at least for the transmit side).
1884 	 *
1885 	 *	(2) Is able to handle changing network loads (bandwidth
1886 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1887 	 *	    increases).
1888 	 *
1889 	 *	(3) Theoretically should stabilize in the face of multiple
1890 	 *	    connections implementing the same algorithm (this may need
1891 	 *	    a little work).
1892 	 *
1893 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1894 	 *	    be adjusted with a sysctl but typically only needs to be
1895 	 *	    on very slow connections.  A value no smaller then 5
1896 	 *	    should be used, but only reduce this default if you have
1897 	 *	    no other choice.
1898 	 */
1899 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1900 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1901 #undef USERTT
1902 
1903 	if (tcp_inflight_debug > 0) {
1904 		static int ltime;
1905 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1906 			ltime = ticks;
1907 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1908 			    tp,
1909 			    bw,
1910 			    tp->t_rttbest,
1911 			    tp->t_srtt,
1912 			    bwnd
1913 			);
1914 		}
1915 	}
1916 	if ((long)bwnd < tcp_inflight_min)
1917 		bwnd = tcp_inflight_min;
1918 	if (bwnd > tcp_inflight_max)
1919 		bwnd = tcp_inflight_max;
1920 	if ((long)bwnd < tp->t_maxseg * 2)
1921 		bwnd = tp->t_maxseg * 2;
1922 	tp->snd_bwnd = bwnd;
1923 }
1924 
1925 #ifdef TCP_SIGNATURE
1926 /*
1927  * Callback function invoked by m_apply() to digest TCP segment data
1928  * contained within an mbuf chain.
1929  */
1930 static int
1931 tcp_signature_apply(void *fstate, void *data, u_int len)
1932 {
1933 
1934 	MD5Update(fstate, (u_char *)data, len);
1935 	return (0);
1936 }
1937 
1938 /*
1939  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1940  *
1941  * Parameters:
1942  * m		pointer to head of mbuf chain
1943  * off0		offset to TCP header within the mbuf chain
1944  * len		length of TCP segment data, excluding options
1945  * optlen	length of TCP segment options
1946  * buf		pointer to storage for computed MD5 digest
1947  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1948  *
1949  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1950  * When called from tcp_input(), we can be sure that th_sum has been
1951  * zeroed out and verified already.
1952  *
1953  * This function is for IPv4 use only. Calling this function with an
1954  * IPv6 packet in the mbuf chain will yield undefined results.
1955  *
1956  * Return 0 if successful, otherwise return -1.
1957  *
1958  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1959  * search with the destination IP address, and a 'magic SPI' to be
1960  * determined by the application. This is hardcoded elsewhere to 1179
1961  * right now. Another branch of this code exists which uses the SPD to
1962  * specify per-application flows but it is unstable.
1963  */
1964 int
1965 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
1966     u_char *buf, u_int direction)
1967 {
1968 	union sockaddr_union dst;
1969 	struct ippseudo ippseudo;
1970 	MD5_CTX ctx;
1971 	int doff;
1972 	struct ip *ip;
1973 	struct ipovly *ipovly;
1974 	struct secasvar *sav;
1975 	struct tcphdr *th;
1976 	u_short savecsum;
1977 
1978 	KASSERT(m != NULL, ("NULL mbuf chain"));
1979 	KASSERT(buf != NULL, ("NULL signature pointer"));
1980 
1981 	/* Extract the destination from the IP header in the mbuf. */
1982 	ip = mtod(m, struct ip *);
1983 	bzero(&dst, sizeof(union sockaddr_union));
1984 	dst.sa.sa_len = sizeof(struct sockaddr_in);
1985 	dst.sa.sa_family = AF_INET;
1986 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1987 	    ip->ip_src : ip->ip_dst;
1988 
1989 	/* Look up an SADB entry which matches the address of the peer. */
1990 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1991 	if (sav == NULL) {
1992 		printf("%s: SADB lookup failed for %s\n", __func__,
1993 		    inet_ntoa(dst.sin.sin_addr));
1994 		return (EINVAL);
1995 	}
1996 
1997 	MD5Init(&ctx);
1998 	ipovly = (struct ipovly *)ip;
1999 	th = (struct tcphdr *)((u_char *)ip + off0);
2000 	doff = off0 + sizeof(struct tcphdr) + optlen;
2001 
2002 	/*
2003 	 * Step 1: Update MD5 hash with IP pseudo-header.
2004 	 *
2005 	 * XXX The ippseudo header MUST be digested in network byte order,
2006 	 * or else we'll fail the regression test. Assume all fields we've
2007 	 * been doing arithmetic on have been in host byte order.
2008 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2009 	 * tcp_output(), the underlying ip_len member has not yet been set.
2010 	 */
2011 	ippseudo.ippseudo_src = ipovly->ih_src;
2012 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2013 	ippseudo.ippseudo_pad = 0;
2014 	ippseudo.ippseudo_p = IPPROTO_TCP;
2015 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2016 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2017 
2018 	/*
2019 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2020 	 * The TCP checksum must be set to zero.
2021 	 */
2022 	savecsum = th->th_sum;
2023 	th->th_sum = 0;
2024 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2025 	th->th_sum = savecsum;
2026 
2027 	/*
2028 	 * Step 3: Update MD5 hash with TCP segment data.
2029 	 *         Use m_apply() to avoid an early m_pullup().
2030 	 */
2031 	if (len > 0)
2032 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2033 
2034 	/*
2035 	 * Step 4: Update MD5 hash with shared secret.
2036 	 */
2037 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2038 	MD5Final(buf, &ctx);
2039 
2040 	key_sa_recordxfer(sav, m);
2041 	KEY_FREESAV(&sav);
2042 	return (0);
2043 }
2044 #endif /* TCP_SIGNATURE */
2045