xref: /freebsd/sys/netinet/tcp_subr.c (revision e27abb6689c5733dd08ce240d5402a0de3a42254)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_fib.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet6/scope6_var.h>
86 #include <netinet6/nd6.h>
87 #endif
88 
89 #ifdef TCP_RFC7413
90 #include <netinet/tcp_fastopen.h>
91 #endif
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet/tcp_syncache.h>
98 #include <netinet/cc/cc.h>
99 #ifdef INET6
100 #include <netinet6/tcp6_var.h>
101 #endif
102 #include <netinet/tcpip.h>
103 #ifdef TCPPCAP
104 #include <netinet/tcp_pcap.h>
105 #endif
106 #ifdef TCPDEBUG
107 #include <netinet/tcp_debug.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/ip6protosw.h>
111 #endif
112 #ifdef TCP_OFFLOAD
113 #include <netinet/tcp_offload.h>
114 #endif
115 
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/xform.h>
119 #ifdef INET6
120 #include <netipsec/ipsec6.h>
121 #endif
122 #include <netipsec/key.h>
123 #include <sys/syslog.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 #include <sys/md5.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
132 #ifdef INET6
133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
134 #endif
135 
136 struct rwlock tcp_function_lock;
137 
138 static int
139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
140 {
141 	int error, new;
142 
143 	new = V_tcp_mssdflt;
144 	error = sysctl_handle_int(oidp, &new, 0, req);
145 	if (error == 0 && req->newptr) {
146 		if (new < TCP_MINMSS)
147 			error = EINVAL;
148 		else
149 			V_tcp_mssdflt = new;
150 	}
151 	return (error);
152 }
153 
154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
155     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
156     &sysctl_net_inet_tcp_mss_check, "I",
157     "Default TCP Maximum Segment Size");
158 
159 #ifdef INET6
160 static int
161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, new;
164 
165 	new = V_tcp_v6mssdflt;
166 	error = sysctl_handle_int(oidp, &new, 0, req);
167 	if (error == 0 && req->newptr) {
168 		if (new < TCP_MINMSS)
169 			error = EINVAL;
170 		else
171 			V_tcp_v6mssdflt = new;
172 	}
173 	return (error);
174 }
175 
176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
177     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
178     &sysctl_net_inet_tcp_mss_v6_check, "I",
179    "Default TCP Maximum Segment Size for IPv6");
180 #endif /* INET6 */
181 
182 /*
183  * Minimum MSS we accept and use. This prevents DoS attacks where
184  * we are forced to a ridiculous low MSS like 20 and send hundreds
185  * of packets instead of one. The effect scales with the available
186  * bandwidth and quickly saturates the CPU and network interface
187  * with packet generation and sending. Set to zero to disable MINMSS
188  * checking. This setting prevents us from sending too small packets.
189  */
190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
192      &VNET_NAME(tcp_minmss), 0,
193     "Minimum TCP Maximum Segment Size");
194 
195 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_rfc1323), 0,
198     "Enable rfc1323 (high performance TCP) extensions");
199 
200 static int	tcp_log_debug = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
202     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
203 
204 static int	tcp_tcbhashsize;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
206     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
207 
208 static int	do_tcpdrain = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
210     "Enable tcp_drain routine for extra help when low on mbufs");
211 
212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
213     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
214 
215 static VNET_DEFINE(int, icmp_may_rst) = 1;
216 #define	V_icmp_may_rst			VNET(icmp_may_rst)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(icmp_may_rst), 0,
219     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
220 
221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
222 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_isn_reseed_interval), 0,
225     "Seconds between reseeding of ISN secret");
226 
227 static int	tcp_soreceive_stream;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
229     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
230 
231 #ifdef TCP_SIGNATURE
232 static int	tcp_sig_checksigs = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
234     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
235 #endif
236 
237 VNET_DEFINE(uma_zone_t, sack_hole_zone);
238 #define	V_sack_hole_zone		VNET(sack_hole_zone)
239 
240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
241 
242 static struct inpcb *tcp_notify(struct inpcb *, int);
243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
244 static void tcp_mtudisc(struct inpcb *, int);
245 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
246 		    void *ip4hdr, const void *ip6hdr);
247 
248 
249 static struct tcp_function_block tcp_def_funcblk = {
250 	"default",
251 	tcp_output,
252 	tcp_do_segment,
253 	tcp_default_ctloutput,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	0,
261 	0
262 };
263 
264 int t_functions_inited = 0;
265 struct tcp_funchead t_functions;
266 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
267 
268 static void
269 init_tcp_functions(void)
270 {
271 	if (t_functions_inited == 0) {
272 		TAILQ_INIT(&t_functions);
273 		rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
274 		t_functions_inited = 1;
275 	}
276 }
277 
278 static struct tcp_function_block *
279 find_tcp_functions_locked(struct tcp_function_set *fs)
280 {
281 	struct tcp_function *f;
282 	struct tcp_function_block *blk=NULL;
283 
284 	TAILQ_FOREACH(f, &t_functions, tf_next) {
285 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
286 			blk = f->tf_fb;
287 			break;
288 		}
289 	}
290 	return(blk);
291 }
292 
293 static struct tcp_function_block *
294 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
295 {
296 	struct tcp_function_block *rblk=NULL;
297 	struct tcp_function *f;
298 
299 	TAILQ_FOREACH(f, &t_functions, tf_next) {
300 		if (f->tf_fb == blk) {
301 			rblk = blk;
302 			if (s) {
303 				*s = f;
304 			}
305 			break;
306 		}
307 	}
308 	return (rblk);
309 }
310 
311 struct tcp_function_block *
312 find_and_ref_tcp_functions(struct tcp_function_set *fs)
313 {
314 	struct tcp_function_block *blk;
315 
316 	rw_rlock(&tcp_function_lock);
317 	blk = find_tcp_functions_locked(fs);
318 	if (blk)
319 		refcount_acquire(&blk->tfb_refcnt);
320 	rw_runlock(&tcp_function_lock);
321 	return(blk);
322 }
323 
324 struct tcp_function_block *
325 find_and_ref_tcp_fb(struct tcp_function_block *blk)
326 {
327 	struct tcp_function_block *rblk;
328 
329 	rw_rlock(&tcp_function_lock);
330 	rblk = find_tcp_fb_locked(blk, NULL);
331 	if (rblk)
332 		refcount_acquire(&rblk->tfb_refcnt);
333 	rw_runlock(&tcp_function_lock);
334 	return(rblk);
335 }
336 
337 
338 static int
339 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
340 {
341 	int error=ENOENT;
342 	struct tcp_function_set fs;
343 	struct tcp_function_block *blk;
344 
345 	memset(&fs, 0, sizeof(fs));
346 	rw_rlock(&tcp_function_lock);
347 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
348 	if (blk) {
349 		/* Found him */
350 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
351 		fs.pcbcnt = blk->tfb_refcnt;
352 	}
353 	rw_runlock(&tcp_function_lock);
354 	error = sysctl_handle_string(oidp, fs.function_set_name,
355 				     sizeof(fs.function_set_name), req);
356 
357 	/* Check for error or no change */
358 	if (error != 0 || req->newptr == NULL)
359 		return(error);
360 
361 	rw_wlock(&tcp_function_lock);
362 	blk = find_tcp_functions_locked(&fs);
363 	if ((blk == NULL) ||
364 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
365 		error = ENOENT;
366 		goto done;
367 	}
368 	tcp_func_set_ptr = blk;
369 done:
370 	rw_wunlock(&tcp_function_lock);
371 	return (error);
372 }
373 
374 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
375 	    CTLTYPE_STRING | CTLFLAG_RW,
376 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
377 	    "Set/get the default TCP functions");
378 
379 static int
380 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
381 {
382 	int error, cnt, linesz;
383 	struct tcp_function *f;
384 	char *buffer, *cp;
385 	size_t bufsz, outsz;
386 
387 	cnt = 0;
388 	rw_rlock(&tcp_function_lock);
389 	TAILQ_FOREACH(f, &t_functions, tf_next) {
390 		cnt++;
391 	}
392 	rw_runlock(&tcp_function_lock);
393 
394 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
395 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
396 
397 	error = 0;
398 	cp = buffer;
399 
400 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
401 	cp += linesz;
402 	bufsz -= linesz;
403 	outsz = linesz;
404 
405 	rw_rlock(&tcp_function_lock);
406 	TAILQ_FOREACH(f, &t_functions, tf_next) {
407 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
408 		    f->tf_fb->tfb_tcp_block_name,
409 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
410 		    f->tf_fb->tfb_refcnt);
411 		if (linesz >= bufsz) {
412 			error = EOVERFLOW;
413 			break;
414 		}
415 		cp += linesz;
416 		bufsz -= linesz;
417 		outsz += linesz;
418 	}
419 	rw_runlock(&tcp_function_lock);
420 	if (error == 0)
421 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
422 	free(buffer, M_TEMP);
423 	return (error);
424 }
425 
426 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
427 	    CTLTYPE_STRING|CTLFLAG_RD,
428 	    NULL, 0, sysctl_net_inet_list_available, "A",
429 	    "list available TCP Function sets");
430 
431 /*
432  * Target size of TCP PCB hash tables. Must be a power of two.
433  *
434  * Note that this can be overridden by the kernel environment
435  * variable net.inet.tcp.tcbhashsize
436  */
437 #ifndef TCBHASHSIZE
438 #define TCBHASHSIZE	0
439 #endif
440 
441 /*
442  * XXX
443  * Callouts should be moved into struct tcp directly.  They are currently
444  * separate because the tcpcb structure is exported to userland for sysctl
445  * parsing purposes, which do not know about callouts.
446  */
447 struct tcpcb_mem {
448 	struct	tcpcb		tcb;
449 	struct	tcp_timer	tt;
450 	struct	cc_var		ccv;
451 	struct	osd		osd;
452 };
453 
454 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
455 #define	V_tcpcb_zone			VNET(tcpcb_zone)
456 
457 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
458 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
459 
460 static struct mtx isn_mtx;
461 
462 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
463 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
464 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
465 
466 /*
467  * TCP initialization.
468  */
469 static void
470 tcp_zone_change(void *tag)
471 {
472 
473 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
474 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
475 	tcp_tw_zone_change();
476 }
477 
478 static int
479 tcp_inpcb_init(void *mem, int size, int flags)
480 {
481 	struct inpcb *inp = mem;
482 
483 	INP_LOCK_INIT(inp, "inp", "tcpinp");
484 	return (0);
485 }
486 
487 /*
488  * Take a value and get the next power of 2 that doesn't overflow.
489  * Used to size the tcp_inpcb hash buckets.
490  */
491 static int
492 maketcp_hashsize(int size)
493 {
494 	int hashsize;
495 
496 	/*
497 	 * auto tune.
498 	 * get the next power of 2 higher than maxsockets.
499 	 */
500 	hashsize = 1 << fls(size);
501 	/* catch overflow, and just go one power of 2 smaller */
502 	if (hashsize < size) {
503 		hashsize = 1 << (fls(size) - 1);
504 	}
505 	return (hashsize);
506 }
507 
508 int
509 register_tcp_functions(struct tcp_function_block *blk, int wait)
510 {
511 	struct tcp_function_block *lblk;
512 	struct tcp_function *n;
513 	struct tcp_function_set fs;
514 
515 	if (t_functions_inited == 0) {
516 		init_tcp_functions();
517 	}
518 	if ((blk->tfb_tcp_output == NULL) ||
519 	    (blk->tfb_tcp_do_segment == NULL) ||
520 	    (blk->tfb_tcp_ctloutput == NULL) ||
521 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
522 		/*
523 		 * These functions are required and you
524 		 * need a name.
525 		 */
526 		return (EINVAL);
527 	}
528 	if (blk->tfb_tcp_timer_stop_all ||
529 	    blk->tfb_tcp_timer_activate ||
530 	    blk->tfb_tcp_timer_active ||
531 	    blk->tfb_tcp_timer_stop) {
532 		/*
533 		 * If you define one timer function you
534 		 * must have them all.
535 		 */
536 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
537 		    (blk->tfb_tcp_timer_activate == NULL) ||
538 		    (blk->tfb_tcp_timer_active == NULL) ||
539 		    (blk->tfb_tcp_timer_stop == NULL)) {
540 			return (EINVAL);
541 		}
542 	}
543 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
544 	if (n == NULL) {
545 		return (ENOMEM);
546 	}
547 	n->tf_fb = blk;
548 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
549 	rw_wlock(&tcp_function_lock);
550 	lblk = find_tcp_functions_locked(&fs);
551 	if (lblk) {
552 		/* Duplicate name space not allowed */
553 		rw_wunlock(&tcp_function_lock);
554 		free(n, M_TCPFUNCTIONS);
555 		return (EALREADY);
556 	}
557 	refcount_init(&blk->tfb_refcnt, 0);
558 	blk->tfb_flags = 0;
559 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
560 	rw_wunlock(&tcp_function_lock);
561 	return(0);
562 }
563 
564 int
565 deregister_tcp_functions(struct tcp_function_block *blk)
566 {
567 	struct tcp_function_block *lblk;
568 	struct tcp_function *f;
569 	int error=ENOENT;
570 
571 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
572 		/* You can't un-register the default */
573 		return (EPERM);
574 	}
575 	rw_wlock(&tcp_function_lock);
576 	if (blk == tcp_func_set_ptr) {
577 		/* You can't free the current default */
578 		rw_wunlock(&tcp_function_lock);
579 		return (EBUSY);
580 	}
581 	if (blk->tfb_refcnt) {
582 		/* Still tcb attached, mark it. */
583 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
584 		rw_wunlock(&tcp_function_lock);
585 		return (EBUSY);
586 	}
587 	lblk = find_tcp_fb_locked(blk, &f);
588 	if (lblk) {
589 		/* Found */
590 		TAILQ_REMOVE(&t_functions, f, tf_next);
591 		f->tf_fb = NULL;
592 		free(f, M_TCPFUNCTIONS);
593 		error = 0;
594 	}
595 	rw_wunlock(&tcp_function_lock);
596 	return (error);
597 }
598 
599 void
600 tcp_init(void)
601 {
602 	const char *tcbhash_tuneable;
603 	int hashsize;
604 
605 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
606 
607 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
608 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
609 		printf("%s: WARNING: unable to register helper hook\n", __func__);
610 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
611 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
612 		printf("%s: WARNING: unable to register helper hook\n", __func__);
613 	hashsize = TCBHASHSIZE;
614 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
615 	if (hashsize == 0) {
616 		/*
617 		 * Auto tune the hash size based on maxsockets.
618 		 * A perfect hash would have a 1:1 mapping
619 		 * (hashsize = maxsockets) however it's been
620 		 * suggested that O(2) average is better.
621 		 */
622 		hashsize = maketcp_hashsize(maxsockets / 4);
623 		/*
624 		 * Our historical default is 512,
625 		 * do not autotune lower than this.
626 		 */
627 		if (hashsize < 512)
628 			hashsize = 512;
629 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
630 			printf("%s: %s auto tuned to %d\n", __func__,
631 			    tcbhash_tuneable, hashsize);
632 	}
633 	/*
634 	 * We require a hashsize to be a power of two.
635 	 * Previously if it was not a power of two we would just reset it
636 	 * back to 512, which could be a nasty surprise if you did not notice
637 	 * the error message.
638 	 * Instead what we do is clip it to the closest power of two lower
639 	 * than the specified hash value.
640 	 */
641 	if (!powerof2(hashsize)) {
642 		int oldhashsize = hashsize;
643 
644 		hashsize = maketcp_hashsize(hashsize);
645 		/* prevent absurdly low value */
646 		if (hashsize < 16)
647 			hashsize = 16;
648 		printf("%s: WARNING: TCB hash size not a power of 2, "
649 		    "clipped from %d to %d.\n", __func__, oldhashsize,
650 		    hashsize);
651 	}
652 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
653 	    "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE);
654 
655 	/*
656 	 * These have to be type stable for the benefit of the timers.
657 	 */
658 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
659 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
660 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
661 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
662 
663 	tcp_tw_init();
664 	syncache_init();
665 	tcp_hc_init();
666 
667 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
668 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
669 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
670 
671 	/* Skip initialization of globals for non-default instances. */
672 	if (!IS_DEFAULT_VNET(curvnet))
673 		return;
674 
675 	tcp_reass_global_init();
676 
677 	/* XXX virtualize those bellow? */
678 	tcp_delacktime = TCPTV_DELACK;
679 	tcp_keepinit = TCPTV_KEEP_INIT;
680 	tcp_keepidle = TCPTV_KEEP_IDLE;
681 	tcp_keepintvl = TCPTV_KEEPINTVL;
682 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
683 	tcp_msl = TCPTV_MSL;
684 	tcp_rexmit_min = TCPTV_MIN;
685 	if (tcp_rexmit_min < 1)
686 		tcp_rexmit_min = 1;
687 	tcp_persmin = TCPTV_PERSMIN;
688 	tcp_persmax = TCPTV_PERSMAX;
689 	tcp_rexmit_slop = TCPTV_CPU_VAR;
690 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
691 	tcp_tcbhashsize = hashsize;
692 	/* Setup the tcp function block list */
693 	init_tcp_functions();
694 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
695 
696 	if (tcp_soreceive_stream) {
697 #ifdef INET
698 		tcp_usrreqs.pru_soreceive = soreceive_stream;
699 #endif
700 #ifdef INET6
701 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
702 #endif /* INET6 */
703 	}
704 
705 #ifdef INET6
706 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
707 #else /* INET6 */
708 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
709 #endif /* INET6 */
710 	if (max_protohdr < TCP_MINPROTOHDR)
711 		max_protohdr = TCP_MINPROTOHDR;
712 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
713 		panic("tcp_init");
714 #undef TCP_MINPROTOHDR
715 
716 	ISN_LOCK_INIT();
717 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
718 		SHUTDOWN_PRI_DEFAULT);
719 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
720 		EVENTHANDLER_PRI_ANY);
721 #ifdef TCPPCAP
722 	tcp_pcap_init();
723 #endif
724 
725 #ifdef TCP_RFC7413
726 	tcp_fastopen_init();
727 #endif
728 }
729 
730 #ifdef VIMAGE
731 static void
732 tcp_destroy(void *unused __unused)
733 {
734 	int error;
735 
736 	/*
737 	 * All our processes are gone, all our sockets should be cleaned
738 	 * up, which means, we should be past the tcp_discardcb() calls.
739 	 * Sleep to let all tcpcb timers really disappear and then cleanup.
740 	 * Timewait will cleanup its queue and will be ready to go.
741 	 * XXX-BZ In theory a few ticks should be good enough to make sure
742 	 * the timers are all really gone.  We should see if we could use a
743 	 * better metric here and, e.g., check a tcbcb count as an optimization?
744 	 */
745 	DELAY(1000000 / hz);
746 	tcp_hc_destroy();
747 	syncache_destroy();
748 	tcp_tw_destroy();
749 	in_pcbinfo_destroy(&V_tcbinfo);
750 	/* tcp_discardcb() clears the sack_holes up. */
751 	uma_zdestroy(V_sack_hole_zone);
752 	uma_zdestroy(V_tcpcb_zone);
753 
754 #ifdef TCP_RFC7413
755 	/*
756 	 * Cannot free the zone until all tcpcbs are released as we attach
757 	 * the allocations to them.
758 	 */
759 	tcp_fastopen_destroy();
760 #endif
761 
762 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
763 	if (error != 0) {
764 		printf("%s: WARNING: unable to deregister helper hook "
765 		    "type=%d, id=%d: error %d returned\n", __func__,
766 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
767 	}
768 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
769 	if (error != 0) {
770 		printf("%s: WARNING: unable to deregister helper hook "
771 		    "type=%d, id=%d: error %d returned\n", __func__,
772 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
773 	}
774 }
775 VNET_SYSUNINIT(tcp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, tcp_destroy, NULL);
776 #endif
777 
778 void
779 tcp_fini(void *xtp)
780 {
781 
782 }
783 
784 /*
785  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
786  * tcp_template used to store this data in mbufs, but we now recopy it out
787  * of the tcpcb each time to conserve mbufs.
788  */
789 void
790 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
791 {
792 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
793 
794 	INP_WLOCK_ASSERT(inp);
795 
796 #ifdef INET6
797 	if ((inp->inp_vflag & INP_IPV6) != 0) {
798 		struct ip6_hdr *ip6;
799 
800 		ip6 = (struct ip6_hdr *)ip_ptr;
801 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
802 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
803 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
804 			(IPV6_VERSION & IPV6_VERSION_MASK);
805 		ip6->ip6_nxt = IPPROTO_TCP;
806 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
807 		ip6->ip6_src = inp->in6p_laddr;
808 		ip6->ip6_dst = inp->in6p_faddr;
809 	}
810 #endif /* INET6 */
811 #if defined(INET6) && defined(INET)
812 	else
813 #endif
814 #ifdef INET
815 	{
816 		struct ip *ip;
817 
818 		ip = (struct ip *)ip_ptr;
819 		ip->ip_v = IPVERSION;
820 		ip->ip_hl = 5;
821 		ip->ip_tos = inp->inp_ip_tos;
822 		ip->ip_len = 0;
823 		ip->ip_id = 0;
824 		ip->ip_off = 0;
825 		ip->ip_ttl = inp->inp_ip_ttl;
826 		ip->ip_sum = 0;
827 		ip->ip_p = IPPROTO_TCP;
828 		ip->ip_src = inp->inp_laddr;
829 		ip->ip_dst = inp->inp_faddr;
830 	}
831 #endif /* INET */
832 	th->th_sport = inp->inp_lport;
833 	th->th_dport = inp->inp_fport;
834 	th->th_seq = 0;
835 	th->th_ack = 0;
836 	th->th_x2 = 0;
837 	th->th_off = 5;
838 	th->th_flags = 0;
839 	th->th_win = 0;
840 	th->th_urp = 0;
841 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
842 }
843 
844 /*
845  * Create template to be used to send tcp packets on a connection.
846  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
847  * use for this function is in keepalives, which use tcp_respond.
848  */
849 struct tcptemp *
850 tcpip_maketemplate(struct inpcb *inp)
851 {
852 	struct tcptemp *t;
853 
854 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
855 	if (t == NULL)
856 		return (NULL);
857 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
858 	return (t);
859 }
860 
861 /*
862  * Send a single message to the TCP at address specified by
863  * the given TCP/IP header.  If m == NULL, then we make a copy
864  * of the tcpiphdr at th and send directly to the addressed host.
865  * This is used to force keep alive messages out using the TCP
866  * template for a connection.  If flags are given then we send
867  * a message back to the TCP which originated the segment th,
868  * and discard the mbuf containing it and any other attached mbufs.
869  *
870  * In any case the ack and sequence number of the transmitted
871  * segment are as specified by the parameters.
872  *
873  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
874  */
875 void
876 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
877     tcp_seq ack, tcp_seq seq, int flags)
878 {
879 	struct tcpopt to;
880 	struct inpcb *inp;
881 	struct ip *ip;
882 	struct mbuf *optm;
883 	struct tcphdr *nth;
884 	u_char *optp;
885 #ifdef INET6
886 	struct ip6_hdr *ip6;
887 	int isipv6;
888 #endif /* INET6 */
889 	int optlen, tlen, win;
890 	bool incl_opts;
891 
892 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
893 
894 #ifdef INET6
895 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
896 	ip6 = ipgen;
897 #endif /* INET6 */
898 	ip = ipgen;
899 
900 	if (tp != NULL) {
901 		inp = tp->t_inpcb;
902 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
903 		INP_WLOCK_ASSERT(inp);
904 	} else
905 		inp = NULL;
906 
907 	incl_opts = false;
908 	win = 0;
909 	if (tp != NULL) {
910 		if (!(flags & TH_RST)) {
911 			win = sbspace(&inp->inp_socket->so_rcv);
912 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
913 				win = (long)TCP_MAXWIN << tp->rcv_scale;
914 		}
915 		if ((tp->t_flags & TF_NOOPT) == 0)
916 			incl_opts = true;
917 	}
918 	if (m == NULL) {
919 		m = m_gethdr(M_NOWAIT, MT_DATA);
920 		if (m == NULL)
921 			return;
922 		m->m_data += max_linkhdr;
923 #ifdef INET6
924 		if (isipv6) {
925 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
926 			      sizeof(struct ip6_hdr));
927 			ip6 = mtod(m, struct ip6_hdr *);
928 			nth = (struct tcphdr *)(ip6 + 1);
929 		} else
930 #endif /* INET6 */
931 		{
932 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
933 			ip = mtod(m, struct ip *);
934 			nth = (struct tcphdr *)(ip + 1);
935 		}
936 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
937 		flags = TH_ACK;
938 	} else if (!M_WRITABLE(m)) {
939 		struct mbuf *n;
940 
941 		/* Can't reuse 'm', allocate a new mbuf. */
942 		n = m_gethdr(M_NOWAIT, MT_DATA);
943 		if (n == NULL) {
944 			m_freem(m);
945 			return;
946 		}
947 
948 		if (!m_dup_pkthdr(n, m, M_NOWAIT)) {
949 			m_freem(m);
950 			m_freem(n);
951 			return;
952 		}
953 
954 		n->m_data += max_linkhdr;
955 		/* m_len is set later */
956 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
957 #ifdef INET6
958 		if (isipv6) {
959 			bcopy((caddr_t)ip6, mtod(n, caddr_t),
960 			      sizeof(struct ip6_hdr));
961 			ip6 = mtod(n, struct ip6_hdr *);
962 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
963 			nth = (struct tcphdr *)(ip6 + 1);
964 		} else
965 #endif /* INET6 */
966 		{
967 			bcopy((caddr_t)ip, mtod(n, caddr_t), sizeof(struct ip));
968 			ip = mtod(n, struct ip *);
969 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
970 			nth = (struct tcphdr *)(ip + 1);
971 		}
972 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
973 		xchg(nth->th_dport, nth->th_sport, uint16_t);
974 		th = nth;
975 		m_freem(m);
976 		m = n;
977 	} else {
978 		/*
979 		 *  reuse the mbuf.
980 		 * XXX MRT We inherit the FIB, which is lucky.
981 		 */
982 		m_freem(m->m_next);
983 		m->m_next = NULL;
984 		m->m_data = (caddr_t)ipgen;
985 		/* m_len is set later */
986 #ifdef INET6
987 		if (isipv6) {
988 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
989 			nth = (struct tcphdr *)(ip6 + 1);
990 		} else
991 #endif /* INET6 */
992 		{
993 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
994 			nth = (struct tcphdr *)(ip + 1);
995 		}
996 		if (th != nth) {
997 			/*
998 			 * this is usually a case when an extension header
999 			 * exists between the IPv6 header and the
1000 			 * TCP header.
1001 			 */
1002 			nth->th_sport = th->th_sport;
1003 			nth->th_dport = th->th_dport;
1004 		}
1005 		xchg(nth->th_dport, nth->th_sport, uint16_t);
1006 #undef xchg
1007 	}
1008 	tlen = 0;
1009 #ifdef INET6
1010 	if (isipv6)
1011 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
1012 #endif
1013 #if defined(INET) && defined(INET6)
1014 	else
1015 #endif
1016 #ifdef INET
1017 		tlen = sizeof (struct tcpiphdr);
1018 #endif
1019 #ifdef INVARIANTS
1020 	m->m_len = 0;
1021 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
1022 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
1023 	    m, tlen, (long)M_TRAILINGSPACE(m)));
1024 #endif
1025 	m->m_len = tlen;
1026 	to.to_flags = 0;
1027 	if (incl_opts) {
1028 		/* Make sure we have room. */
1029 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
1030 			m->m_next = m_get(M_NOWAIT, MT_DATA);
1031 			if (m->m_next) {
1032 				optp = mtod(m->m_next, u_char *);
1033 				optm = m->m_next;
1034 			} else
1035 				incl_opts = false;
1036 		} else {
1037 			optp = (u_char *) (nth + 1);
1038 			optm = m;
1039 		}
1040 	}
1041 	if (incl_opts) {
1042 		/* Timestamps. */
1043 		if (tp->t_flags & TF_RCVD_TSTMP) {
1044 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1045 			to.to_tsecr = tp->ts_recent;
1046 			to.to_flags |= TOF_TS;
1047 		}
1048 #ifdef TCP_SIGNATURE
1049 		/* TCP-MD5 (RFC2385). */
1050 		if (tp->t_flags & TF_SIGNATURE)
1051 			to.to_flags |= TOF_SIGNATURE;
1052 #endif
1053 
1054 		/* Add the options. */
1055 		tlen += optlen = tcp_addoptions(&to, optp);
1056 
1057 		/* Update m_len in the correct mbuf. */
1058 		optm->m_len += optlen;
1059 	} else
1060 		optlen = 0;
1061 #ifdef INET6
1062 	if (isipv6) {
1063 		ip6->ip6_flow = 0;
1064 		ip6->ip6_vfc = IPV6_VERSION;
1065 		ip6->ip6_nxt = IPPROTO_TCP;
1066 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1067 	}
1068 #endif
1069 #if defined(INET) && defined(INET6)
1070 	else
1071 #endif
1072 #ifdef INET
1073 	{
1074 		ip->ip_len = htons(tlen);
1075 		ip->ip_ttl = V_ip_defttl;
1076 		if (V_path_mtu_discovery)
1077 			ip->ip_off |= htons(IP_DF);
1078 	}
1079 #endif
1080 	m->m_pkthdr.len = tlen;
1081 	m->m_pkthdr.rcvif = NULL;
1082 #ifdef MAC
1083 	if (inp != NULL) {
1084 		/*
1085 		 * Packet is associated with a socket, so allow the
1086 		 * label of the response to reflect the socket label.
1087 		 */
1088 		INP_WLOCK_ASSERT(inp);
1089 		mac_inpcb_create_mbuf(inp, m);
1090 	} else {
1091 		/*
1092 		 * Packet is not associated with a socket, so possibly
1093 		 * update the label in place.
1094 		 */
1095 		mac_netinet_tcp_reply(m);
1096 	}
1097 #endif
1098 	nth->th_seq = htonl(seq);
1099 	nth->th_ack = htonl(ack);
1100 	nth->th_x2 = 0;
1101 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
1102 	nth->th_flags = flags;
1103 	if (tp != NULL)
1104 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1105 	else
1106 		nth->th_win = htons((u_short)win);
1107 	nth->th_urp = 0;
1108 
1109 #ifdef TCP_SIGNATURE
1110 	if (to.to_flags & TOF_SIGNATURE) {
1111 		tcp_signature_compute(m, 0, 0, optlen, to.to_signature,
1112 		    IPSEC_DIR_OUTBOUND);
1113 	}
1114 #endif
1115 
1116 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1117 #ifdef INET6
1118 	if (isipv6) {
1119 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1120 		nth->th_sum = in6_cksum_pseudo(ip6,
1121 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1122 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1123 		    NULL, NULL);
1124 	}
1125 #endif /* INET6 */
1126 #if defined(INET6) && defined(INET)
1127 	else
1128 #endif
1129 #ifdef INET
1130 	{
1131 		m->m_pkthdr.csum_flags = CSUM_TCP;
1132 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1133 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1134 	}
1135 #endif /* INET */
1136 #ifdef TCPDEBUG
1137 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1138 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1139 #endif
1140 	TCP_PROBE3(debug__output, tp, th, mtod(m, const char *));
1141 	if (flags & TH_RST)
1142 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1143 		    tp, nth);
1144 
1145 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1146 #ifdef INET6
1147 	if (isipv6)
1148 		(void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1149 #endif /* INET6 */
1150 #if defined(INET) && defined(INET6)
1151 	else
1152 #endif
1153 #ifdef INET
1154 		(void) ip_output(m, NULL, NULL, 0, NULL, inp);
1155 #endif
1156 }
1157 
1158 /*
1159  * Create a new TCP control block, making an
1160  * empty reassembly queue and hooking it to the argument
1161  * protocol control block.  The `inp' parameter must have
1162  * come from the zone allocator set up in tcp_init().
1163  */
1164 struct tcpcb *
1165 tcp_newtcpcb(struct inpcb *inp)
1166 {
1167 	struct tcpcb_mem *tm;
1168 	struct tcpcb *tp;
1169 #ifdef INET6
1170 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1171 #endif /* INET6 */
1172 
1173 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1174 	if (tm == NULL)
1175 		return (NULL);
1176 	tp = &tm->tcb;
1177 
1178 	/* Initialise cc_var struct for this tcpcb. */
1179 	tp->ccv = &tm->ccv;
1180 	tp->ccv->type = IPPROTO_TCP;
1181 	tp->ccv->ccvc.tcp = tp;
1182 	rw_rlock(&tcp_function_lock);
1183 	tp->t_fb = tcp_func_set_ptr;
1184 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1185 	rw_runlock(&tcp_function_lock);
1186 	if (tp->t_fb->tfb_tcp_fb_init) {
1187 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1188 	}
1189 	/*
1190 	 * Use the current system default CC algorithm.
1191 	 */
1192 	CC_LIST_RLOCK();
1193 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1194 	CC_ALGO(tp) = CC_DEFAULT();
1195 	CC_LIST_RUNLOCK();
1196 
1197 	if (CC_ALGO(tp)->cb_init != NULL)
1198 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1199 			if (tp->t_fb->tfb_tcp_fb_fini)
1200 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1201 			refcount_release(&tp->t_fb->tfb_refcnt);
1202 			uma_zfree(V_tcpcb_zone, tm);
1203 			return (NULL);
1204 		}
1205 
1206 	tp->osd = &tm->osd;
1207 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1208 		if (tp->t_fb->tfb_tcp_fb_fini)
1209 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1210 		refcount_release(&tp->t_fb->tfb_refcnt);
1211 		uma_zfree(V_tcpcb_zone, tm);
1212 		return (NULL);
1213 	}
1214 
1215 #ifdef VIMAGE
1216 	tp->t_vnet = inp->inp_vnet;
1217 #endif
1218 	tp->t_timers = &tm->tt;
1219 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1220 	tp->t_maxseg =
1221 #ifdef INET6
1222 		isipv6 ? V_tcp_v6mssdflt :
1223 #endif /* INET6 */
1224 		V_tcp_mssdflt;
1225 
1226 	/* Set up our timeouts. */
1227 	callout_init(&tp->t_timers->tt_rexmt, 1);
1228 	callout_init(&tp->t_timers->tt_persist, 1);
1229 	callout_init(&tp->t_timers->tt_keep, 1);
1230 	callout_init(&tp->t_timers->tt_2msl, 1);
1231 	callout_init(&tp->t_timers->tt_delack, 1);
1232 
1233 	if (V_tcp_do_rfc1323)
1234 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1235 	if (V_tcp_do_sack)
1236 		tp->t_flags |= TF_SACK_PERMIT;
1237 	TAILQ_INIT(&tp->snd_holes);
1238 	/*
1239 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1240 	 * is called.
1241 	 */
1242 	in_pcbref(inp);	/* Reference for tcpcb */
1243 	tp->t_inpcb = inp;
1244 
1245 	/*
1246 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1247 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1248 	 * reasonable initial retransmit time.
1249 	 */
1250 	tp->t_srtt = TCPTV_SRTTBASE;
1251 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1252 	tp->t_rttmin = tcp_rexmit_min;
1253 	tp->t_rxtcur = TCPTV_RTOBASE;
1254 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1255 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1256 	tp->t_rcvtime = ticks;
1257 	/*
1258 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1259 	 * because the socket may be bound to an IPv6 wildcard address,
1260 	 * which may match an IPv4-mapped IPv6 address.
1261 	 */
1262 	inp->inp_ip_ttl = V_ip_defttl;
1263 	inp->inp_ppcb = tp;
1264 #ifdef TCPPCAP
1265 	/*
1266 	 * Init the TCP PCAP queues.
1267 	 */
1268 	tcp_pcap_tcpcb_init(tp);
1269 #endif
1270 	return (tp);		/* XXX */
1271 }
1272 
1273 /*
1274  * Switch the congestion control algorithm back to NewReno for any active
1275  * control blocks using an algorithm which is about to go away.
1276  * This ensures the CC framework can allow the unload to proceed without leaving
1277  * any dangling pointers which would trigger a panic.
1278  * Returning non-zero would inform the CC framework that something went wrong
1279  * and it would be unsafe to allow the unload to proceed. However, there is no
1280  * way for this to occur with this implementation so we always return zero.
1281  */
1282 int
1283 tcp_ccalgounload(struct cc_algo *unload_algo)
1284 {
1285 	struct cc_algo *tmpalgo;
1286 	struct inpcb *inp;
1287 	struct tcpcb *tp;
1288 	VNET_ITERATOR_DECL(vnet_iter);
1289 
1290 	/*
1291 	 * Check all active control blocks across all network stacks and change
1292 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1293 	 * requires cleanup code to be run, call it.
1294 	 */
1295 	VNET_LIST_RLOCK();
1296 	VNET_FOREACH(vnet_iter) {
1297 		CURVNET_SET(vnet_iter);
1298 		INP_INFO_WLOCK(&V_tcbinfo);
1299 		/*
1300 		 * New connections already part way through being initialised
1301 		 * with the CC algo we're removing will not race with this code
1302 		 * because the INP_INFO_WLOCK is held during initialisation. We
1303 		 * therefore don't enter the loop below until the connection
1304 		 * list has stabilised.
1305 		 */
1306 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1307 			INP_WLOCK(inp);
1308 			/* Important to skip tcptw structs. */
1309 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1310 			    (tp = intotcpcb(inp)) != NULL) {
1311 				/*
1312 				 * By holding INP_WLOCK here, we are assured
1313 				 * that the connection is not currently
1314 				 * executing inside the CC module's functions
1315 				 * i.e. it is safe to make the switch back to
1316 				 * NewReno.
1317 				 */
1318 				if (CC_ALGO(tp) == unload_algo) {
1319 					tmpalgo = CC_ALGO(tp);
1320 					/* NewReno does not require any init. */
1321 					CC_ALGO(tp) = &newreno_cc_algo;
1322 					if (tmpalgo->cb_destroy != NULL)
1323 						tmpalgo->cb_destroy(tp->ccv);
1324 				}
1325 			}
1326 			INP_WUNLOCK(inp);
1327 		}
1328 		INP_INFO_WUNLOCK(&V_tcbinfo);
1329 		CURVNET_RESTORE();
1330 	}
1331 	VNET_LIST_RUNLOCK();
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Drop a TCP connection, reporting
1338  * the specified error.  If connection is synchronized,
1339  * then send a RST to peer.
1340  */
1341 struct tcpcb *
1342 tcp_drop(struct tcpcb *tp, int errno)
1343 {
1344 	struct socket *so = tp->t_inpcb->inp_socket;
1345 
1346 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1347 	INP_WLOCK_ASSERT(tp->t_inpcb);
1348 
1349 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1350 		tcp_state_change(tp, TCPS_CLOSED);
1351 		(void) tp->t_fb->tfb_tcp_output(tp);
1352 		TCPSTAT_INC(tcps_drops);
1353 	} else
1354 		TCPSTAT_INC(tcps_conndrops);
1355 	if (errno == ETIMEDOUT && tp->t_softerror)
1356 		errno = tp->t_softerror;
1357 	so->so_error = errno;
1358 	return (tcp_close(tp));
1359 }
1360 
1361 void
1362 tcp_discardcb(struct tcpcb *tp)
1363 {
1364 	struct inpcb *inp = tp->t_inpcb;
1365 	struct socket *so = inp->inp_socket;
1366 #ifdef INET6
1367 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1368 #endif /* INET6 */
1369 	int released;
1370 
1371 	INP_WLOCK_ASSERT(inp);
1372 
1373 	/*
1374 	 * Make sure that all of our timers are stopped before we delete the
1375 	 * PCB.
1376 	 *
1377 	 * If stopping a timer fails, we schedule a discard function in same
1378 	 * callout, and the last discard function called will take care of
1379 	 * deleting the tcpcb.
1380 	 */
1381 	tp->t_timers->tt_draincnt = 0;
1382 	tcp_timer_stop(tp, TT_REXMT);
1383 	tcp_timer_stop(tp, TT_PERSIST);
1384 	tcp_timer_stop(tp, TT_KEEP);
1385 	tcp_timer_stop(tp, TT_2MSL);
1386 	tcp_timer_stop(tp, TT_DELACK);
1387 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1388 		/*
1389 		 * Call the stop-all function of the methods,
1390 		 * this function should call the tcp_timer_stop()
1391 		 * method with each of the function specific timeouts.
1392 		 * That stop will be called via the tfb_tcp_timer_stop()
1393 		 * which should use the async drain function of the
1394 		 * callout system (see tcp_var.h).
1395 		 */
1396 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1397 	}
1398 
1399 	/*
1400 	 * If we got enough samples through the srtt filter,
1401 	 * save the rtt and rttvar in the routing entry.
1402 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1403 	 * 4 samples is enough for the srtt filter to converge
1404 	 * to within enough % of the correct value; fewer samples
1405 	 * and we could save a bogus rtt. The danger is not high
1406 	 * as tcp quickly recovers from everything.
1407 	 * XXX: Works very well but needs some more statistics!
1408 	 */
1409 	if (tp->t_rttupdated >= 4) {
1410 		struct hc_metrics_lite metrics;
1411 		u_long ssthresh;
1412 
1413 		bzero(&metrics, sizeof(metrics));
1414 		/*
1415 		 * Update the ssthresh always when the conditions below
1416 		 * are satisfied. This gives us better new start value
1417 		 * for the congestion avoidance for new connections.
1418 		 * ssthresh is only set if packet loss occurred on a session.
1419 		 *
1420 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1421 		 * being torn down.  Ideally this code would not use 'so'.
1422 		 */
1423 		ssthresh = tp->snd_ssthresh;
1424 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1425 			/*
1426 			 * convert the limit from user data bytes to
1427 			 * packets then to packet data bytes.
1428 			 */
1429 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1430 			if (ssthresh < 2)
1431 				ssthresh = 2;
1432 			ssthresh *= (u_long)(tp->t_maxseg +
1433 #ifdef INET6
1434 			    (isipv6 ? sizeof (struct ip6_hdr) +
1435 				sizeof (struct tcphdr) :
1436 #endif
1437 				sizeof (struct tcpiphdr)
1438 #ifdef INET6
1439 			    )
1440 #endif
1441 			    );
1442 		} else
1443 			ssthresh = 0;
1444 		metrics.rmx_ssthresh = ssthresh;
1445 
1446 		metrics.rmx_rtt = tp->t_srtt;
1447 		metrics.rmx_rttvar = tp->t_rttvar;
1448 		metrics.rmx_cwnd = tp->snd_cwnd;
1449 		metrics.rmx_sendpipe = 0;
1450 		metrics.rmx_recvpipe = 0;
1451 
1452 		tcp_hc_update(&inp->inp_inc, &metrics);
1453 	}
1454 
1455 	/* free the reassembly queue, if any */
1456 	tcp_reass_flush(tp);
1457 
1458 #ifdef TCP_OFFLOAD
1459 	/* Disconnect offload device, if any. */
1460 	if (tp->t_flags & TF_TOE)
1461 		tcp_offload_detach(tp);
1462 #endif
1463 
1464 	tcp_free_sackholes(tp);
1465 
1466 #ifdef TCPPCAP
1467 	/* Free the TCP PCAP queues. */
1468 	tcp_pcap_drain(&(tp->t_inpkts));
1469 	tcp_pcap_drain(&(tp->t_outpkts));
1470 #endif
1471 
1472 	/* Allow the CC algorithm to clean up after itself. */
1473 	if (CC_ALGO(tp)->cb_destroy != NULL)
1474 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1475 
1476 	khelp_destroy_osd(tp->osd);
1477 
1478 	CC_ALGO(tp) = NULL;
1479 	inp->inp_ppcb = NULL;
1480 	if (tp->t_timers->tt_draincnt == 0) {
1481 		/* We own the last reference on tcpcb, let's free it. */
1482 		if (tp->t_fb->tfb_tcp_fb_fini)
1483 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1484 		refcount_release(&tp->t_fb->tfb_refcnt);
1485 		tp->t_inpcb = NULL;
1486 		uma_zfree(V_tcpcb_zone, tp);
1487 		released = in_pcbrele_wlocked(inp);
1488 		KASSERT(!released, ("%s: inp %p should not have been released "
1489 			"here", __func__, inp));
1490 	}
1491 }
1492 
1493 void
1494 tcp_timer_discard(void *ptp)
1495 {
1496 	struct inpcb *inp;
1497 	struct tcpcb *tp;
1498 
1499 	tp = (struct tcpcb *)ptp;
1500 	CURVNET_SET(tp->t_vnet);
1501 	INP_INFO_RLOCK(&V_tcbinfo);
1502 	inp = tp->t_inpcb;
1503 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1504 		__func__, tp));
1505 	INP_WLOCK(inp);
1506 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1507 		("%s: tcpcb has to be stopped here", __func__));
1508 	tp->t_timers->tt_draincnt--;
1509 	if (tp->t_timers->tt_draincnt == 0) {
1510 		/* We own the last reference on this tcpcb, let's free it. */
1511 		if (tp->t_fb->tfb_tcp_fb_fini)
1512 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1513 		refcount_release(&tp->t_fb->tfb_refcnt);
1514 		tp->t_inpcb = NULL;
1515 		uma_zfree(V_tcpcb_zone, tp);
1516 		if (in_pcbrele_wlocked(inp)) {
1517 			INP_INFO_RUNLOCK(&V_tcbinfo);
1518 			CURVNET_RESTORE();
1519 			return;
1520 		}
1521 	}
1522 	INP_WUNLOCK(inp);
1523 	INP_INFO_RUNLOCK(&V_tcbinfo);
1524 	CURVNET_RESTORE();
1525 }
1526 
1527 /*
1528  * Attempt to close a TCP control block, marking it as dropped, and freeing
1529  * the socket if we hold the only reference.
1530  */
1531 struct tcpcb *
1532 tcp_close(struct tcpcb *tp)
1533 {
1534 	struct inpcb *inp = tp->t_inpcb;
1535 	struct socket *so;
1536 
1537 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1538 	INP_WLOCK_ASSERT(inp);
1539 
1540 #ifdef TCP_OFFLOAD
1541 	if (tp->t_state == TCPS_LISTEN)
1542 		tcp_offload_listen_stop(tp);
1543 #endif
1544 #ifdef TCP_RFC7413
1545 	/*
1546 	 * This releases the TFO pending counter resource for TFO listen
1547 	 * sockets as well as passively-created TFO sockets that transition
1548 	 * from SYN_RECEIVED to CLOSED.
1549 	 */
1550 	if (tp->t_tfo_pending) {
1551 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1552 		tp->t_tfo_pending = NULL;
1553 	}
1554 #endif
1555 	in_pcbdrop(inp);
1556 	TCPSTAT_INC(tcps_closed);
1557 	TCPSTATES_DEC(tp->t_state);
1558 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1559 	so = inp->inp_socket;
1560 	soisdisconnected(so);
1561 	if (inp->inp_flags & INP_SOCKREF) {
1562 		KASSERT(so->so_state & SS_PROTOREF,
1563 		    ("tcp_close: !SS_PROTOREF"));
1564 		inp->inp_flags &= ~INP_SOCKREF;
1565 		INP_WUNLOCK(inp);
1566 		ACCEPT_LOCK();
1567 		SOCK_LOCK(so);
1568 		so->so_state &= ~SS_PROTOREF;
1569 		sofree(so);
1570 		return (NULL);
1571 	}
1572 	return (tp);
1573 }
1574 
1575 void
1576 tcp_drain(void)
1577 {
1578 	VNET_ITERATOR_DECL(vnet_iter);
1579 
1580 	if (!do_tcpdrain)
1581 		return;
1582 
1583 	VNET_LIST_RLOCK_NOSLEEP();
1584 	VNET_FOREACH(vnet_iter) {
1585 		CURVNET_SET(vnet_iter);
1586 		struct inpcb *inpb;
1587 		struct tcpcb *tcpb;
1588 
1589 	/*
1590 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1591 	 * if there is one...
1592 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1593 	 *      reassembly queue should be flushed, but in a situation
1594 	 *	where we're really low on mbufs, this is potentially
1595 	 *	useful.
1596 	 */
1597 		INP_INFO_WLOCK(&V_tcbinfo);
1598 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1599 			if (inpb->inp_flags & INP_TIMEWAIT)
1600 				continue;
1601 			INP_WLOCK(inpb);
1602 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1603 				tcp_reass_flush(tcpb);
1604 				tcp_clean_sackreport(tcpb);
1605 			}
1606 			INP_WUNLOCK(inpb);
1607 		}
1608 		INP_INFO_WUNLOCK(&V_tcbinfo);
1609 		CURVNET_RESTORE();
1610 	}
1611 	VNET_LIST_RUNLOCK_NOSLEEP();
1612 }
1613 
1614 /*
1615  * Notify a tcp user of an asynchronous error;
1616  * store error as soft error, but wake up user
1617  * (for now, won't do anything until can select for soft error).
1618  *
1619  * Do not wake up user since there currently is no mechanism for
1620  * reporting soft errors (yet - a kqueue filter may be added).
1621  */
1622 static struct inpcb *
1623 tcp_notify(struct inpcb *inp, int error)
1624 {
1625 	struct tcpcb *tp;
1626 
1627 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1628 	INP_WLOCK_ASSERT(inp);
1629 
1630 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1631 	    (inp->inp_flags & INP_DROPPED))
1632 		return (inp);
1633 
1634 	tp = intotcpcb(inp);
1635 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1636 
1637 	/*
1638 	 * Ignore some errors if we are hooked up.
1639 	 * If connection hasn't completed, has retransmitted several times,
1640 	 * and receives a second error, give up now.  This is better
1641 	 * than waiting a long time to establish a connection that
1642 	 * can never complete.
1643 	 */
1644 	if (tp->t_state == TCPS_ESTABLISHED &&
1645 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1646 	     error == EHOSTDOWN)) {
1647 		if (inp->inp_route.ro_rt) {
1648 			RTFREE(inp->inp_route.ro_rt);
1649 			inp->inp_route.ro_rt = (struct rtentry *)NULL;
1650 		}
1651 		return (inp);
1652 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1653 	    tp->t_softerror) {
1654 		tp = tcp_drop(tp, error);
1655 		if (tp != NULL)
1656 			return (inp);
1657 		else
1658 			return (NULL);
1659 	} else {
1660 		tp->t_softerror = error;
1661 		return (inp);
1662 	}
1663 #if 0
1664 	wakeup( &so->so_timeo);
1665 	sorwakeup(so);
1666 	sowwakeup(so);
1667 #endif
1668 }
1669 
1670 static int
1671 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1672 {
1673 	int error, i, m, n, pcb_count;
1674 	struct inpcb *inp, **inp_list;
1675 	inp_gen_t gencnt;
1676 	struct xinpgen xig;
1677 
1678 	/*
1679 	 * The process of preparing the TCB list is too time-consuming and
1680 	 * resource-intensive to repeat twice on every request.
1681 	 */
1682 	if (req->oldptr == NULL) {
1683 		n = V_tcbinfo.ipi_count +
1684 		    counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
1685 		n += imax(n / 8, 10);
1686 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1687 		return (0);
1688 	}
1689 
1690 	if (req->newptr != NULL)
1691 		return (EPERM);
1692 
1693 	/*
1694 	 * OK, now we're committed to doing something.
1695 	 */
1696 	INP_LIST_RLOCK(&V_tcbinfo);
1697 	gencnt = V_tcbinfo.ipi_gencnt;
1698 	n = V_tcbinfo.ipi_count;
1699 	INP_LIST_RUNLOCK(&V_tcbinfo);
1700 
1701 	m = counter_u64_fetch(V_tcps_states[TCPS_SYN_RECEIVED]);
1702 
1703 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1704 		+ (n + m) * sizeof(struct xtcpcb));
1705 	if (error != 0)
1706 		return (error);
1707 
1708 	xig.xig_len = sizeof xig;
1709 	xig.xig_count = n + m;
1710 	xig.xig_gen = gencnt;
1711 	xig.xig_sogen = so_gencnt;
1712 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1713 	if (error)
1714 		return (error);
1715 
1716 	error = syncache_pcblist(req, m, &pcb_count);
1717 	if (error)
1718 		return (error);
1719 
1720 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1721 
1722 	INP_INFO_WLOCK(&V_tcbinfo);
1723 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1724 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1725 		INP_WLOCK(inp);
1726 		if (inp->inp_gencnt <= gencnt) {
1727 			/*
1728 			 * XXX: This use of cr_cansee(), introduced with
1729 			 * TCP state changes, is not quite right, but for
1730 			 * now, better than nothing.
1731 			 */
1732 			if (inp->inp_flags & INP_TIMEWAIT) {
1733 				if (intotw(inp) != NULL)
1734 					error = cr_cansee(req->td->td_ucred,
1735 					    intotw(inp)->tw_cred);
1736 				else
1737 					error = EINVAL;	/* Skip this inp. */
1738 			} else
1739 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1740 			if (error == 0) {
1741 				in_pcbref(inp);
1742 				inp_list[i++] = inp;
1743 			}
1744 		}
1745 		INP_WUNLOCK(inp);
1746 	}
1747 	INP_INFO_WUNLOCK(&V_tcbinfo);
1748 	n = i;
1749 
1750 	error = 0;
1751 	for (i = 0; i < n; i++) {
1752 		inp = inp_list[i];
1753 		INP_RLOCK(inp);
1754 		if (inp->inp_gencnt <= gencnt) {
1755 			struct xtcpcb xt;
1756 			void *inp_ppcb;
1757 
1758 			bzero(&xt, sizeof(xt));
1759 			xt.xt_len = sizeof xt;
1760 			/* XXX should avoid extra copy */
1761 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1762 			inp_ppcb = inp->inp_ppcb;
1763 			if (inp_ppcb == NULL)
1764 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1765 			else if (inp->inp_flags & INP_TIMEWAIT) {
1766 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1767 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1768 			} else {
1769 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1770 				if (xt.xt_tp.t_timers)
1771 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1772 			}
1773 			if (inp->inp_socket != NULL)
1774 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1775 			else {
1776 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1777 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1778 			}
1779 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1780 			INP_RUNLOCK(inp);
1781 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1782 		} else
1783 			INP_RUNLOCK(inp);
1784 	}
1785 	INP_INFO_RLOCK(&V_tcbinfo);
1786 	for (i = 0; i < n; i++) {
1787 		inp = inp_list[i];
1788 		INP_RLOCK(inp);
1789 		if (!in_pcbrele_rlocked(inp))
1790 			INP_RUNLOCK(inp);
1791 	}
1792 	INP_INFO_RUNLOCK(&V_tcbinfo);
1793 
1794 	if (!error) {
1795 		/*
1796 		 * Give the user an updated idea of our state.
1797 		 * If the generation differs from what we told
1798 		 * her before, she knows that something happened
1799 		 * while we were processing this request, and it
1800 		 * might be necessary to retry.
1801 		 */
1802 		INP_LIST_RLOCK(&V_tcbinfo);
1803 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1804 		xig.xig_sogen = so_gencnt;
1805 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1806 		INP_LIST_RUNLOCK(&V_tcbinfo);
1807 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1808 	}
1809 	free(inp_list, M_TEMP);
1810 	return (error);
1811 }
1812 
1813 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1814     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1815     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1816 
1817 #ifdef INET
1818 static int
1819 tcp_getcred(SYSCTL_HANDLER_ARGS)
1820 {
1821 	struct xucred xuc;
1822 	struct sockaddr_in addrs[2];
1823 	struct inpcb *inp;
1824 	int error;
1825 
1826 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1827 	if (error)
1828 		return (error);
1829 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1830 	if (error)
1831 		return (error);
1832 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1833 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1834 	if (inp != NULL) {
1835 		if (inp->inp_socket == NULL)
1836 			error = ENOENT;
1837 		if (error == 0)
1838 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1839 		if (error == 0)
1840 			cru2x(inp->inp_cred, &xuc);
1841 		INP_RUNLOCK(inp);
1842 	} else
1843 		error = ENOENT;
1844 	if (error == 0)
1845 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1846 	return (error);
1847 }
1848 
1849 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1850     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1851     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1852 #endif /* INET */
1853 
1854 #ifdef INET6
1855 static int
1856 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1857 {
1858 	struct xucred xuc;
1859 	struct sockaddr_in6 addrs[2];
1860 	struct inpcb *inp;
1861 	int error;
1862 #ifdef INET
1863 	int mapped = 0;
1864 #endif
1865 
1866 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1867 	if (error)
1868 		return (error);
1869 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1870 	if (error)
1871 		return (error);
1872 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1873 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1874 		return (error);
1875 	}
1876 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1877 #ifdef INET
1878 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1879 			mapped = 1;
1880 		else
1881 #endif
1882 			return (EINVAL);
1883 	}
1884 
1885 #ifdef INET
1886 	if (mapped == 1)
1887 		inp = in_pcblookup(&V_tcbinfo,
1888 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1889 			addrs[1].sin6_port,
1890 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1891 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1892 	else
1893 #endif
1894 		inp = in6_pcblookup(&V_tcbinfo,
1895 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1896 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1897 			INPLOOKUP_RLOCKPCB, NULL);
1898 	if (inp != NULL) {
1899 		if (inp->inp_socket == NULL)
1900 			error = ENOENT;
1901 		if (error == 0)
1902 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1903 		if (error == 0)
1904 			cru2x(inp->inp_cred, &xuc);
1905 		INP_RUNLOCK(inp);
1906 	} else
1907 		error = ENOENT;
1908 	if (error == 0)
1909 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1910 	return (error);
1911 }
1912 
1913 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1914     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1915     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1916 #endif /* INET6 */
1917 
1918 
1919 #ifdef INET
1920 void
1921 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1922 {
1923 	struct ip *ip = vip;
1924 	struct tcphdr *th;
1925 	struct in_addr faddr;
1926 	struct inpcb *inp;
1927 	struct tcpcb *tp;
1928 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1929 	struct icmp *icp;
1930 	struct in_conninfo inc;
1931 	tcp_seq icmp_tcp_seq;
1932 	int mtu;
1933 
1934 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1935 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1936 		return;
1937 
1938 	if (cmd == PRC_MSGSIZE)
1939 		notify = tcp_mtudisc_notify;
1940 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1941 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1942 		notify = tcp_drop_syn_sent;
1943 	else if (PRC_IS_REDIRECT(cmd)) {
1944 		/* signal EHOSTDOWN, as it flushes the cached route */
1945 		in_pcbnotifyall(&V_tcbinfo, faddr, EHOSTDOWN, notify);
1946 		return;
1947 	}
1948 	/*
1949 	 * Hostdead is ugly because it goes linearly through all PCBs.
1950 	 * XXX: We never get this from ICMP, otherwise it makes an
1951 	 * excellent DoS attack on machines with many connections.
1952 	 */
1953 	else if (cmd == PRC_HOSTDEAD)
1954 		ip = NULL;
1955 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1956 		return;
1957 
1958 	if (ip == NULL) {
1959 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1960 		return;
1961 	}
1962 
1963 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1964 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1965 	INP_INFO_RLOCK(&V_tcbinfo);
1966 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1967 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1968 	if (inp != NULL)  {
1969 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1970 		    !(inp->inp_flags & INP_DROPPED) &&
1971 		    !(inp->inp_socket == NULL)) {
1972 			icmp_tcp_seq = ntohl(th->th_seq);
1973 			tp = intotcpcb(inp);
1974 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1975 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1976 				if (cmd == PRC_MSGSIZE) {
1977 					/*
1978 					 * MTU discovery:
1979 					 * If we got a needfrag set the MTU
1980 					 * in the route to the suggested new
1981 					 * value (if given) and then notify.
1982 					 */
1983 				    	mtu = ntohs(icp->icmp_nextmtu);
1984 					/*
1985 					 * If no alternative MTU was
1986 					 * proposed, try the next smaller
1987 					 * one.
1988 					 */
1989 					if (!mtu)
1990 						mtu = ip_next_mtu(
1991 						    ntohs(ip->ip_len), 1);
1992 					if (mtu < V_tcp_minmss +
1993 					    sizeof(struct tcpiphdr))
1994 						mtu = V_tcp_minmss +
1995 						    sizeof(struct tcpiphdr);
1996 					/*
1997 					 * Only process the offered MTU if it
1998 					 * is smaller than the current one.
1999 					 */
2000 					if (mtu < tp->t_maxseg +
2001 					    sizeof(struct tcpiphdr)) {
2002 						bzero(&inc, sizeof(inc));
2003 						inc.inc_faddr = faddr;
2004 						inc.inc_fibnum =
2005 						    inp->inp_inc.inc_fibnum;
2006 						tcp_hc_updatemtu(&inc, mtu);
2007 						tcp_mtudisc(inp, mtu);
2008 					}
2009 				} else
2010 					inp = (*notify)(inp,
2011 					    inetctlerrmap[cmd]);
2012 			}
2013 		}
2014 		if (inp != NULL)
2015 			INP_WUNLOCK(inp);
2016 	} else {
2017 		bzero(&inc, sizeof(inc));
2018 		inc.inc_fport = th->th_dport;
2019 		inc.inc_lport = th->th_sport;
2020 		inc.inc_faddr = faddr;
2021 		inc.inc_laddr = ip->ip_src;
2022 		syncache_unreach(&inc, th);
2023 	}
2024 	INP_INFO_RUNLOCK(&V_tcbinfo);
2025 }
2026 #endif /* INET */
2027 
2028 #ifdef INET6
2029 void
2030 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
2031 {
2032 	struct tcphdr th;
2033 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
2034 	struct ip6_hdr *ip6;
2035 	struct mbuf *m;
2036 	struct ip6ctlparam *ip6cp = NULL;
2037 	const struct sockaddr_in6 *sa6_src = NULL;
2038 	int off;
2039 	struct tcp_portonly {
2040 		u_int16_t th_sport;
2041 		u_int16_t th_dport;
2042 	} *thp;
2043 
2044 	if (sa->sa_family != AF_INET6 ||
2045 	    sa->sa_len != sizeof(struct sockaddr_in6))
2046 		return;
2047 
2048 	if (cmd == PRC_MSGSIZE)
2049 		notify = tcp_mtudisc_notify;
2050 	else if (!PRC_IS_REDIRECT(cmd) &&
2051 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
2052 		return;
2053 
2054 	/* if the parameter is from icmp6, decode it. */
2055 	if (d != NULL) {
2056 		ip6cp = (struct ip6ctlparam *)d;
2057 		m = ip6cp->ip6c_m;
2058 		ip6 = ip6cp->ip6c_ip6;
2059 		off = ip6cp->ip6c_off;
2060 		sa6_src = ip6cp->ip6c_src;
2061 	} else {
2062 		m = NULL;
2063 		ip6 = NULL;
2064 		off = 0;	/* fool gcc */
2065 		sa6_src = &sa6_any;
2066 	}
2067 
2068 	if (ip6 != NULL) {
2069 		struct in_conninfo inc;
2070 		/*
2071 		 * XXX: We assume that when IPV6 is non NULL,
2072 		 * M and OFF are valid.
2073 		 */
2074 
2075 		/* check if we can safely examine src and dst ports */
2076 		if (m->m_pkthdr.len < off + sizeof(*thp))
2077 			return;
2078 
2079 		bzero(&th, sizeof(th));
2080 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
2081 
2082 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
2083 		    (struct sockaddr *)ip6cp->ip6c_src,
2084 		    th.th_sport, cmd, NULL, notify);
2085 
2086 		bzero(&inc, sizeof(inc));
2087 		inc.inc_fport = th.th_dport;
2088 		inc.inc_lport = th.th_sport;
2089 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
2090 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
2091 		inc.inc_flags |= INC_ISIPV6;
2092 		INP_INFO_RLOCK(&V_tcbinfo);
2093 		syncache_unreach(&inc, &th);
2094 		INP_INFO_RUNLOCK(&V_tcbinfo);
2095 	} else
2096 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2097 			      0, cmd, NULL, notify);
2098 }
2099 #endif /* INET6 */
2100 
2101 
2102 /*
2103  * Following is where TCP initial sequence number generation occurs.
2104  *
2105  * There are two places where we must use initial sequence numbers:
2106  * 1.  In SYN-ACK packets.
2107  * 2.  In SYN packets.
2108  *
2109  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2110  * tcp_syncache.c for details.
2111  *
2112  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2113  * depends on this property.  In addition, these ISNs should be
2114  * unguessable so as to prevent connection hijacking.  To satisfy
2115  * the requirements of this situation, the algorithm outlined in
2116  * RFC 1948 is used, with only small modifications.
2117  *
2118  * Implementation details:
2119  *
2120  * Time is based off the system timer, and is corrected so that it
2121  * increases by one megabyte per second.  This allows for proper
2122  * recycling on high speed LANs while still leaving over an hour
2123  * before rollover.
2124  *
2125  * As reading the *exact* system time is too expensive to be done
2126  * whenever setting up a TCP connection, we increment the time
2127  * offset in two ways.  First, a small random positive increment
2128  * is added to isn_offset for each connection that is set up.
2129  * Second, the function tcp_isn_tick fires once per clock tick
2130  * and increments isn_offset as necessary so that sequence numbers
2131  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2132  * random positive increments serve only to ensure that the same
2133  * exact sequence number is never sent out twice (as could otherwise
2134  * happen when a port is recycled in less than the system tick
2135  * interval.)
2136  *
2137  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2138  * between seeding of isn_secret.  This is normally set to zero,
2139  * as reseeding should not be necessary.
2140  *
2141  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2142  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2143  * general, this means holding an exclusive (write) lock.
2144  */
2145 
2146 #define ISN_BYTES_PER_SECOND 1048576
2147 #define ISN_STATIC_INCREMENT 4096
2148 #define ISN_RANDOM_INCREMENT (4096 - 1)
2149 
2150 static VNET_DEFINE(u_char, isn_secret[32]);
2151 static VNET_DEFINE(int, isn_last);
2152 static VNET_DEFINE(int, isn_last_reseed);
2153 static VNET_DEFINE(u_int32_t, isn_offset);
2154 static VNET_DEFINE(u_int32_t, isn_offset_old);
2155 
2156 #define	V_isn_secret			VNET(isn_secret)
2157 #define	V_isn_last			VNET(isn_last)
2158 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2159 #define	V_isn_offset			VNET(isn_offset)
2160 #define	V_isn_offset_old		VNET(isn_offset_old)
2161 
2162 tcp_seq
2163 tcp_new_isn(struct tcpcb *tp)
2164 {
2165 	MD5_CTX isn_ctx;
2166 	u_int32_t md5_buffer[4];
2167 	tcp_seq new_isn;
2168 	u_int32_t projected_offset;
2169 
2170 	INP_WLOCK_ASSERT(tp->t_inpcb);
2171 
2172 	ISN_LOCK();
2173 	/* Seed if this is the first use, reseed if requested. */
2174 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2175 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2176 		< (u_int)ticks))) {
2177 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2178 		V_isn_last_reseed = ticks;
2179 	}
2180 
2181 	/* Compute the md5 hash and return the ISN. */
2182 	MD5Init(&isn_ctx);
2183 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2184 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2185 #ifdef INET6
2186 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2187 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2188 			  sizeof(struct in6_addr));
2189 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2190 			  sizeof(struct in6_addr));
2191 	} else
2192 #endif
2193 	{
2194 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2195 			  sizeof(struct in_addr));
2196 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2197 			  sizeof(struct in_addr));
2198 	}
2199 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2200 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2201 	new_isn = (tcp_seq) md5_buffer[0];
2202 	V_isn_offset += ISN_STATIC_INCREMENT +
2203 		(arc4random() & ISN_RANDOM_INCREMENT);
2204 	if (ticks != V_isn_last) {
2205 		projected_offset = V_isn_offset_old +
2206 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2207 		if (SEQ_GT(projected_offset, V_isn_offset))
2208 			V_isn_offset = projected_offset;
2209 		V_isn_offset_old = V_isn_offset;
2210 		V_isn_last = ticks;
2211 	}
2212 	new_isn += V_isn_offset;
2213 	ISN_UNLOCK();
2214 	return (new_isn);
2215 }
2216 
2217 /*
2218  * When a specific ICMP unreachable message is received and the
2219  * connection state is SYN-SENT, drop the connection.  This behavior
2220  * is controlled by the icmp_may_rst sysctl.
2221  */
2222 struct inpcb *
2223 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2224 {
2225 	struct tcpcb *tp;
2226 
2227 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2228 	INP_WLOCK_ASSERT(inp);
2229 
2230 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2231 	    (inp->inp_flags & INP_DROPPED))
2232 		return (inp);
2233 
2234 	tp = intotcpcb(inp);
2235 	if (tp->t_state != TCPS_SYN_SENT)
2236 		return (inp);
2237 
2238 	tp = tcp_drop(tp, errno);
2239 	if (tp != NULL)
2240 		return (inp);
2241 	else
2242 		return (NULL);
2243 }
2244 
2245 /*
2246  * When `need fragmentation' ICMP is received, update our idea of the MSS
2247  * based on the new value. Also nudge TCP to send something, since we
2248  * know the packet we just sent was dropped.
2249  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2250  */
2251 static struct inpcb *
2252 tcp_mtudisc_notify(struct inpcb *inp, int error)
2253 {
2254 
2255 	tcp_mtudisc(inp, -1);
2256 	return (inp);
2257 }
2258 
2259 static void
2260 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2261 {
2262 	struct tcpcb *tp;
2263 	struct socket *so;
2264 
2265 	INP_WLOCK_ASSERT(inp);
2266 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2267 	    (inp->inp_flags & INP_DROPPED))
2268 		return;
2269 
2270 	tp = intotcpcb(inp);
2271 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2272 
2273 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2274 
2275 	so = inp->inp_socket;
2276 	SOCKBUF_LOCK(&so->so_snd);
2277 	/* If the mss is larger than the socket buffer, decrease the mss. */
2278 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2279 		tp->t_maxseg = so->so_snd.sb_hiwat;
2280 	SOCKBUF_UNLOCK(&so->so_snd);
2281 
2282 	TCPSTAT_INC(tcps_mturesent);
2283 	tp->t_rtttime = 0;
2284 	tp->snd_nxt = tp->snd_una;
2285 	tcp_free_sackholes(tp);
2286 	tp->snd_recover = tp->snd_max;
2287 	if (tp->t_flags & TF_SACK_PERMIT)
2288 		EXIT_FASTRECOVERY(tp->t_flags);
2289 	tp->t_fb->tfb_tcp_output(tp);
2290 }
2291 
2292 #ifdef INET
2293 /*
2294  * Look-up the routing entry to the peer of this inpcb.  If no route
2295  * is found and it cannot be allocated, then return 0.  This routine
2296  * is called by TCP routines that access the rmx structure and by
2297  * tcp_mss_update to get the peer/interface MTU.
2298  */
2299 u_long
2300 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2301 {
2302 	struct nhop4_extended nh4;
2303 	struct ifnet *ifp;
2304 	u_long maxmtu = 0;
2305 
2306 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2307 
2308 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2309 
2310 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2311 		    NHR_REF, 0, &nh4) != 0)
2312 			return (0);
2313 
2314 		ifp = nh4.nh_ifp;
2315 		maxmtu = nh4.nh_mtu;
2316 
2317 		/* Report additional interface capabilities. */
2318 		if (cap != NULL) {
2319 			if (ifp->if_capenable & IFCAP_TSO4 &&
2320 			    ifp->if_hwassist & CSUM_TSO) {
2321 				cap->ifcap |= CSUM_TSO;
2322 				cap->tsomax = ifp->if_hw_tsomax;
2323 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2324 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2325 			}
2326 		}
2327 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2328 	}
2329 	return (maxmtu);
2330 }
2331 #endif /* INET */
2332 
2333 #ifdef INET6
2334 u_long
2335 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2336 {
2337 	struct nhop6_extended nh6;
2338 	struct in6_addr dst6;
2339 	uint32_t scopeid;
2340 	struct ifnet *ifp;
2341 	u_long maxmtu = 0;
2342 
2343 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2344 
2345 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2346 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2347 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2348 		    0, &nh6) != 0)
2349 			return (0);
2350 
2351 		ifp = nh6.nh_ifp;
2352 		maxmtu = nh6.nh_mtu;
2353 
2354 		/* Report additional interface capabilities. */
2355 		if (cap != NULL) {
2356 			if (ifp->if_capenable & IFCAP_TSO6 &&
2357 			    ifp->if_hwassist & CSUM_TSO) {
2358 				cap->ifcap |= CSUM_TSO;
2359 				cap->tsomax = ifp->if_hw_tsomax;
2360 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2361 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2362 			}
2363 		}
2364 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2365 	}
2366 
2367 	return (maxmtu);
2368 }
2369 #endif /* INET6 */
2370 
2371 /*
2372  * Calculate effective SMSS per RFC5681 definition for a given TCP
2373  * connection at its current state, taking into account SACK and etc.
2374  */
2375 u_int
2376 tcp_maxseg(const struct tcpcb *tp)
2377 {
2378 	u_int optlen;
2379 
2380 	if (tp->t_flags & TF_NOOPT)
2381 		return (tp->t_maxseg);
2382 
2383 	/*
2384 	 * Here we have a simplified code from tcp_addoptions(),
2385 	 * without a proper loop, and having most of paddings hardcoded.
2386 	 * We might make mistakes with padding here in some edge cases,
2387 	 * but this is harmless, since result of tcp_maxseg() is used
2388 	 * only in cwnd and ssthresh estimations.
2389 	 */
2390 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2391 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2392 		if (tp->t_flags & TF_RCVD_TSTMP)
2393 			optlen = TCPOLEN_TSTAMP_APPA;
2394 		else
2395 			optlen = 0;
2396 #ifdef TCP_SIGNATURE
2397 		if (tp->t_flags & TF_SIGNATURE)
2398 			optlen += PAD(TCPOLEN_SIGNATURE);
2399 #endif
2400 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2401 			optlen += TCPOLEN_SACKHDR;
2402 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2403 			optlen = PAD(optlen);
2404 		}
2405 	} else {
2406 		if (tp->t_flags & TF_REQ_TSTMP)
2407 			optlen = TCPOLEN_TSTAMP_APPA;
2408 		else
2409 			optlen = PAD(TCPOLEN_MAXSEG);
2410 		if (tp->t_flags & TF_REQ_SCALE)
2411 			optlen += PAD(TCPOLEN_WINDOW);
2412 #ifdef TCP_SIGNATURE
2413 		if (tp->t_flags & TF_SIGNATURE)
2414 			optlen += PAD(TCPOLEN_SIGNATURE);
2415 #endif
2416 		if (tp->t_flags & TF_SACK_PERMIT)
2417 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2418 	}
2419 #undef PAD
2420 	optlen = min(optlen, TCP_MAXOLEN);
2421 	return (tp->t_maxseg - optlen);
2422 }
2423 
2424 #ifdef IPSEC
2425 /* compute ESP/AH header size for TCP, including outer IP header. */
2426 size_t
2427 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2428 {
2429 	struct inpcb *inp;
2430 	struct mbuf *m;
2431 	size_t hdrsiz;
2432 	struct ip *ip;
2433 #ifdef INET6
2434 	struct ip6_hdr *ip6;
2435 #endif
2436 	struct tcphdr *th;
2437 
2438 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2439 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2440 		return (0);
2441 	m = m_gethdr(M_NOWAIT, MT_DATA);
2442 	if (!m)
2443 		return (0);
2444 
2445 #ifdef INET6
2446 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2447 		ip6 = mtod(m, struct ip6_hdr *);
2448 		th = (struct tcphdr *)(ip6 + 1);
2449 		m->m_pkthdr.len = m->m_len =
2450 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2451 		tcpip_fillheaders(inp, ip6, th);
2452 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2453 	} else
2454 #endif /* INET6 */
2455 	{
2456 		ip = mtod(m, struct ip *);
2457 		th = (struct tcphdr *)(ip + 1);
2458 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2459 		tcpip_fillheaders(inp, ip, th);
2460 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2461 	}
2462 
2463 	m_free(m);
2464 	return (hdrsiz);
2465 }
2466 #endif /* IPSEC */
2467 
2468 #ifdef TCP_SIGNATURE
2469 /*
2470  * Callback function invoked by m_apply() to digest TCP segment data
2471  * contained within an mbuf chain.
2472  */
2473 static int
2474 tcp_signature_apply(void *fstate, void *data, u_int len)
2475 {
2476 
2477 	MD5Update(fstate, (u_char *)data, len);
2478 	return (0);
2479 }
2480 
2481 /*
2482  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2483  * search with the destination IP address, and a 'magic SPI' to be
2484  * determined by the application. This is hardcoded elsewhere to 1179
2485 */
2486 struct secasvar *
2487 tcp_get_sav(struct mbuf *m, u_int direction)
2488 {
2489 	union sockaddr_union dst;
2490 	struct secasvar *sav;
2491 	struct ip *ip;
2492 #ifdef INET6
2493 	struct ip6_hdr *ip6;
2494 	char ip6buf[INET6_ADDRSTRLEN];
2495 #endif
2496 
2497 	/* Extract the destination from the IP header in the mbuf. */
2498 	bzero(&dst, sizeof(union sockaddr_union));
2499 	ip = mtod(m, struct ip *);
2500 #ifdef INET6
2501 	ip6 = NULL;	/* Make the compiler happy. */
2502 #endif
2503 	switch (ip->ip_v) {
2504 #ifdef INET
2505 	case IPVERSION:
2506 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2507 		dst.sa.sa_family = AF_INET;
2508 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2509 		    ip->ip_src : ip->ip_dst;
2510 		break;
2511 #endif
2512 #ifdef INET6
2513 	case (IPV6_VERSION >> 4):
2514 		ip6 = mtod(m, struct ip6_hdr *);
2515 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2516 		dst.sa.sa_family = AF_INET6;
2517 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2518 		    ip6->ip6_src : ip6->ip6_dst;
2519 		break;
2520 #endif
2521 	default:
2522 		return (NULL);
2523 		/* NOTREACHED */
2524 		break;
2525 	}
2526 
2527 	/* Look up an SADB entry which matches the address of the peer. */
2528 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2529 	if (sav == NULL) {
2530 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2531 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2532 #ifdef INET6
2533 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2534 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2535 #endif
2536 			"(unsupported)"));
2537 	}
2538 
2539 	return (sav);
2540 }
2541 
2542 /*
2543  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2544  *
2545  * Parameters:
2546  * m		pointer to head of mbuf chain
2547  * len		length of TCP segment data, excluding options
2548  * optlen	length of TCP segment options
2549  * buf		pointer to storage for computed MD5 digest
2550  * sav		pointer to security assosiation
2551  *
2552  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2553  * When called from tcp_input(), we can be sure that th_sum has been
2554  * zeroed out and verified already.
2555  *
2556  * Releases reference to SADB key before return.
2557  *
2558  * Return 0 if successful, otherwise return -1.
2559  *
2560  */
2561 int
2562 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2563     u_char *buf, struct secasvar *sav)
2564 {
2565 #ifdef INET
2566 	struct ippseudo ippseudo;
2567 #endif
2568 	MD5_CTX ctx;
2569 	int doff;
2570 	struct ip *ip;
2571 #ifdef INET
2572 	struct ipovly *ipovly;
2573 #endif
2574 	struct tcphdr *th;
2575 #ifdef INET6
2576 	struct ip6_hdr *ip6;
2577 	struct in6_addr in6;
2578 	uint32_t plen;
2579 	uint16_t nhdr;
2580 #endif
2581 	u_short savecsum;
2582 
2583 	KASSERT(m != NULL, ("NULL mbuf chain"));
2584 	KASSERT(buf != NULL, ("NULL signature pointer"));
2585 
2586 	/* Extract the destination from the IP header in the mbuf. */
2587 	ip = mtod(m, struct ip *);
2588 #ifdef INET6
2589 	ip6 = NULL;	/* Make the compiler happy. */
2590 #endif
2591 
2592 	MD5Init(&ctx);
2593 	/*
2594 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2595 	 *
2596 	 * XXX The ippseudo header MUST be digested in network byte order,
2597 	 * or else we'll fail the regression test. Assume all fields we've
2598 	 * been doing arithmetic on have been in host byte order.
2599 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2600 	 * tcp_output(), the underlying ip_len member has not yet been set.
2601 	 */
2602 	switch (ip->ip_v) {
2603 #ifdef INET
2604 	case IPVERSION:
2605 		ipovly = (struct ipovly *)ip;
2606 		ippseudo.ippseudo_src = ipovly->ih_src;
2607 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2608 		ippseudo.ippseudo_pad = 0;
2609 		ippseudo.ippseudo_p = IPPROTO_TCP;
2610 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2611 		    optlen);
2612 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2613 
2614 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2615 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2616 		break;
2617 #endif
2618 #ifdef INET6
2619 	/*
2620 	 * RFC 2385, 2.0  Proposal
2621 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2622 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2623 	 * extended next header value (to form 32 bits), and 32-bit segment
2624 	 * length.
2625 	 * Note: Upper-Layer Packet Length comes before Next Header.
2626 	 */
2627 	case (IPV6_VERSION >> 4):
2628 		in6 = ip6->ip6_src;
2629 		in6_clearscope(&in6);
2630 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2631 		in6 = ip6->ip6_dst;
2632 		in6_clearscope(&in6);
2633 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2634 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2635 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2636 		nhdr = 0;
2637 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2638 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2639 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2640 		nhdr = IPPROTO_TCP;
2641 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2642 
2643 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2644 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2645 		break;
2646 #endif
2647 	default:
2648 		KEY_FREESAV(&sav);
2649 		return (-1);
2650 		/* NOTREACHED */
2651 		break;
2652 	}
2653 
2654 
2655 	/*
2656 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2657 	 * The TCP checksum must be set to zero.
2658 	 */
2659 	savecsum = th->th_sum;
2660 	th->th_sum = 0;
2661 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2662 	th->th_sum = savecsum;
2663 
2664 	/*
2665 	 * Step 3: Update MD5 hash with TCP segment data.
2666 	 *         Use m_apply() to avoid an early m_pullup().
2667 	 */
2668 	if (len > 0)
2669 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2670 
2671 	/*
2672 	 * Step 4: Update MD5 hash with shared secret.
2673 	 */
2674 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2675 	MD5Final(buf, &ctx);
2676 
2677 	key_sa_recordxfer(sav, m);
2678 	KEY_FREESAV(&sav);
2679 	return (0);
2680 }
2681 
2682 /*
2683  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2684  *
2685  * Return 0 if successful, otherwise return -1.
2686  */
2687 int
2688 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2689     u_char *buf, u_int direction)
2690 {
2691 	struct secasvar *sav;
2692 
2693 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2694 		return (-1);
2695 
2696 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2697 }
2698 
2699 /*
2700  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2701  *
2702  * Parameters:
2703  * m		pointer to head of mbuf chain
2704  * len		length of TCP segment data, excluding options
2705  * optlen	length of TCP segment options
2706  * buf		pointer to storage for computed MD5 digest
2707  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2708  *
2709  * Return 1 if successful, otherwise return 0.
2710  */
2711 int
2712 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2713     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2714 {
2715 	char tmpdigest[TCP_SIGLEN];
2716 
2717 	if (tcp_sig_checksigs == 0)
2718 		return (1);
2719 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2720 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2721 
2722 			/*
2723 			 * If this socket is not expecting signature but
2724 			 * the segment contains signature just fail.
2725 			 */
2726 			TCPSTAT_INC(tcps_sig_err_sigopt);
2727 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2728 			return (0);
2729 		}
2730 
2731 		/* Signature is not expected, and not present in segment. */
2732 		return (1);
2733 	}
2734 
2735 	/*
2736 	 * If this socket is expecting signature but the segment does not
2737 	 * contain any just fail.
2738 	 */
2739 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2740 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2741 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2742 		return (0);
2743 	}
2744 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2745 	    IPSEC_DIR_INBOUND) == -1) {
2746 		TCPSTAT_INC(tcps_sig_err_buildsig);
2747 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2748 		return (0);
2749 	}
2750 
2751 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2752 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2753 		return (0);
2754 	}
2755 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2756 	return (1);
2757 }
2758 #endif /* TCP_SIGNATURE */
2759 
2760 static int
2761 sysctl_drop(SYSCTL_HANDLER_ARGS)
2762 {
2763 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2764 	struct sockaddr_storage addrs[2];
2765 	struct inpcb *inp;
2766 	struct tcpcb *tp;
2767 	struct tcptw *tw;
2768 	struct sockaddr_in *fin, *lin;
2769 #ifdef INET6
2770 	struct sockaddr_in6 *fin6, *lin6;
2771 #endif
2772 	int error;
2773 
2774 	inp = NULL;
2775 	fin = lin = NULL;
2776 #ifdef INET6
2777 	fin6 = lin6 = NULL;
2778 #endif
2779 	error = 0;
2780 
2781 	if (req->oldptr != NULL || req->oldlen != 0)
2782 		return (EINVAL);
2783 	if (req->newptr == NULL)
2784 		return (EPERM);
2785 	if (req->newlen < sizeof(addrs))
2786 		return (ENOMEM);
2787 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2788 	if (error)
2789 		return (error);
2790 
2791 	switch (addrs[0].ss_family) {
2792 #ifdef INET6
2793 	case AF_INET6:
2794 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2795 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2796 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2797 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2798 			return (EINVAL);
2799 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2800 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2801 				return (EINVAL);
2802 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2803 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2804 			fin = (struct sockaddr_in *)&addrs[0];
2805 			lin = (struct sockaddr_in *)&addrs[1];
2806 			break;
2807 		}
2808 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2809 		if (error)
2810 			return (error);
2811 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2812 		if (error)
2813 			return (error);
2814 		break;
2815 #endif
2816 #ifdef INET
2817 	case AF_INET:
2818 		fin = (struct sockaddr_in *)&addrs[0];
2819 		lin = (struct sockaddr_in *)&addrs[1];
2820 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2821 		    lin->sin_len != sizeof(struct sockaddr_in))
2822 			return (EINVAL);
2823 		break;
2824 #endif
2825 	default:
2826 		return (EINVAL);
2827 	}
2828 	INP_INFO_RLOCK(&V_tcbinfo);
2829 	switch (addrs[0].ss_family) {
2830 #ifdef INET6
2831 	case AF_INET6:
2832 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2833 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2834 		    INPLOOKUP_WLOCKPCB, NULL);
2835 		break;
2836 #endif
2837 #ifdef INET
2838 	case AF_INET:
2839 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2840 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2841 		break;
2842 #endif
2843 	}
2844 	if (inp != NULL) {
2845 		if (inp->inp_flags & INP_TIMEWAIT) {
2846 			/*
2847 			 * XXXRW: There currently exists a state where an
2848 			 * inpcb is present, but its timewait state has been
2849 			 * discarded.  For now, don't allow dropping of this
2850 			 * type of inpcb.
2851 			 */
2852 			tw = intotw(inp);
2853 			if (tw != NULL)
2854 				tcp_twclose(tw, 0);
2855 			else
2856 				INP_WUNLOCK(inp);
2857 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2858 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2859 			tp = intotcpcb(inp);
2860 			tp = tcp_drop(tp, ECONNABORTED);
2861 			if (tp != NULL)
2862 				INP_WUNLOCK(inp);
2863 		} else
2864 			INP_WUNLOCK(inp);
2865 	} else
2866 		error = ESRCH;
2867 	INP_INFO_RUNLOCK(&V_tcbinfo);
2868 	return (error);
2869 }
2870 
2871 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2872     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2873     0, sysctl_drop, "", "Drop TCP connection");
2874 
2875 /*
2876  * Generate a standardized TCP log line for use throughout the
2877  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2878  * allow use in the interrupt context.
2879  *
2880  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2881  * NB: The function may return NULL if memory allocation failed.
2882  *
2883  * Due to header inclusion and ordering limitations the struct ip
2884  * and ip6_hdr pointers have to be passed as void pointers.
2885  */
2886 char *
2887 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2888     const void *ip6hdr)
2889 {
2890 
2891 	/* Is logging enabled? */
2892 	if (tcp_log_in_vain == 0)
2893 		return (NULL);
2894 
2895 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2896 }
2897 
2898 char *
2899 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2900     const void *ip6hdr)
2901 {
2902 
2903 	/* Is logging enabled? */
2904 	if (tcp_log_debug == 0)
2905 		return (NULL);
2906 
2907 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2908 }
2909 
2910 static char *
2911 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2912     const void *ip6hdr)
2913 {
2914 	char *s, *sp;
2915 	size_t size;
2916 	struct ip *ip;
2917 #ifdef INET6
2918 	const struct ip6_hdr *ip6;
2919 
2920 	ip6 = (const struct ip6_hdr *)ip6hdr;
2921 #endif /* INET6 */
2922 	ip = (struct ip *)ip4hdr;
2923 
2924 	/*
2925 	 * The log line looks like this:
2926 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2927 	 */
2928 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2929 	    sizeof(PRINT_TH_FLAGS) + 1 +
2930 #ifdef INET6
2931 	    2 * INET6_ADDRSTRLEN;
2932 #else
2933 	    2 * INET_ADDRSTRLEN;
2934 #endif /* INET6 */
2935 
2936 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2937 	if (s == NULL)
2938 		return (NULL);
2939 
2940 	strcat(s, "TCP: [");
2941 	sp = s + strlen(s);
2942 
2943 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2944 		inet_ntoa_r(inc->inc_faddr, sp);
2945 		sp = s + strlen(s);
2946 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2947 		sp = s + strlen(s);
2948 		inet_ntoa_r(inc->inc_laddr, sp);
2949 		sp = s + strlen(s);
2950 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2951 #ifdef INET6
2952 	} else if (inc) {
2953 		ip6_sprintf(sp, &inc->inc6_faddr);
2954 		sp = s + strlen(s);
2955 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2956 		sp = s + strlen(s);
2957 		ip6_sprintf(sp, &inc->inc6_laddr);
2958 		sp = s + strlen(s);
2959 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2960 	} else if (ip6 && th) {
2961 		ip6_sprintf(sp, &ip6->ip6_src);
2962 		sp = s + strlen(s);
2963 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2964 		sp = s + strlen(s);
2965 		ip6_sprintf(sp, &ip6->ip6_dst);
2966 		sp = s + strlen(s);
2967 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2968 #endif /* INET6 */
2969 #ifdef INET
2970 	} else if (ip && th) {
2971 		inet_ntoa_r(ip->ip_src, sp);
2972 		sp = s + strlen(s);
2973 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2974 		sp = s + strlen(s);
2975 		inet_ntoa_r(ip->ip_dst, sp);
2976 		sp = s + strlen(s);
2977 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2978 #endif /* INET */
2979 	} else {
2980 		free(s, M_TCPLOG);
2981 		return (NULL);
2982 	}
2983 	sp = s + strlen(s);
2984 	if (th)
2985 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2986 	if (*(s + size - 1) != '\0')
2987 		panic("%s: string too long", __func__);
2988 	return (s);
2989 }
2990 
2991 /*
2992  * A subroutine which makes it easy to track TCP state changes with DTrace.
2993  * This function shouldn't be called for t_state initializations that don't
2994  * correspond to actual TCP state transitions.
2995  */
2996 void
2997 tcp_state_change(struct tcpcb *tp, int newstate)
2998 {
2999 #if defined(KDTRACE_HOOKS)
3000 	int pstate = tp->t_state;
3001 #endif
3002 
3003 	TCPSTATES_DEC(tp->t_state);
3004 	TCPSTATES_INC(newstate);
3005 	tp->t_state = newstate;
3006 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
3007 }
3008