xref: /freebsd/sys/netinet/tcp_subr.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/vm_zone.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 #include <sys/md5.h>
102 
103 int 	tcp_mssdflt = TCP_MSS;
104 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
105     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
106 
107 #ifdef INET6
108 int	tcp_v6mssdflt = TCP6_MSS;
109 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
110 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
111 	"Default TCP Maximum Segment Size for IPv6");
112 #endif
113 
114 #if 0
115 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
117     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
118 #endif
119 
120 int	tcp_do_rfc1323 = 1;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
122     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
123 
124 int	tcp_do_rfc1644 = 0;
125 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
126     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
127 
128 static int	tcp_tcbhashsize = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
130      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
131 
132 static int	do_tcpdrain = 1;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
134      "Enable tcp_drain routine for extra help when low on mbufs");
135 
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
137     &tcbinfo.ipi_count, 0, "Number of active PCBs");
138 
139 static int	icmp_may_rst = 1;
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
141     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
142 
143 static int	tcp_strict_rfc1948 = 0;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW,
145     &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
146 
147 static int	tcp_isn_reseed_interval = 0;
148 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
149     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
150 
151 static void	tcp_cleartaocache __P((void));
152 static void	tcp_notify __P((struct inpcb *, int));
153 
154 /*
155  * Target size of TCP PCB hash tables. Must be a power of two.
156  *
157  * Note that this can be overridden by the kernel environment
158  * variable net.inet.tcp.tcbhashsize
159  */
160 #ifndef TCBHASHSIZE
161 #define TCBHASHSIZE	512
162 #endif
163 
164 /*
165  * This is the actual shape of what we allocate using the zone
166  * allocator.  Doing it this way allows us to protect both structures
167  * using the same generation count, and also eliminates the overhead
168  * of allocating tcpcbs separately.  By hiding the structure here,
169  * we avoid changing most of the rest of the code (although it needs
170  * to be changed, eventually, for greater efficiency).
171  */
172 #define	ALIGNMENT	32
173 #define	ALIGNM1		(ALIGNMENT - 1)
174 struct	inp_tp {
175 	union {
176 		struct	inpcb inp;
177 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
178 	} inp_tp_u;
179 	struct	tcpcb tcb;
180 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
181 	struct	callout inp_tp_delack;
182 };
183 #undef ALIGNMENT
184 #undef ALIGNM1
185 
186 /*
187  * Tcp initialization
188  */
189 void
190 tcp_init()
191 {
192 	int hashsize = TCBHASHSIZE;
193 
194 	tcp_ccgen = 1;
195 	tcp_cleartaocache();
196 
197 	tcp_delacktime = TCPTV_DELACK;
198 	tcp_keepinit = TCPTV_KEEP_INIT;
199 	tcp_keepidle = TCPTV_KEEP_IDLE;
200 	tcp_keepintvl = TCPTV_KEEPINTVL;
201 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
202 	tcp_msl = TCPTV_MSL;
203 
204 	LIST_INIT(&tcb);
205 	tcbinfo.listhead = &tcb;
206 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
207 	if (!powerof2(hashsize)) {
208 		printf("WARNING: TCB hash size not a power of 2\n");
209 		hashsize = 512; /* safe default */
210 	}
211 	tcp_tcbhashsize = hashsize;
212 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
213 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
214 					&tcbinfo.porthashmask);
215 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
216 				 ZONE_INTERRUPT, 0);
217 #ifdef INET6
218 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
219 #else /* INET6 */
220 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
221 #endif /* INET6 */
222 	if (max_protohdr < TCP_MINPROTOHDR)
223 		max_protohdr = TCP_MINPROTOHDR;
224 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
225 		panic("tcp_init");
226 #undef TCP_MINPROTOHDR
227 
228 	syncache_init();
229 }
230 
231 /*
232  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
233  * tcp_template used to store this data in mbufs, but we now recopy it out
234  * of the tcpcb each time to conserve mbufs.
235  */
236 void
237 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
238 	struct tcpcb *tp;
239 	void *ip_ptr;
240 	void *tcp_ptr;
241 {
242 	struct inpcb *inp = tp->t_inpcb;
243 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
244 
245 #ifdef INET6
246 	if ((inp->inp_vflag & INP_IPV6) != 0) {
247 		struct ip6_hdr *ip6;
248 
249 		ip6 = (struct ip6_hdr *)ip_ptr;
250 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
251 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
252 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
253 			(IPV6_VERSION & IPV6_VERSION_MASK);
254 		ip6->ip6_nxt = IPPROTO_TCP;
255 		ip6->ip6_plen = sizeof(struct tcphdr);
256 		ip6->ip6_src = inp->in6p_laddr;
257 		ip6->ip6_dst = inp->in6p_faddr;
258 		tcp_hdr->th_sum = 0;
259 	} else
260 #endif
261 	{
262 	struct ip *ip = (struct ip *) ip_ptr;
263 
264 	ip->ip_vhl = IP_VHL_BORING;
265 	ip->ip_tos = 0;
266 	ip->ip_len = 0;
267 	ip->ip_id = 0;
268 	ip->ip_off = 0;
269 	ip->ip_ttl = 0;
270 	ip->ip_sum = 0;
271 	ip->ip_p = IPPROTO_TCP;
272 	ip->ip_src = inp->inp_laddr;
273 	ip->ip_dst = inp->inp_faddr;
274 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
275 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
276 	}
277 
278 	tcp_hdr->th_sport = inp->inp_lport;
279 	tcp_hdr->th_dport = inp->inp_fport;
280 	tcp_hdr->th_seq = 0;
281 	tcp_hdr->th_ack = 0;
282 	tcp_hdr->th_x2 = 0;
283 	tcp_hdr->th_off = 5;
284 	tcp_hdr->th_flags = 0;
285 	tcp_hdr->th_win = 0;
286 	tcp_hdr->th_urp = 0;
287 }
288 
289 /*
290  * Create template to be used to send tcp packets on a connection.
291  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
292  * use for this function is in keepalives, which use tcp_respond.
293  */
294 struct tcptemp *
295 tcp_maketemplate(tp)
296 	struct tcpcb *tp;
297 {
298 	struct mbuf *m;
299 	struct tcptemp *n;
300 
301 	m = m_get(M_DONTWAIT, MT_HEADER);
302 	if (m == NULL)
303 		return (0);
304 	m->m_len = sizeof(struct tcptemp);
305 	n = mtod(m, struct tcptemp *);
306 
307 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
308 	return (n);
309 }
310 
311 /*
312  * Send a single message to the TCP at address specified by
313  * the given TCP/IP header.  If m == 0, then we make a copy
314  * of the tcpiphdr at ti and send directly to the addressed host.
315  * This is used to force keep alive messages out using the TCP
316  * template for a connection.  If flags are given then we send
317  * a message back to the TCP which originated the * segment ti,
318  * and discard the mbuf containing it and any other attached mbufs.
319  *
320  * In any case the ack and sequence number of the transmitted
321  * segment are as specified by the parameters.
322  *
323  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
324  */
325 void
326 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
327 	struct tcpcb *tp;
328 	void *ipgen;
329 	register struct tcphdr *th;
330 	register struct mbuf *m;
331 	tcp_seq ack, seq;
332 	int flags;
333 {
334 	register int tlen;
335 	int win = 0;
336 	struct route *ro = 0;
337 	struct route sro;
338 	struct ip *ip;
339 	struct tcphdr *nth;
340 #ifdef INET6
341 	struct route_in6 *ro6 = 0;
342 	struct route_in6 sro6;
343 	struct ip6_hdr *ip6;
344 	int isipv6;
345 #endif /* INET6 */
346 	int ipflags = 0;
347 
348 #ifdef INET6
349 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
350 	ip6 = ipgen;
351 #endif /* INET6 */
352 	ip = ipgen;
353 
354 	if (tp) {
355 		if (!(flags & TH_RST)) {
356 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
357 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
358 				win = (long)TCP_MAXWIN << tp->rcv_scale;
359 		}
360 #ifdef INET6
361 		if (isipv6)
362 			ro6 = &tp->t_inpcb->in6p_route;
363 		else
364 #endif /* INET6 */
365 		ro = &tp->t_inpcb->inp_route;
366 	} else {
367 #ifdef INET6
368 		if (isipv6) {
369 			ro6 = &sro6;
370 			bzero(ro6, sizeof *ro6);
371 		} else
372 #endif /* INET6 */
373 	      {
374 		ro = &sro;
375 		bzero(ro, sizeof *ro);
376 	      }
377 	}
378 	if (m == 0) {
379 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
380 		if (m == NULL)
381 			return;
382 		tlen = 0;
383 		m->m_data += max_linkhdr;
384 #ifdef INET6
385 		if (isipv6) {
386 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
387 			      sizeof(struct ip6_hdr));
388 			ip6 = mtod(m, struct ip6_hdr *);
389 			nth = (struct tcphdr *)(ip6 + 1);
390 		} else
391 #endif /* INET6 */
392 	      {
393 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
394 		ip = mtod(m, struct ip *);
395 		nth = (struct tcphdr *)(ip + 1);
396 	      }
397 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
398 		flags = TH_ACK;
399 	} else {
400 		m_freem(m->m_next);
401 		m->m_next = 0;
402 		m->m_data = (caddr_t)ipgen;
403 		/* m_len is set later */
404 		tlen = 0;
405 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
406 #ifdef INET6
407 		if (isipv6) {
408 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
409 			nth = (struct tcphdr *)(ip6 + 1);
410 		} else
411 #endif /* INET6 */
412 	      {
413 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
414 		nth = (struct tcphdr *)(ip + 1);
415 	      }
416 		if (th != nth) {
417 			/*
418 			 * this is usually a case when an extension header
419 			 * exists between the IPv6 header and the
420 			 * TCP header.
421 			 */
422 			nth->th_sport = th->th_sport;
423 			nth->th_dport = th->th_dport;
424 		}
425 		xchg(nth->th_dport, nth->th_sport, n_short);
426 #undef xchg
427 	}
428 #ifdef INET6
429 	if (isipv6) {
430 		ip6->ip6_flow = 0;
431 		ip6->ip6_vfc = IPV6_VERSION;
432 		ip6->ip6_nxt = IPPROTO_TCP;
433 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
434 						tlen));
435 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
436 	} else
437 #endif
438       {
439 	tlen += sizeof (struct tcpiphdr);
440 	ip->ip_len = tlen;
441 	ip->ip_ttl = ip_defttl;
442       }
443 	m->m_len = tlen;
444 	m->m_pkthdr.len = tlen;
445 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
446 	nth->th_seq = htonl(seq);
447 	nth->th_ack = htonl(ack);
448 	nth->th_x2 = 0;
449 	nth->th_off = sizeof (struct tcphdr) >> 2;
450 	nth->th_flags = flags;
451 	if (tp)
452 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
453 	else
454 		nth->th_win = htons((u_short)win);
455 	nth->th_urp = 0;
456 #ifdef INET6
457 	if (isipv6) {
458 		nth->th_sum = 0;
459 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
460 					sizeof(struct ip6_hdr),
461 					tlen - sizeof(struct ip6_hdr));
462 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
463 					       ro6 && ro6->ro_rt ?
464 					       ro6->ro_rt->rt_ifp :
465 					       NULL);
466 	} else
467 #endif /* INET6 */
468       {
469         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
470 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
471         m->m_pkthdr.csum_flags = CSUM_TCP;
472         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
473       }
474 #ifdef TCPDEBUG
475 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
476 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
477 #endif
478 #ifdef IPSEC
479 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
480 		m_freem(m);
481 		return;
482 	}
483 #endif
484 #ifdef INET6
485 	if (isipv6) {
486 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
487 		if (ro6 == &sro6 && ro6->ro_rt) {
488 			RTFREE(ro6->ro_rt);
489 			ro6->ro_rt = NULL;
490 		}
491 	} else
492 #endif /* INET6 */
493       {
494 	(void) ip_output(m, NULL, ro, ipflags, NULL);
495 	if (ro == &sro && ro->ro_rt) {
496 		RTFREE(ro->ro_rt);
497 		ro->ro_rt = NULL;
498 	}
499       }
500 }
501 
502 /*
503  * Create a new TCP control block, making an
504  * empty reassembly queue and hooking it to the argument
505  * protocol control block.  The `inp' parameter must have
506  * come from the zone allocator set up in tcp_init().
507  */
508 struct tcpcb *
509 tcp_newtcpcb(inp)
510 	struct inpcb *inp;
511 {
512 	struct inp_tp *it;
513 	register struct tcpcb *tp;
514 #ifdef INET6
515 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
516 #endif /* INET6 */
517 
518 	it = (struct inp_tp *)inp;
519 	tp = &it->tcb;
520 	bzero((char *) tp, sizeof(struct tcpcb));
521 	LIST_INIT(&tp->t_segq);
522 	tp->t_maxseg = tp->t_maxopd =
523 #ifdef INET6
524 		isipv6 ? tcp_v6mssdflt :
525 #endif /* INET6 */
526 		tcp_mssdflt;
527 
528 	/* Set up our timeouts. */
529 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
530 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
531 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
532 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
533 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
534 
535 	if (tcp_do_rfc1323)
536 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
537 	if (tcp_do_rfc1644)
538 		tp->t_flags |= TF_REQ_CC;
539 	tp->t_inpcb = inp;	/* XXX */
540 	/*
541 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
542 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
543 	 * reasonable initial retransmit time.
544 	 */
545 	tp->t_srtt = TCPTV_SRTTBASE;
546 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
547 	tp->t_rttmin = TCPTV_MIN;
548 	tp->t_rxtcur = TCPTV_RTOBASE;
549 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
550 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
551 	tp->t_rcvtime = ticks;
552         /*
553 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
554 	 * because the socket may be bound to an IPv6 wildcard address,
555 	 * which may match an IPv4-mapped IPv6 address.
556 	 */
557 	inp->inp_ip_ttl = ip_defttl;
558 	inp->inp_ppcb = (caddr_t)tp;
559 	return (tp);		/* XXX */
560 }
561 
562 /*
563  * Drop a TCP connection, reporting
564  * the specified error.  If connection is synchronized,
565  * then send a RST to peer.
566  */
567 struct tcpcb *
568 tcp_drop(tp, errno)
569 	register struct tcpcb *tp;
570 	int errno;
571 {
572 	struct socket *so = tp->t_inpcb->inp_socket;
573 
574 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
575 		tp->t_state = TCPS_CLOSED;
576 		(void) tcp_output(tp);
577 		tcpstat.tcps_drops++;
578 	} else
579 		tcpstat.tcps_conndrops++;
580 	if (errno == ETIMEDOUT && tp->t_softerror)
581 		errno = tp->t_softerror;
582 	so->so_error = errno;
583 	return (tcp_close(tp));
584 }
585 
586 /*
587  * Close a TCP control block:
588  *	discard all space held by the tcp
589  *	discard internet protocol block
590  *	wake up any sleepers
591  */
592 struct tcpcb *
593 tcp_close(tp)
594 	register struct tcpcb *tp;
595 {
596 	register struct tseg_qent *q;
597 	struct inpcb *inp = tp->t_inpcb;
598 	struct socket *so = inp->inp_socket;
599 #ifdef INET6
600 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
601 #endif /* INET6 */
602 	register struct rtentry *rt;
603 	int dosavessthresh;
604 
605 	/*
606 	 * Make sure that all of our timers are stopped before we
607 	 * delete the PCB.
608 	 */
609 	callout_stop(tp->tt_rexmt);
610 	callout_stop(tp->tt_persist);
611 	callout_stop(tp->tt_keep);
612 	callout_stop(tp->tt_2msl);
613 	callout_stop(tp->tt_delack);
614 
615 	/*
616 	 * If we got enough samples through the srtt filter,
617 	 * save the rtt and rttvar in the routing entry.
618 	 * 'Enough' is arbitrarily defined as the 16 samples.
619 	 * 16 samples is enough for the srtt filter to converge
620 	 * to within 5% of the correct value; fewer samples and
621 	 * we could save a very bogus rtt.
622 	 *
623 	 * Don't update the default route's characteristics and don't
624 	 * update anything that the user "locked".
625 	 */
626 	if (tp->t_rttupdated >= 16) {
627 		register u_long i = 0;
628 #ifdef INET6
629 		if (isipv6) {
630 			struct sockaddr_in6 *sin6;
631 
632 			if ((rt = inp->in6p_route.ro_rt) == NULL)
633 				goto no_valid_rt;
634 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
635 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
636 				goto no_valid_rt;
637 		}
638 		else
639 #endif /* INET6 */
640 		if ((rt = inp->inp_route.ro_rt) == NULL ||
641 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
642 		    == INADDR_ANY)
643 			goto no_valid_rt;
644 
645 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
646 			i = tp->t_srtt *
647 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
648 			if (rt->rt_rmx.rmx_rtt && i)
649 				/*
650 				 * filter this update to half the old & half
651 				 * the new values, converting scale.
652 				 * See route.h and tcp_var.h for a
653 				 * description of the scaling constants.
654 				 */
655 				rt->rt_rmx.rmx_rtt =
656 				    (rt->rt_rmx.rmx_rtt + i) / 2;
657 			else
658 				rt->rt_rmx.rmx_rtt = i;
659 			tcpstat.tcps_cachedrtt++;
660 		}
661 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
662 			i = tp->t_rttvar *
663 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
664 			if (rt->rt_rmx.rmx_rttvar && i)
665 				rt->rt_rmx.rmx_rttvar =
666 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
667 			else
668 				rt->rt_rmx.rmx_rttvar = i;
669 			tcpstat.tcps_cachedrttvar++;
670 		}
671 		/*
672 		 * The old comment here said:
673 		 * update the pipelimit (ssthresh) if it has been updated
674 		 * already or if a pipesize was specified & the threshhold
675 		 * got below half the pipesize.  I.e., wait for bad news
676 		 * before we start updating, then update on both good
677 		 * and bad news.
678 		 *
679 		 * But we want to save the ssthresh even if no pipesize is
680 		 * specified explicitly in the route, because such
681 		 * connections still have an implicit pipesize specified
682 		 * by the global tcp_sendspace.  In the absence of a reliable
683 		 * way to calculate the pipesize, it will have to do.
684 		 */
685 		i = tp->snd_ssthresh;
686 		if (rt->rt_rmx.rmx_sendpipe != 0)
687 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
688 		else
689 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
690 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
691 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
692 		    || dosavessthresh) {
693 			/*
694 			 * convert the limit from user data bytes to
695 			 * packets then to packet data bytes.
696 			 */
697 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
698 			if (i < 2)
699 				i = 2;
700 			i *= (u_long)(tp->t_maxseg +
701 #ifdef INET6
702 				      (isipv6 ? sizeof (struct ip6_hdr) +
703 					       sizeof (struct tcphdr) :
704 #endif
705 				       sizeof (struct tcpiphdr)
706 #ifdef INET6
707 				       )
708 #endif
709 				      );
710 			if (rt->rt_rmx.rmx_ssthresh)
711 				rt->rt_rmx.rmx_ssthresh =
712 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
713 			else
714 				rt->rt_rmx.rmx_ssthresh = i;
715 			tcpstat.tcps_cachedssthresh++;
716 		}
717 	}
718     no_valid_rt:
719 	/* free the reassembly queue, if any */
720 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
721 		LIST_REMOVE(q, tqe_q);
722 		m_freem(q->tqe_m);
723 		FREE(q, M_TSEGQ);
724 	}
725 	inp->inp_ppcb = NULL;
726 	soisdisconnected(so);
727 #ifdef INET6
728 	if (INP_CHECK_SOCKAF(so, AF_INET6))
729 		in6_pcbdetach(inp);
730 	else
731 #endif /* INET6 */
732 	in_pcbdetach(inp);
733 	tcpstat.tcps_closed++;
734 	return ((struct tcpcb *)0);
735 }
736 
737 void
738 tcp_drain()
739 {
740 	if (do_tcpdrain)
741 	{
742 		struct inpcb *inpb;
743 		struct tcpcb *tcpb;
744 		struct tseg_qent *te;
745 
746 	/*
747 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
748 	 * if there is one...
749 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
750 	 *      reassembly queue should be flushed, but in a situation
751 	 * 	where we're really low on mbufs, this is potentially
752 	 *  	usefull.
753 	 */
754 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
755 			if ((tcpb = intotcpcb(inpb))) {
756 				while ((te = LIST_FIRST(&tcpb->t_segq))
757 			            != NULL) {
758 					LIST_REMOVE(te, tqe_q);
759 					m_freem(te->tqe_m);
760 					FREE(te, M_TSEGQ);
761 				}
762 			}
763 		}
764 	}
765 }
766 
767 /*
768  * Notify a tcp user of an asynchronous error;
769  * store error as soft error, but wake up user
770  * (for now, won't do anything until can select for soft error).
771  *
772  * Do not wake up user since there currently is no mechanism for
773  * reporting soft errors (yet - a kqueue filter may be added).
774  */
775 static void
776 tcp_notify(inp, error)
777 	struct inpcb *inp;
778 	int error;
779 {
780 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
781 
782 	/*
783 	 * Ignore some errors if we are hooked up.
784 	 * If connection hasn't completed, has retransmitted several times,
785 	 * and receives a second error, give up now.  This is better
786 	 * than waiting a long time to establish a connection that
787 	 * can never complete.
788 	 */
789 	if (tp->t_state == TCPS_ESTABLISHED &&
790 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
791 	      error == EHOSTDOWN)) {
792 		return;
793 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
794 	    tp->t_softerror)
795 		tcp_drop(tp, error);
796 	else
797 		tp->t_softerror = error;
798 #if 0
799 	wakeup((caddr_t) &so->so_timeo);
800 	sorwakeup(so);
801 	sowwakeup(so);
802 #endif
803 }
804 
805 static int
806 tcp_pcblist(SYSCTL_HANDLER_ARGS)
807 {
808 	int error, i, n, s;
809 	struct inpcb *inp, **inp_list;
810 	inp_gen_t gencnt;
811 	struct xinpgen xig;
812 
813 	/*
814 	 * The process of preparing the TCB list is too time-consuming and
815 	 * resource-intensive to repeat twice on every request.
816 	 */
817 	if (req->oldptr == 0) {
818 		n = tcbinfo.ipi_count;
819 		req->oldidx = 2 * (sizeof xig)
820 			+ (n + n/8) * sizeof(struct xtcpcb);
821 		return 0;
822 	}
823 
824 	if (req->newptr != 0)
825 		return EPERM;
826 
827 	/*
828 	 * OK, now we're committed to doing something.
829 	 */
830 	s = splnet();
831 	gencnt = tcbinfo.ipi_gencnt;
832 	n = tcbinfo.ipi_count;
833 	splx(s);
834 
835 	xig.xig_len = sizeof xig;
836 	xig.xig_count = n;
837 	xig.xig_gen = gencnt;
838 	xig.xig_sogen = so_gencnt;
839 	error = SYSCTL_OUT(req, &xig, sizeof xig);
840 	if (error)
841 		return error;
842 
843 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
844 	if (inp_list == 0)
845 		return ENOMEM;
846 
847 	s = splnet();
848 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
849 	     inp = LIST_NEXT(inp, inp_list)) {
850 		if (inp->inp_gencnt <= gencnt) {
851 			if (cr_cansee(req->td->td_proc->p_ucred,
852 			    inp->inp_socket->so_cred))
853 				continue;
854 			inp_list[i++] = inp;
855 		}
856 	}
857 	splx(s);
858 	n = i;
859 
860 	error = 0;
861 	for (i = 0; i < n; i++) {
862 		inp = inp_list[i];
863 		if (inp->inp_gencnt <= gencnt) {
864 			struct xtcpcb xt;
865 			caddr_t inp_ppcb;
866 			xt.xt_len = sizeof xt;
867 			/* XXX should avoid extra copy */
868 			bcopy(inp, &xt.xt_inp, sizeof *inp);
869 			inp_ppcb = inp->inp_ppcb;
870 			if (inp_ppcb != NULL)
871 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
872 			else
873 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
874 			if (inp->inp_socket)
875 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
876 			error = SYSCTL_OUT(req, &xt, sizeof xt);
877 		}
878 	}
879 	if (!error) {
880 		/*
881 		 * Give the user an updated idea of our state.
882 		 * If the generation differs from what we told
883 		 * her before, she knows that something happened
884 		 * while we were processing this request, and it
885 		 * might be necessary to retry.
886 		 */
887 		s = splnet();
888 		xig.xig_gen = tcbinfo.ipi_gencnt;
889 		xig.xig_sogen = so_gencnt;
890 		xig.xig_count = tcbinfo.ipi_count;
891 		splx(s);
892 		error = SYSCTL_OUT(req, &xig, sizeof xig);
893 	}
894 	free(inp_list, M_TEMP);
895 	return error;
896 }
897 
898 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
899 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
900 
901 static int
902 tcp_getcred(SYSCTL_HANDLER_ARGS)
903 {
904 	struct xucred xuc;
905 	struct sockaddr_in addrs[2];
906 	struct inpcb *inp;
907 	int error, s;
908 
909 	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
910 	if (error)
911 		return (error);
912 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
913 	if (error)
914 		return (error);
915 	s = splnet();
916 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
917 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
918 	if (inp == NULL || inp->inp_socket == NULL) {
919 		error = ENOENT;
920 		goto out;
921 	}
922 	error = cr_cansee(req->td->td_proc->p_ucred, inp->inp_socket->so_cred);
923 	if (error)
924 		goto out;
925 	bzero(&xuc, sizeof(xuc));
926 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
927 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
928 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
929 	    sizeof(xuc.cr_groups));
930 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
931 out:
932 	splx(s);
933 	return (error);
934 }
935 
936 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
937     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
938     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
939 
940 #ifdef INET6
941 static int
942 tcp6_getcred(SYSCTL_HANDLER_ARGS)
943 {
944 	struct xucred xuc;
945 	struct sockaddr_in6 addrs[2];
946 	struct inpcb *inp;
947 	int error, s, mapped = 0;
948 
949 	error = suser_xxx(0, req->td->td_proc, PRISON_ROOT);
950 	if (error)
951 		return (error);
952 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
953 	if (error)
954 		return (error);
955 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
956 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
957 			mapped = 1;
958 		else
959 			return (EINVAL);
960 	}
961 	s = splnet();
962 	if (mapped == 1)
963 		inp = in_pcblookup_hash(&tcbinfo,
964 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
965 			addrs[1].sin6_port,
966 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
967 			addrs[0].sin6_port,
968 			0, NULL);
969 	else
970 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
971 				 addrs[1].sin6_port,
972 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
973 				 0, NULL);
974 	if (inp == NULL || inp->inp_socket == NULL) {
975 		error = ENOENT;
976 		goto out;
977 	}
978 	error = cr_cansee(req->td->td_proc->p_ucred, inp->inp_socket->so_cred);
979 	if (error)
980 		goto out;
981 	bzero(&xuc, sizeof(xuc));
982 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
983 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
984 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
985 	    sizeof(xuc.cr_groups));
986 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
987 out:
988 	splx(s);
989 	return (error);
990 }
991 
992 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
993     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
994     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
995 #endif
996 
997 
998 void
999 tcp_ctlinput(cmd, sa, vip)
1000 	int cmd;
1001 	struct sockaddr *sa;
1002 	void *vip;
1003 {
1004 	struct ip *ip = vip;
1005 	struct tcphdr *th;
1006 	struct in_addr faddr;
1007 	struct inpcb *inp;
1008 	struct tcpcb *tp;
1009 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1010 	tcp_seq icmp_seq;
1011 	int s;
1012 
1013 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1014 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1015 		return;
1016 
1017 	if (cmd == PRC_QUENCH)
1018 		notify = tcp_quench;
1019 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1020 		cmd == PRC_UNREACH_PORT) && ip)
1021 		notify = tcp_drop_syn_sent;
1022 	else if (cmd == PRC_MSGSIZE)
1023 		notify = tcp_mtudisc;
1024 	else if (PRC_IS_REDIRECT(cmd)) {
1025 		ip = 0;
1026 		notify = in_rtchange;
1027 	} else if (cmd == PRC_HOSTDEAD)
1028 		ip = 0;
1029 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1030 		return;
1031 	if (ip) {
1032 		s = splnet();
1033 		th = (struct tcphdr *)((caddr_t)ip
1034 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1035 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1036 		    ip->ip_src, th->th_sport, 0, NULL);
1037 		if (inp != NULL && inp->inp_socket != NULL) {
1038 			icmp_seq = htonl(th->th_seq);
1039 			tp = intotcpcb(inp);
1040 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1041 			    SEQ_LT(icmp_seq, tp->snd_max))
1042 				(*notify)(inp, inetctlerrmap[cmd]);
1043 		} else {
1044 			struct in_conninfo inc;
1045 
1046 			inc.inc_fport = th->th_dport;
1047 			inc.inc_lport = th->th_sport;
1048 			inc.inc_faddr = faddr;
1049 			inc.inc_laddr = ip->ip_src;
1050 #ifdef INET6
1051 			inc.inc_isipv6 = 0;
1052 #endif
1053 			syncache_unreach(&inc, th);
1054 		}
1055 		splx(s);
1056 	} else
1057 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1058 }
1059 
1060 #ifdef INET6
1061 void
1062 tcp6_ctlinput(cmd, sa, d)
1063 	int cmd;
1064 	struct sockaddr *sa;
1065 	void *d;
1066 {
1067 	struct tcphdr th;
1068 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1069 	struct ip6_hdr *ip6;
1070 	struct mbuf *m;
1071 	struct ip6ctlparam *ip6cp = NULL;
1072 	const struct sockaddr_in6 *sa6_src = NULL;
1073 	int off;
1074 	struct tcp_portonly {
1075 		u_int16_t th_sport;
1076 		u_int16_t th_dport;
1077 	} *thp;
1078 
1079 	if (sa->sa_family != AF_INET6 ||
1080 	    sa->sa_len != sizeof(struct sockaddr_in6))
1081 		return;
1082 
1083 	if (cmd == PRC_QUENCH)
1084 		notify = tcp_quench;
1085 	else if (cmd == PRC_MSGSIZE)
1086 		notify = tcp_mtudisc;
1087 	else if (!PRC_IS_REDIRECT(cmd) &&
1088 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1089 		return;
1090 
1091 	/* if the parameter is from icmp6, decode it. */
1092 	if (d != NULL) {
1093 		ip6cp = (struct ip6ctlparam *)d;
1094 		m = ip6cp->ip6c_m;
1095 		ip6 = ip6cp->ip6c_ip6;
1096 		off = ip6cp->ip6c_off;
1097 		sa6_src = ip6cp->ip6c_src;
1098 	} else {
1099 		m = NULL;
1100 		ip6 = NULL;
1101 		off = 0;	/* fool gcc */
1102 		sa6_src = &sa6_any;
1103 	}
1104 
1105 	if (ip6) {
1106 		struct in_conninfo inc;
1107 		/*
1108 		 * XXX: We assume that when IPV6 is non NULL,
1109 		 * M and OFF are valid.
1110 		 */
1111 
1112 		/* check if we can safely examine src and dst ports */
1113 		if (m->m_pkthdr.len < off + sizeof(*thp))
1114 			return;
1115 
1116 		bzero(&th, sizeof(th));
1117 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1118 
1119 		in6_pcbnotify(&tcb, sa, th.th_dport,
1120 		    (struct sockaddr *)ip6cp->ip6c_src,
1121 		    th.th_sport, cmd, notify);
1122 
1123 		inc.inc_fport = th.th_dport;
1124 		inc.inc_lport = th.th_sport;
1125 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1126 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1127 		inc.inc_isipv6 = 1;
1128 		syncache_unreach(&inc, &th);
1129 	} else
1130 		in6_pcbnotify(&tcb, sa, 0, (struct sockaddr *)sa6_src,
1131 			      0, cmd, notify);
1132 }
1133 #endif /* INET6 */
1134 
1135 
1136 /*
1137  * Following is where TCP initial sequence number generation occurs.
1138  *
1139  * There are two places where we must use initial sequence numbers:
1140  * 1.  In SYN-ACK packets.
1141  * 2.  In SYN packets.
1142  *
1143  * The ISNs in SYN-ACK packets have no monotonicity requirement,
1144  * and should be as unpredictable as possible to avoid the possibility
1145  * of spoofing and/or connection hijacking.  To satisfy this
1146  * requirement, SYN-ACK ISNs are generated via the arc4random()
1147  * function.  If exact RFC 1948 compliance is requested via sysctl,
1148  * these ISNs will be generated just like those in SYN packets.
1149  *
1150  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1151  * depends on this property.  In addition, these ISNs should be
1152  * unguessable so as to prevent connection hijacking.  To satisfy
1153  * the requirements of this situation, the algorithm outlined in
1154  * RFC 1948 is used to generate sequence numbers.
1155  *
1156  * For more information on the theory of operation, please see
1157  * RFC 1948.
1158  *
1159  * Implementation details:
1160  *
1161  * Time is based off the system timer, and is corrected so that it
1162  * increases by one megabyte per second.  This allows for proper
1163  * recycling on high speed LANs while still leaving over an hour
1164  * before rollover.
1165  *
1166  * Two sysctls control the generation of ISNs:
1167  *
1168  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1169  * between seeding of isn_secret.  This is normally set to zero,
1170  * as reseeding should not be necessary.
1171  *
1172  * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1173  * strictly.  When strict compliance is requested, reseeding is
1174  * disabled and SYN-ACKs will be generated in the same manner as
1175  * SYNs.  Strict mode is disabled by default.
1176  *
1177  */
1178 
1179 #define ISN_BYTES_PER_SECOND 1048576
1180 
1181 u_char isn_secret[32];
1182 int isn_last_reseed;
1183 MD5_CTX isn_ctx;
1184 
1185 tcp_seq
1186 tcp_new_isn(tp)
1187 	struct tcpcb *tp;
1188 {
1189 	u_int32_t md5_buffer[4];
1190 	tcp_seq new_isn;
1191 
1192 	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1193 	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1194 	   && tcp_strict_rfc1948 == 0)
1195 		return arc4random();
1196 
1197 	/* Seed if this is the first use, reseed if requested. */
1198 	if ((isn_last_reseed == 0) ||
1199 	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1200 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1201 		< (u_int)ticks))) {
1202 		read_random(&isn_secret, sizeof(isn_secret));
1203 		isn_last_reseed = ticks;
1204 	}
1205 
1206 	/* Compute the md5 hash and return the ISN. */
1207 	MD5Init(&isn_ctx);
1208 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1209 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1210 #ifdef INET6
1211 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1212 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1213 			  sizeof(struct in6_addr));
1214 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1215 			  sizeof(struct in6_addr));
1216 	} else
1217 #endif
1218 	{
1219 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1220 			  sizeof(struct in_addr));
1221 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1222 			  sizeof(struct in_addr));
1223 	}
1224 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1225 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1226 	new_isn = (tcp_seq) md5_buffer[0];
1227 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1228 	return new_isn;
1229 }
1230 
1231 /*
1232  * When a source quench is received, close congestion window
1233  * to one segment.  We will gradually open it again as we proceed.
1234  */
1235 void
1236 tcp_quench(inp, errno)
1237 	struct inpcb *inp;
1238 	int errno;
1239 {
1240 	struct tcpcb *tp = intotcpcb(inp);
1241 
1242 	if (tp)
1243 		tp->snd_cwnd = tp->t_maxseg;
1244 }
1245 
1246 /*
1247  * When a specific ICMP unreachable message is received and the
1248  * connection state is SYN-SENT, drop the connection.  This behavior
1249  * is controlled by the icmp_may_rst sysctl.
1250  */
1251 void
1252 tcp_drop_syn_sent(inp, errno)
1253 	struct inpcb *inp;
1254 	int errno;
1255 {
1256 	struct tcpcb *tp = intotcpcb(inp);
1257 
1258 	if (tp && tp->t_state == TCPS_SYN_SENT)
1259 		tcp_drop(tp, errno);
1260 }
1261 
1262 /*
1263  * When `need fragmentation' ICMP is received, update our idea of the MSS
1264  * based on the new value in the route.  Also nudge TCP to send something,
1265  * since we know the packet we just sent was dropped.
1266  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1267  */
1268 void
1269 tcp_mtudisc(inp, errno)
1270 	struct inpcb *inp;
1271 	int errno;
1272 {
1273 	struct tcpcb *tp = intotcpcb(inp);
1274 	struct rtentry *rt;
1275 	struct rmxp_tao *taop;
1276 	struct socket *so = inp->inp_socket;
1277 	int offered;
1278 	int mss;
1279 #ifdef INET6
1280 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1281 #endif /* INET6 */
1282 
1283 	if (tp) {
1284 #ifdef INET6
1285 		if (isipv6)
1286 			rt = tcp_rtlookup6(&inp->inp_inc);
1287 		else
1288 #endif /* INET6 */
1289 		rt = tcp_rtlookup(&inp->inp_inc);
1290 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1291 			tp->t_maxopd = tp->t_maxseg =
1292 #ifdef INET6
1293 				isipv6 ? tcp_v6mssdflt :
1294 #endif /* INET6 */
1295 				tcp_mssdflt;
1296 			return;
1297 		}
1298 		taop = rmx_taop(rt->rt_rmx);
1299 		offered = taop->tao_mssopt;
1300 		mss = rt->rt_rmx.rmx_mtu -
1301 #ifdef INET6
1302 			(isipv6 ?
1303 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1304 #endif /* INET6 */
1305 			 sizeof(struct tcpiphdr)
1306 #ifdef INET6
1307 			 )
1308 #endif /* INET6 */
1309 			;
1310 
1311 		if (offered)
1312 			mss = min(mss, offered);
1313 		/*
1314 		 * XXX - The above conditional probably violates the TCP
1315 		 * spec.  The problem is that, since we don't know the
1316 		 * other end's MSS, we are supposed to use a conservative
1317 		 * default.  But, if we do that, then MTU discovery will
1318 		 * never actually take place, because the conservative
1319 		 * default is much less than the MTUs typically seen
1320 		 * on the Internet today.  For the moment, we'll sweep
1321 		 * this under the carpet.
1322 		 *
1323 		 * The conservative default might not actually be a problem
1324 		 * if the only case this occurs is when sending an initial
1325 		 * SYN with options and data to a host we've never talked
1326 		 * to before.  Then, they will reply with an MSS value which
1327 		 * will get recorded and the new parameters should get
1328 		 * recomputed.  For Further Study.
1329 		 */
1330 		if (tp->t_maxopd <= mss)
1331 			return;
1332 		tp->t_maxopd = mss;
1333 
1334 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1335 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1336 			mss -= TCPOLEN_TSTAMP_APPA;
1337 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1338 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1339 			mss -= TCPOLEN_CC_APPA;
1340 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1341 		if (mss > MCLBYTES)
1342 			mss &= ~(MCLBYTES-1);
1343 #else
1344 		if (mss > MCLBYTES)
1345 			mss = mss / MCLBYTES * MCLBYTES;
1346 #endif
1347 		if (so->so_snd.sb_hiwat < mss)
1348 			mss = so->so_snd.sb_hiwat;
1349 
1350 		tp->t_maxseg = mss;
1351 
1352 		tcpstat.tcps_mturesent++;
1353 		tp->t_rtttime = 0;
1354 		tp->snd_nxt = tp->snd_una;
1355 		tcp_output(tp);
1356 	}
1357 }
1358 
1359 /*
1360  * Look-up the routing entry to the peer of this inpcb.  If no route
1361  * is found and it cannot be allocated the return NULL.  This routine
1362  * is called by TCP routines that access the rmx structure and by tcp_mss
1363  * to get the interface MTU.
1364  */
1365 struct rtentry *
1366 tcp_rtlookup(inc)
1367 	struct in_conninfo *inc;
1368 {
1369 	struct route *ro;
1370 	struct rtentry *rt;
1371 
1372 	ro = &inc->inc_route;
1373 	rt = ro->ro_rt;
1374 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1375 		/* No route yet, so try to acquire one */
1376 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1377 			ro->ro_dst.sa_family = AF_INET;
1378 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1379 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1380 			    inc->inc_faddr;
1381 			rtalloc(ro);
1382 			rt = ro->ro_rt;
1383 		}
1384 	}
1385 	return rt;
1386 }
1387 
1388 #ifdef INET6
1389 struct rtentry *
1390 tcp_rtlookup6(inc)
1391 	struct in_conninfo *inc;
1392 {
1393 	struct route_in6 *ro6;
1394 	struct rtentry *rt;
1395 
1396 	ro6 = &inc->inc6_route;
1397 	rt = ro6->ro_rt;
1398 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1399 		/* No route yet, so try to acquire one */
1400 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1401 			ro6->ro_dst.sin6_family = AF_INET6;
1402 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1403 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1404 			rtalloc((struct route *)ro6);
1405 			rt = ro6->ro_rt;
1406 		}
1407 	}
1408 	return rt;
1409 }
1410 #endif /* INET6 */
1411 
1412 #ifdef IPSEC
1413 /* compute ESP/AH header size for TCP, including outer IP header. */
1414 size_t
1415 ipsec_hdrsiz_tcp(tp)
1416 	struct tcpcb *tp;
1417 {
1418 	struct inpcb *inp;
1419 	struct mbuf *m;
1420 	size_t hdrsiz;
1421 	struct ip *ip;
1422 #ifdef INET6
1423 	struct ip6_hdr *ip6;
1424 #endif /* INET6 */
1425 	struct tcphdr *th;
1426 
1427 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1428 		return 0;
1429 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1430 	if (!m)
1431 		return 0;
1432 
1433 #ifdef INET6
1434 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1435 		ip6 = mtod(m, struct ip6_hdr *);
1436 		th = (struct tcphdr *)(ip6 + 1);
1437 		m->m_pkthdr.len = m->m_len =
1438 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1439 		tcp_fillheaders(tp, ip6, th);
1440 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1441 	} else
1442 #endif /* INET6 */
1443       {
1444 	ip = mtod(m, struct ip *);
1445 	th = (struct tcphdr *)(ip + 1);
1446 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1447 	tcp_fillheaders(tp, ip, th);
1448 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1449       }
1450 
1451 	m_free(m);
1452 	return hdrsiz;
1453 }
1454 #endif /*IPSEC*/
1455 
1456 /*
1457  * Return a pointer to the cached information about the remote host.
1458  * The cached information is stored in the protocol specific part of
1459  * the route metrics.
1460  */
1461 struct rmxp_tao *
1462 tcp_gettaocache(inc)
1463 	struct in_conninfo *inc;
1464 {
1465 	struct rtentry *rt;
1466 
1467 #ifdef INET6
1468 	if (inc->inc_isipv6)
1469 		rt = tcp_rtlookup6(inc);
1470 	else
1471 #endif /* INET6 */
1472 	rt = tcp_rtlookup(inc);
1473 
1474 	/* Make sure this is a host route and is up. */
1475 	if (rt == NULL ||
1476 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1477 		return NULL;
1478 
1479 	return rmx_taop(rt->rt_rmx);
1480 }
1481 
1482 /*
1483  * Clear all the TAO cache entries, called from tcp_init.
1484  *
1485  * XXX
1486  * This routine is just an empty one, because we assume that the routing
1487  * routing tables are initialized at the same time when TCP, so there is
1488  * nothing in the cache left over.
1489  */
1490 static void
1491 tcp_cleartaocache()
1492 {
1493 }
1494