1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 #include "opt_ipsec.h" 39 #include "opt_tcpdebug.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/callout.h> 44 #include <sys/eventhandler.h> 45 #include <sys/hhook.h> 46 #include <sys/kernel.h> 47 #include <sys/khelp.h> 48 #include <sys/sysctl.h> 49 #include <sys/jail.h> 50 #include <sys/malloc.h> 51 #include <sys/refcount.h> 52 #include <sys/mbuf.h> 53 #ifdef INET6 54 #include <sys/domain.h> 55 #endif 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/protosw.h> 62 #include <sys/random.h> 63 64 #include <vm/uma.h> 65 66 #include <net/route.h> 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_fib.h> 73 #include <netinet/in_kdtrace.h> 74 #include <netinet/in_pcb.h> 75 #include <netinet/in_systm.h> 76 #include <netinet/in_var.h> 77 #include <netinet/ip.h> 78 #include <netinet/ip_icmp.h> 79 #include <netinet/ip_var.h> 80 #ifdef INET6 81 #include <netinet/ip6.h> 82 #include <netinet6/in6_fib.h> 83 #include <netinet6/in6_pcb.h> 84 #include <netinet6/ip6_var.h> 85 #include <netinet6/scope6_var.h> 86 #include <netinet6/nd6.h> 87 #endif 88 89 #ifdef TCP_RFC7413 90 #include <netinet/tcp_fastopen.h> 91 #endif 92 #include <netinet/tcp.h> 93 #include <netinet/tcp_fsm.h> 94 #include <netinet/tcp_seq.h> 95 #include <netinet/tcp_timer.h> 96 #include <netinet/tcp_var.h> 97 #include <netinet/tcp_syncache.h> 98 #include <netinet/cc/cc.h> 99 #ifdef INET6 100 #include <netinet6/tcp6_var.h> 101 #endif 102 #include <netinet/tcpip.h> 103 #ifdef TCPPCAP 104 #include <netinet/tcp_pcap.h> 105 #endif 106 #ifdef TCPDEBUG 107 #include <netinet/tcp_debug.h> 108 #endif 109 #ifdef INET6 110 #include <netinet6/ip6protosw.h> 111 #endif 112 #ifdef TCP_OFFLOAD 113 #include <netinet/tcp_offload.h> 114 #endif 115 116 #ifdef IPSEC 117 #include <netipsec/ipsec.h> 118 #include <netipsec/xform.h> 119 #ifdef INET6 120 #include <netipsec/ipsec6.h> 121 #endif 122 #include <netipsec/key.h> 123 #include <sys/syslog.h> 124 #endif /*IPSEC*/ 125 126 #include <machine/in_cksum.h> 127 #include <sys/md5.h> 128 129 #include <security/mac/mac_framework.h> 130 131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS; 132 #ifdef INET6 133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS; 134 #endif 135 136 struct rwlock tcp_function_lock; 137 138 static int 139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS) 140 { 141 int error, new; 142 143 new = V_tcp_mssdflt; 144 error = sysctl_handle_int(oidp, &new, 0, req); 145 if (error == 0 && req->newptr) { 146 if (new < TCP_MINMSS) 147 error = EINVAL; 148 else 149 V_tcp_mssdflt = new; 150 } 151 return (error); 152 } 153 154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, 155 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0, 156 &sysctl_net_inet_tcp_mss_check, "I", 157 "Default TCP Maximum Segment Size"); 158 159 #ifdef INET6 160 static int 161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS) 162 { 163 int error, new; 164 165 new = V_tcp_v6mssdflt; 166 error = sysctl_handle_int(oidp, &new, 0, req); 167 if (error == 0 && req->newptr) { 168 if (new < TCP_MINMSS) 169 error = EINVAL; 170 else 171 V_tcp_v6mssdflt = new; 172 } 173 return (error); 174 } 175 176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0, 178 &sysctl_net_inet_tcp_mss_v6_check, "I", 179 "Default TCP Maximum Segment Size for IPv6"); 180 #endif /* INET6 */ 181 182 /* 183 * Minimum MSS we accept and use. This prevents DoS attacks where 184 * we are forced to a ridiculous low MSS like 20 and send hundreds 185 * of packets instead of one. The effect scales with the available 186 * bandwidth and quickly saturates the CPU and network interface 187 * with packet generation and sending. Set to zero to disable MINMSS 188 * checking. This setting prevents us from sending too small packets. 189 */ 190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS; 191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW, 192 &VNET_NAME(tcp_minmss), 0, 193 "Minimum TCP Maximum Segment Size"); 194 195 VNET_DEFINE(int, tcp_do_rfc1323) = 1; 196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(tcp_do_rfc1323), 0, 198 "Enable rfc1323 (high performance TCP) extensions"); 199 200 static int tcp_log_debug = 0; 201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW, 202 &tcp_log_debug, 0, "Log errors caused by incoming TCP segments"); 203 204 static int tcp_tcbhashsize; 205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 206 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 207 208 static int do_tcpdrain = 1; 209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 210 "Enable tcp_drain routine for extra help when low on mbufs"); 211 212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD, 213 &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs"); 214 215 static VNET_DEFINE(int, icmp_may_rst) = 1; 216 #define V_icmp_may_rst VNET(icmp_may_rst) 217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW, 218 &VNET_NAME(icmp_may_rst), 0, 219 "Certain ICMP unreachable messages may abort connections in SYN_SENT"); 220 221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0; 222 #define V_tcp_isn_reseed_interval VNET(tcp_isn_reseed_interval) 223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW, 224 &VNET_NAME(tcp_isn_reseed_interval), 0, 225 "Seconds between reseeding of ISN secret"); 226 227 static int tcp_soreceive_stream; 228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN, 229 &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets"); 230 231 #ifdef TCP_SIGNATURE 232 static int tcp_sig_checksigs = 1; 233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW, 234 &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic"); 235 #endif 236 237 VNET_DEFINE(uma_zone_t, sack_hole_zone); 238 #define V_sack_hole_zone VNET(sack_hole_zone) 239 240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]); 241 242 static struct inpcb *tcp_notify(struct inpcb *, int); 243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int); 244 static void tcp_mtudisc(struct inpcb *, int); 245 static char * tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, 246 void *ip4hdr, const void *ip6hdr); 247 248 249 static struct tcp_function_block tcp_def_funcblk = { 250 "default", 251 tcp_output, 252 tcp_do_segment, 253 tcp_default_ctloutput, 254 NULL, 255 NULL, 256 NULL, 257 NULL, 258 NULL, 259 NULL, 260 0, 261 0 262 }; 263 264 int t_functions_inited = 0; 265 struct tcp_funchead t_functions; 266 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk; 267 268 static void 269 init_tcp_functions(void) 270 { 271 if (t_functions_inited == 0) { 272 TAILQ_INIT(&t_functions); 273 rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0); 274 t_functions_inited = 1; 275 } 276 } 277 278 static struct tcp_function_block * 279 find_tcp_functions_locked(struct tcp_function_set *fs) 280 { 281 struct tcp_function *f; 282 struct tcp_function_block *blk=NULL; 283 284 TAILQ_FOREACH(f, &t_functions, tf_next) { 285 if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) { 286 blk = f->tf_fb; 287 break; 288 } 289 } 290 return(blk); 291 } 292 293 static struct tcp_function_block * 294 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s) 295 { 296 struct tcp_function_block *rblk=NULL; 297 struct tcp_function *f; 298 299 TAILQ_FOREACH(f, &t_functions, tf_next) { 300 if (f->tf_fb == blk) { 301 rblk = blk; 302 if (s) { 303 *s = f; 304 } 305 break; 306 } 307 } 308 return (rblk); 309 } 310 311 struct tcp_function_block * 312 find_and_ref_tcp_functions(struct tcp_function_set *fs) 313 { 314 struct tcp_function_block *blk; 315 316 rw_rlock(&tcp_function_lock); 317 blk = find_tcp_functions_locked(fs); 318 if (blk) 319 refcount_acquire(&blk->tfb_refcnt); 320 rw_runlock(&tcp_function_lock); 321 return(blk); 322 } 323 324 struct tcp_function_block * 325 find_and_ref_tcp_fb(struct tcp_function_block *blk) 326 { 327 struct tcp_function_block *rblk; 328 329 rw_rlock(&tcp_function_lock); 330 rblk = find_tcp_fb_locked(blk, NULL); 331 if (rblk) 332 refcount_acquire(&rblk->tfb_refcnt); 333 rw_runlock(&tcp_function_lock); 334 return(rblk); 335 } 336 337 338 static int 339 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS) 340 { 341 int error=ENOENT; 342 struct tcp_function_set fs; 343 struct tcp_function_block *blk; 344 345 memset(&fs, 0, sizeof(fs)); 346 rw_rlock(&tcp_function_lock); 347 blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL); 348 if (blk) { 349 /* Found him */ 350 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 351 fs.pcbcnt = blk->tfb_refcnt; 352 } 353 rw_runlock(&tcp_function_lock); 354 error = sysctl_handle_string(oidp, fs.function_set_name, 355 sizeof(fs.function_set_name), req); 356 357 /* Check for error or no change */ 358 if (error != 0 || req->newptr == NULL) 359 return(error); 360 361 rw_wlock(&tcp_function_lock); 362 blk = find_tcp_functions_locked(&fs); 363 if ((blk == NULL) || 364 (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) { 365 error = ENOENT; 366 goto done; 367 } 368 tcp_func_set_ptr = blk; 369 done: 370 rw_wunlock(&tcp_function_lock); 371 return (error); 372 } 373 374 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default, 375 CTLTYPE_STRING | CTLFLAG_RW, 376 NULL, 0, sysctl_net_inet_default_tcp_functions, "A", 377 "Set/get the default TCP functions"); 378 379 static int 380 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS) 381 { 382 int error, cnt, linesz; 383 struct tcp_function *f; 384 char *buffer, *cp; 385 size_t bufsz, outsz; 386 387 cnt = 0; 388 rw_rlock(&tcp_function_lock); 389 TAILQ_FOREACH(f, &t_functions, tf_next) { 390 cnt++; 391 } 392 rw_runlock(&tcp_function_lock); 393 394 bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1; 395 buffer = malloc(bufsz, M_TEMP, M_WAITOK); 396 397 error = 0; 398 cp = buffer; 399 400 linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count"); 401 cp += linesz; 402 bufsz -= linesz; 403 outsz = linesz; 404 405 rw_rlock(&tcp_function_lock); 406 TAILQ_FOREACH(f, &t_functions, tf_next) { 407 linesz = snprintf(cp, bufsz, "%-32s%c %u\n", 408 f->tf_fb->tfb_tcp_block_name, 409 (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ', 410 f->tf_fb->tfb_refcnt); 411 if (linesz >= bufsz) { 412 error = EOVERFLOW; 413 break; 414 } 415 cp += linesz; 416 bufsz -= linesz; 417 outsz += linesz; 418 } 419 rw_runlock(&tcp_function_lock); 420 if (error == 0) 421 error = sysctl_handle_string(oidp, buffer, outsz + 1, req); 422 free(buffer, M_TEMP); 423 return (error); 424 } 425 426 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available, 427 CTLTYPE_STRING|CTLFLAG_RD, 428 NULL, 0, sysctl_net_inet_list_available, "A", 429 "list available TCP Function sets"); 430 431 /* 432 * Target size of TCP PCB hash tables. Must be a power of two. 433 * 434 * Note that this can be overridden by the kernel environment 435 * variable net.inet.tcp.tcbhashsize 436 */ 437 #ifndef TCBHASHSIZE 438 #define TCBHASHSIZE 0 439 #endif 440 441 /* 442 * XXX 443 * Callouts should be moved into struct tcp directly. They are currently 444 * separate because the tcpcb structure is exported to userland for sysctl 445 * parsing purposes, which do not know about callouts. 446 */ 447 struct tcpcb_mem { 448 struct tcpcb tcb; 449 struct tcp_timer tt; 450 struct cc_var ccv; 451 struct osd osd; 452 }; 453 454 static VNET_DEFINE(uma_zone_t, tcpcb_zone); 455 #define V_tcpcb_zone VNET(tcpcb_zone) 456 457 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers"); 458 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory"); 459 460 static struct mtx isn_mtx; 461 462 #define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF) 463 #define ISN_LOCK() mtx_lock(&isn_mtx) 464 #define ISN_UNLOCK() mtx_unlock(&isn_mtx) 465 466 /* 467 * TCP initialization. 468 */ 469 static void 470 tcp_zone_change(void *tag) 471 { 472 473 uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets); 474 uma_zone_set_max(V_tcpcb_zone, maxsockets); 475 tcp_tw_zone_change(); 476 } 477 478 static int 479 tcp_inpcb_init(void *mem, int size, int flags) 480 { 481 struct inpcb *inp = mem; 482 483 INP_LOCK_INIT(inp, "inp", "tcpinp"); 484 return (0); 485 } 486 487 /* 488 * Take a value and get the next power of 2 that doesn't overflow. 489 * Used to size the tcp_inpcb hash buckets. 490 */ 491 static int 492 maketcp_hashsize(int size) 493 { 494 int hashsize; 495 496 /* 497 * auto tune. 498 * get the next power of 2 higher than maxsockets. 499 */ 500 hashsize = 1 << fls(size); 501 /* catch overflow, and just go one power of 2 smaller */ 502 if (hashsize < size) { 503 hashsize = 1 << (fls(size) - 1); 504 } 505 return (hashsize); 506 } 507 508 int 509 register_tcp_functions(struct tcp_function_block *blk, int wait) 510 { 511 struct tcp_function_block *lblk; 512 struct tcp_function *n; 513 struct tcp_function_set fs; 514 515 if (t_functions_inited == 0) { 516 init_tcp_functions(); 517 } 518 if ((blk->tfb_tcp_output == NULL) || 519 (blk->tfb_tcp_do_segment == NULL) || 520 (blk->tfb_tcp_ctloutput == NULL) || 521 (strlen(blk->tfb_tcp_block_name) == 0)) { 522 /* 523 * These functions are required and you 524 * need a name. 525 */ 526 return (EINVAL); 527 } 528 if (blk->tfb_tcp_timer_stop_all || 529 blk->tfb_tcp_timer_activate || 530 blk->tfb_tcp_timer_active || 531 blk->tfb_tcp_timer_stop) { 532 /* 533 * If you define one timer function you 534 * must have them all. 535 */ 536 if ((blk->tfb_tcp_timer_stop_all == NULL) || 537 (blk->tfb_tcp_timer_activate == NULL) || 538 (blk->tfb_tcp_timer_active == NULL) || 539 (blk->tfb_tcp_timer_stop == NULL)) { 540 return (EINVAL); 541 } 542 } 543 n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait); 544 if (n == NULL) { 545 return (ENOMEM); 546 } 547 n->tf_fb = blk; 548 strcpy(fs.function_set_name, blk->tfb_tcp_block_name); 549 rw_wlock(&tcp_function_lock); 550 lblk = find_tcp_functions_locked(&fs); 551 if (lblk) { 552 /* Duplicate name space not allowed */ 553 rw_wunlock(&tcp_function_lock); 554 free(n, M_TCPFUNCTIONS); 555 return (EALREADY); 556 } 557 refcount_init(&blk->tfb_refcnt, 0); 558 blk->tfb_flags = 0; 559 TAILQ_INSERT_TAIL(&t_functions, n, tf_next); 560 rw_wunlock(&tcp_function_lock); 561 return(0); 562 } 563 564 int 565 deregister_tcp_functions(struct tcp_function_block *blk) 566 { 567 struct tcp_function_block *lblk; 568 struct tcp_function *f; 569 int error=ENOENT; 570 571 if (strcmp(blk->tfb_tcp_block_name, "default") == 0) { 572 /* You can't un-register the default */ 573 return (EPERM); 574 } 575 rw_wlock(&tcp_function_lock); 576 if (blk == tcp_func_set_ptr) { 577 /* You can't free the current default */ 578 rw_wunlock(&tcp_function_lock); 579 return (EBUSY); 580 } 581 if (blk->tfb_refcnt) { 582 /* Still tcb attached, mark it. */ 583 blk->tfb_flags |= TCP_FUNC_BEING_REMOVED; 584 rw_wunlock(&tcp_function_lock); 585 return (EBUSY); 586 } 587 lblk = find_tcp_fb_locked(blk, &f); 588 if (lblk) { 589 /* Found */ 590 TAILQ_REMOVE(&t_functions, f, tf_next); 591 f->tf_fb = NULL; 592 free(f, M_TCPFUNCTIONS); 593 error = 0; 594 } 595 rw_wunlock(&tcp_function_lock); 596 return (error); 597 } 598 599 void 600 tcp_init(void) 601 { 602 const char *tcbhash_tuneable; 603 int hashsize; 604 605 tcbhash_tuneable = "net.inet.tcp.tcbhashsize"; 606 607 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, 608 &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 609 printf("%s: WARNING: unable to register helper hook\n", __func__); 610 if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, 611 &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0) 612 printf("%s: WARNING: unable to register helper hook\n", __func__); 613 hashsize = TCBHASHSIZE; 614 TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize); 615 if (hashsize == 0) { 616 /* 617 * Auto tune the hash size based on maxsockets. 618 * A perfect hash would have a 1:1 mapping 619 * (hashsize = maxsockets) however it's been 620 * suggested that O(2) average is better. 621 */ 622 hashsize = maketcp_hashsize(maxsockets / 4); 623 /* 624 * Our historical default is 512, 625 * do not autotune lower than this. 626 */ 627 if (hashsize < 512) 628 hashsize = 512; 629 if (bootverbose && IS_DEFAULT_VNET(curvnet)) 630 printf("%s: %s auto tuned to %d\n", __func__, 631 tcbhash_tuneable, hashsize); 632 } 633 /* 634 * We require a hashsize to be a power of two. 635 * Previously if it was not a power of two we would just reset it 636 * back to 512, which could be a nasty surprise if you did not notice 637 * the error message. 638 * Instead what we do is clip it to the closest power of two lower 639 * than the specified hash value. 640 */ 641 if (!powerof2(hashsize)) { 642 int oldhashsize = hashsize; 643 644 hashsize = maketcp_hashsize(hashsize); 645 /* prevent absurdly low value */ 646 if (hashsize < 16) 647 hashsize = 16; 648 printf("%s: WARNING: TCB hash size not a power of 2, " 649 "clipped from %d to %d.\n", __func__, oldhashsize, 650 hashsize); 651 } 652 in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize, 653 "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE); 654 655 /* 656 * These have to be type stable for the benefit of the timers. 657 */ 658 V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem), 659 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 660 uma_zone_set_max(V_tcpcb_zone, maxsockets); 661 uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached"); 662 663 tcp_tw_init(); 664 syncache_init(); 665 tcp_hc_init(); 666 667 TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack); 668 V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole), 669 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 670 671 /* Skip initialization of globals for non-default instances. */ 672 if (!IS_DEFAULT_VNET(curvnet)) 673 return; 674 675 tcp_reass_global_init(); 676 677 /* XXX virtualize those bellow? */ 678 tcp_delacktime = TCPTV_DELACK; 679 tcp_keepinit = TCPTV_KEEP_INIT; 680 tcp_keepidle = TCPTV_KEEP_IDLE; 681 tcp_keepintvl = TCPTV_KEEPINTVL; 682 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 683 tcp_msl = TCPTV_MSL; 684 tcp_rexmit_min = TCPTV_MIN; 685 if (tcp_rexmit_min < 1) 686 tcp_rexmit_min = 1; 687 tcp_persmin = TCPTV_PERSMIN; 688 tcp_persmax = TCPTV_PERSMAX; 689 tcp_rexmit_slop = TCPTV_CPU_VAR; 690 tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT; 691 tcp_tcbhashsize = hashsize; 692 /* Setup the tcp function block list */ 693 init_tcp_functions(); 694 register_tcp_functions(&tcp_def_funcblk, M_WAITOK); 695 696 if (tcp_soreceive_stream) { 697 #ifdef INET 698 tcp_usrreqs.pru_soreceive = soreceive_stream; 699 #endif 700 #ifdef INET6 701 tcp6_usrreqs.pru_soreceive = soreceive_stream; 702 #endif /* INET6 */ 703 } 704 705 #ifdef INET6 706 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 707 #else /* INET6 */ 708 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 709 #endif /* INET6 */ 710 if (max_protohdr < TCP_MINPROTOHDR) 711 max_protohdr = TCP_MINPROTOHDR; 712 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 713 panic("tcp_init"); 714 #undef TCP_MINPROTOHDR 715 716 ISN_LOCK_INIT(); 717 EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL, 718 SHUTDOWN_PRI_DEFAULT); 719 EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL, 720 EVENTHANDLER_PRI_ANY); 721 #ifdef TCPPCAP 722 tcp_pcap_init(); 723 #endif 724 725 #ifdef TCP_RFC7413 726 tcp_fastopen_init(); 727 #endif 728 } 729 730 #ifdef VIMAGE 731 static void 732 tcp_destroy(void *unused __unused) 733 { 734 int error; 735 736 /* 737 * All our processes are gone, all our sockets should be cleaned 738 * up, which means, we should be past the tcp_discardcb() calls. 739 * Sleep to let all tcpcb timers really disappear and then cleanup. 740 * Timewait will cleanup its queue and will be ready to go. 741 * XXX-BZ In theory a few ticks should be good enough to make sure 742 * the timers are all really gone. We should see if we could use a 743 * better metric here and, e.g., check a tcbcb count as an optimization? 744 */ 745 DELAY(1000000 / hz); 746 tcp_hc_destroy(); 747 syncache_destroy(); 748 tcp_tw_destroy(); 749 in_pcbinfo_destroy(&V_tcbinfo); 750 /* tcp_discardcb() clears the sack_holes up. */ 751 uma_zdestroy(V_sack_hole_zone); 752 uma_zdestroy(V_tcpcb_zone); 753 754 #ifdef TCP_RFC7413 755 /* 756 * Cannot free the zone until all tcpcbs are released as we attach 757 * the allocations to them. 758 */ 759 tcp_fastopen_destroy(); 760 #endif 761 762 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]); 763 if (error != 0) { 764 printf("%s: WARNING: unable to deregister helper hook " 765 "type=%d, id=%d: error %d returned\n", __func__, 766 HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error); 767 } 768 error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]); 769 if (error != 0) { 770 printf("%s: WARNING: unable to deregister helper hook " 771 "type=%d, id=%d: error %d returned\n", __func__, 772 HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error); 773 } 774 } 775 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL); 776 #endif 777 778 void 779 tcp_fini(void *xtp) 780 { 781 782 } 783 784 /* 785 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb. 786 * tcp_template used to store this data in mbufs, but we now recopy it out 787 * of the tcpcb each time to conserve mbufs. 788 */ 789 void 790 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr) 791 { 792 struct tcphdr *th = (struct tcphdr *)tcp_ptr; 793 794 INP_WLOCK_ASSERT(inp); 795 796 #ifdef INET6 797 if ((inp->inp_vflag & INP_IPV6) != 0) { 798 struct ip6_hdr *ip6; 799 800 ip6 = (struct ip6_hdr *)ip_ptr; 801 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 802 (inp->inp_flow & IPV6_FLOWINFO_MASK); 803 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 804 (IPV6_VERSION & IPV6_VERSION_MASK); 805 ip6->ip6_nxt = IPPROTO_TCP; 806 ip6->ip6_plen = htons(sizeof(struct tcphdr)); 807 ip6->ip6_src = inp->in6p_laddr; 808 ip6->ip6_dst = inp->in6p_faddr; 809 } 810 #endif /* INET6 */ 811 #if defined(INET6) && defined(INET) 812 else 813 #endif 814 #ifdef INET 815 { 816 struct ip *ip; 817 818 ip = (struct ip *)ip_ptr; 819 ip->ip_v = IPVERSION; 820 ip->ip_hl = 5; 821 ip->ip_tos = inp->inp_ip_tos; 822 ip->ip_len = 0; 823 ip->ip_id = 0; 824 ip->ip_off = 0; 825 ip->ip_ttl = inp->inp_ip_ttl; 826 ip->ip_sum = 0; 827 ip->ip_p = IPPROTO_TCP; 828 ip->ip_src = inp->inp_laddr; 829 ip->ip_dst = inp->inp_faddr; 830 } 831 #endif /* INET */ 832 th->th_sport = inp->inp_lport; 833 th->th_dport = inp->inp_fport; 834 th->th_seq = 0; 835 th->th_ack = 0; 836 th->th_x2 = 0; 837 th->th_off = 5; 838 th->th_flags = 0; 839 th->th_win = 0; 840 th->th_urp = 0; 841 th->th_sum = 0; /* in_pseudo() is called later for ipv4 */ 842 } 843 844 /* 845 * Create template to be used to send tcp packets on a connection. 846 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only 847 * use for this function is in keepalives, which use tcp_respond. 848 */ 849 struct tcptemp * 850 tcpip_maketemplate(struct inpcb *inp) 851 { 852 struct tcptemp *t; 853 854 t = malloc(sizeof(*t), M_TEMP, M_NOWAIT); 855 if (t == NULL) 856 return (NULL); 857 tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t); 858 return (t); 859 } 860 861 /* 862 * Send a single message to the TCP at address specified by 863 * the given TCP/IP header. If m == NULL, then we make a copy 864 * of the tcpiphdr at th and send directly to the addressed host. 865 * This is used to force keep alive messages out using the TCP 866 * template for a connection. If flags are given then we send 867 * a message back to the TCP which originated the segment th, 868 * and discard the mbuf containing it and any other attached mbufs. 869 * 870 * In any case the ack and sequence number of the transmitted 871 * segment are as specified by the parameters. 872 * 873 * NOTE: If m != NULL, then th must point to *inside* the mbuf. 874 */ 875 void 876 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m, 877 tcp_seq ack, tcp_seq seq, int flags) 878 { 879 struct tcpopt to; 880 struct inpcb *inp; 881 struct ip *ip; 882 struct mbuf *optm; 883 struct tcphdr *nth; 884 u_char *optp; 885 #ifdef INET6 886 struct ip6_hdr *ip6; 887 int isipv6; 888 #endif /* INET6 */ 889 int optlen, tlen, win; 890 bool incl_opts; 891 892 KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL")); 893 894 #ifdef INET6 895 isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4); 896 ip6 = ipgen; 897 #endif /* INET6 */ 898 ip = ipgen; 899 900 if (tp != NULL) { 901 inp = tp->t_inpcb; 902 KASSERT(inp != NULL, ("tcp control block w/o inpcb")); 903 INP_WLOCK_ASSERT(inp); 904 } else 905 inp = NULL; 906 907 incl_opts = false; 908 win = 0; 909 if (tp != NULL) { 910 if (!(flags & TH_RST)) { 911 win = sbspace(&inp->inp_socket->so_rcv); 912 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 913 win = (long)TCP_MAXWIN << tp->rcv_scale; 914 } 915 if ((tp->t_flags & TF_NOOPT) == 0) 916 incl_opts = true; 917 } 918 if (m == NULL) { 919 m = m_gethdr(M_NOWAIT, MT_DATA); 920 if (m == NULL) 921 return; 922 m->m_data += max_linkhdr; 923 #ifdef INET6 924 if (isipv6) { 925 bcopy((caddr_t)ip6, mtod(m, caddr_t), 926 sizeof(struct ip6_hdr)); 927 ip6 = mtod(m, struct ip6_hdr *); 928 nth = (struct tcphdr *)(ip6 + 1); 929 } else 930 #endif /* INET6 */ 931 { 932 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 933 ip = mtod(m, struct ip *); 934 nth = (struct tcphdr *)(ip + 1); 935 } 936 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 937 flags = TH_ACK; 938 } else if (!M_WRITABLE(m)) { 939 struct mbuf *n; 940 941 /* Can't reuse 'm', allocate a new mbuf. */ 942 n = m_gethdr(M_NOWAIT, MT_DATA); 943 if (n == NULL) { 944 m_freem(m); 945 return; 946 } 947 948 if (!m_dup_pkthdr(n, m, M_NOWAIT)) { 949 m_freem(m); 950 m_freem(n); 951 return; 952 } 953 954 n->m_data += max_linkhdr; 955 /* m_len is set later */ 956 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 957 #ifdef INET6 958 if (isipv6) { 959 bcopy((caddr_t)ip6, mtod(n, caddr_t), 960 sizeof(struct ip6_hdr)); 961 ip6 = mtod(n, struct ip6_hdr *); 962 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 963 nth = (struct tcphdr *)(ip6 + 1); 964 } else 965 #endif /* INET6 */ 966 { 967 bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip)); 968 ip = mtod(n, struct ip *); 969 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 970 nth = (struct tcphdr *)(ip + 1); 971 } 972 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 973 xchg(nth->th_dport, nth->th_sport, uint16_t); 974 th = nth; 975 m_freem(m); 976 m = n; 977 } else { 978 /* 979 * reuse the mbuf. 980 * XXX MRT We inherit the FIB, which is lucky. 981 */ 982 m_freem(m->m_next); 983 m->m_next = NULL; 984 m->m_data = (caddr_t)ipgen; 985 /* m_len is set later */ 986 #ifdef INET6 987 if (isipv6) { 988 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 989 nth = (struct tcphdr *)(ip6 + 1); 990 } else 991 #endif /* INET6 */ 992 { 993 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t); 994 nth = (struct tcphdr *)(ip + 1); 995 } 996 if (th != nth) { 997 /* 998 * this is usually a case when an extension header 999 * exists between the IPv6 header and the 1000 * TCP header. 1001 */ 1002 nth->th_sport = th->th_sport; 1003 nth->th_dport = th->th_dport; 1004 } 1005 xchg(nth->th_dport, nth->th_sport, uint16_t); 1006 #undef xchg 1007 } 1008 tlen = 0; 1009 #ifdef INET6 1010 if (isipv6) 1011 tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 1012 #endif 1013 #if defined(INET) && defined(INET6) 1014 else 1015 #endif 1016 #ifdef INET 1017 tlen = sizeof (struct tcpiphdr); 1018 #endif 1019 #ifdef INVARIANTS 1020 m->m_len = 0; 1021 KASSERT(M_TRAILINGSPACE(m) >= tlen, 1022 ("Not enough trailing space for message (m=%p, need=%d, have=%ld)", 1023 m, tlen, (long)M_TRAILINGSPACE(m))); 1024 #endif 1025 m->m_len = tlen; 1026 to.to_flags = 0; 1027 if (incl_opts) { 1028 /* Make sure we have room. */ 1029 if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) { 1030 m->m_next = m_get(M_NOWAIT, MT_DATA); 1031 if (m->m_next) { 1032 optp = mtod(m->m_next, u_char *); 1033 optm = m->m_next; 1034 } else 1035 incl_opts = false; 1036 } else { 1037 optp = (u_char *) (nth + 1); 1038 optm = m; 1039 } 1040 } 1041 if (incl_opts) { 1042 /* Timestamps. */ 1043 if (tp->t_flags & TF_RCVD_TSTMP) { 1044 to.to_tsval = tcp_ts_getticks() + tp->ts_offset; 1045 to.to_tsecr = tp->ts_recent; 1046 to.to_flags |= TOF_TS; 1047 } 1048 #ifdef TCP_SIGNATURE 1049 /* TCP-MD5 (RFC2385). */ 1050 if (tp->t_flags & TF_SIGNATURE) 1051 to.to_flags |= TOF_SIGNATURE; 1052 #endif 1053 1054 /* Add the options. */ 1055 tlen += optlen = tcp_addoptions(&to, optp); 1056 1057 /* Update m_len in the correct mbuf. */ 1058 optm->m_len += optlen; 1059 } else 1060 optlen = 0; 1061 #ifdef INET6 1062 if (isipv6) { 1063 ip6->ip6_flow = 0; 1064 ip6->ip6_vfc = IPV6_VERSION; 1065 ip6->ip6_nxt = IPPROTO_TCP; 1066 ip6->ip6_plen = htons(tlen - sizeof(*ip6)); 1067 } 1068 #endif 1069 #if defined(INET) && defined(INET6) 1070 else 1071 #endif 1072 #ifdef INET 1073 { 1074 ip->ip_len = htons(tlen); 1075 ip->ip_ttl = V_ip_defttl; 1076 if (V_path_mtu_discovery) 1077 ip->ip_off |= htons(IP_DF); 1078 } 1079 #endif 1080 m->m_pkthdr.len = tlen; 1081 m->m_pkthdr.rcvif = NULL; 1082 #ifdef MAC 1083 if (inp != NULL) { 1084 /* 1085 * Packet is associated with a socket, so allow the 1086 * label of the response to reflect the socket label. 1087 */ 1088 INP_WLOCK_ASSERT(inp); 1089 mac_inpcb_create_mbuf(inp, m); 1090 } else { 1091 /* 1092 * Packet is not associated with a socket, so possibly 1093 * update the label in place. 1094 */ 1095 mac_netinet_tcp_reply(m); 1096 } 1097 #endif 1098 nth->th_seq = htonl(seq); 1099 nth->th_ack = htonl(ack); 1100 nth->th_x2 = 0; 1101 nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2; 1102 nth->th_flags = flags; 1103 if (tp != NULL) 1104 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 1105 else 1106 nth->th_win = htons((u_short)win); 1107 nth->th_urp = 0; 1108 1109 #ifdef TCP_SIGNATURE 1110 if (to.to_flags & TOF_SIGNATURE) { 1111 tcp_signature_compute(m, 0, 0, optlen, to.to_signature, 1112 IPSEC_DIR_OUTBOUND); 1113 } 1114 #endif 1115 1116 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 1117 #ifdef INET6 1118 if (isipv6) { 1119 m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; 1120 nth->th_sum = in6_cksum_pseudo(ip6, 1121 tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0); 1122 ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb : 1123 NULL, NULL); 1124 } 1125 #endif /* INET6 */ 1126 #if defined(INET6) && defined(INET) 1127 else 1128 #endif 1129 #ifdef INET 1130 { 1131 m->m_pkthdr.csum_flags = CSUM_TCP; 1132 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, 1133 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p))); 1134 } 1135 #endif /* INET */ 1136 #ifdef TCPDEBUG 1137 if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG)) 1138 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 1139 #endif 1140 TCP_PROBE3(debug__output, tp, th, mtod(m, const char *)); 1141 if (flags & TH_RST) 1142 TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *), 1143 tp, nth); 1144 1145 TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth); 1146 #ifdef INET6 1147 if (isipv6) 1148 (void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp); 1149 #endif /* INET6 */ 1150 #if defined(INET) && defined(INET6) 1151 else 1152 #endif 1153 #ifdef INET 1154 (void) ip_output(m, NULL, NULL, 0, NULL, inp); 1155 #endif 1156 } 1157 1158 /* 1159 * Create a new TCP control block, making an 1160 * empty reassembly queue and hooking it to the argument 1161 * protocol control block. The `inp' parameter must have 1162 * come from the zone allocator set up in tcp_init(). 1163 */ 1164 struct tcpcb * 1165 tcp_newtcpcb(struct inpcb *inp) 1166 { 1167 struct tcpcb_mem *tm; 1168 struct tcpcb *tp; 1169 #ifdef INET6 1170 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1171 #endif /* INET6 */ 1172 1173 tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO); 1174 if (tm == NULL) 1175 return (NULL); 1176 tp = &tm->tcb; 1177 1178 /* Initialise cc_var struct for this tcpcb. */ 1179 tp->ccv = &tm->ccv; 1180 tp->ccv->type = IPPROTO_TCP; 1181 tp->ccv->ccvc.tcp = tp; 1182 rw_rlock(&tcp_function_lock); 1183 tp->t_fb = tcp_func_set_ptr; 1184 refcount_acquire(&tp->t_fb->tfb_refcnt); 1185 rw_runlock(&tcp_function_lock); 1186 if (tp->t_fb->tfb_tcp_fb_init) { 1187 (*tp->t_fb->tfb_tcp_fb_init)(tp); 1188 } 1189 /* 1190 * Use the current system default CC algorithm. 1191 */ 1192 CC_LIST_RLOCK(); 1193 KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!")); 1194 CC_ALGO(tp) = CC_DEFAULT(); 1195 CC_LIST_RUNLOCK(); 1196 1197 if (CC_ALGO(tp)->cb_init != NULL) 1198 if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) { 1199 if (tp->t_fb->tfb_tcp_fb_fini) 1200 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1201 refcount_release(&tp->t_fb->tfb_refcnt); 1202 uma_zfree(V_tcpcb_zone, tm); 1203 return (NULL); 1204 } 1205 1206 tp->osd = &tm->osd; 1207 if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) { 1208 if (tp->t_fb->tfb_tcp_fb_fini) 1209 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1210 refcount_release(&tp->t_fb->tfb_refcnt); 1211 uma_zfree(V_tcpcb_zone, tm); 1212 return (NULL); 1213 } 1214 1215 #ifdef VIMAGE 1216 tp->t_vnet = inp->inp_vnet; 1217 #endif 1218 tp->t_timers = &tm->tt; 1219 /* LIST_INIT(&tp->t_segq); */ /* XXX covered by M_ZERO */ 1220 tp->t_maxseg = 1221 #ifdef INET6 1222 isipv6 ? V_tcp_v6mssdflt : 1223 #endif /* INET6 */ 1224 V_tcp_mssdflt; 1225 1226 /* Set up our timeouts. */ 1227 callout_init(&tp->t_timers->tt_rexmt, 1); 1228 callout_init(&tp->t_timers->tt_persist, 1); 1229 callout_init(&tp->t_timers->tt_keep, 1); 1230 callout_init(&tp->t_timers->tt_2msl, 1); 1231 callout_init(&tp->t_timers->tt_delack, 1); 1232 1233 if (V_tcp_do_rfc1323) 1234 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 1235 if (V_tcp_do_sack) 1236 tp->t_flags |= TF_SACK_PERMIT; 1237 TAILQ_INIT(&tp->snd_holes); 1238 /* 1239 * The tcpcb will hold a reference on its inpcb until tcp_discardcb() 1240 * is called. 1241 */ 1242 in_pcbref(inp); /* Reference for tcpcb */ 1243 tp->t_inpcb = inp; 1244 1245 /* 1246 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 1247 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 1248 * reasonable initial retransmit time. 1249 */ 1250 tp->t_srtt = TCPTV_SRTTBASE; 1251 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 1252 tp->t_rttmin = tcp_rexmit_min; 1253 tp->t_rxtcur = TCPTV_RTOBASE; 1254 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1255 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 1256 tp->t_rcvtime = ticks; 1257 /* 1258 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 1259 * because the socket may be bound to an IPv6 wildcard address, 1260 * which may match an IPv4-mapped IPv6 address. 1261 */ 1262 inp->inp_ip_ttl = V_ip_defttl; 1263 inp->inp_ppcb = tp; 1264 #ifdef TCPPCAP 1265 /* 1266 * Init the TCP PCAP queues. 1267 */ 1268 tcp_pcap_tcpcb_init(tp); 1269 #endif 1270 return (tp); /* XXX */ 1271 } 1272 1273 /* 1274 * Switch the congestion control algorithm back to NewReno for any active 1275 * control blocks using an algorithm which is about to go away. 1276 * This ensures the CC framework can allow the unload to proceed without leaving 1277 * any dangling pointers which would trigger a panic. 1278 * Returning non-zero would inform the CC framework that something went wrong 1279 * and it would be unsafe to allow the unload to proceed. However, there is no 1280 * way for this to occur with this implementation so we always return zero. 1281 */ 1282 int 1283 tcp_ccalgounload(struct cc_algo *unload_algo) 1284 { 1285 struct cc_algo *tmpalgo; 1286 struct inpcb *inp; 1287 struct tcpcb *tp; 1288 VNET_ITERATOR_DECL(vnet_iter); 1289 1290 /* 1291 * Check all active control blocks across all network stacks and change 1292 * any that are using "unload_algo" back to NewReno. If "unload_algo" 1293 * requires cleanup code to be run, call it. 1294 */ 1295 VNET_LIST_RLOCK(); 1296 VNET_FOREACH(vnet_iter) { 1297 CURVNET_SET(vnet_iter); 1298 INP_INFO_WLOCK(&V_tcbinfo); 1299 /* 1300 * New connections already part way through being initialised 1301 * with the CC algo we're removing will not race with this code 1302 * because the INP_INFO_WLOCK is held during initialisation. We 1303 * therefore don't enter the loop below until the connection 1304 * list has stabilised. 1305 */ 1306 LIST_FOREACH(inp, &V_tcb, inp_list) { 1307 INP_WLOCK(inp); 1308 /* Important to skip tcptw structs. */ 1309 if (!(inp->inp_flags & INP_TIMEWAIT) && 1310 (tp = intotcpcb(inp)) != NULL) { 1311 /* 1312 * By holding INP_WLOCK here, we are assured 1313 * that the connection is not currently 1314 * executing inside the CC module's functions 1315 * i.e. it is safe to make the switch back to 1316 * NewReno. 1317 */ 1318 if (CC_ALGO(tp) == unload_algo) { 1319 tmpalgo = CC_ALGO(tp); 1320 /* NewReno does not require any init. */ 1321 CC_ALGO(tp) = &newreno_cc_algo; 1322 if (tmpalgo->cb_destroy != NULL) 1323 tmpalgo->cb_destroy(tp->ccv); 1324 } 1325 } 1326 INP_WUNLOCK(inp); 1327 } 1328 INP_INFO_WUNLOCK(&V_tcbinfo); 1329 CURVNET_RESTORE(); 1330 } 1331 VNET_LIST_RUNLOCK(); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Drop a TCP connection, reporting 1338 * the specified error. If connection is synchronized, 1339 * then send a RST to peer. 1340 */ 1341 struct tcpcb * 1342 tcp_drop(struct tcpcb *tp, int errno) 1343 { 1344 struct socket *so = tp->t_inpcb->inp_socket; 1345 1346 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1347 INP_WLOCK_ASSERT(tp->t_inpcb); 1348 1349 if (TCPS_HAVERCVDSYN(tp->t_state)) { 1350 tcp_state_change(tp, TCPS_CLOSED); 1351 (void) tp->t_fb->tfb_tcp_output(tp); 1352 TCPSTAT_INC(tcps_drops); 1353 } else 1354 TCPSTAT_INC(tcps_conndrops); 1355 if (errno == ETIMEDOUT && tp->t_softerror) 1356 errno = tp->t_softerror; 1357 so->so_error = errno; 1358 return (tcp_close(tp)); 1359 } 1360 1361 void 1362 tcp_discardcb(struct tcpcb *tp) 1363 { 1364 struct inpcb *inp = tp->t_inpcb; 1365 struct socket *so = inp->inp_socket; 1366 #ifdef INET6 1367 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 1368 #endif /* INET6 */ 1369 int released; 1370 1371 INP_WLOCK_ASSERT(inp); 1372 1373 /* 1374 * Make sure that all of our timers are stopped before we delete the 1375 * PCB. 1376 * 1377 * If stopping a timer fails, we schedule a discard function in same 1378 * callout, and the last discard function called will take care of 1379 * deleting the tcpcb. 1380 */ 1381 tp->t_timers->tt_draincnt = 0; 1382 tcp_timer_stop(tp, TT_REXMT); 1383 tcp_timer_stop(tp, TT_PERSIST); 1384 tcp_timer_stop(tp, TT_KEEP); 1385 tcp_timer_stop(tp, TT_2MSL); 1386 tcp_timer_stop(tp, TT_DELACK); 1387 if (tp->t_fb->tfb_tcp_timer_stop_all) { 1388 /* 1389 * Call the stop-all function of the methods, 1390 * this function should call the tcp_timer_stop() 1391 * method with each of the function specific timeouts. 1392 * That stop will be called via the tfb_tcp_timer_stop() 1393 * which should use the async drain function of the 1394 * callout system (see tcp_var.h). 1395 */ 1396 tp->t_fb->tfb_tcp_timer_stop_all(tp); 1397 } 1398 1399 /* 1400 * If we got enough samples through the srtt filter, 1401 * save the rtt and rttvar in the routing entry. 1402 * 'Enough' is arbitrarily defined as 4 rtt samples. 1403 * 4 samples is enough for the srtt filter to converge 1404 * to within enough % of the correct value; fewer samples 1405 * and we could save a bogus rtt. The danger is not high 1406 * as tcp quickly recovers from everything. 1407 * XXX: Works very well but needs some more statistics! 1408 */ 1409 if (tp->t_rttupdated >= 4) { 1410 struct hc_metrics_lite metrics; 1411 u_long ssthresh; 1412 1413 bzero(&metrics, sizeof(metrics)); 1414 /* 1415 * Update the ssthresh always when the conditions below 1416 * are satisfied. This gives us better new start value 1417 * for the congestion avoidance for new connections. 1418 * ssthresh is only set if packet loss occurred on a session. 1419 * 1420 * XXXRW: 'so' may be NULL here, and/or socket buffer may be 1421 * being torn down. Ideally this code would not use 'so'. 1422 */ 1423 ssthresh = tp->snd_ssthresh; 1424 if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) { 1425 /* 1426 * convert the limit from user data bytes to 1427 * packets then to packet data bytes. 1428 */ 1429 ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg; 1430 if (ssthresh < 2) 1431 ssthresh = 2; 1432 ssthresh *= (u_long)(tp->t_maxseg + 1433 #ifdef INET6 1434 (isipv6 ? sizeof (struct ip6_hdr) + 1435 sizeof (struct tcphdr) : 1436 #endif 1437 sizeof (struct tcpiphdr) 1438 #ifdef INET6 1439 ) 1440 #endif 1441 ); 1442 } else 1443 ssthresh = 0; 1444 metrics.rmx_ssthresh = ssthresh; 1445 1446 metrics.rmx_rtt = tp->t_srtt; 1447 metrics.rmx_rttvar = tp->t_rttvar; 1448 metrics.rmx_cwnd = tp->snd_cwnd; 1449 metrics.rmx_sendpipe = 0; 1450 metrics.rmx_recvpipe = 0; 1451 1452 tcp_hc_update(&inp->inp_inc, &metrics); 1453 } 1454 1455 /* free the reassembly queue, if any */ 1456 tcp_reass_flush(tp); 1457 1458 #ifdef TCP_OFFLOAD 1459 /* Disconnect offload device, if any. */ 1460 if (tp->t_flags & TF_TOE) 1461 tcp_offload_detach(tp); 1462 #endif 1463 1464 tcp_free_sackholes(tp); 1465 1466 #ifdef TCPPCAP 1467 /* Free the TCP PCAP queues. */ 1468 tcp_pcap_drain(&(tp->t_inpkts)); 1469 tcp_pcap_drain(&(tp->t_outpkts)); 1470 #endif 1471 1472 /* Allow the CC algorithm to clean up after itself. */ 1473 if (CC_ALGO(tp)->cb_destroy != NULL) 1474 CC_ALGO(tp)->cb_destroy(tp->ccv); 1475 1476 khelp_destroy_osd(tp->osd); 1477 1478 CC_ALGO(tp) = NULL; 1479 inp->inp_ppcb = NULL; 1480 if (tp->t_timers->tt_draincnt == 0) { 1481 /* We own the last reference on tcpcb, let's free it. */ 1482 if (tp->t_fb->tfb_tcp_fb_fini) 1483 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1484 refcount_release(&tp->t_fb->tfb_refcnt); 1485 tp->t_inpcb = NULL; 1486 uma_zfree(V_tcpcb_zone, tp); 1487 released = in_pcbrele_wlocked(inp); 1488 KASSERT(!released, ("%s: inp %p should not have been released " 1489 "here", __func__, inp)); 1490 } 1491 } 1492 1493 void 1494 tcp_timer_discard(void *ptp) 1495 { 1496 struct inpcb *inp; 1497 struct tcpcb *tp; 1498 1499 tp = (struct tcpcb *)ptp; 1500 CURVNET_SET(tp->t_vnet); 1501 INP_INFO_RLOCK(&V_tcbinfo); 1502 inp = tp->t_inpcb; 1503 KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", 1504 __func__, tp)); 1505 INP_WLOCK(inp); 1506 KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0, 1507 ("%s: tcpcb has to be stopped here", __func__)); 1508 tp->t_timers->tt_draincnt--; 1509 if (tp->t_timers->tt_draincnt == 0) { 1510 /* We own the last reference on this tcpcb, let's free it. */ 1511 if (tp->t_fb->tfb_tcp_fb_fini) 1512 (*tp->t_fb->tfb_tcp_fb_fini)(tp); 1513 refcount_release(&tp->t_fb->tfb_refcnt); 1514 tp->t_inpcb = NULL; 1515 uma_zfree(V_tcpcb_zone, tp); 1516 if (in_pcbrele_wlocked(inp)) { 1517 INP_INFO_RUNLOCK(&V_tcbinfo); 1518 CURVNET_RESTORE(); 1519 return; 1520 } 1521 } 1522 INP_WUNLOCK(inp); 1523 INP_INFO_RUNLOCK(&V_tcbinfo); 1524 CURVNET_RESTORE(); 1525 } 1526 1527 /* 1528 * Attempt to close a TCP control block, marking it as dropped, and freeing 1529 * the socket if we hold the only reference. 1530 */ 1531 struct tcpcb * 1532 tcp_close(struct tcpcb *tp) 1533 { 1534 struct inpcb *inp = tp->t_inpcb; 1535 struct socket *so; 1536 1537 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1538 INP_WLOCK_ASSERT(inp); 1539 1540 #ifdef TCP_OFFLOAD 1541 if (tp->t_state == TCPS_LISTEN) 1542 tcp_offload_listen_stop(tp); 1543 #endif 1544 #ifdef TCP_RFC7413 1545 /* 1546 * This releases the TFO pending counter resource for TFO listen 1547 * sockets as well as passively-created TFO sockets that transition 1548 * from SYN_RECEIVED to CLOSED. 1549 */ 1550 if (tp->t_tfo_pending) { 1551 tcp_fastopen_decrement_counter(tp->t_tfo_pending); 1552 tp->t_tfo_pending = NULL; 1553 } 1554 #endif 1555 in_pcbdrop(inp); 1556 TCPSTAT_INC(tcps_closed); 1557 TCPSTATES_DEC(tp->t_state); 1558 KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL")); 1559 so = inp->inp_socket; 1560 soisdisconnected(so); 1561 if (inp->inp_flags & INP_SOCKREF) { 1562 KASSERT(so->so_state & SS_PROTOREF, 1563 ("tcp_close: !SS_PROTOREF")); 1564 inp->inp_flags &= ~INP_SOCKREF; 1565 INP_WUNLOCK(inp); 1566 ACCEPT_LOCK(); 1567 SOCK_LOCK(so); 1568 so->so_state &= ~SS_PROTOREF; 1569 sofree(so); 1570 return (NULL); 1571 } 1572 return (tp); 1573 } 1574 1575 void 1576 tcp_drain(void) 1577 { 1578 VNET_ITERATOR_DECL(vnet_iter); 1579 1580 if (!do_tcpdrain) 1581 return; 1582 1583 VNET_LIST_RLOCK_NOSLEEP(); 1584 VNET_FOREACH(vnet_iter) { 1585 CURVNET_SET(vnet_iter); 1586 struct inpcb *inpb; 1587 struct tcpcb *tcpb; 1588 1589 /* 1590 * Walk the tcpbs, if existing, and flush the reassembly queue, 1591 * if there is one... 1592 * XXX: The "Net/3" implementation doesn't imply that the TCP 1593 * reassembly queue should be flushed, but in a situation 1594 * where we're really low on mbufs, this is potentially 1595 * useful. 1596 */ 1597 INP_INFO_WLOCK(&V_tcbinfo); 1598 LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) { 1599 if (inpb->inp_flags & INP_TIMEWAIT) 1600 continue; 1601 INP_WLOCK(inpb); 1602 if ((tcpb = intotcpcb(inpb)) != NULL) { 1603 tcp_reass_flush(tcpb); 1604 tcp_clean_sackreport(tcpb); 1605 } 1606 INP_WUNLOCK(inpb); 1607 } 1608 INP_INFO_WUNLOCK(&V_tcbinfo); 1609 CURVNET_RESTORE(); 1610 } 1611 VNET_LIST_RUNLOCK_NOSLEEP(); 1612 } 1613 1614 /* 1615 * Notify a tcp user of an asynchronous error; 1616 * store error as soft error, but wake up user 1617 * (for now, won't do anything until can select for soft error). 1618 * 1619 * Do not wake up user since there currently is no mechanism for 1620 * reporting soft errors (yet - a kqueue filter may be added). 1621 */ 1622 static struct inpcb * 1623 tcp_notify(struct inpcb *inp, int error) 1624 { 1625 struct tcpcb *tp; 1626 1627 INP_INFO_LOCK_ASSERT(&V_tcbinfo); 1628 INP_WLOCK_ASSERT(inp); 1629 1630 if ((inp->inp_flags & INP_TIMEWAIT) || 1631 (inp->inp_flags & INP_DROPPED)) 1632 return (inp); 1633 1634 tp = intotcpcb(inp); 1635 KASSERT(tp != NULL, ("tcp_notify: tp == NULL")); 1636 1637 /* 1638 * Ignore some errors if we are hooked up. 1639 * If connection hasn't completed, has retransmitted several times, 1640 * and receives a second error, give up now. This is better 1641 * than waiting a long time to establish a connection that 1642 * can never complete. 1643 */ 1644 if (tp->t_state == TCPS_ESTABLISHED && 1645 (error == EHOSTUNREACH || error == ENETUNREACH || 1646 error == EHOSTDOWN)) { 1647 if (inp->inp_route.ro_rt) { 1648 RTFREE(inp->inp_route.ro_rt); 1649 inp->inp_route.ro_rt = (struct rtentry *)NULL; 1650 } 1651 return (inp); 1652 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 1653 tp->t_softerror) { 1654 tp = tcp_drop(tp, error); 1655 if (tp != NULL) 1656 return (inp); 1657 else 1658 return (NULL); 1659 } else { 1660 tp->t_softerror = error; 1661 return (inp); 1662 } 1663 #if 0 1664 wakeup( &so->so_timeo); 1665 sorwakeup(so); 1666 sowwakeup(so); 1667 #endif 1668 } 1669 1670 static int 1671 tcp_pcblist(SYSCTL_HANDLER_ARGS) 1672 { 1673 int error, i, m, n, pcb_count; 1674 struct inpcb *inp, **inp_list; 1675 inp_gen_t gencnt; 1676 struct xinpgen xig; 1677 1678 /* 1679 * The process of preparing the TCB list is too time-consuming and 1680 * resource-intensive to repeat twice on every request. 1681 */ 1682 if (req->oldptr == NULL) { 1683 n = V_tcbinfo.ipi_count + 1684 counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 1685 n += imax(n / 8, 10); 1686 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb); 1687 return (0); 1688 } 1689 1690 if (req->newptr != NULL) 1691 return (EPERM); 1692 1693 /* 1694 * OK, now we're committed to doing something. 1695 */ 1696 INP_LIST_RLOCK(&V_tcbinfo); 1697 gencnt = V_tcbinfo.ipi_gencnt; 1698 n = V_tcbinfo.ipi_count; 1699 INP_LIST_RUNLOCK(&V_tcbinfo); 1700 1701 m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]); 1702 1703 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig) 1704 + (n + m) * sizeof(struct xtcpcb)); 1705 if (error != 0) 1706 return (error); 1707 1708 xig.xig_len = sizeof xig; 1709 xig.xig_count = n + m; 1710 xig.xig_gen = gencnt; 1711 xig.xig_sogen = so_gencnt; 1712 error = SYSCTL_OUT(req, &xig, sizeof xig); 1713 if (error) 1714 return (error); 1715 1716 error = syncache_pcblist(req, m, &pcb_count); 1717 if (error) 1718 return (error); 1719 1720 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 1721 1722 INP_INFO_WLOCK(&V_tcbinfo); 1723 for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0; 1724 inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) { 1725 INP_WLOCK(inp); 1726 if (inp->inp_gencnt <= gencnt) { 1727 /* 1728 * XXX: This use of cr_cansee(), introduced with 1729 * TCP state changes, is not quite right, but for 1730 * now, better than nothing. 1731 */ 1732 if (inp->inp_flags & INP_TIMEWAIT) { 1733 if (intotw(inp) != NULL) 1734 error = cr_cansee(req->td->td_ucred, 1735 intotw(inp)->tw_cred); 1736 else 1737 error = EINVAL; /* Skip this inp. */ 1738 } else 1739 error = cr_canseeinpcb(req->td->td_ucred, inp); 1740 if (error == 0) { 1741 in_pcbref(inp); 1742 inp_list[i++] = inp; 1743 } 1744 } 1745 INP_WUNLOCK(inp); 1746 } 1747 INP_INFO_WUNLOCK(&V_tcbinfo); 1748 n = i; 1749 1750 error = 0; 1751 for (i = 0; i < n; i++) { 1752 inp = inp_list[i]; 1753 INP_RLOCK(inp); 1754 if (inp->inp_gencnt <= gencnt) { 1755 struct xtcpcb xt; 1756 void *inp_ppcb; 1757 1758 bzero(&xt, sizeof(xt)); 1759 xt.xt_len = sizeof xt; 1760 /* XXX should avoid extra copy */ 1761 bcopy(inp, &xt.xt_inp, sizeof *inp); 1762 inp_ppcb = inp->inp_ppcb; 1763 if (inp_ppcb == NULL) 1764 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1765 else if (inp->inp_flags & INP_TIMEWAIT) { 1766 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 1767 xt.xt_tp.t_state = TCPS_TIME_WAIT; 1768 } else { 1769 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 1770 if (xt.xt_tp.t_timers) 1771 tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer); 1772 } 1773 if (inp->inp_socket != NULL) 1774 sotoxsocket(inp->inp_socket, &xt.xt_socket); 1775 else { 1776 bzero(&xt.xt_socket, sizeof xt.xt_socket); 1777 xt.xt_socket.xso_protocol = IPPROTO_TCP; 1778 } 1779 xt.xt_inp.inp_gencnt = inp->inp_gencnt; 1780 INP_RUNLOCK(inp); 1781 error = SYSCTL_OUT(req, &xt, sizeof xt); 1782 } else 1783 INP_RUNLOCK(inp); 1784 } 1785 INP_INFO_RLOCK(&V_tcbinfo); 1786 for (i = 0; i < n; i++) { 1787 inp = inp_list[i]; 1788 INP_RLOCK(inp); 1789 if (!in_pcbrele_rlocked(inp)) 1790 INP_RUNLOCK(inp); 1791 } 1792 INP_INFO_RUNLOCK(&V_tcbinfo); 1793 1794 if (!error) { 1795 /* 1796 * Give the user an updated idea of our state. 1797 * If the generation differs from what we told 1798 * her before, she knows that something happened 1799 * while we were processing this request, and it 1800 * might be necessary to retry. 1801 */ 1802 INP_LIST_RLOCK(&V_tcbinfo); 1803 xig.xig_gen = V_tcbinfo.ipi_gencnt; 1804 xig.xig_sogen = so_gencnt; 1805 xig.xig_count = V_tcbinfo.ipi_count + pcb_count; 1806 INP_LIST_RUNLOCK(&V_tcbinfo); 1807 error = SYSCTL_OUT(req, &xig, sizeof xig); 1808 } 1809 free(inp_list, M_TEMP); 1810 return (error); 1811 } 1812 1813 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, 1814 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, 1815 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 1816 1817 #ifdef INET 1818 static int 1819 tcp_getcred(SYSCTL_HANDLER_ARGS) 1820 { 1821 struct xucred xuc; 1822 struct sockaddr_in addrs[2]; 1823 struct inpcb *inp; 1824 int error; 1825 1826 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1827 if (error) 1828 return (error); 1829 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1830 if (error) 1831 return (error); 1832 inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 1833 addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL); 1834 if (inp != NULL) { 1835 if (inp->inp_socket == NULL) 1836 error = ENOENT; 1837 if (error == 0) 1838 error = cr_canseeinpcb(req->td->td_ucred, inp); 1839 if (error == 0) 1840 cru2x(inp->inp_cred, &xuc); 1841 INP_RUNLOCK(inp); 1842 } else 1843 error = ENOENT; 1844 if (error == 0) 1845 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1846 return (error); 1847 } 1848 1849 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, 1850 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1851 tcp_getcred, "S,xucred", "Get the xucred of a TCP connection"); 1852 #endif /* INET */ 1853 1854 #ifdef INET6 1855 static int 1856 tcp6_getcred(SYSCTL_HANDLER_ARGS) 1857 { 1858 struct xucred xuc; 1859 struct sockaddr_in6 addrs[2]; 1860 struct inpcb *inp; 1861 int error; 1862 #ifdef INET 1863 int mapped = 0; 1864 #endif 1865 1866 error = priv_check(req->td, PRIV_NETINET_GETCRED); 1867 if (error) 1868 return (error); 1869 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 1870 if (error) 1871 return (error); 1872 if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 || 1873 (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) { 1874 return (error); 1875 } 1876 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 1877 #ifdef INET 1878 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 1879 mapped = 1; 1880 else 1881 #endif 1882 return (EINVAL); 1883 } 1884 1885 #ifdef INET 1886 if (mapped == 1) 1887 inp = in_pcblookup(&V_tcbinfo, 1888 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 1889 addrs[1].sin6_port, 1890 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 1891 addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL); 1892 else 1893 #endif 1894 inp = in6_pcblookup(&V_tcbinfo, 1895 &addrs[1].sin6_addr, addrs[1].sin6_port, 1896 &addrs[0].sin6_addr, addrs[0].sin6_port, 1897 INPLOOKUP_RLOCKPCB, NULL); 1898 if (inp != NULL) { 1899 if (inp->inp_socket == NULL) 1900 error = ENOENT; 1901 if (error == 0) 1902 error = cr_canseeinpcb(req->td->td_ucred, inp); 1903 if (error == 0) 1904 cru2x(inp->inp_cred, &xuc); 1905 INP_RUNLOCK(inp); 1906 } else 1907 error = ENOENT; 1908 if (error == 0) 1909 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 1910 return (error); 1911 } 1912 1913 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, 1914 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0, 1915 tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection"); 1916 #endif /* INET6 */ 1917 1918 1919 #ifdef INET 1920 void 1921 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip) 1922 { 1923 struct ip *ip = vip; 1924 struct tcphdr *th; 1925 struct in_addr faddr; 1926 struct inpcb *inp; 1927 struct tcpcb *tp; 1928 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 1929 struct icmp *icp; 1930 struct in_conninfo inc; 1931 tcp_seq icmp_tcp_seq; 1932 int mtu; 1933 1934 faddr = ((struct sockaddr_in *)sa)->sin_addr; 1935 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) 1936 return; 1937 1938 if (cmd == PRC_MSGSIZE) 1939 notify = tcp_mtudisc_notify; 1940 else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB || 1941 cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip) 1942 notify = tcp_drop_syn_sent; 1943 else if (PRC_IS_REDIRECT(cmd)) { 1944 /* signal EHOSTDOWN, as it flushes the cached route */ 1945 in_pcbnotifyall(&V_tcbinfo, faddr, EHOSTDOWN, notify); 1946 return; 1947 } 1948 /* 1949 * Hostdead is ugly because it goes linearly through all PCBs. 1950 * XXX: We never get this from ICMP, otherwise it makes an 1951 * excellent DoS attack on machines with many connections. 1952 */ 1953 else if (cmd == PRC_HOSTDEAD) 1954 ip = NULL; 1955 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) 1956 return; 1957 1958 if (ip == NULL) { 1959 in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify); 1960 return; 1961 } 1962 1963 icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip)); 1964 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 1965 INP_INFO_RLOCK(&V_tcbinfo); 1966 inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src, 1967 th->th_sport, INPLOOKUP_WLOCKPCB, NULL); 1968 if (inp != NULL) { 1969 if (!(inp->inp_flags & INP_TIMEWAIT) && 1970 !(inp->inp_flags & INP_DROPPED) && 1971 !(inp->inp_socket == NULL)) { 1972 icmp_tcp_seq = ntohl(th->th_seq); 1973 tp = intotcpcb(inp); 1974 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) && 1975 SEQ_LT(icmp_tcp_seq, tp->snd_max)) { 1976 if (cmd == PRC_MSGSIZE) { 1977 /* 1978 * MTU discovery: 1979 * If we got a needfrag set the MTU 1980 * in the route to the suggested new 1981 * value (if given) and then notify. 1982 */ 1983 mtu = ntohs(icp->icmp_nextmtu); 1984 /* 1985 * If no alternative MTU was 1986 * proposed, try the next smaller 1987 * one. 1988 */ 1989 if (!mtu) 1990 mtu = ip_next_mtu( 1991 ntohs(ip->ip_len), 1); 1992 if (mtu < V_tcp_minmss + 1993 sizeof(struct tcpiphdr)) 1994 mtu = V_tcp_minmss + 1995 sizeof(struct tcpiphdr); 1996 /* 1997 * Only process the offered MTU if it 1998 * is smaller than the current one. 1999 */ 2000 if (mtu < tp->t_maxseg + 2001 sizeof(struct tcpiphdr)) { 2002 bzero(&inc, sizeof(inc)); 2003 inc.inc_faddr = faddr; 2004 inc.inc_fibnum = 2005 inp->inp_inc.inc_fibnum; 2006 tcp_hc_updatemtu(&inc, mtu); 2007 tcp_mtudisc(inp, mtu); 2008 } 2009 } else 2010 inp = (*notify)(inp, 2011 inetctlerrmap[cmd]); 2012 } 2013 } 2014 if (inp != NULL) 2015 INP_WUNLOCK(inp); 2016 } else { 2017 bzero(&inc, sizeof(inc)); 2018 inc.inc_fport = th->th_dport; 2019 inc.inc_lport = th->th_sport; 2020 inc.inc_faddr = faddr; 2021 inc.inc_laddr = ip->ip_src; 2022 syncache_unreach(&inc, th); 2023 } 2024 INP_INFO_RUNLOCK(&V_tcbinfo); 2025 } 2026 #endif /* INET */ 2027 2028 #ifdef INET6 2029 void 2030 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d) 2031 { 2032 struct tcphdr th; 2033 struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify; 2034 struct ip6_hdr *ip6; 2035 struct mbuf *m; 2036 struct ip6ctlparam *ip6cp = NULL; 2037 const struct sockaddr_in6 *sa6_src = NULL; 2038 int off; 2039 struct tcp_portonly { 2040 u_int16_t th_sport; 2041 u_int16_t th_dport; 2042 } *thp; 2043 2044 if (sa->sa_family != AF_INET6 || 2045 sa->sa_len != sizeof(struct sockaddr_in6)) 2046 return; 2047 2048 if (cmd == PRC_MSGSIZE) 2049 notify = tcp_mtudisc_notify; 2050 else if (!PRC_IS_REDIRECT(cmd) && 2051 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 2052 return; 2053 2054 /* if the parameter is from icmp6, decode it. */ 2055 if (d != NULL) { 2056 ip6cp = (struct ip6ctlparam *)d; 2057 m = ip6cp->ip6c_m; 2058 ip6 = ip6cp->ip6c_ip6; 2059 off = ip6cp->ip6c_off; 2060 sa6_src = ip6cp->ip6c_src; 2061 } else { 2062 m = NULL; 2063 ip6 = NULL; 2064 off = 0; /* fool gcc */ 2065 sa6_src = &sa6_any; 2066 } 2067 2068 if (ip6 != NULL) { 2069 struct in_conninfo inc; 2070 /* 2071 * XXX: We assume that when IPV6 is non NULL, 2072 * M and OFF are valid. 2073 */ 2074 2075 /* check if we can safely examine src and dst ports */ 2076 if (m->m_pkthdr.len < off + sizeof(*thp)) 2077 return; 2078 2079 bzero(&th, sizeof(th)); 2080 m_copydata(m, off, sizeof(*thp), (caddr_t)&th); 2081 2082 in6_pcbnotify(&V_tcbinfo, sa, th.th_dport, 2083 (struct sockaddr *)ip6cp->ip6c_src, 2084 th.th_sport, cmd, NULL, notify); 2085 2086 bzero(&inc, sizeof(inc)); 2087 inc.inc_fport = th.th_dport; 2088 inc.inc_lport = th.th_sport; 2089 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr; 2090 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr; 2091 inc.inc_flags |= INC_ISIPV6; 2092 INP_INFO_RLOCK(&V_tcbinfo); 2093 syncache_unreach(&inc, &th); 2094 INP_INFO_RUNLOCK(&V_tcbinfo); 2095 } else 2096 in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src, 2097 0, cmd, NULL, notify); 2098 } 2099 #endif /* INET6 */ 2100 2101 2102 /* 2103 * Following is where TCP initial sequence number generation occurs. 2104 * 2105 * There are two places where we must use initial sequence numbers: 2106 * 1. In SYN-ACK packets. 2107 * 2. In SYN packets. 2108 * 2109 * All ISNs for SYN-ACK packets are generated by the syncache. See 2110 * tcp_syncache.c for details. 2111 * 2112 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling 2113 * depends on this property. In addition, these ISNs should be 2114 * unguessable so as to prevent connection hijacking. To satisfy 2115 * the requirements of this situation, the algorithm outlined in 2116 * RFC 1948 is used, with only small modifications. 2117 * 2118 * Implementation details: 2119 * 2120 * Time is based off the system timer, and is corrected so that it 2121 * increases by one megabyte per second. This allows for proper 2122 * recycling on high speed LANs while still leaving over an hour 2123 * before rollover. 2124 * 2125 * As reading the *exact* system time is too expensive to be done 2126 * whenever setting up a TCP connection, we increment the time 2127 * offset in two ways. First, a small random positive increment 2128 * is added to isn_offset for each connection that is set up. 2129 * Second, the function tcp_isn_tick fires once per clock tick 2130 * and increments isn_offset as necessary so that sequence numbers 2131 * are incremented at approximately ISN_BYTES_PER_SECOND. The 2132 * random positive increments serve only to ensure that the same 2133 * exact sequence number is never sent out twice (as could otherwise 2134 * happen when a port is recycled in less than the system tick 2135 * interval.) 2136 * 2137 * net.inet.tcp.isn_reseed_interval controls the number of seconds 2138 * between seeding of isn_secret. This is normally set to zero, 2139 * as reseeding should not be necessary. 2140 * 2141 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset, 2142 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock. In 2143 * general, this means holding an exclusive (write) lock. 2144 */ 2145 2146 #define ISN_BYTES_PER_SECOND 1048576 2147 #define ISN_STATIC_INCREMENT 4096 2148 #define ISN_RANDOM_INCREMENT (4096 - 1) 2149 2150 static VNET_DEFINE(u_char, isn_secret[32]); 2151 static VNET_DEFINE(int, isn_last); 2152 static VNET_DEFINE(int, isn_last_reseed); 2153 static VNET_DEFINE(u_int32_t, isn_offset); 2154 static VNET_DEFINE(u_int32_t, isn_offset_old); 2155 2156 #define V_isn_secret VNET(isn_secret) 2157 #define V_isn_last VNET(isn_last) 2158 #define V_isn_last_reseed VNET(isn_last_reseed) 2159 #define V_isn_offset VNET(isn_offset) 2160 #define V_isn_offset_old VNET(isn_offset_old) 2161 2162 tcp_seq 2163 tcp_new_isn(struct tcpcb *tp) 2164 { 2165 MD5_CTX isn_ctx; 2166 u_int32_t md5_buffer[4]; 2167 tcp_seq new_isn; 2168 u_int32_t projected_offset; 2169 2170 INP_WLOCK_ASSERT(tp->t_inpcb); 2171 2172 ISN_LOCK(); 2173 /* Seed if this is the first use, reseed if requested. */ 2174 if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) && 2175 (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz) 2176 < (u_int)ticks))) { 2177 read_random(&V_isn_secret, sizeof(V_isn_secret)); 2178 V_isn_last_reseed = ticks; 2179 } 2180 2181 /* Compute the md5 hash and return the ISN. */ 2182 MD5Init(&isn_ctx); 2183 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short)); 2184 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short)); 2185 #ifdef INET6 2186 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) { 2187 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr, 2188 sizeof(struct in6_addr)); 2189 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr, 2190 sizeof(struct in6_addr)); 2191 } else 2192 #endif 2193 { 2194 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr, 2195 sizeof(struct in_addr)); 2196 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr, 2197 sizeof(struct in_addr)); 2198 } 2199 MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret)); 2200 MD5Final((u_char *) &md5_buffer, &isn_ctx); 2201 new_isn = (tcp_seq) md5_buffer[0]; 2202 V_isn_offset += ISN_STATIC_INCREMENT + 2203 (arc4random() & ISN_RANDOM_INCREMENT); 2204 if (ticks != V_isn_last) { 2205 projected_offset = V_isn_offset_old + 2206 ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last); 2207 if (SEQ_GT(projected_offset, V_isn_offset)) 2208 V_isn_offset = projected_offset; 2209 V_isn_offset_old = V_isn_offset; 2210 V_isn_last = ticks; 2211 } 2212 new_isn += V_isn_offset; 2213 ISN_UNLOCK(); 2214 return (new_isn); 2215 } 2216 2217 /* 2218 * When a specific ICMP unreachable message is received and the 2219 * connection state is SYN-SENT, drop the connection. This behavior 2220 * is controlled by the icmp_may_rst sysctl. 2221 */ 2222 struct inpcb * 2223 tcp_drop_syn_sent(struct inpcb *inp, int errno) 2224 { 2225 struct tcpcb *tp; 2226 2227 INP_INFO_RLOCK_ASSERT(&V_tcbinfo); 2228 INP_WLOCK_ASSERT(inp); 2229 2230 if ((inp->inp_flags & INP_TIMEWAIT) || 2231 (inp->inp_flags & INP_DROPPED)) 2232 return (inp); 2233 2234 tp = intotcpcb(inp); 2235 if (tp->t_state != TCPS_SYN_SENT) 2236 return (inp); 2237 2238 tp = tcp_drop(tp, errno); 2239 if (tp != NULL) 2240 return (inp); 2241 else 2242 return (NULL); 2243 } 2244 2245 /* 2246 * When `need fragmentation' ICMP is received, update our idea of the MSS 2247 * based on the new value. Also nudge TCP to send something, since we 2248 * know the packet we just sent was dropped. 2249 * This duplicates some code in the tcp_mss() function in tcp_input.c. 2250 */ 2251 static struct inpcb * 2252 tcp_mtudisc_notify(struct inpcb *inp, int error) 2253 { 2254 2255 tcp_mtudisc(inp, -1); 2256 return (inp); 2257 } 2258 2259 static void 2260 tcp_mtudisc(struct inpcb *inp, int mtuoffer) 2261 { 2262 struct tcpcb *tp; 2263 struct socket *so; 2264 2265 INP_WLOCK_ASSERT(inp); 2266 if ((inp->inp_flags & INP_TIMEWAIT) || 2267 (inp->inp_flags & INP_DROPPED)) 2268 return; 2269 2270 tp = intotcpcb(inp); 2271 KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL")); 2272 2273 tcp_mss_update(tp, -1, mtuoffer, NULL, NULL); 2274 2275 so = inp->inp_socket; 2276 SOCKBUF_LOCK(&so->so_snd); 2277 /* If the mss is larger than the socket buffer, decrease the mss. */ 2278 if (so->so_snd.sb_hiwat < tp->t_maxseg) 2279 tp->t_maxseg = so->so_snd.sb_hiwat; 2280 SOCKBUF_UNLOCK(&so->so_snd); 2281 2282 TCPSTAT_INC(tcps_mturesent); 2283 tp->t_rtttime = 0; 2284 tp->snd_nxt = tp->snd_una; 2285 tcp_free_sackholes(tp); 2286 tp->snd_recover = tp->snd_max; 2287 if (tp->t_flags & TF_SACK_PERMIT) 2288 EXIT_FASTRECOVERY(tp->t_flags); 2289 tp->t_fb->tfb_tcp_output(tp); 2290 } 2291 2292 #ifdef INET 2293 /* 2294 * Look-up the routing entry to the peer of this inpcb. If no route 2295 * is found and it cannot be allocated, then return 0. This routine 2296 * is called by TCP routines that access the rmx structure and by 2297 * tcp_mss_update to get the peer/interface MTU. 2298 */ 2299 u_long 2300 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap) 2301 { 2302 struct nhop4_extended nh4; 2303 struct ifnet *ifp; 2304 u_long maxmtu = 0; 2305 2306 KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer")); 2307 2308 if (inc->inc_faddr.s_addr != INADDR_ANY) { 2309 2310 if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr, 2311 NHR_REF, 0, &nh4) != 0) 2312 return (0); 2313 2314 ifp = nh4.nh_ifp; 2315 maxmtu = nh4.nh_mtu; 2316 2317 /* Report additional interface capabilities. */ 2318 if (cap != NULL) { 2319 if (ifp->if_capenable & IFCAP_TSO4 && 2320 ifp->if_hwassist & CSUM_TSO) { 2321 cap->ifcap |= CSUM_TSO; 2322 cap->tsomax = ifp->if_hw_tsomax; 2323 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2324 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2325 } 2326 } 2327 fib4_free_nh_ext(inc->inc_fibnum, &nh4); 2328 } 2329 return (maxmtu); 2330 } 2331 #endif /* INET */ 2332 2333 #ifdef INET6 2334 u_long 2335 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap) 2336 { 2337 struct nhop6_extended nh6; 2338 struct in6_addr dst6; 2339 uint32_t scopeid; 2340 struct ifnet *ifp; 2341 u_long maxmtu = 0; 2342 2343 KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer")); 2344 2345 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) { 2346 in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid); 2347 if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0, 2348 0, &nh6) != 0) 2349 return (0); 2350 2351 ifp = nh6.nh_ifp; 2352 maxmtu = nh6.nh_mtu; 2353 2354 /* Report additional interface capabilities. */ 2355 if (cap != NULL) { 2356 if (ifp->if_capenable & IFCAP_TSO6 && 2357 ifp->if_hwassist & CSUM_TSO) { 2358 cap->ifcap |= CSUM_TSO; 2359 cap->tsomax = ifp->if_hw_tsomax; 2360 cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; 2361 cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; 2362 } 2363 } 2364 fib6_free_nh_ext(inc->inc_fibnum, &nh6); 2365 } 2366 2367 return (maxmtu); 2368 } 2369 #endif /* INET6 */ 2370 2371 /* 2372 * Calculate effective SMSS per RFC5681 definition for a given TCP 2373 * connection at its current state, taking into account SACK and etc. 2374 */ 2375 u_int 2376 tcp_maxseg(const struct tcpcb *tp) 2377 { 2378 u_int optlen; 2379 2380 if (tp->t_flags & TF_NOOPT) 2381 return (tp->t_maxseg); 2382 2383 /* 2384 * Here we have a simplified code from tcp_addoptions(), 2385 * without a proper loop, and having most of paddings hardcoded. 2386 * We might make mistakes with padding here in some edge cases, 2387 * but this is harmless, since result of tcp_maxseg() is used 2388 * only in cwnd and ssthresh estimations. 2389 */ 2390 #define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4) 2391 if (TCPS_HAVEESTABLISHED(tp->t_state)) { 2392 if (tp->t_flags & TF_RCVD_TSTMP) 2393 optlen = TCPOLEN_TSTAMP_APPA; 2394 else 2395 optlen = 0; 2396 #ifdef TCP_SIGNATURE 2397 if (tp->t_flags & TF_SIGNATURE) 2398 optlen += PAD(TCPOLEN_SIGNATURE); 2399 #endif 2400 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) { 2401 optlen += TCPOLEN_SACKHDR; 2402 optlen += tp->rcv_numsacks * TCPOLEN_SACK; 2403 optlen = PAD(optlen); 2404 } 2405 } else { 2406 if (tp->t_flags & TF_REQ_TSTMP) 2407 optlen = TCPOLEN_TSTAMP_APPA; 2408 else 2409 optlen = PAD(TCPOLEN_MAXSEG); 2410 if (tp->t_flags & TF_REQ_SCALE) 2411 optlen += PAD(TCPOLEN_WINDOW); 2412 #ifdef TCP_SIGNATURE 2413 if (tp->t_flags & TF_SIGNATURE) 2414 optlen += PAD(TCPOLEN_SIGNATURE); 2415 #endif 2416 if (tp->t_flags & TF_SACK_PERMIT) 2417 optlen += PAD(TCPOLEN_SACK_PERMITTED); 2418 } 2419 #undef PAD 2420 optlen = min(optlen, TCP_MAXOLEN); 2421 return (tp->t_maxseg - optlen); 2422 } 2423 2424 #ifdef IPSEC 2425 /* compute ESP/AH header size for TCP, including outer IP header. */ 2426 size_t 2427 ipsec_hdrsiz_tcp(struct tcpcb *tp) 2428 { 2429 struct inpcb *inp; 2430 struct mbuf *m; 2431 size_t hdrsiz; 2432 struct ip *ip; 2433 #ifdef INET6 2434 struct ip6_hdr *ip6; 2435 #endif 2436 struct tcphdr *th; 2437 2438 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) || 2439 (!key_havesp(IPSEC_DIR_OUTBOUND))) 2440 return (0); 2441 m = m_gethdr(M_NOWAIT, MT_DATA); 2442 if (!m) 2443 return (0); 2444 2445 #ifdef INET6 2446 if ((inp->inp_vflag & INP_IPV6) != 0) { 2447 ip6 = mtod(m, struct ip6_hdr *); 2448 th = (struct tcphdr *)(ip6 + 1); 2449 m->m_pkthdr.len = m->m_len = 2450 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 2451 tcpip_fillheaders(inp, ip6, th); 2452 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2453 } else 2454 #endif /* INET6 */ 2455 { 2456 ip = mtod(m, struct ip *); 2457 th = (struct tcphdr *)(ip + 1); 2458 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 2459 tcpip_fillheaders(inp, ip, th); 2460 hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 2461 } 2462 2463 m_free(m); 2464 return (hdrsiz); 2465 } 2466 #endif /* IPSEC */ 2467 2468 #ifdef TCP_SIGNATURE 2469 /* 2470 * Callback function invoked by m_apply() to digest TCP segment data 2471 * contained within an mbuf chain. 2472 */ 2473 static int 2474 tcp_signature_apply(void *fstate, void *data, u_int len) 2475 { 2476 2477 MD5Update(fstate, (u_char *)data, len); 2478 return (0); 2479 } 2480 2481 /* 2482 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a 2483 * search with the destination IP address, and a 'magic SPI' to be 2484 * determined by the application. This is hardcoded elsewhere to 1179 2485 */ 2486 struct secasvar * 2487 tcp_get_sav(struct mbuf *m, u_int direction) 2488 { 2489 union sockaddr_union dst; 2490 struct secasvar *sav; 2491 struct ip *ip; 2492 #ifdef INET6 2493 struct ip6_hdr *ip6; 2494 char ip6buf[INET6_ADDRSTRLEN]; 2495 #endif 2496 2497 /* Extract the destination from the IP header in the mbuf. */ 2498 bzero(&dst, sizeof(union sockaddr_union)); 2499 ip = mtod(m, struct ip *); 2500 #ifdef INET6 2501 ip6 = NULL; /* Make the compiler happy. */ 2502 #endif 2503 switch (ip->ip_v) { 2504 #ifdef INET 2505 case IPVERSION: 2506 dst.sa.sa_len = sizeof(struct sockaddr_in); 2507 dst.sa.sa_family = AF_INET; 2508 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ? 2509 ip->ip_src : ip->ip_dst; 2510 break; 2511 #endif 2512 #ifdef INET6 2513 case (IPV6_VERSION >> 4): 2514 ip6 = mtod(m, struct ip6_hdr *); 2515 dst.sa.sa_len = sizeof(struct sockaddr_in6); 2516 dst.sa.sa_family = AF_INET6; 2517 dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ? 2518 ip6->ip6_src : ip6->ip6_dst; 2519 break; 2520 #endif 2521 default: 2522 return (NULL); 2523 /* NOTREACHED */ 2524 break; 2525 } 2526 2527 /* Look up an SADB entry which matches the address of the peer. */ 2528 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI)); 2529 if (sav == NULL) { 2530 ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__, 2531 (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) : 2532 #ifdef INET6 2533 (ip->ip_v == (IPV6_VERSION >> 4)) ? 2534 ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) : 2535 #endif 2536 "(unsupported)")); 2537 } 2538 2539 return (sav); 2540 } 2541 2542 /* 2543 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2544 * 2545 * Parameters: 2546 * m pointer to head of mbuf chain 2547 * len length of TCP segment data, excluding options 2548 * optlen length of TCP segment options 2549 * buf pointer to storage for computed MD5 digest 2550 * sav pointer to security assosiation 2551 * 2552 * We do this over ip, tcphdr, segment data, and the key in the SADB. 2553 * When called from tcp_input(), we can be sure that th_sum has been 2554 * zeroed out and verified already. 2555 * 2556 * Releases reference to SADB key before return. 2557 * 2558 * Return 0 if successful, otherwise return -1. 2559 * 2560 */ 2561 int 2562 tcp_signature_do_compute(struct mbuf *m, int len, int optlen, 2563 u_char *buf, struct secasvar *sav) 2564 { 2565 #ifdef INET 2566 struct ippseudo ippseudo; 2567 #endif 2568 MD5_CTX ctx; 2569 int doff; 2570 struct ip *ip; 2571 #ifdef INET 2572 struct ipovly *ipovly; 2573 #endif 2574 struct tcphdr *th; 2575 #ifdef INET6 2576 struct ip6_hdr *ip6; 2577 struct in6_addr in6; 2578 uint32_t plen; 2579 uint16_t nhdr; 2580 #endif 2581 u_short savecsum; 2582 2583 KASSERT(m != NULL, ("NULL mbuf chain")); 2584 KASSERT(buf != NULL, ("NULL signature pointer")); 2585 2586 /* Extract the destination from the IP header in the mbuf. */ 2587 ip = mtod(m, struct ip *); 2588 #ifdef INET6 2589 ip6 = NULL; /* Make the compiler happy. */ 2590 #endif 2591 2592 MD5Init(&ctx); 2593 /* 2594 * Step 1: Update MD5 hash with IP(v6) pseudo-header. 2595 * 2596 * XXX The ippseudo header MUST be digested in network byte order, 2597 * or else we'll fail the regression test. Assume all fields we've 2598 * been doing arithmetic on have been in host byte order. 2599 * XXX One cannot depend on ipovly->ih_len here. When called from 2600 * tcp_output(), the underlying ip_len member has not yet been set. 2601 */ 2602 switch (ip->ip_v) { 2603 #ifdef INET 2604 case IPVERSION: 2605 ipovly = (struct ipovly *)ip; 2606 ippseudo.ippseudo_src = ipovly->ih_src; 2607 ippseudo.ippseudo_dst = ipovly->ih_dst; 2608 ippseudo.ippseudo_pad = 0; 2609 ippseudo.ippseudo_p = IPPROTO_TCP; 2610 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + 2611 optlen); 2612 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo)); 2613 2614 th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip)); 2615 doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen; 2616 break; 2617 #endif 2618 #ifdef INET6 2619 /* 2620 * RFC 2385, 2.0 Proposal 2621 * For IPv6, the pseudo-header is as described in RFC 2460, namely the 2622 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero- 2623 * extended next header value (to form 32 bits), and 32-bit segment 2624 * length. 2625 * Note: Upper-Layer Packet Length comes before Next Header. 2626 */ 2627 case (IPV6_VERSION >> 4): 2628 in6 = ip6->ip6_src; 2629 in6_clearscope(&in6); 2630 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2631 in6 = ip6->ip6_dst; 2632 in6_clearscope(&in6); 2633 MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr)); 2634 plen = htonl(len + sizeof(struct tcphdr) + optlen); 2635 MD5Update(&ctx, (char *)&plen, sizeof(uint32_t)); 2636 nhdr = 0; 2637 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2638 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2639 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2640 nhdr = IPPROTO_TCP; 2641 MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t)); 2642 2643 th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr)); 2644 doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen; 2645 break; 2646 #endif 2647 default: 2648 KEY_FREESAV(&sav); 2649 return (-1); 2650 /* NOTREACHED */ 2651 break; 2652 } 2653 2654 2655 /* 2656 * Step 2: Update MD5 hash with TCP header, excluding options. 2657 * The TCP checksum must be set to zero. 2658 */ 2659 savecsum = th->th_sum; 2660 th->th_sum = 0; 2661 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr)); 2662 th->th_sum = savecsum; 2663 2664 /* 2665 * Step 3: Update MD5 hash with TCP segment data. 2666 * Use m_apply() to avoid an early m_pullup(). 2667 */ 2668 if (len > 0) 2669 m_apply(m, doff, len, tcp_signature_apply, &ctx); 2670 2671 /* 2672 * Step 4: Update MD5 hash with shared secret. 2673 */ 2674 MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2675 MD5Final(buf, &ctx); 2676 2677 key_sa_recordxfer(sav, m); 2678 KEY_FREESAV(&sav); 2679 return (0); 2680 } 2681 2682 /* 2683 * Compute TCP-MD5 hash of a TCP segment. (RFC2385) 2684 * 2685 * Return 0 if successful, otherwise return -1. 2686 */ 2687 int 2688 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen, 2689 u_char *buf, u_int direction) 2690 { 2691 struct secasvar *sav; 2692 2693 if ((sav = tcp_get_sav(m, direction)) == NULL) 2694 return (-1); 2695 2696 return (tcp_signature_do_compute(m, len, optlen, buf, sav)); 2697 } 2698 2699 /* 2700 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385) 2701 * 2702 * Parameters: 2703 * m pointer to head of mbuf chain 2704 * len length of TCP segment data, excluding options 2705 * optlen length of TCP segment options 2706 * buf pointer to storage for computed MD5 digest 2707 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND) 2708 * 2709 * Return 1 if successful, otherwise return 0. 2710 */ 2711 int 2712 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen, 2713 struct tcpopt *to, struct tcphdr *th, u_int tcpbflag) 2714 { 2715 char tmpdigest[TCP_SIGLEN]; 2716 2717 if (tcp_sig_checksigs == 0) 2718 return (1); 2719 if ((tcpbflag & TF_SIGNATURE) == 0) { 2720 if ((to->to_flags & TOF_SIGNATURE) != 0) { 2721 2722 /* 2723 * If this socket is not expecting signature but 2724 * the segment contains signature just fail. 2725 */ 2726 TCPSTAT_INC(tcps_sig_err_sigopt); 2727 TCPSTAT_INC(tcps_sig_rcvbadsig); 2728 return (0); 2729 } 2730 2731 /* Signature is not expected, and not present in segment. */ 2732 return (1); 2733 } 2734 2735 /* 2736 * If this socket is expecting signature but the segment does not 2737 * contain any just fail. 2738 */ 2739 if ((to->to_flags & TOF_SIGNATURE) == 0) { 2740 TCPSTAT_INC(tcps_sig_err_nosigopt); 2741 TCPSTAT_INC(tcps_sig_rcvbadsig); 2742 return (0); 2743 } 2744 if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0], 2745 IPSEC_DIR_INBOUND) == -1) { 2746 TCPSTAT_INC(tcps_sig_err_buildsig); 2747 TCPSTAT_INC(tcps_sig_rcvbadsig); 2748 return (0); 2749 } 2750 2751 if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) { 2752 TCPSTAT_INC(tcps_sig_rcvbadsig); 2753 return (0); 2754 } 2755 TCPSTAT_INC(tcps_sig_rcvgoodsig); 2756 return (1); 2757 } 2758 #endif /* TCP_SIGNATURE */ 2759 2760 static int 2761 sysctl_drop(SYSCTL_HANDLER_ARGS) 2762 { 2763 /* addrs[0] is a foreign socket, addrs[1] is a local one. */ 2764 struct sockaddr_storage addrs[2]; 2765 struct inpcb *inp; 2766 struct tcpcb *tp; 2767 struct tcptw *tw; 2768 struct sockaddr_in *fin, *lin; 2769 #ifdef INET6 2770 struct sockaddr_in6 *fin6, *lin6; 2771 #endif 2772 int error; 2773 2774 inp = NULL; 2775 fin = lin = NULL; 2776 #ifdef INET6 2777 fin6 = lin6 = NULL; 2778 #endif 2779 error = 0; 2780 2781 if (req->oldptr != NULL || req->oldlen != 0) 2782 return (EINVAL); 2783 if (req->newptr == NULL) 2784 return (EPERM); 2785 if (req->newlen < sizeof(addrs)) 2786 return (ENOMEM); 2787 error = SYSCTL_IN(req, &addrs, sizeof(addrs)); 2788 if (error) 2789 return (error); 2790 2791 switch (addrs[0].ss_family) { 2792 #ifdef INET6 2793 case AF_INET6: 2794 fin6 = (struct sockaddr_in6 *)&addrs[0]; 2795 lin6 = (struct sockaddr_in6 *)&addrs[1]; 2796 if (fin6->sin6_len != sizeof(struct sockaddr_in6) || 2797 lin6->sin6_len != sizeof(struct sockaddr_in6)) 2798 return (EINVAL); 2799 if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) { 2800 if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr)) 2801 return (EINVAL); 2802 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]); 2803 in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]); 2804 fin = (struct sockaddr_in *)&addrs[0]; 2805 lin = (struct sockaddr_in *)&addrs[1]; 2806 break; 2807 } 2808 error = sa6_embedscope(fin6, V_ip6_use_defzone); 2809 if (error) 2810 return (error); 2811 error = sa6_embedscope(lin6, V_ip6_use_defzone); 2812 if (error) 2813 return (error); 2814 break; 2815 #endif 2816 #ifdef INET 2817 case AF_INET: 2818 fin = (struct sockaddr_in *)&addrs[0]; 2819 lin = (struct sockaddr_in *)&addrs[1]; 2820 if (fin->sin_len != sizeof(struct sockaddr_in) || 2821 lin->sin_len != sizeof(struct sockaddr_in)) 2822 return (EINVAL); 2823 break; 2824 #endif 2825 default: 2826 return (EINVAL); 2827 } 2828 INP_INFO_RLOCK(&V_tcbinfo); 2829 switch (addrs[0].ss_family) { 2830 #ifdef INET6 2831 case AF_INET6: 2832 inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr, 2833 fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 2834 INPLOOKUP_WLOCKPCB, NULL); 2835 break; 2836 #endif 2837 #ifdef INET 2838 case AF_INET: 2839 inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port, 2840 lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL); 2841 break; 2842 #endif 2843 } 2844 if (inp != NULL) { 2845 if (inp->inp_flags & INP_TIMEWAIT) { 2846 /* 2847 * XXXRW: There currently exists a state where an 2848 * inpcb is present, but its timewait state has been 2849 * discarded. For now, don't allow dropping of this 2850 * type of inpcb. 2851 */ 2852 tw = intotw(inp); 2853 if (tw != NULL) 2854 tcp_twclose(tw, 0); 2855 else 2856 INP_WUNLOCK(inp); 2857 } else if (!(inp->inp_flags & INP_DROPPED) && 2858 !(inp->inp_socket->so_options & SO_ACCEPTCONN)) { 2859 tp = intotcpcb(inp); 2860 tp = tcp_drop(tp, ECONNABORTED); 2861 if (tp != NULL) 2862 INP_WUNLOCK(inp); 2863 } else 2864 INP_WUNLOCK(inp); 2865 } else 2866 error = ESRCH; 2867 INP_INFO_RUNLOCK(&V_tcbinfo); 2868 return (error); 2869 } 2870 2871 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop, 2872 CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL, 2873 0, sysctl_drop, "", "Drop TCP connection"); 2874 2875 /* 2876 * Generate a standardized TCP log line for use throughout the 2877 * tcp subsystem. Memory allocation is done with M_NOWAIT to 2878 * allow use in the interrupt context. 2879 * 2880 * NB: The caller MUST free(s, M_TCPLOG) the returned string. 2881 * NB: The function may return NULL if memory allocation failed. 2882 * 2883 * Due to header inclusion and ordering limitations the struct ip 2884 * and ip6_hdr pointers have to be passed as void pointers. 2885 */ 2886 char * 2887 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2888 const void *ip6hdr) 2889 { 2890 2891 /* Is logging enabled? */ 2892 if (tcp_log_in_vain == 0) 2893 return (NULL); 2894 2895 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2896 } 2897 2898 char * 2899 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2900 const void *ip6hdr) 2901 { 2902 2903 /* Is logging enabled? */ 2904 if (tcp_log_debug == 0) 2905 return (NULL); 2906 2907 return (tcp_log_addr(inc, th, ip4hdr, ip6hdr)); 2908 } 2909 2910 static char * 2911 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr, 2912 const void *ip6hdr) 2913 { 2914 char *s, *sp; 2915 size_t size; 2916 struct ip *ip; 2917 #ifdef INET6 2918 const struct ip6_hdr *ip6; 2919 2920 ip6 = (const struct ip6_hdr *)ip6hdr; 2921 #endif /* INET6 */ 2922 ip = (struct ip *)ip4hdr; 2923 2924 /* 2925 * The log line looks like this: 2926 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>" 2927 */ 2928 size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") + 2929 sizeof(PRINT_TH_FLAGS) + 1 + 2930 #ifdef INET6 2931 2 * INET6_ADDRSTRLEN; 2932 #else 2933 2 * INET_ADDRSTRLEN; 2934 #endif /* INET6 */ 2935 2936 s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT); 2937 if (s == NULL) 2938 return (NULL); 2939 2940 strcat(s, "TCP: ["); 2941 sp = s + strlen(s); 2942 2943 if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) { 2944 inet_ntoa_r(inc->inc_faddr, sp); 2945 sp = s + strlen(s); 2946 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2947 sp = s + strlen(s); 2948 inet_ntoa_r(inc->inc_laddr, sp); 2949 sp = s + strlen(s); 2950 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2951 #ifdef INET6 2952 } else if (inc) { 2953 ip6_sprintf(sp, &inc->inc6_faddr); 2954 sp = s + strlen(s); 2955 sprintf(sp, "]:%i to [", ntohs(inc->inc_fport)); 2956 sp = s + strlen(s); 2957 ip6_sprintf(sp, &inc->inc6_laddr); 2958 sp = s + strlen(s); 2959 sprintf(sp, "]:%i", ntohs(inc->inc_lport)); 2960 } else if (ip6 && th) { 2961 ip6_sprintf(sp, &ip6->ip6_src); 2962 sp = s + strlen(s); 2963 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2964 sp = s + strlen(s); 2965 ip6_sprintf(sp, &ip6->ip6_dst); 2966 sp = s + strlen(s); 2967 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2968 #endif /* INET6 */ 2969 #ifdef INET 2970 } else if (ip && th) { 2971 inet_ntoa_r(ip->ip_src, sp); 2972 sp = s + strlen(s); 2973 sprintf(sp, "]:%i to [", ntohs(th->th_sport)); 2974 sp = s + strlen(s); 2975 inet_ntoa_r(ip->ip_dst, sp); 2976 sp = s + strlen(s); 2977 sprintf(sp, "]:%i", ntohs(th->th_dport)); 2978 #endif /* INET */ 2979 } else { 2980 free(s, M_TCPLOG); 2981 return (NULL); 2982 } 2983 sp = s + strlen(s); 2984 if (th) 2985 sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS); 2986 if (*(s + size - 1) != '\0') 2987 panic("%s: string too long", __func__); 2988 return (s); 2989 } 2990 2991 /* 2992 * A subroutine which makes it easy to track TCP state changes with DTrace. 2993 * This function shouldn't be called for t_state initializations that don't 2994 * correspond to actual TCP state transitions. 2995 */ 2996 void 2997 tcp_state_change(struct tcpcb *tp, int newstate) 2998 { 2999 #if defined(KDTRACE_HOOKS) 3000 int pstate = tp->t_state; 3001 #endif 3002 3003 TCPSTATES_DEC(tp->t_state); 3004 TCPSTATES_INC(newstate); 3005 tp->t_state = newstate; 3006 TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate); 3007 } 3008