xref: /freebsd/sys/netinet/tcp_subr.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 
57 #include <vm/vm_zone.h>
58 
59 #include <net/route.h>
60 #include <net/if.h>
61 
62 #define _IP_VHL
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #endif
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #ifdef INET6
84 #include <netinet6/tcp6_var.h>
85 #endif
86 #include <netinet/tcpip.h>
87 #ifdef TCPDEBUG
88 #include <netinet/tcp_debug.h>
89 #endif
90 #include <netinet6/ip6protosw.h>
91 
92 #ifdef IPSEC
93 #include <netinet6/ipsec.h>
94 #endif /*IPSEC*/
95 
96 int 	tcp_mssdflt = TCP_MSS;
97 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
98     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
99 
100 #ifdef INET6
101 int	tcp_v6mssdflt = TCP6_MSS;
102 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
103 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
104 	"Default TCP Maximum Segment Size for IPv6");
105 #endif
106 
107 #if 0
108 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
109 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
110     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
111 #endif
112 
113 static int	tcp_do_rfc1323 = 1;
114 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
115     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
116 
117 static int	tcp_do_rfc1644 = 0;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
119     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
120 
121 static int	tcp_tcbhashsize = 0;
122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
123      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
124 
125 static int	do_tcpdrain = 1;
126 SYSCTL_INT(_debug, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
127      "Enable non Net3 compliant tcp_drain");
128 
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
130     &tcbinfo.ipi_count, 0, "Number of active PCBs");
131 
132 static void	tcp_cleartaocache __P((void));
133 static void	tcp_notify __P((struct inpcb *, int));
134 
135 /*
136  * Target size of TCP PCB hash tables. Must be a power of two.
137  *
138  * Note that this can be overridden by the kernel environment
139  * variable net.inet.tcp.tcbhashsize
140  */
141 #ifndef TCBHASHSIZE
142 #define TCBHASHSIZE	512
143 #endif
144 
145 /*
146  * This is the actual shape of what we allocate using the zone
147  * allocator.  Doing it this way allows us to protect both structures
148  * using the same generation count, and also eliminates the overhead
149  * of allocating tcpcbs separately.  By hiding the structure here,
150  * we avoid changing most of the rest of the code (although it needs
151  * to be changed, eventually, for greater efficiency).
152  */
153 #define	ALIGNMENT	32
154 #define	ALIGNM1		(ALIGNMENT - 1)
155 struct	inp_tp {
156 	union {
157 		struct	inpcb inp;
158 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
159 	} inp_tp_u;
160 	struct	tcpcb tcb;
161 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
162 	struct	callout inp_tp_delack;
163 };
164 #undef ALIGNMENT
165 #undef ALIGNM1
166 
167 /*
168  * Tcp initialization
169  */
170 void
171 tcp_init()
172 {
173 	int hashsize;
174 
175 	tcp_iss = random();	/* wrong, but better than a constant */
176 	tcp_ccgen = 1;
177 	tcp_cleartaocache();
178 
179 	tcp_delacktime = TCPTV_DELACK;
180 	tcp_keepinit = TCPTV_KEEP_INIT;
181 	tcp_keepidle = TCPTV_KEEP_IDLE;
182 	tcp_keepintvl = TCPTV_KEEPINTVL;
183 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
184 	tcp_msl = TCPTV_MSL;
185 
186 	LIST_INIT(&tcb);
187 	tcbinfo.listhead = &tcb;
188 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize);
189 	if (!powerof2(hashsize)) {
190 		printf("WARNING: TCB hash size not a power of 2\n");
191 		hashsize = 512; /* safe default */
192 	}
193 	tcp_tcbhashsize = hashsize;
194 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
195 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
196 					&tcbinfo.porthashmask);
197 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
198 				 ZONE_INTERRUPT, 0);
199 #ifdef INET6
200 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
201 #else /* INET6 */
202 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
203 #endif /* INET6 */
204 	if (max_protohdr < TCP_MINPROTOHDR)
205 		max_protohdr = TCP_MINPROTOHDR;
206 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
207 		panic("tcp_init");
208 #undef TCP_MINPROTOHDR
209 }
210 
211 /*
212  * Create template to be used to send tcp packets on a connection.
213  * Call after host entry created, allocates an mbuf and fills
214  * in a skeletal tcp/ip header, minimizing the amount of work
215  * necessary when the connection is used.
216  */
217 struct tcptemp *
218 tcp_template(tp)
219 	struct tcpcb *tp;
220 {
221 	register struct inpcb *inp = tp->t_inpcb;
222 	register struct mbuf *m;
223 	register struct tcptemp *n;
224 
225 	if ((n = tp->t_template) == 0) {
226 		m = m_get(M_DONTWAIT, MT_HEADER);
227 		if (m == NULL)
228 			return (0);
229 		m->m_len = sizeof (struct tcptemp);
230 		n = mtod(m, struct tcptemp *);
231 	}
232 #ifdef INET6
233 	if ((inp->inp_vflag & INP_IPV6) != 0) {
234 		register struct ip6_hdr *ip6;
235 
236 		ip6 = (struct ip6_hdr *)n->tt_ipgen;
237 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
238 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
239 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
240 			(IPV6_VERSION & IPV6_VERSION_MASK);
241 		ip6->ip6_nxt = IPPROTO_TCP;
242 		ip6->ip6_plen = sizeof(struct tcphdr);
243 		ip6->ip6_src = inp->in6p_laddr;
244 		ip6->ip6_dst = inp->in6p_faddr;
245 	} else
246 #endif
247       {
248 	register struct ipovly *ipov;
249 
250 	ipov = (struct ipovly *)n->tt_ipgen;
251 	bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
252 	ipov->ih_pr = IPPROTO_TCP;
253 	ipov->ih_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
254 	ipov->ih_src = inp->inp_laddr;
255 	ipov->ih_dst = inp->inp_faddr;
256       }
257 	n->tt_t.th_sport = inp->inp_lport;
258 	n->tt_t.th_dport = inp->inp_fport;
259 	n->tt_t.th_seq = 0;
260 	n->tt_t.th_ack = 0;
261 	n->tt_t.th_x2 = 0;
262 	n->tt_t.th_off = 5;
263 	n->tt_t.th_flags = 0;
264 	n->tt_t.th_win = 0;
265 	n->tt_t.th_sum = 0;
266 	n->tt_t.th_urp = 0;
267 	return (n);
268 }
269 
270 /*
271  * Send a single message to the TCP at address specified by
272  * the given TCP/IP header.  If m == 0, then we make a copy
273  * of the tcpiphdr at ti and send directly to the addressed host.
274  * This is used to force keep alive messages out using the TCP
275  * template for a connection tp->t_template.  If flags are given
276  * then we send a message back to the TCP which originated the
277  * segment ti, and discard the mbuf containing it and any other
278  * attached mbufs.
279  *
280  * In any case the ack and sequence number of the transmitted
281  * segment are as specified by the parameters.
282  *
283  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
284  */
285 void
286 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
287 	struct tcpcb *tp;
288 	void *ipgen;
289 	register struct tcphdr *th;
290 	register struct mbuf *m;
291 	tcp_seq ack, seq;
292 	int flags;
293 {
294 	register int tlen;
295 	int win = 0;
296 	struct route *ro = 0;
297 	struct route sro;
298 	struct ip *ip;
299 	struct ipovly *ipov;
300 	struct tcphdr *nth;
301 #ifdef INET6
302 	struct route_in6 *ro6 = 0;
303 	struct route_in6 sro6;
304 	struct ip6_hdr *ip6;
305 	int isipv6;
306 #endif /* INET6 */
307 	int ipflags = 0;
308 
309 #ifdef INET6
310 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
311 	ip6 = ipgen;
312 #endif /* INET6 */
313 	ip = ipgen;
314 	ipov = ipgen;
315 
316 	if (tp) {
317 		if (!(flags & TH_RST)) {
318 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
319 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
320 				win = (long)TCP_MAXWIN << tp->rcv_scale;
321 		}
322 #ifdef INET6
323 		if (isipv6)
324 			ro6 = &tp->t_inpcb->in6p_route;
325 		else
326 #endif /* INET6 */
327 		ro = &tp->t_inpcb->inp_route;
328 	} else {
329 #ifdef INET6
330 		if (isipv6) {
331 			ro6 = &sro6;
332 			bzero(ro6, sizeof *ro6);
333 		} else
334 #endif /* INET6 */
335 	      {
336 		ro = &sro;
337 		bzero(ro, sizeof *ro);
338 	      }
339 	}
340 	if (m == 0) {
341 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
342 		if (m == NULL)
343 			return;
344 #ifdef TCP_COMPAT_42
345 		tlen = 1;
346 #else
347 		tlen = 0;
348 #endif
349 		m->m_data += max_linkhdr;
350 #ifdef INET6
351 		if (isipv6) {
352 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
353 			      sizeof(struct ip6_hdr));
354 			ip6 = mtod(m, struct ip6_hdr *);
355 			nth = (struct tcphdr *)(ip6 + 1);
356 		} else
357 #endif /* INET6 */
358 	      {
359 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
360 		ip = mtod(m, struct ip *);
361 		ipov = mtod(m, struct ipovly *);
362 		nth = (struct tcphdr *)(ip + 1);
363 	      }
364 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
365 		flags = TH_ACK;
366 	} else {
367 		m_freem(m->m_next);
368 		m->m_next = 0;
369 		m->m_data = (caddr_t)ipgen;
370 		/* m_len is set later */
371 		tlen = 0;
372 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
373 #ifdef INET6
374 		if (isipv6) {
375 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
376 			nth = (struct tcphdr *)(ip6 + 1);
377 		} else
378 #endif /* INET6 */
379 	      {
380 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
381 		nth = (struct tcphdr *)(ip + 1);
382 	      }
383 		if (th != nth) {
384 			/*
385 			 * this is usually a case when an extension header
386 			 * exists between the IPv6 header and the
387 			 * TCP header.
388 			 */
389 			nth->th_sport = th->th_sport;
390 			nth->th_dport = th->th_dport;
391 		}
392 		xchg(nth->th_dport, nth->th_sport, n_short);
393 #undef xchg
394 	}
395 #ifdef INET6
396 	if (isipv6) {
397 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
398 						tlen));
399 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
400 	} else
401 #endif
402       {
403 	ipov->ih_len = htons((u_short)(sizeof (struct tcphdr) + tlen));
404 	tlen += sizeof (struct tcpiphdr);
405       }
406 	m->m_len = tlen;
407 	m->m_pkthdr.len = tlen;
408 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
409 	nth->th_seq = htonl(seq);
410 	nth->th_ack = htonl(ack);
411 	nth->th_x2 = 0;
412 	nth->th_off = sizeof (struct tcphdr) >> 2;
413 	nth->th_flags = flags;
414 	if (tp)
415 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
416 	else
417 		nth->th_win = htons((u_short)win);
418 	nth->th_urp = 0;
419 	nth->th_sum = 0;
420 #ifdef INET6
421 	if (isipv6) {
422 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
423 					sizeof(struct ip6_hdr),
424 					tlen - sizeof(struct ip6_hdr));
425 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
426 					       ro6 && ro6->ro_rt ?
427 					       ro6->ro_rt->rt_ifp :
428 					       NULL);
429 	} else
430 #endif /* INET6 */
431       {
432 	bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
433 	nth->th_sum = in_cksum(m, tlen);
434 #ifdef INET6
435 	/* Re-initialization for later version check */
436 	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, 0);
437 #endif /* INET6 */
438 	ip->ip_len = tlen;
439 	ip->ip_ttl = ip_defttl;
440       }
441 #ifdef TCPDEBUG
442 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
443 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
444 #endif
445 #ifdef IPSEC
446 	if (tp != NULL) {
447 		m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
448 		ipflags |=
449 #ifdef INET6
450 			isipv6 ? IPV6_SOCKINMRCVIF :
451 #endif
452 			IP_SOCKINMRCVIF;
453 	}
454 #endif
455 #ifdef INET6
456 	if (isipv6) {
457 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
458 		if (ro6 == &sro6 && ro6->ro_rt) {
459 			RTFREE(ro6->ro_rt);
460 			ro6->ro_rt = NULL;
461 		}
462 	} else
463 #endif /* INET6 */
464       {
465 	(void) ip_output(m, NULL, ro, ipflags, NULL);
466 	if (ro == &sro && ro->ro_rt) {
467 		RTFREE(ro->ro_rt);
468 		ro->ro_rt = NULL;
469 	}
470       }
471 }
472 
473 /*
474  * Create a new TCP control block, making an
475  * empty reassembly queue and hooking it to the argument
476  * protocol control block.  The `inp' parameter must have
477  * come from the zone allocator set up in tcp_init().
478  */
479 struct tcpcb *
480 tcp_newtcpcb(inp)
481 	struct inpcb *inp;
482 {
483 	struct inp_tp *it;
484 	register struct tcpcb *tp;
485 #ifdef INET6
486 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
487 #endif /* INET6 */
488 
489 	it = (struct inp_tp *)inp;
490 	tp = &it->tcb;
491 	bzero((char *) tp, sizeof(struct tcpcb));
492 	LIST_INIT(&tp->t_segq);
493 	tp->t_maxseg = tp->t_maxopd =
494 #ifdef INET6
495 		isipv6 ? tcp_v6mssdflt :
496 #endif /* INET6 */
497 		tcp_mssdflt;
498 
499 	/* Set up our timeouts. */
500 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
501 	callout_init(tp->tt_persist = &it->inp_tp_persist);
502 	callout_init(tp->tt_keep = &it->inp_tp_keep);
503 	callout_init(tp->tt_2msl = &it->inp_tp_2msl);
504 	callout_init(tp->tt_delack = &it->inp_tp_delack);
505 
506 	if (tcp_do_rfc1323)
507 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
508 	if (tcp_do_rfc1644)
509 		tp->t_flags |= TF_REQ_CC;
510 	tp->t_inpcb = inp;	/* XXX */
511 	/*
512 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
513 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
514 	 * reasonable initial retransmit time.
515 	 */
516 	tp->t_srtt = TCPTV_SRTTBASE;
517 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
518 	tp->t_rttmin = TCPTV_MIN;
519 	tp->t_rxtcur = TCPTV_RTOBASE;
520 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
521 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
522 	tp->t_rcvtime = ticks;
523         /*
524 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
525 	 * because the socket may be bound to an IPv6 wildcard address,
526 	 * which may match an IPv4-mapped IPv6 address.
527 	 */
528 	inp->inp_ip_ttl = ip_defttl;
529 	inp->inp_ppcb = (caddr_t)tp;
530 	return (tp);		/* XXX */
531 }
532 
533 /*
534  * Drop a TCP connection, reporting
535  * the specified error.  If connection is synchronized,
536  * then send a RST to peer.
537  */
538 struct tcpcb *
539 tcp_drop(tp, errno)
540 	register struct tcpcb *tp;
541 	int errno;
542 {
543 	struct socket *so = tp->t_inpcb->inp_socket;
544 
545 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
546 		tp->t_state = TCPS_CLOSED;
547 		(void) tcp_output(tp);
548 		tcpstat.tcps_drops++;
549 	} else
550 		tcpstat.tcps_conndrops++;
551 	if (errno == ETIMEDOUT && tp->t_softerror)
552 		errno = tp->t_softerror;
553 	so->so_error = errno;
554 	return (tcp_close(tp));
555 }
556 
557 /*
558  * Close a TCP control block:
559  *	discard all space held by the tcp
560  *	discard internet protocol block
561  *	wake up any sleepers
562  */
563 struct tcpcb *
564 tcp_close(tp)
565 	register struct tcpcb *tp;
566 {
567 	register struct tseg_qent *q;
568 	struct inpcb *inp = tp->t_inpcb;
569 	struct socket *so = inp->inp_socket;
570 #ifdef INET6
571 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
572 #endif /* INET6 */
573 	register struct rtentry *rt;
574 	int dosavessthresh;
575 
576 	/*
577 	 * Make sure that all of our timers are stopped before we
578 	 * delete the PCB.
579 	 */
580 	callout_stop(tp->tt_rexmt);
581 	callout_stop(tp->tt_persist);
582 	callout_stop(tp->tt_keep);
583 	callout_stop(tp->tt_2msl);
584 	callout_stop(tp->tt_delack);
585 
586 	/*
587 	 * If we got enough samples through the srtt filter,
588 	 * save the rtt and rttvar in the routing entry.
589 	 * 'Enough' is arbitrarily defined as the 16 samples.
590 	 * 16 samples is enough for the srtt filter to converge
591 	 * to within 5% of the correct value; fewer samples and
592 	 * we could save a very bogus rtt.
593 	 *
594 	 * Don't update the default route's characteristics and don't
595 	 * update anything that the user "locked".
596 	 */
597 	if (tp->t_rttupdated >= 16) {
598 		register u_long i = 0;
599 #ifdef INET6
600 		if (isipv6) {
601 			struct sockaddr_in6 *sin6;
602 
603 			if ((rt = inp->in6p_route.ro_rt) == NULL)
604 				goto no_valid_rt;
605 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
606 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
607 				goto no_valid_rt;
608 		}
609 		else
610 #endif /* INET6 */
611 		if ((rt = inp->inp_route.ro_rt) == NULL ||
612 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
613 		    == INADDR_ANY)
614 			goto no_valid_rt;
615 
616 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
617 			i = tp->t_srtt *
618 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
619 			if (rt->rt_rmx.rmx_rtt && i)
620 				/*
621 				 * filter this update to half the old & half
622 				 * the new values, converting scale.
623 				 * See route.h and tcp_var.h for a
624 				 * description of the scaling constants.
625 				 */
626 				rt->rt_rmx.rmx_rtt =
627 				    (rt->rt_rmx.rmx_rtt + i) / 2;
628 			else
629 				rt->rt_rmx.rmx_rtt = i;
630 			tcpstat.tcps_cachedrtt++;
631 		}
632 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
633 			i = tp->t_rttvar *
634 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
635 			if (rt->rt_rmx.rmx_rttvar && i)
636 				rt->rt_rmx.rmx_rttvar =
637 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
638 			else
639 				rt->rt_rmx.rmx_rttvar = i;
640 			tcpstat.tcps_cachedrttvar++;
641 		}
642 		/*
643 		 * The old comment here said:
644 		 * update the pipelimit (ssthresh) if it has been updated
645 		 * already or if a pipesize was specified & the threshhold
646 		 * got below half the pipesize.  I.e., wait for bad news
647 		 * before we start updating, then update on both good
648 		 * and bad news.
649 		 *
650 		 * But we want to save the ssthresh even if no pipesize is
651 		 * specified explicitly in the route, because such
652 		 * connections still have an implicit pipesize specified
653 		 * by the global tcp_sendspace.  In the absence of a reliable
654 		 * way to calculate the pipesize, it will have to do.
655 		 */
656 		i = tp->snd_ssthresh;
657 		if (rt->rt_rmx.rmx_sendpipe != 0)
658 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
659 		else
660 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
661 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
662 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
663 		    || dosavessthresh) {
664 			/*
665 			 * convert the limit from user data bytes to
666 			 * packets then to packet data bytes.
667 			 */
668 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
669 			if (i < 2)
670 				i = 2;
671 			i *= (u_long)(tp->t_maxseg +
672 #ifdef INET6
673 				      (isipv6 ? sizeof (struct ip6_hdr) +
674 					       sizeof (struct tcphdr) :
675 #endif
676 				       sizeof (struct tcpiphdr)
677 #ifdef INET6
678 				       )
679 #endif
680 				      );
681 			if (rt->rt_rmx.rmx_ssthresh)
682 				rt->rt_rmx.rmx_ssthresh =
683 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
684 			else
685 				rt->rt_rmx.rmx_ssthresh = i;
686 			tcpstat.tcps_cachedssthresh++;
687 		}
688 	}
689     no_valid_rt:
690 	/* free the reassembly queue, if any */
691 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
692 		LIST_REMOVE(q, tqe_q);
693 		m_freem(q->tqe_m);
694 		FREE(q, M_TSEGQ);
695 	}
696 	if (tp->t_template)
697 		(void) m_free(dtom(tp->t_template));
698 	inp->inp_ppcb = NULL;
699 	soisdisconnected(so);
700 #ifdef INET6
701 	if (INP_CHECK_SOCKAF(so, AF_INET6))
702 		in6_pcbdetach(inp);
703 	else
704 #endif /* INET6 */
705 	in_pcbdetach(inp);
706 	tcpstat.tcps_closed++;
707 	return ((struct tcpcb *)0);
708 }
709 
710 void
711 tcp_drain()
712 {
713 	if (do_tcpdrain)
714 	{
715 		struct inpcb *inpb;
716 		struct tcpcb *tcpb;
717 		struct tseg_qent *te;
718 
719 	/*
720 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
721 	 * if there is one...
722 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
723 	 *      reassembly queue should be flushed, but in a situation
724 	 * 	where we're really low on mbufs, this is potentially
725 	 *  	usefull.
726 	 */
727 		for (inpb = tcbinfo.listhead->lh_first; inpb;
728 	    		inpb = inpb->inp_list.le_next) {
729 				if ((tcpb = intotcpcb(inpb))) {
730 					while ((te = LIST_FIRST(&tcpb->t_segq))
731 					       != NULL) {
732 					LIST_REMOVE(te, tqe_q);
733 					m_freem(te->tqe_m);
734 					FREE(te, M_TSEGQ);
735 				}
736 			}
737 		}
738 
739 	}
740 }
741 
742 /*
743  * Notify a tcp user of an asynchronous error;
744  * store error as soft error, but wake up user
745  * (for now, won't do anything until can select for soft error).
746  */
747 static void
748 tcp_notify(inp, error)
749 	struct inpcb *inp;
750 	int error;
751 {
752 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
753 	register struct socket *so = inp->inp_socket;
754 
755 	/*
756 	 * Ignore some errors if we are hooked up.
757 	 * If connection hasn't completed, has retransmitted several times,
758 	 * and receives a second error, give up now.  This is better
759 	 * than waiting a long time to establish a connection that
760 	 * can never complete.
761 	 */
762 	if (tp->t_state == TCPS_ESTABLISHED &&
763 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
764 	      error == EHOSTDOWN)) {
765 		return;
766 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
767 	    tp->t_softerror)
768 		so->so_error = error;
769 	else
770 		tp->t_softerror = error;
771 	wakeup((caddr_t) &so->so_timeo);
772 	sorwakeup(so);
773 	sowwakeup(so);
774 }
775 
776 static int
777 tcp_pcblist SYSCTL_HANDLER_ARGS
778 {
779 	int error, i, n, s;
780 	struct inpcb *inp, **inp_list;
781 	inp_gen_t gencnt;
782 	struct xinpgen xig;
783 
784 	/*
785 	 * The process of preparing the TCB list is too time-consuming and
786 	 * resource-intensive to repeat twice on every request.
787 	 */
788 	if (req->oldptr == 0) {
789 		n = tcbinfo.ipi_count;
790 		req->oldidx = 2 * (sizeof xig)
791 			+ (n + n/8) * sizeof(struct xtcpcb);
792 		return 0;
793 	}
794 
795 	if (req->newptr != 0)
796 		return EPERM;
797 
798 	/*
799 	 * OK, now we're committed to doing something.
800 	 */
801 	s = splnet();
802 	gencnt = tcbinfo.ipi_gencnt;
803 	n = tcbinfo.ipi_count;
804 	splx(s);
805 
806 	xig.xig_len = sizeof xig;
807 	xig.xig_count = n;
808 	xig.xig_gen = gencnt;
809 	xig.xig_sogen = so_gencnt;
810 	error = SYSCTL_OUT(req, &xig, sizeof xig);
811 	if (error)
812 		return error;
813 
814 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
815 	if (inp_list == 0)
816 		return ENOMEM;
817 
818 	s = splnet();
819 	for (inp = tcbinfo.listhead->lh_first, i = 0; inp && i < n;
820 	     inp = inp->inp_list.le_next) {
821 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
822 			inp_list[i++] = inp;
823 	}
824 	splx(s);
825 	n = i;
826 
827 	error = 0;
828 	for (i = 0; i < n; i++) {
829 		inp = inp_list[i];
830 		if (inp->inp_gencnt <= gencnt) {
831 			struct xtcpcb xt;
832 			caddr_t inp_ppcb;
833 			xt.xt_len = sizeof xt;
834 			/* XXX should avoid extra copy */
835 			bcopy(inp, &xt.xt_inp, sizeof *inp);
836 			inp_ppcb = inp->inp_ppcb;
837 			if (inp_ppcb != NULL)
838 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
839 			else
840 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
841 			if (inp->inp_socket)
842 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
843 			error = SYSCTL_OUT(req, &xt, sizeof xt);
844 		}
845 	}
846 	if (!error) {
847 		/*
848 		 * Give the user an updated idea of our state.
849 		 * If the generation differs from what we told
850 		 * her before, she knows that something happened
851 		 * while we were processing this request, and it
852 		 * might be necessary to retry.
853 		 */
854 		s = splnet();
855 		xig.xig_gen = tcbinfo.ipi_gencnt;
856 		xig.xig_sogen = so_gencnt;
857 		xig.xig_count = tcbinfo.ipi_count;
858 		splx(s);
859 		error = SYSCTL_OUT(req, &xig, sizeof xig);
860 	}
861 	free(inp_list, M_TEMP);
862 	return error;
863 }
864 
865 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
866 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
867 
868 static int
869 tcp_getcred SYSCTL_HANDLER_ARGS
870 {
871 	struct sockaddr_in addrs[2];
872 	struct inpcb *inp;
873 	int error, s;
874 
875 	error = suser(req->p);
876 	if (error)
877 		return (error);
878 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
879 	if (error)
880 		return (error);
881 	s = splnet();
882 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
883 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
884 	if (inp == NULL || inp->inp_socket == NULL) {
885 		error = ENOENT;
886 		goto out;
887 	}
888 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
889 out:
890 	splx(s);
891 	return (error);
892 }
893 
894 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
895     0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
896 
897 #ifdef INET6
898 static int
899 tcp6_getcred SYSCTL_HANDLER_ARGS
900 {
901 	struct sockaddr_in6 addrs[2];
902 	struct inpcb *inp;
903 	int error, s, mapped = 0;
904 
905 	error = suser(req->p);
906 	if (error)
907 		return (error);
908 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
909 	if (error)
910 		return (error);
911 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
912 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
913 			mapped = 1;
914 		else
915 			return (EINVAL);
916 	}
917 	s = splnet();
918 	if (mapped == 1)
919 		inp = in_pcblookup_hash(&tcbinfo,
920 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
921 			addrs[1].sin6_port,
922 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
923 			addrs[0].sin6_port,
924 			0, NULL);
925 	else
926 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
927 				 addrs[1].sin6_port,
928 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
929 				 0, NULL);
930 	if (inp == NULL || inp->inp_socket == NULL) {
931 		error = ENOENT;
932 		goto out;
933 	}
934 	error = SYSCTL_OUT(req, inp->inp_socket->so_cred,
935 			   sizeof(struct ucred));
936 out:
937 	splx(s);
938 	return (error);
939 }
940 
941 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
942 	    0, 0,
943 	    tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
944 #endif
945 
946 
947 void
948 tcp_ctlinput(cmd, sa, vip)
949 	int cmd;
950 	struct sockaddr *sa;
951 	void *vip;
952 {
953 	register struct ip *ip = vip;
954 	register struct tcphdr *th;
955 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
956 
957 	if (cmd == PRC_QUENCH)
958 		notify = tcp_quench;
959 	else if (cmd == PRC_MSGSIZE)
960 		notify = tcp_mtudisc;
961 	else if (!PRC_IS_REDIRECT(cmd) &&
962 		 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
963 		return;
964 	if (ip) {
965 		th = (struct tcphdr *)((caddr_t)ip
966 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
967 		in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
968 			cmd, notify);
969 	} else
970 		in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
971 }
972 
973 #ifdef INET6
974 void
975 tcp6_ctlinput(cmd, sa, d)
976 	int cmd;
977 	struct sockaddr *sa;
978 	void *d;
979 {
980 	register struct tcphdr *thp;
981 	struct tcphdr th;
982 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
983 	struct sockaddr_in6 sa6;
984 	struct ip6_hdr *ip6;
985 	struct mbuf *m;
986 	int off;
987 
988 	if (sa->sa_family != AF_INET6 ||
989 	    sa->sa_len != sizeof(struct sockaddr_in6))
990 		return;
991 
992 	if (cmd == PRC_QUENCH)
993 		notify = tcp_quench;
994 	else if (cmd == PRC_MSGSIZE)
995 		notify = tcp_mtudisc;
996 	else if (!PRC_IS_REDIRECT(cmd) &&
997 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
998 		return;
999 
1000 	/* if the parameter is from icmp6, decode it. */
1001 	if (d != NULL) {
1002 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1003 		m = ip6cp->ip6c_m;
1004 		ip6 = ip6cp->ip6c_ip6;
1005 		off = ip6cp->ip6c_off;
1006 	} else {
1007 		m = NULL;
1008 		ip6 = NULL;
1009 	}
1010 
1011 	/*
1012 	 * Translate addresses into internal form.
1013 	 * Sa check if it is AF_INET6 is done at the top of this funciton.
1014 	 */
1015 	sa6 = *(struct sockaddr_in6 *)sa;
1016 	if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL &&
1017 	    m->m_pkthdr.rcvif != NULL)
1018 		sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1019 
1020 	if (ip6) {
1021 		/*
1022 		 * XXX: We assume that when IPV6 is non NULL,
1023 		 * M and OFF are valid.
1024 		 */
1025 		struct in6_addr s;
1026 
1027 		/* translate addresses into internal form */
1028 		memcpy(&s, &ip6->ip6_src, sizeof(s));
1029 		if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL &&
1030 		    m->m_pkthdr.rcvif != NULL)
1031 			s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1032 
1033 		if (m->m_len < off + sizeof(*thp)) {
1034 			/*
1035 			 * this should be rare case
1036 			 * because now MINCLSIZE is "(MHLEN + 1)",
1037 			 * so we compromise on this copy...
1038 			 */
1039 			m_copydata(m, off, sizeof(th), (caddr_t)&th);
1040 			thp = &th;
1041 		} else
1042 			thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1043 		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport,
1044 			      &s, thp->th_sport, cmd, notify);
1045 	} else
1046 		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr,
1047 			      0, cmd, notify);
1048 }
1049 #endif /* INET6 */
1050 
1051 /*
1052  * When a source quench is received, close congestion window
1053  * to one segment.  We will gradually open it again as we proceed.
1054  */
1055 void
1056 tcp_quench(inp, errno)
1057 	struct inpcb *inp;
1058 	int errno;
1059 {
1060 	struct tcpcb *tp = intotcpcb(inp);
1061 
1062 	if (tp)
1063 		tp->snd_cwnd = tp->t_maxseg;
1064 }
1065 
1066 /*
1067  * When `need fragmentation' ICMP is received, update our idea of the MSS
1068  * based on the new value in the route.  Also nudge TCP to send something,
1069  * since we know the packet we just sent was dropped.
1070  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1071  */
1072 void
1073 tcp_mtudisc(inp, errno)
1074 	struct inpcb *inp;
1075 	int errno;
1076 {
1077 	struct tcpcb *tp = intotcpcb(inp);
1078 	struct rtentry *rt;
1079 	struct rmxp_tao *taop;
1080 	struct socket *so = inp->inp_socket;
1081 	int offered;
1082 	int mss;
1083 #ifdef INET6
1084 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1085 #endif /* INET6 */
1086 
1087 	if (tp) {
1088 #ifdef INET6
1089 		if (isipv6)
1090 			rt = tcp_rtlookup6(inp);
1091 		else
1092 #endif /* INET6 */
1093 		rt = tcp_rtlookup(inp);
1094 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1095 			tp->t_maxopd = tp->t_maxseg =
1096 #ifdef INET6
1097 				isipv6 ? tcp_v6mssdflt :
1098 #endif /* INET6 */
1099 				tcp_mssdflt;
1100 			return;
1101 		}
1102 		taop = rmx_taop(rt->rt_rmx);
1103 		offered = taop->tao_mssopt;
1104 		mss = rt->rt_rmx.rmx_mtu -
1105 #ifdef INET6
1106 			(isipv6 ?
1107 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1108 #endif /* INET6 */
1109 			 sizeof(struct tcpiphdr)
1110 #ifdef INET6
1111 			 )
1112 #endif /* INET6 */
1113 			;
1114 
1115 		if (offered)
1116 			mss = min(mss, offered);
1117 		/*
1118 		 * XXX - The above conditional probably violates the TCP
1119 		 * spec.  The problem is that, since we don't know the
1120 		 * other end's MSS, we are supposed to use a conservative
1121 		 * default.  But, if we do that, then MTU discovery will
1122 		 * never actually take place, because the conservative
1123 		 * default is much less than the MTUs typically seen
1124 		 * on the Internet today.  For the moment, we'll sweep
1125 		 * this under the carpet.
1126 		 *
1127 		 * The conservative default might not actually be a problem
1128 		 * if the only case this occurs is when sending an initial
1129 		 * SYN with options and data to a host we've never talked
1130 		 * to before.  Then, they will reply with an MSS value which
1131 		 * will get recorded and the new parameters should get
1132 		 * recomputed.  For Further Study.
1133 		 */
1134 		if (tp->t_maxopd <= mss)
1135 			return;
1136 		tp->t_maxopd = mss;
1137 
1138 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1139 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1140 			mss -= TCPOLEN_TSTAMP_APPA;
1141 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1142 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1143 			mss -= TCPOLEN_CC_APPA;
1144 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1145 		if (mss > MCLBYTES)
1146 			mss &= ~(MCLBYTES-1);
1147 #else
1148 		if (mss > MCLBYTES)
1149 			mss = mss / MCLBYTES * MCLBYTES;
1150 #endif
1151 		if (so->so_snd.sb_hiwat < mss)
1152 			mss = so->so_snd.sb_hiwat;
1153 
1154 		tp->t_maxseg = mss;
1155 
1156 		tcpstat.tcps_mturesent++;
1157 		tp->t_rtttime = 0;
1158 		tp->snd_nxt = tp->snd_una;
1159 		tcp_output(tp);
1160 	}
1161 }
1162 
1163 /*
1164  * Look-up the routing entry to the peer of this inpcb.  If no route
1165  * is found and it cannot be allocated the return NULL.  This routine
1166  * is called by TCP routines that access the rmx structure and by tcp_mss
1167  * to get the interface MTU.
1168  */
1169 struct rtentry *
1170 tcp_rtlookup(inp)
1171 	struct inpcb *inp;
1172 {
1173 	struct route *ro;
1174 	struct rtentry *rt;
1175 
1176 	ro = &inp->inp_route;
1177 	rt = ro->ro_rt;
1178 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1179 		/* No route yet, so try to acquire one */
1180 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1181 			ro->ro_dst.sa_family = AF_INET;
1182 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1183 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1184 				inp->inp_faddr;
1185 			rtalloc(ro);
1186 			rt = ro->ro_rt;
1187 		}
1188 	}
1189 	return rt;
1190 }
1191 
1192 #ifdef INET6
1193 struct rtentry *
1194 tcp_rtlookup6(inp)
1195 	struct inpcb *inp;
1196 {
1197 	struct route_in6 *ro6;
1198 	struct rtentry *rt;
1199 
1200 	ro6 = &inp->in6p_route;
1201 	rt = ro6->ro_rt;
1202 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1203 		/* No route yet, so try to acquire one */
1204 		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1205 			ro6->ro_dst.sin6_family = AF_INET6;
1206 			ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst);
1207 			ro6->ro_dst.sin6_addr = inp->in6p_faddr;
1208 			rtalloc((struct route *)ro6);
1209 			rt = ro6->ro_rt;
1210 		}
1211 	}
1212 	return rt;
1213 }
1214 #endif /* INET6 */
1215 
1216 #ifdef IPSEC
1217 /* compute ESP/AH header size for TCP, including outer IP header. */
1218 size_t
1219 ipsec_hdrsiz_tcp(tp)
1220 	struct tcpcb *tp;
1221 {
1222 	struct inpcb *inp;
1223 	struct mbuf *m;
1224 	size_t hdrsiz;
1225 	struct ip *ip;
1226 #ifdef INET6
1227 	struct ip6_hdr *ip6;
1228 #endif /* INET6 */
1229 	struct tcphdr *th;
1230 
1231 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1232 		return 0;
1233 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1234 	if (!m)
1235 		return 0;
1236 
1237 #ifdef INET6
1238 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1239 		ip6 = mtod(m, struct ip6_hdr *);
1240 		th = (struct tcphdr *)(ip6 + 1);
1241 		m->m_pkthdr.len = m->m_len =
1242 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1243 		bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6,
1244 		      sizeof(struct ip6_hdr));
1245 		bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1246 		      sizeof(struct tcphdr));
1247 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1248 	} else
1249 #endif /* INET6 */
1250       {
1251 	ip = mtod(m, struct ip *);
1252 	th = (struct tcphdr *)(ip + 1);
1253 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1254 	bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip,
1255 	      sizeof(struct ip));
1256 	bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1257 	      sizeof(struct tcphdr));
1258 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1259       }
1260 
1261 	m_free(m);
1262 	return hdrsiz;
1263 }
1264 #endif /*IPSEC*/
1265 
1266 /*
1267  * Return a pointer to the cached information about the remote host.
1268  * The cached information is stored in the protocol specific part of
1269  * the route metrics.
1270  */
1271 struct rmxp_tao *
1272 tcp_gettaocache(inp)
1273 	struct inpcb *inp;
1274 {
1275 	struct rtentry *rt;
1276 
1277 #ifdef INET6
1278 	if ((inp->inp_vflag & INP_IPV6) != 0)
1279 		rt = tcp_rtlookup6(inp);
1280 	else
1281 #endif /* INET6 */
1282 	rt = tcp_rtlookup(inp);
1283 
1284 	/* Make sure this is a host route and is up. */
1285 	if (rt == NULL ||
1286 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1287 		return NULL;
1288 
1289 	return rmx_taop(rt->rt_rmx);
1290 }
1291 
1292 /*
1293  * Clear all the TAO cache entries, called from tcp_init.
1294  *
1295  * XXX
1296  * This routine is just an empty one, because we assume that the routing
1297  * routing tables are initialized at the same time when TCP, so there is
1298  * nothing in the cache left over.
1299  */
1300 static void
1301 tcp_cleartaocache()
1302 {
1303 }
1304