1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 #include <sys/random.h> 57 58 #include <vm/uma.h> 59 60 #include <net/route.h> 61 #include <net/if.h> 62 63 #define _IP_VHL 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/ip.h> 67 #ifdef INET6 68 #include <netinet/ip6.h> 69 #endif 70 #include <netinet/in_pcb.h> 71 #ifdef INET6 72 #include <netinet6/in6_pcb.h> 73 #endif 74 #include <netinet/in_var.h> 75 #include <netinet/ip_var.h> 76 #ifdef INET6 77 #include <netinet6/ip6_var.h> 78 #endif 79 #include <netinet/tcp.h> 80 #include <netinet/tcp_fsm.h> 81 #include <netinet/tcp_seq.h> 82 #include <netinet/tcp_timer.h> 83 #include <netinet/tcp_var.h> 84 #ifdef INET6 85 #include <netinet6/tcp6_var.h> 86 #endif 87 #include <netinet/tcpip.h> 88 #ifdef TCPDEBUG 89 #include <netinet/tcp_debug.h> 90 #endif 91 #include <netinet6/ip6protosw.h> 92 93 #ifdef IPSEC 94 #include <netinet6/ipsec.h> 95 #ifdef INET6 96 #include <netinet6/ipsec6.h> 97 #endif 98 #endif /*IPSEC*/ 99 100 #include <machine/in_cksum.h> 101 #include <sys/md5.h> 102 103 int tcp_mssdflt = TCP_MSS; 104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 105 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 106 107 #ifdef INET6 108 int tcp_v6mssdflt = TCP6_MSS; 109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 110 CTLFLAG_RW, &tcp_v6mssdflt , 0, 111 "Default TCP Maximum Segment Size for IPv6"); 112 #endif 113 114 #if 0 115 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 117 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 118 #endif 119 120 int tcp_do_rfc1323 = 1; 121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 122 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 123 124 int tcp_do_rfc1644 = 0; 125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 126 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 127 128 static int tcp_tcbhashsize = 0; 129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 130 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 131 132 static int do_tcpdrain = 1; 133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 134 "Enable tcp_drain routine for extra help when low on mbufs"); 135 136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 137 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 138 139 static int icmp_may_rst = 1; 140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0, 141 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 142 143 static int tcp_isn_reseed_interval = 0; 144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW, 145 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret"); 146 147 static void tcp_cleartaocache(void); 148 static void tcp_notify(struct inpcb *, int); 149 150 /* 151 * Target size of TCP PCB hash tables. Must be a power of two. 152 * 153 * Note that this can be overridden by the kernel environment 154 * variable net.inet.tcp.tcbhashsize 155 */ 156 #ifndef TCBHASHSIZE 157 #define TCBHASHSIZE 512 158 #endif 159 160 /* 161 * This is the actual shape of what we allocate using the zone 162 * allocator. Doing it this way allows us to protect both structures 163 * using the same generation count, and also eliminates the overhead 164 * of allocating tcpcbs separately. By hiding the structure here, 165 * we avoid changing most of the rest of the code (although it needs 166 * to be changed, eventually, for greater efficiency). 167 */ 168 #define ALIGNMENT 32 169 #define ALIGNM1 (ALIGNMENT - 1) 170 struct inp_tp { 171 union { 172 struct inpcb inp; 173 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 174 } inp_tp_u; 175 struct tcpcb tcb; 176 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 177 struct callout inp_tp_delack; 178 }; 179 #undef ALIGNMENT 180 #undef ALIGNM1 181 182 /* 183 * Tcp initialization 184 */ 185 void 186 tcp_init() 187 { 188 int hashsize = TCBHASHSIZE; 189 190 tcp_ccgen = 1; 191 tcp_cleartaocache(); 192 193 tcp_delacktime = TCPTV_DELACK; 194 tcp_keepinit = TCPTV_KEEP_INIT; 195 tcp_keepidle = TCPTV_KEEP_IDLE; 196 tcp_keepintvl = TCPTV_KEEPINTVL; 197 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 198 tcp_msl = TCPTV_MSL; 199 200 LIST_INIT(&tcb); 201 tcbinfo.listhead = &tcb; 202 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize); 203 if (!powerof2(hashsize)) { 204 printf("WARNING: TCB hash size not a power of 2\n"); 205 hashsize = 512; /* safe default */ 206 } 207 tcp_tcbhashsize = hashsize; 208 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 209 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 210 &tcbinfo.porthashmask); 211 tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 213 uma_zone_set_max(tcbinfo.ipi_zone, maxsockets); 214 #ifdef INET6 215 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 216 #else /* INET6 */ 217 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 218 #endif /* INET6 */ 219 if (max_protohdr < TCP_MINPROTOHDR) 220 max_protohdr = TCP_MINPROTOHDR; 221 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 222 panic("tcp_init"); 223 #undef TCP_MINPROTOHDR 224 225 syncache_init(); 226 } 227 228 /* 229 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 230 * tcp_template used to store this data in mbufs, but we now recopy it out 231 * of the tcpcb each time to conserve mbufs. 232 */ 233 void 234 tcp_fillheaders(tp, ip_ptr, tcp_ptr) 235 struct tcpcb *tp; 236 void *ip_ptr; 237 void *tcp_ptr; 238 { 239 struct inpcb *inp = tp->t_inpcb; 240 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr; 241 242 #ifdef INET6 243 if ((inp->inp_vflag & INP_IPV6) != 0) { 244 struct ip6_hdr *ip6; 245 246 ip6 = (struct ip6_hdr *)ip_ptr; 247 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 248 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 249 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 250 (IPV6_VERSION & IPV6_VERSION_MASK); 251 ip6->ip6_nxt = IPPROTO_TCP; 252 ip6->ip6_plen = sizeof(struct tcphdr); 253 ip6->ip6_src = inp->in6p_laddr; 254 ip6->ip6_dst = inp->in6p_faddr; 255 tcp_hdr->th_sum = 0; 256 } else 257 #endif 258 { 259 struct ip *ip = (struct ip *) ip_ptr; 260 261 ip->ip_vhl = IP_VHL_BORING; 262 ip->ip_tos = 0; 263 ip->ip_len = 0; 264 ip->ip_id = 0; 265 ip->ip_off = 0; 266 ip->ip_ttl = 0; 267 ip->ip_sum = 0; 268 ip->ip_p = IPPROTO_TCP; 269 ip->ip_src = inp->inp_laddr; 270 ip->ip_dst = inp->inp_faddr; 271 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 272 htons(sizeof(struct tcphdr) + IPPROTO_TCP)); 273 } 274 275 tcp_hdr->th_sport = inp->inp_lport; 276 tcp_hdr->th_dport = inp->inp_fport; 277 tcp_hdr->th_seq = 0; 278 tcp_hdr->th_ack = 0; 279 tcp_hdr->th_x2 = 0; 280 tcp_hdr->th_off = 5; 281 tcp_hdr->th_flags = 0; 282 tcp_hdr->th_win = 0; 283 tcp_hdr->th_urp = 0; 284 } 285 286 /* 287 * Create template to be used to send tcp packets on a connection. 288 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 289 * use for this function is in keepalives, which use tcp_respond. 290 */ 291 struct tcptemp * 292 tcp_maketemplate(tp) 293 struct tcpcb *tp; 294 { 295 struct mbuf *m; 296 struct tcptemp *n; 297 298 m = m_get(M_DONTWAIT, MT_HEADER); 299 if (m == NULL) 300 return (0); 301 m->m_len = sizeof(struct tcptemp); 302 n = mtod(m, struct tcptemp *); 303 304 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t); 305 return (n); 306 } 307 308 /* 309 * Send a single message to the TCP at address specified by 310 * the given TCP/IP header. If m == 0, then we make a copy 311 * of the tcpiphdr at ti and send directly to the addressed host. 312 * This is used to force keep alive messages out using the TCP 313 * template for a connection. If flags are given then we send 314 * a message back to the TCP which originated the * segment ti, 315 * and discard the mbuf containing it and any other attached mbufs. 316 * 317 * In any case the ack and sequence number of the transmitted 318 * segment are as specified by the parameters. 319 * 320 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 321 */ 322 void 323 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 324 struct tcpcb *tp; 325 void *ipgen; 326 register struct tcphdr *th; 327 register struct mbuf *m; 328 tcp_seq ack, seq; 329 int flags; 330 { 331 register int tlen; 332 int win = 0; 333 struct route *ro = 0; 334 struct route sro; 335 struct ip *ip; 336 struct tcphdr *nth; 337 #ifdef INET6 338 struct route_in6 *ro6 = 0; 339 struct route_in6 sro6; 340 struct ip6_hdr *ip6; 341 int isipv6; 342 #endif /* INET6 */ 343 int ipflags = 0; 344 345 #ifdef INET6 346 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 347 ip6 = ipgen; 348 #endif /* INET6 */ 349 ip = ipgen; 350 351 if (tp) { 352 if (!(flags & TH_RST)) { 353 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 354 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 355 win = (long)TCP_MAXWIN << tp->rcv_scale; 356 } 357 #ifdef INET6 358 if (isipv6) 359 ro6 = &tp->t_inpcb->in6p_route; 360 else 361 #endif /* INET6 */ 362 ro = &tp->t_inpcb->inp_route; 363 } else { 364 #ifdef INET6 365 if (isipv6) { 366 ro6 = &sro6; 367 bzero(ro6, sizeof *ro6); 368 } else 369 #endif /* INET6 */ 370 { 371 ro = &sro; 372 bzero(ro, sizeof *ro); 373 } 374 } 375 if (m == 0) { 376 m = m_gethdr(M_DONTWAIT, MT_HEADER); 377 if (m == NULL) 378 return; 379 tlen = 0; 380 m->m_data += max_linkhdr; 381 #ifdef INET6 382 if (isipv6) { 383 bcopy((caddr_t)ip6, mtod(m, caddr_t), 384 sizeof(struct ip6_hdr)); 385 ip6 = mtod(m, struct ip6_hdr *); 386 nth = (struct tcphdr *)(ip6 + 1); 387 } else 388 #endif /* INET6 */ 389 { 390 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 391 ip = mtod(m, struct ip *); 392 nth = (struct tcphdr *)(ip + 1); 393 } 394 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 395 flags = TH_ACK; 396 } else { 397 m_freem(m->m_next); 398 m->m_next = 0; 399 m->m_data = (caddr_t)ipgen; 400 /* m_len is set later */ 401 tlen = 0; 402 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 403 #ifdef INET6 404 if (isipv6) { 405 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 406 nth = (struct tcphdr *)(ip6 + 1); 407 } else 408 #endif /* INET6 */ 409 { 410 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 411 nth = (struct tcphdr *)(ip + 1); 412 } 413 if (th != nth) { 414 /* 415 * this is usually a case when an extension header 416 * exists between the IPv6 header and the 417 * TCP header. 418 */ 419 nth->th_sport = th->th_sport; 420 nth->th_dport = th->th_dport; 421 } 422 xchg(nth->th_dport, nth->th_sport, n_short); 423 #undef xchg 424 } 425 #ifdef INET6 426 if (isipv6) { 427 ip6->ip6_flow = 0; 428 ip6->ip6_vfc = IPV6_VERSION; 429 ip6->ip6_nxt = IPPROTO_TCP; 430 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 431 tlen)); 432 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 433 } else 434 #endif 435 { 436 tlen += sizeof (struct tcpiphdr); 437 ip->ip_len = tlen; 438 ip->ip_ttl = ip_defttl; 439 } 440 m->m_len = tlen; 441 m->m_pkthdr.len = tlen; 442 m->m_pkthdr.rcvif = (struct ifnet *) 0; 443 nth->th_seq = htonl(seq); 444 nth->th_ack = htonl(ack); 445 nth->th_x2 = 0; 446 nth->th_off = sizeof (struct tcphdr) >> 2; 447 nth->th_flags = flags; 448 if (tp) 449 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 450 else 451 nth->th_win = htons((u_short)win); 452 nth->th_urp = 0; 453 #ifdef INET6 454 if (isipv6) { 455 nth->th_sum = 0; 456 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 457 sizeof(struct ip6_hdr), 458 tlen - sizeof(struct ip6_hdr)); 459 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 460 ro6 && ro6->ro_rt ? 461 ro6->ro_rt->rt_ifp : 462 NULL); 463 } else 464 #endif /* INET6 */ 465 { 466 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 467 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 468 m->m_pkthdr.csum_flags = CSUM_TCP; 469 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 470 } 471 #ifdef TCPDEBUG 472 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 473 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 474 #endif 475 #ifdef IPSEC 476 if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) { 477 m_freem(m); 478 return; 479 } 480 #endif 481 #ifdef INET6 482 if (isipv6) { 483 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 484 if (ro6 == &sro6 && ro6->ro_rt) { 485 RTFREE(ro6->ro_rt); 486 ro6->ro_rt = NULL; 487 } 488 } else 489 #endif /* INET6 */ 490 { 491 (void) ip_output(m, NULL, ro, ipflags, NULL); 492 if (ro == &sro && ro->ro_rt) { 493 RTFREE(ro->ro_rt); 494 ro->ro_rt = NULL; 495 } 496 } 497 } 498 499 /* 500 * Create a new TCP control block, making an 501 * empty reassembly queue and hooking it to the argument 502 * protocol control block. The `inp' parameter must have 503 * come from the zone allocator set up in tcp_init(). 504 */ 505 struct tcpcb * 506 tcp_newtcpcb(inp) 507 struct inpcb *inp; 508 { 509 struct inp_tp *it; 510 register struct tcpcb *tp; 511 #ifdef INET6 512 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 513 #endif /* INET6 */ 514 515 it = (struct inp_tp *)inp; 516 tp = &it->tcb; 517 bzero((char *) tp, sizeof(struct tcpcb)); 518 LIST_INIT(&tp->t_segq); 519 tp->t_maxseg = tp->t_maxopd = 520 #ifdef INET6 521 isipv6 ? tcp_v6mssdflt : 522 #endif /* INET6 */ 523 tcp_mssdflt; 524 525 /* Set up our timeouts. */ 526 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0); 527 callout_init(tp->tt_persist = &it->inp_tp_persist, 0); 528 callout_init(tp->tt_keep = &it->inp_tp_keep, 0); 529 callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0); 530 callout_init(tp->tt_delack = &it->inp_tp_delack, 0); 531 532 if (tcp_do_rfc1323) 533 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 534 if (tcp_do_rfc1644) 535 tp->t_flags |= TF_REQ_CC; 536 tp->t_inpcb = inp; /* XXX */ 537 /* 538 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 539 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 540 * reasonable initial retransmit time. 541 */ 542 tp->t_srtt = TCPTV_SRTTBASE; 543 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 544 tp->t_rttmin = TCPTV_MIN; 545 tp->t_rxtcur = TCPTV_RTOBASE; 546 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 547 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 548 tp->t_rcvtime = ticks; 549 /* 550 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 551 * because the socket may be bound to an IPv6 wildcard address, 552 * which may match an IPv4-mapped IPv6 address. 553 */ 554 inp->inp_ip_ttl = ip_defttl; 555 inp->inp_ppcb = (caddr_t)tp; 556 return (tp); /* XXX */ 557 } 558 559 /* 560 * Drop a TCP connection, reporting 561 * the specified error. If connection is synchronized, 562 * then send a RST to peer. 563 */ 564 struct tcpcb * 565 tcp_drop(tp, errno) 566 register struct tcpcb *tp; 567 int errno; 568 { 569 struct socket *so = tp->t_inpcb->inp_socket; 570 571 if (TCPS_HAVERCVDSYN(tp->t_state)) { 572 tp->t_state = TCPS_CLOSED; 573 (void) tcp_output(tp); 574 tcpstat.tcps_drops++; 575 } else 576 tcpstat.tcps_conndrops++; 577 if (errno == ETIMEDOUT && tp->t_softerror) 578 errno = tp->t_softerror; 579 so->so_error = errno; 580 return (tcp_close(tp)); 581 } 582 583 /* 584 * Close a TCP control block: 585 * discard all space held by the tcp 586 * discard internet protocol block 587 * wake up any sleepers 588 */ 589 struct tcpcb * 590 tcp_close(tp) 591 register struct tcpcb *tp; 592 { 593 register struct tseg_qent *q; 594 struct inpcb *inp = tp->t_inpcb; 595 struct socket *so = inp->inp_socket; 596 #ifdef INET6 597 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 598 #endif /* INET6 */ 599 register struct rtentry *rt; 600 int dosavessthresh; 601 602 /* 603 * Make sure that all of our timers are stopped before we 604 * delete the PCB. 605 */ 606 callout_stop(tp->tt_rexmt); 607 callout_stop(tp->tt_persist); 608 callout_stop(tp->tt_keep); 609 callout_stop(tp->tt_2msl); 610 callout_stop(tp->tt_delack); 611 612 /* 613 * If we got enough samples through the srtt filter, 614 * save the rtt and rttvar in the routing entry. 615 * 'Enough' is arbitrarily defined as the 16 samples. 616 * 16 samples is enough for the srtt filter to converge 617 * to within 5% of the correct value; fewer samples and 618 * we could save a very bogus rtt. 619 * 620 * Don't update the default route's characteristics and don't 621 * update anything that the user "locked". 622 */ 623 if (tp->t_rttupdated >= 16) { 624 register u_long i = 0; 625 #ifdef INET6 626 if (isipv6) { 627 struct sockaddr_in6 *sin6; 628 629 if ((rt = inp->in6p_route.ro_rt) == NULL) 630 goto no_valid_rt; 631 sin6 = (struct sockaddr_in6 *)rt_key(rt); 632 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 633 goto no_valid_rt; 634 } 635 else 636 #endif /* INET6 */ 637 if ((rt = inp->inp_route.ro_rt) == NULL || 638 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 639 == INADDR_ANY) 640 goto no_valid_rt; 641 642 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 643 i = tp->t_srtt * 644 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 645 if (rt->rt_rmx.rmx_rtt && i) 646 /* 647 * filter this update to half the old & half 648 * the new values, converting scale. 649 * See route.h and tcp_var.h for a 650 * description of the scaling constants. 651 */ 652 rt->rt_rmx.rmx_rtt = 653 (rt->rt_rmx.rmx_rtt + i) / 2; 654 else 655 rt->rt_rmx.rmx_rtt = i; 656 tcpstat.tcps_cachedrtt++; 657 } 658 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 659 i = tp->t_rttvar * 660 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 661 if (rt->rt_rmx.rmx_rttvar && i) 662 rt->rt_rmx.rmx_rttvar = 663 (rt->rt_rmx.rmx_rttvar + i) / 2; 664 else 665 rt->rt_rmx.rmx_rttvar = i; 666 tcpstat.tcps_cachedrttvar++; 667 } 668 /* 669 * The old comment here said: 670 * update the pipelimit (ssthresh) if it has been updated 671 * already or if a pipesize was specified & the threshhold 672 * got below half the pipesize. I.e., wait for bad news 673 * before we start updating, then update on both good 674 * and bad news. 675 * 676 * But we want to save the ssthresh even if no pipesize is 677 * specified explicitly in the route, because such 678 * connections still have an implicit pipesize specified 679 * by the global tcp_sendspace. In the absence of a reliable 680 * way to calculate the pipesize, it will have to do. 681 */ 682 i = tp->snd_ssthresh; 683 if (rt->rt_rmx.rmx_sendpipe != 0) 684 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 685 else 686 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 687 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 688 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 689 || dosavessthresh) { 690 /* 691 * convert the limit from user data bytes to 692 * packets then to packet data bytes. 693 */ 694 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 695 if (i < 2) 696 i = 2; 697 i *= (u_long)(tp->t_maxseg + 698 #ifdef INET6 699 (isipv6 ? sizeof (struct ip6_hdr) + 700 sizeof (struct tcphdr) : 701 #endif 702 sizeof (struct tcpiphdr) 703 #ifdef INET6 704 ) 705 #endif 706 ); 707 if (rt->rt_rmx.rmx_ssthresh) 708 rt->rt_rmx.rmx_ssthresh = 709 (rt->rt_rmx.rmx_ssthresh + i) / 2; 710 else 711 rt->rt_rmx.rmx_ssthresh = i; 712 tcpstat.tcps_cachedssthresh++; 713 } 714 } 715 no_valid_rt: 716 /* free the reassembly queue, if any */ 717 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 718 LIST_REMOVE(q, tqe_q); 719 m_freem(q->tqe_m); 720 FREE(q, M_TSEGQ); 721 } 722 inp->inp_ppcb = NULL; 723 soisdisconnected(so); 724 #ifdef INET6 725 if (INP_CHECK_SOCKAF(so, AF_INET6)) 726 in6_pcbdetach(inp); 727 else 728 #endif /* INET6 */ 729 in_pcbdetach(inp); 730 tcpstat.tcps_closed++; 731 return ((struct tcpcb *)0); 732 } 733 734 void 735 tcp_drain() 736 { 737 if (do_tcpdrain) 738 { 739 struct inpcb *inpb; 740 struct tcpcb *tcpb; 741 struct tseg_qent *te; 742 743 /* 744 * Walk the tcpbs, if existing, and flush the reassembly queue, 745 * if there is one... 746 * XXX: The "Net/3" implementation doesn't imply that the TCP 747 * reassembly queue should be flushed, but in a situation 748 * where we're really low on mbufs, this is potentially 749 * usefull. 750 */ 751 LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) { 752 if ((tcpb = intotcpcb(inpb))) { 753 while ((te = LIST_FIRST(&tcpb->t_segq)) 754 != NULL) { 755 LIST_REMOVE(te, tqe_q); 756 m_freem(te->tqe_m); 757 FREE(te, M_TSEGQ); 758 } 759 } 760 } 761 } 762 } 763 764 /* 765 * Notify a tcp user of an asynchronous error; 766 * store error as soft error, but wake up user 767 * (for now, won't do anything until can select for soft error). 768 * 769 * Do not wake up user since there currently is no mechanism for 770 * reporting soft errors (yet - a kqueue filter may be added). 771 */ 772 static void 773 tcp_notify(inp, error) 774 struct inpcb *inp; 775 int error; 776 { 777 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 778 779 /* 780 * Ignore some errors if we are hooked up. 781 * If connection hasn't completed, has retransmitted several times, 782 * and receives a second error, give up now. This is better 783 * than waiting a long time to establish a connection that 784 * can never complete. 785 */ 786 if (tp->t_state == TCPS_ESTABLISHED && 787 (error == EHOSTUNREACH || error == ENETUNREACH || 788 error == EHOSTDOWN)) { 789 return; 790 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 791 tp->t_softerror) 792 tcp_drop(tp, error); 793 else 794 tp->t_softerror = error; 795 #if 0 796 wakeup((caddr_t) &so->so_timeo); 797 sorwakeup(so); 798 sowwakeup(so); 799 #endif 800 } 801 802 static int 803 tcp_pcblist(SYSCTL_HANDLER_ARGS) 804 { 805 int error, i, n, s; 806 struct inpcb *inp, **inp_list; 807 inp_gen_t gencnt; 808 struct xinpgen xig; 809 810 /* 811 * The process of preparing the TCB list is too time-consuming and 812 * resource-intensive to repeat twice on every request. 813 */ 814 if (req->oldptr == 0) { 815 n = tcbinfo.ipi_count; 816 req->oldidx = 2 * (sizeof xig) 817 + (n + n/8) * sizeof(struct xtcpcb); 818 return 0; 819 } 820 821 if (req->newptr != 0) 822 return EPERM; 823 824 /* 825 * OK, now we're committed to doing something. 826 */ 827 s = splnet(); 828 gencnt = tcbinfo.ipi_gencnt; 829 n = tcbinfo.ipi_count; 830 splx(s); 831 832 xig.xig_len = sizeof xig; 833 xig.xig_count = n; 834 xig.xig_gen = gencnt; 835 xig.xig_sogen = so_gencnt; 836 error = SYSCTL_OUT(req, &xig, sizeof xig); 837 if (error) 838 return error; 839 840 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 841 if (inp_list == 0) 842 return ENOMEM; 843 844 s = splnet(); 845 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n; 846 inp = LIST_NEXT(inp, inp_list)) { 847 if (inp->inp_gencnt <= gencnt) { 848 if (cr_canseesocket(req->td->td_ucred, 849 inp->inp_socket)) 850 continue; 851 inp_list[i++] = inp; 852 } 853 } 854 splx(s); 855 n = i; 856 857 error = 0; 858 for (i = 0; i < n; i++) { 859 inp = inp_list[i]; 860 if (inp->inp_gencnt <= gencnt) { 861 struct xtcpcb xt; 862 caddr_t inp_ppcb; 863 xt.xt_len = sizeof xt; 864 /* XXX should avoid extra copy */ 865 bcopy(inp, &xt.xt_inp, sizeof *inp); 866 inp_ppcb = inp->inp_ppcb; 867 if (inp_ppcb != NULL) 868 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 869 else 870 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 871 if (inp->inp_socket) 872 sotoxsocket(inp->inp_socket, &xt.xt_socket); 873 error = SYSCTL_OUT(req, &xt, sizeof xt); 874 } 875 } 876 if (!error) { 877 /* 878 * Give the user an updated idea of our state. 879 * If the generation differs from what we told 880 * her before, she knows that something happened 881 * while we were processing this request, and it 882 * might be necessary to retry. 883 */ 884 s = splnet(); 885 xig.xig_gen = tcbinfo.ipi_gencnt; 886 xig.xig_sogen = so_gencnt; 887 xig.xig_count = tcbinfo.ipi_count; 888 splx(s); 889 error = SYSCTL_OUT(req, &xig, sizeof xig); 890 } 891 free(inp_list, M_TEMP); 892 return error; 893 } 894 895 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 896 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 897 898 static int 899 tcp_getcred(SYSCTL_HANDLER_ARGS) 900 { 901 struct xucred xuc; 902 struct sockaddr_in addrs[2]; 903 struct inpcb *inp; 904 int error, s; 905 906 error = suser_cred(req->td->td_ucred, PRISON_ROOT); 907 if (error) 908 return (error); 909 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 910 if (error) 911 return (error); 912 s = splnet(); 913 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 914 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 915 if (inp == NULL || inp->inp_socket == NULL) { 916 error = ENOENT; 917 goto out; 918 } 919 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 920 if (error) 921 goto out; 922 cru2x(inp->inp_socket->so_cred, &xuc); 923 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 924 out: 925 splx(s); 926 return (error); 927 } 928 929 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 930 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 931 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 932 933 #ifdef INET6 934 static int 935 tcp6_getcred(SYSCTL_HANDLER_ARGS) 936 { 937 struct xucred xuc; 938 struct sockaddr_in6 addrs[2]; 939 struct inpcb *inp; 940 int error, s, mapped = 0; 941 942 error = suser_cred(req->td->td_ucred, PRISON_ROOT); 943 if (error) 944 return (error); 945 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 946 if (error) 947 return (error); 948 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 949 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 950 mapped = 1; 951 else 952 return (EINVAL); 953 } 954 s = splnet(); 955 if (mapped == 1) 956 inp = in_pcblookup_hash(&tcbinfo, 957 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 958 addrs[1].sin6_port, 959 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 960 addrs[0].sin6_port, 961 0, NULL); 962 else 963 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 964 addrs[1].sin6_port, 965 &addrs[0].sin6_addr, addrs[0].sin6_port, 966 0, NULL); 967 if (inp == NULL || inp->inp_socket == NULL) { 968 error = ENOENT; 969 goto out; 970 } 971 error = cr_canseesocket(req->td->td_ucred, inp->inp_socket); 972 if (error) 973 goto out; 974 cru2x(inp->inp_socket->so_cred, &xuc); 975 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 976 out: 977 splx(s); 978 return (error); 979 } 980 981 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 982 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 983 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 984 #endif 985 986 987 void 988 tcp_ctlinput(cmd, sa, vip) 989 int cmd; 990 struct sockaddr *sa; 991 void *vip; 992 { 993 struct ip *ip = vip; 994 struct tcphdr *th; 995 struct in_addr faddr; 996 struct inpcb *inp; 997 struct tcpcb *tp; 998 void (*notify)(struct inpcb *, int) = tcp_notify; 999 tcp_seq icmp_seq; 1000 int s; 1001 1002 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1003 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1004 return; 1005 1006 if (cmd == PRC_QUENCH) 1007 notify = tcp_quench; 1008 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1009 cmd == PRC_UNREACH_PORT) && ip) 1010 notify = tcp_drop_syn_sent; 1011 else if (cmd == PRC_MSGSIZE) 1012 notify = tcp_mtudisc; 1013 else if (PRC_IS_REDIRECT(cmd)) { 1014 ip = 0; 1015 notify = in_rtchange; 1016 } else if (cmd == PRC_HOSTDEAD) 1017 ip = 0; 1018 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0) 1019 return; 1020 if (ip) { 1021 s = splnet(); 1022 th = (struct tcphdr *)((caddr_t)ip 1023 + (IP_VHL_HL(ip->ip_vhl) << 2)); 1024 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport, 1025 ip->ip_src, th->th_sport, 0, NULL); 1026 if (inp != NULL && inp->inp_socket != NULL) { 1027 icmp_seq = htonl(th->th_seq); 1028 tp = intotcpcb(inp); 1029 if (SEQ_GEQ(icmp_seq, tp->snd_una) && 1030 SEQ_LT(icmp_seq, tp->snd_max)) 1031 (*notify)(inp, inetctlerrmap[cmd]); 1032 } else { 1033 struct in_conninfo inc; 1034 1035 inc.inc_fport = th->th_dport; 1036 inc.inc_lport = th->th_sport; 1037 inc.inc_faddr = faddr; 1038 inc.inc_laddr = ip->ip_src; 1039 #ifdef INET6 1040 inc.inc_isipv6 = 0; 1041 #endif 1042 syncache_unreach(&inc, th); 1043 } 1044 splx(s); 1045 } else 1046 in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify); 1047 } 1048 1049 #ifdef INET6 1050 void 1051 tcp6_ctlinput(cmd, sa, d) 1052 int cmd; 1053 struct sockaddr *sa; 1054 void *d; 1055 { 1056 struct tcphdr th; 1057 void (*notify)(struct inpcb *, int) = tcp_notify; 1058 struct ip6_hdr *ip6; 1059 struct mbuf *m; 1060 struct ip6ctlparam *ip6cp = NULL; 1061 const struct sockaddr_in6 *sa6_src = NULL; 1062 int off; 1063 struct tcp_portonly { 1064 u_int16_t th_sport; 1065 u_int16_t th_dport; 1066 } *thp; 1067 1068 if (sa->sa_family != AF_INET6 || 1069 sa->sa_len != sizeof(struct sockaddr_in6)) 1070 return; 1071 1072 if (cmd == PRC_QUENCH) 1073 notify = tcp_quench; 1074 else if (cmd == PRC_MSGSIZE) 1075 notify = tcp_mtudisc; 1076 else if (!PRC_IS_REDIRECT(cmd) && 1077 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 1078 return; 1079 1080 /* if the parameter is from icmp6, decode it. */ 1081 if (d != NULL) { 1082 ip6cp = (struct ip6ctlparam *)d; 1083 m = ip6cp->ip6c_m; 1084 ip6 = ip6cp->ip6c_ip6; 1085 off = ip6cp->ip6c_off; 1086 sa6_src = ip6cp->ip6c_src; 1087 } else { 1088 m = NULL; 1089 ip6 = NULL; 1090 off = 0; /* fool gcc */ 1091 sa6_src = &sa6_any; 1092 } 1093 1094 if (ip6) { 1095 struct in_conninfo inc; 1096 /* 1097 * XXX: We assume that when IPV6 is non NULL, 1098 * M and OFF are valid. 1099 */ 1100 1101 /* check if we can safely examine src and dst ports */ 1102 if (m->m_pkthdr.len < off + sizeof(*thp)) 1103 return; 1104 1105 bzero(&th, sizeof(th)); 1106 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 1107 1108 in6_pcbnotify(&tcb, sa, th.th_dport, 1109 (struct sockaddr *)ip6cp->ip6c_src, 1110 th.th_sport, cmd, notify); 1111 1112 inc.inc_fport = th.th_dport; 1113 inc.inc_lport = th.th_sport; 1114 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 1115 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 1116 inc.inc_isipv6 = 1; 1117 syncache_unreach(&inc, &th); 1118 } else 1119 in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src, 1120 0, cmd, notify); 1121 } 1122 #endif /* INET6 */ 1123 1124 1125 /* 1126 * Following is where TCP initial sequence number generation occurs. 1127 * 1128 * There are two places where we must use initial sequence numbers: 1129 * 1. In SYN-ACK packets. 1130 * 2. In SYN packets. 1131 * 1132 * All ISNs for SYN-ACK packets are generated by the syncache. See 1133 * tcp_syncache.c for details. 1134 * 1135 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 1136 * depends on this property. In addition, these ISNs should be 1137 * unguessable so as to prevent connection hijacking. To satisfy 1138 * the requirements of this situation, the algorithm outlined in 1139 * RFC 1948 is used to generate sequence numbers. 1140 * 1141 * Implementation details: 1142 * 1143 * Time is based off the system timer, and is corrected so that it 1144 * increases by one megabyte per second. This allows for proper 1145 * recycling on high speed LANs while still leaving over an hour 1146 * before rollover. 1147 * 1148 * net.inet.tcp.isn_reseed_interval controls the number of seconds 1149 * between seeding of isn_secret. This is normally set to zero, 1150 * as reseeding should not be necessary. 1151 * 1152 */ 1153 1154 #define ISN_BYTES_PER_SECOND 1048576 1155 1156 u_char isn_secret[32]; 1157 int isn_last_reseed; 1158 MD5_CTX isn_ctx; 1159 1160 tcp_seq 1161 tcp_new_isn(tp) 1162 struct tcpcb *tp; 1163 { 1164 u_int32_t md5_buffer[4]; 1165 tcp_seq new_isn; 1166 1167 /* Seed if this is the first use, reseed if requested. */ 1168 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) && 1169 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz) 1170 < (u_int)ticks))) { 1171 read_random(&isn_secret, sizeof(isn_secret)); 1172 isn_last_reseed = ticks; 1173 } 1174 1175 /* Compute the md5 hash and return the ISN. */ 1176 MD5Init(&isn_ctx); 1177 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 1178 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 1179 #ifdef INET6 1180 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 1181 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 1182 sizeof(struct in6_addr)); 1183 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 1184 sizeof(struct in6_addr)); 1185 } else 1186 #endif 1187 { 1188 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 1189 sizeof(struct in_addr)); 1190 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 1191 sizeof(struct in_addr)); 1192 } 1193 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret)); 1194 MD5Final((u_char *) &md5_buffer, &isn_ctx); 1195 new_isn = (tcp_seq) md5_buffer[0]; 1196 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz); 1197 return new_isn; 1198 } 1199 1200 /* 1201 * When a source quench is received, close congestion window 1202 * to one segment. We will gradually open it again as we proceed. 1203 */ 1204 void 1205 tcp_quench(inp, errno) 1206 struct inpcb *inp; 1207 int errno; 1208 { 1209 struct tcpcb *tp = intotcpcb(inp); 1210 1211 if (tp) 1212 tp->snd_cwnd = tp->t_maxseg; 1213 } 1214 1215 /* 1216 * When a specific ICMP unreachable message is received and the 1217 * connection state is SYN-SENT, drop the connection. This behavior 1218 * is controlled by the icmp_may_rst sysctl. 1219 */ 1220 void 1221 tcp_drop_syn_sent(inp, errno) 1222 struct inpcb *inp; 1223 int errno; 1224 { 1225 struct tcpcb *tp = intotcpcb(inp); 1226 1227 if (tp && tp->t_state == TCPS_SYN_SENT) 1228 tcp_drop(tp, errno); 1229 } 1230 1231 /* 1232 * When `need fragmentation' ICMP is received, update our idea of the MSS 1233 * based on the new value in the route. Also nudge TCP to send something, 1234 * since we know the packet we just sent was dropped. 1235 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1236 */ 1237 void 1238 tcp_mtudisc(inp, errno) 1239 struct inpcb *inp; 1240 int errno; 1241 { 1242 struct tcpcb *tp = intotcpcb(inp); 1243 struct rtentry *rt; 1244 struct rmxp_tao *taop; 1245 struct socket *so = inp->inp_socket; 1246 int offered; 1247 int mss; 1248 #ifdef INET6 1249 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1250 #endif /* INET6 */ 1251 1252 if (tp) { 1253 #ifdef INET6 1254 if (isipv6) 1255 rt = tcp_rtlookup6(&inp->inp_inc); 1256 else 1257 #endif /* INET6 */ 1258 rt = tcp_rtlookup(&inp->inp_inc); 1259 if (!rt || !rt->rt_rmx.rmx_mtu) { 1260 tp->t_maxopd = tp->t_maxseg = 1261 #ifdef INET6 1262 isipv6 ? tcp_v6mssdflt : 1263 #endif /* INET6 */ 1264 tcp_mssdflt; 1265 return; 1266 } 1267 taop = rmx_taop(rt->rt_rmx); 1268 offered = taop->tao_mssopt; 1269 mss = rt->rt_rmx.rmx_mtu - 1270 #ifdef INET6 1271 (isipv6 ? 1272 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1273 #endif /* INET6 */ 1274 sizeof(struct tcpiphdr) 1275 #ifdef INET6 1276 ) 1277 #endif /* INET6 */ 1278 ; 1279 1280 if (offered) 1281 mss = min(mss, offered); 1282 /* 1283 * XXX - The above conditional probably violates the TCP 1284 * spec. The problem is that, since we don't know the 1285 * other end's MSS, we are supposed to use a conservative 1286 * default. But, if we do that, then MTU discovery will 1287 * never actually take place, because the conservative 1288 * default is much less than the MTUs typically seen 1289 * on the Internet today. For the moment, we'll sweep 1290 * this under the carpet. 1291 * 1292 * The conservative default might not actually be a problem 1293 * if the only case this occurs is when sending an initial 1294 * SYN with options and data to a host we've never talked 1295 * to before. Then, they will reply with an MSS value which 1296 * will get recorded and the new parameters should get 1297 * recomputed. For Further Study. 1298 */ 1299 if (tp->t_maxopd <= mss) 1300 return; 1301 tp->t_maxopd = mss; 1302 1303 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1304 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1305 mss -= TCPOLEN_TSTAMP_APPA; 1306 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1307 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1308 mss -= TCPOLEN_CC_APPA; 1309 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1310 if (mss > MCLBYTES) 1311 mss &= ~(MCLBYTES-1); 1312 #else 1313 if (mss > MCLBYTES) 1314 mss = mss / MCLBYTES * MCLBYTES; 1315 #endif 1316 if (so->so_snd.sb_hiwat < mss) 1317 mss = so->so_snd.sb_hiwat; 1318 1319 tp->t_maxseg = mss; 1320 1321 tcpstat.tcps_mturesent++; 1322 tp->t_rtttime = 0; 1323 tp->snd_nxt = tp->snd_una; 1324 tcp_output(tp); 1325 } 1326 } 1327 1328 /* 1329 * Look-up the routing entry to the peer of this inpcb. If no route 1330 * is found and it cannot be allocated the return NULL. This routine 1331 * is called by TCP routines that access the rmx structure and by tcp_mss 1332 * to get the interface MTU. 1333 */ 1334 struct rtentry * 1335 tcp_rtlookup(inc) 1336 struct in_conninfo *inc; 1337 { 1338 struct route *ro; 1339 struct rtentry *rt; 1340 1341 ro = &inc->inc_route; 1342 rt = ro->ro_rt; 1343 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1344 /* No route yet, so try to acquire one */ 1345 if (inc->inc_faddr.s_addr != INADDR_ANY) { 1346 ro->ro_dst.sa_family = AF_INET; 1347 ro->ro_dst.sa_len = sizeof(struct sockaddr_in); 1348 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1349 inc->inc_faddr; 1350 rtalloc(ro); 1351 rt = ro->ro_rt; 1352 } 1353 } 1354 return rt; 1355 } 1356 1357 #ifdef INET6 1358 struct rtentry * 1359 tcp_rtlookup6(inc) 1360 struct in_conninfo *inc; 1361 { 1362 struct route_in6 *ro6; 1363 struct rtentry *rt; 1364 1365 ro6 = &inc->inc6_route; 1366 rt = ro6->ro_rt; 1367 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1368 /* No route yet, so try to acquire one */ 1369 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 1370 ro6->ro_dst.sin6_family = AF_INET6; 1371 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6); 1372 ro6->ro_dst.sin6_addr = inc->inc6_faddr; 1373 rtalloc((struct route *)ro6); 1374 rt = ro6->ro_rt; 1375 } 1376 } 1377 return rt; 1378 } 1379 #endif /* INET6 */ 1380 1381 #ifdef IPSEC 1382 /* compute ESP/AH header size for TCP, including outer IP header. */ 1383 size_t 1384 ipsec_hdrsiz_tcp(tp) 1385 struct tcpcb *tp; 1386 { 1387 struct inpcb *inp; 1388 struct mbuf *m; 1389 size_t hdrsiz; 1390 struct ip *ip; 1391 #ifdef INET6 1392 struct ip6_hdr *ip6; 1393 #endif /* INET6 */ 1394 struct tcphdr *th; 1395 1396 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL)) 1397 return 0; 1398 MGETHDR(m, M_DONTWAIT, MT_DATA); 1399 if (!m) 1400 return 0; 1401 1402 #ifdef INET6 1403 if ((inp->inp_vflag & INP_IPV6) != 0) { 1404 ip6 = mtod(m, struct ip6_hdr *); 1405 th = (struct tcphdr *)(ip6 + 1); 1406 m->m_pkthdr.len = m->m_len = 1407 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1408 tcp_fillheaders(tp, ip6, th); 1409 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1410 } else 1411 #endif /* INET6 */ 1412 { 1413 ip = mtod(m, struct ip *); 1414 th = (struct tcphdr *)(ip + 1); 1415 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1416 tcp_fillheaders(tp, ip, th); 1417 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1418 } 1419 1420 m_free(m); 1421 return hdrsiz; 1422 } 1423 #endif /*IPSEC*/ 1424 1425 /* 1426 * Return a pointer to the cached information about the remote host. 1427 * The cached information is stored in the protocol specific part of 1428 * the route metrics. 1429 */ 1430 struct rmxp_tao * 1431 tcp_gettaocache(inc) 1432 struct in_conninfo *inc; 1433 { 1434 struct rtentry *rt; 1435 1436 #ifdef INET6 1437 if (inc->inc_isipv6) 1438 rt = tcp_rtlookup6(inc); 1439 else 1440 #endif /* INET6 */ 1441 rt = tcp_rtlookup(inc); 1442 1443 /* Make sure this is a host route and is up. */ 1444 if (rt == NULL || 1445 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1446 return NULL; 1447 1448 return rmx_taop(rt->rt_rmx); 1449 } 1450 1451 /* 1452 * Clear all the TAO cache entries, called from tcp_init. 1453 * 1454 * XXX 1455 * This routine is just an empty one, because we assume that the routing 1456 * routing tables are initialized at the same time when TCP, so there is 1457 * nothing in the cache left over. 1458 */ 1459 static void 1460 tcp_cleartaocache() 1461 { 1462 } 1463