1 /* 2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_compat.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 #include "opt_tcpdebug.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/callout.h> 45 #include <sys/kernel.h> 46 #include <sys/sysctl.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #ifdef INET6 50 #include <sys/domain.h> 51 #endif 52 #include <sys/proc.h> 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 #include <sys/protosw.h> 56 57 #include <vm/vm_zone.h> 58 59 #include <net/route.h> 60 #include <net/if.h> 61 62 #define _IP_VHL 63 #include <netinet/in.h> 64 #include <netinet/in_systm.h> 65 #include <netinet/ip.h> 66 #ifdef INET6 67 #include <netinet/ip6.h> 68 #endif 69 #include <netinet/in_pcb.h> 70 #ifdef INET6 71 #include <netinet6/in6_pcb.h> 72 #endif 73 #include <netinet/in_var.h> 74 #include <netinet/ip_var.h> 75 #ifdef INET6 76 #include <netinet6/ip6_var.h> 77 #endif 78 #include <netinet/tcp.h> 79 #include <netinet/tcp_fsm.h> 80 #include <netinet/tcp_seq.h> 81 #include <netinet/tcp_timer.h> 82 #include <netinet/tcp_var.h> 83 #ifdef INET6 84 #include <netinet6/tcp6_var.h> 85 #endif 86 #include <netinet/tcpip.h> 87 #ifdef TCPDEBUG 88 #include <netinet/tcp_debug.h> 89 #endif 90 #include <netinet6/ip6protosw.h> 91 92 #ifdef IPSEC 93 #include <netinet6/ipsec.h> 94 #endif /*IPSEC*/ 95 96 int tcp_mssdflt = TCP_MSS; 97 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW, 98 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size"); 99 100 #ifdef INET6 101 int tcp_v6mssdflt = TCP6_MSS; 102 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, 103 CTLFLAG_RW, &tcp_v6mssdflt , 0, 104 "Default TCP Maximum Segment Size for IPv6"); 105 #endif 106 107 #if 0 108 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ; 109 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW, 110 &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time"); 111 #endif 112 113 static int tcp_do_rfc1323 = 1; 114 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW, 115 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions"); 116 117 static int tcp_do_rfc1644 = 0; 118 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW, 119 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions"); 120 121 static int tcp_tcbhashsize = 0; 122 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD, 123 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable"); 124 125 static int do_tcpdrain = 1; 126 SYSCTL_INT(_debug, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0, 127 "Enable non Net3 compliant tcp_drain"); 128 129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD, 130 &tcbinfo.ipi_count, 0, "Number of active PCBs"); 131 132 static void tcp_cleartaocache __P((void)); 133 static void tcp_notify __P((struct inpcb *, int)); 134 135 /* 136 * Target size of TCP PCB hash tables. Must be a power of two. 137 * 138 * Note that this can be overridden by the kernel environment 139 * variable net.inet.tcp.tcbhashsize 140 */ 141 #ifndef TCBHASHSIZE 142 #define TCBHASHSIZE 512 143 #endif 144 145 /* 146 * This is the actual shape of what we allocate using the zone 147 * allocator. Doing it this way allows us to protect both structures 148 * using the same generation count, and also eliminates the overhead 149 * of allocating tcpcbs separately. By hiding the structure here, 150 * we avoid changing most of the rest of the code (although it needs 151 * to be changed, eventually, for greater efficiency). 152 */ 153 #define ALIGNMENT 32 154 #define ALIGNM1 (ALIGNMENT - 1) 155 struct inp_tp { 156 union { 157 struct inpcb inp; 158 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1]; 159 } inp_tp_u; 160 struct tcpcb tcb; 161 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl; 162 struct callout inp_tp_delack; 163 }; 164 #undef ALIGNMENT 165 #undef ALIGNM1 166 167 /* 168 * Tcp initialization 169 */ 170 void 171 tcp_init() 172 { 173 int hashsize; 174 175 tcp_iss = random(); /* wrong, but better than a constant */ 176 tcp_ccgen = 1; 177 tcp_cleartaocache(); 178 179 tcp_delacktime = TCPTV_DELACK; 180 tcp_keepinit = TCPTV_KEEP_INIT; 181 tcp_keepidle = TCPTV_KEEP_IDLE; 182 tcp_keepintvl = TCPTV_KEEPINTVL; 183 tcp_maxpersistidle = TCPTV_KEEP_IDLE; 184 tcp_msl = TCPTV_MSL; 185 186 LIST_INIT(&tcb); 187 tcbinfo.listhead = &tcb; 188 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize); 189 if (!powerof2(hashsize)) { 190 printf("WARNING: TCB hash size not a power of 2\n"); 191 hashsize = 512; /* safe default */ 192 } 193 tcp_tcbhashsize = hashsize; 194 tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask); 195 tcbinfo.porthashbase = hashinit(hashsize, M_PCB, 196 &tcbinfo.porthashmask); 197 tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets, 198 ZONE_INTERRUPT, 0); 199 #ifdef INET6 200 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) 201 #else /* INET6 */ 202 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr)) 203 #endif /* INET6 */ 204 if (max_protohdr < TCP_MINPROTOHDR) 205 max_protohdr = TCP_MINPROTOHDR; 206 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN) 207 panic("tcp_init"); 208 #undef TCP_MINPROTOHDR 209 } 210 211 /* 212 * Create template to be used to send tcp packets on a connection. 213 * Call after host entry created, allocates an mbuf and fills 214 * in a skeletal tcp/ip header, minimizing the amount of work 215 * necessary when the connection is used. 216 */ 217 struct tcptemp * 218 tcp_template(tp) 219 struct tcpcb *tp; 220 { 221 register struct inpcb *inp = tp->t_inpcb; 222 register struct mbuf *m; 223 register struct tcptemp *n; 224 225 if ((n = tp->t_template) == 0) { 226 m = m_get(M_DONTWAIT, MT_HEADER); 227 if (m == NULL) 228 return (0); 229 m->m_len = sizeof (struct tcptemp); 230 n = mtod(m, struct tcptemp *); 231 } 232 #ifdef INET6 233 if ((inp->inp_vflag & INP_IPV6) != 0) { 234 register struct ip6_hdr *ip6; 235 236 ip6 = (struct ip6_hdr *)n->tt_ipgen; 237 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) | 238 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK); 239 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) | 240 (IPV6_VERSION & IPV6_VERSION_MASK); 241 ip6->ip6_nxt = IPPROTO_TCP; 242 ip6->ip6_plen = sizeof(struct tcphdr); 243 ip6->ip6_src = inp->in6p_laddr; 244 ip6->ip6_dst = inp->in6p_faddr; 245 } else 246 #endif 247 { 248 register struct ipovly *ipov; 249 250 ipov = (struct ipovly *)n->tt_ipgen; 251 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 252 ipov->ih_pr = IPPROTO_TCP; 253 ipov->ih_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip)); 254 ipov->ih_src = inp->inp_laddr; 255 ipov->ih_dst = inp->inp_faddr; 256 } 257 n->tt_t.th_sport = inp->inp_lport; 258 n->tt_t.th_dport = inp->inp_fport; 259 n->tt_t.th_seq = 0; 260 n->tt_t.th_ack = 0; 261 n->tt_t.th_x2 = 0; 262 n->tt_t.th_off = 5; 263 n->tt_t.th_flags = 0; 264 n->tt_t.th_win = 0; 265 n->tt_t.th_sum = 0; 266 n->tt_t.th_urp = 0; 267 return (n); 268 } 269 270 /* 271 * Send a single message to the TCP at address specified by 272 * the given TCP/IP header. If m == 0, then we make a copy 273 * of the tcpiphdr at ti and send directly to the addressed host. 274 * This is used to force keep alive messages out using the TCP 275 * template for a connection tp->t_template. If flags are given 276 * then we send a message back to the TCP which originated the 277 * segment ti, and discard the mbuf containing it and any other 278 * attached mbufs. 279 * 280 * In any case the ack and sequence number of the transmitted 281 * segment are as specified by the parameters. 282 * 283 * NOTE: If m != NULL, then ti must point to *inside* the mbuf. 284 */ 285 void 286 tcp_respond(tp, ipgen, th, m, ack, seq, flags) 287 struct tcpcb *tp; 288 void *ipgen; 289 register struct tcphdr *th; 290 register struct mbuf *m; 291 tcp_seq ack, seq; 292 int flags; 293 { 294 register int tlen; 295 int win = 0; 296 struct route *ro = 0; 297 struct route sro; 298 struct ip *ip; 299 struct ipovly *ipov; 300 struct tcphdr *nth; 301 #ifdef INET6 302 struct route_in6 *ro6 = 0; 303 struct route_in6 sro6; 304 struct ip6_hdr *ip6; 305 int isipv6; 306 #endif /* INET6 */ 307 int ipflags = 0; 308 309 #ifdef INET6 310 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6; 311 ip6 = ipgen; 312 #endif /* INET6 */ 313 ip = ipgen; 314 ipov = ipgen; 315 316 if (tp) { 317 if (!(flags & TH_RST)) { 318 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv); 319 if (win > (long)TCP_MAXWIN << tp->rcv_scale) 320 win = (long)TCP_MAXWIN << tp->rcv_scale; 321 } 322 #ifdef INET6 323 if (isipv6) 324 ro6 = &tp->t_inpcb->in6p_route; 325 else 326 #endif /* INET6 */ 327 ro = &tp->t_inpcb->inp_route; 328 } else { 329 #ifdef INET6 330 if (isipv6) { 331 ro6 = &sro6; 332 bzero(ro6, sizeof *ro6); 333 } else 334 #endif /* INET6 */ 335 { 336 ro = &sro; 337 bzero(ro, sizeof *ro); 338 } 339 } 340 if (m == 0) { 341 m = m_gethdr(M_DONTWAIT, MT_HEADER); 342 if (m == NULL) 343 return; 344 #ifdef TCP_COMPAT_42 345 tlen = 1; 346 #else 347 tlen = 0; 348 #endif 349 m->m_data += max_linkhdr; 350 #ifdef INET6 351 if (isipv6) { 352 bcopy((caddr_t)ip6, mtod(m, caddr_t), 353 sizeof(struct ip6_hdr)); 354 ip6 = mtod(m, struct ip6_hdr *); 355 nth = (struct tcphdr *)(ip6 + 1); 356 } else 357 #endif /* INET6 */ 358 { 359 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip)); 360 ip = mtod(m, struct ip *); 361 ipov = mtod(m, struct ipovly *); 362 nth = (struct tcphdr *)(ip + 1); 363 } 364 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr)); 365 flags = TH_ACK; 366 } else { 367 m_freem(m->m_next); 368 m->m_next = 0; 369 m->m_data = (caddr_t)ipgen; 370 /* m_len is set later */ 371 tlen = 0; 372 #define xchg(a,b,type) { type t; t=a; a=b; b=t; } 373 #ifdef INET6 374 if (isipv6) { 375 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr); 376 nth = (struct tcphdr *)(ip6 + 1); 377 } else 378 #endif /* INET6 */ 379 { 380 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long); 381 nth = (struct tcphdr *)(ip + 1); 382 } 383 if (th != nth) { 384 /* 385 * this is usually a case when an extension header 386 * exists between the IPv6 header and the 387 * TCP header. 388 */ 389 nth->th_sport = th->th_sport; 390 nth->th_dport = th->th_dport; 391 } 392 xchg(nth->th_dport, nth->th_sport, n_short); 393 #undef xchg 394 } 395 #ifdef INET6 396 if (isipv6) { 397 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) + 398 tlen)); 399 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr); 400 } else 401 #endif 402 { 403 ipov->ih_len = htons((u_short)(sizeof (struct tcphdr) + tlen)); 404 tlen += sizeof (struct tcpiphdr); 405 } 406 m->m_len = tlen; 407 m->m_pkthdr.len = tlen; 408 m->m_pkthdr.rcvif = (struct ifnet *) 0; 409 nth->th_seq = htonl(seq); 410 nth->th_ack = htonl(ack); 411 nth->th_x2 = 0; 412 nth->th_off = sizeof (struct tcphdr) >> 2; 413 nth->th_flags = flags; 414 if (tp) 415 nth->th_win = htons((u_short) (win >> tp->rcv_scale)); 416 else 417 nth->th_win = htons((u_short)win); 418 nth->th_urp = 0; 419 nth->th_sum = 0; 420 #ifdef INET6 421 if (isipv6) { 422 nth->th_sum = in6_cksum(m, IPPROTO_TCP, 423 sizeof(struct ip6_hdr), 424 tlen - sizeof(struct ip6_hdr)); 425 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, 426 ro6 && ro6->ro_rt ? 427 ro6->ro_rt->rt_ifp : 428 NULL); 429 } else 430 #endif /* INET6 */ 431 { 432 bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); 433 nth->th_sum = in_cksum(m, tlen); 434 #ifdef INET6 435 /* Re-initialization for later version check */ 436 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, 0); 437 #endif /* INET6 */ 438 ip->ip_len = tlen; 439 ip->ip_ttl = ip_defttl; 440 } 441 #ifdef TCPDEBUG 442 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) 443 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0); 444 #endif 445 #ifdef IPSEC 446 if (tp != NULL) { 447 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket; 448 ipflags |= 449 #ifdef INET6 450 isipv6 ? IPV6_SOCKINMRCVIF : 451 #endif 452 IP_SOCKINMRCVIF; 453 } 454 #endif 455 #ifdef INET6 456 if (isipv6) { 457 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL); 458 if (ro6 == &sro6 && ro6->ro_rt) { 459 RTFREE(ro6->ro_rt); 460 ro6->ro_rt = NULL; 461 } 462 } else 463 #endif /* INET6 */ 464 { 465 (void) ip_output(m, NULL, ro, ipflags, NULL); 466 if (ro == &sro && ro->ro_rt) { 467 RTFREE(ro->ro_rt); 468 ro->ro_rt = NULL; 469 } 470 } 471 } 472 473 /* 474 * Create a new TCP control block, making an 475 * empty reassembly queue and hooking it to the argument 476 * protocol control block. The `inp' parameter must have 477 * come from the zone allocator set up in tcp_init(). 478 */ 479 struct tcpcb * 480 tcp_newtcpcb(inp) 481 struct inpcb *inp; 482 { 483 struct inp_tp *it; 484 register struct tcpcb *tp; 485 #ifdef INET6 486 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 487 #endif /* INET6 */ 488 489 it = (struct inp_tp *)inp; 490 tp = &it->tcb; 491 bzero((char *) tp, sizeof(struct tcpcb)); 492 LIST_INIT(&tp->t_segq); 493 tp->t_maxseg = tp->t_maxopd = 494 #ifdef INET6 495 isipv6 ? tcp_v6mssdflt : 496 #endif /* INET6 */ 497 tcp_mssdflt; 498 499 /* Set up our timeouts. */ 500 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt); 501 callout_init(tp->tt_persist = &it->inp_tp_persist); 502 callout_init(tp->tt_keep = &it->inp_tp_keep); 503 callout_init(tp->tt_2msl = &it->inp_tp_2msl); 504 callout_init(tp->tt_delack = &it->inp_tp_delack); 505 506 if (tcp_do_rfc1323) 507 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP); 508 if (tcp_do_rfc1644) 509 tp->t_flags |= TF_REQ_CC; 510 tp->t_inpcb = inp; /* XXX */ 511 /* 512 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no 513 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives 514 * reasonable initial retransmit time. 515 */ 516 tp->t_srtt = TCPTV_SRTTBASE; 517 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4; 518 tp->t_rttmin = TCPTV_MIN; 519 tp->t_rxtcur = TCPTV_RTOBASE; 520 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT; 521 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; 522 tp->t_rcvtime = ticks; 523 /* 524 * IPv4 TTL initialization is necessary for an IPv6 socket as well, 525 * because the socket may be bound to an IPv6 wildcard address, 526 * which may match an IPv4-mapped IPv6 address. 527 */ 528 inp->inp_ip_ttl = ip_defttl; 529 inp->inp_ppcb = (caddr_t)tp; 530 return (tp); /* XXX */ 531 } 532 533 /* 534 * Drop a TCP connection, reporting 535 * the specified error. If connection is synchronized, 536 * then send a RST to peer. 537 */ 538 struct tcpcb * 539 tcp_drop(tp, errno) 540 register struct tcpcb *tp; 541 int errno; 542 { 543 struct socket *so = tp->t_inpcb->inp_socket; 544 545 if (TCPS_HAVERCVDSYN(tp->t_state)) { 546 tp->t_state = TCPS_CLOSED; 547 (void) tcp_output(tp); 548 tcpstat.tcps_drops++; 549 } else 550 tcpstat.tcps_conndrops++; 551 if (errno == ETIMEDOUT && tp->t_softerror) 552 errno = tp->t_softerror; 553 so->so_error = errno; 554 return (tcp_close(tp)); 555 } 556 557 /* 558 * Close a TCP control block: 559 * discard all space held by the tcp 560 * discard internet protocol block 561 * wake up any sleepers 562 */ 563 struct tcpcb * 564 tcp_close(tp) 565 register struct tcpcb *tp; 566 { 567 register struct tseg_qent *q; 568 struct inpcb *inp = tp->t_inpcb; 569 struct socket *so = inp->inp_socket; 570 #ifdef INET6 571 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0; 572 #endif /* INET6 */ 573 register struct rtentry *rt; 574 int dosavessthresh; 575 576 /* 577 * Make sure that all of our timers are stopped before we 578 * delete the PCB. 579 */ 580 callout_stop(tp->tt_rexmt); 581 callout_stop(tp->tt_persist); 582 callout_stop(tp->tt_keep); 583 callout_stop(tp->tt_2msl); 584 callout_stop(tp->tt_delack); 585 586 /* 587 * If we got enough samples through the srtt filter, 588 * save the rtt and rttvar in the routing entry. 589 * 'Enough' is arbitrarily defined as the 16 samples. 590 * 16 samples is enough for the srtt filter to converge 591 * to within 5% of the correct value; fewer samples and 592 * we could save a very bogus rtt. 593 * 594 * Don't update the default route's characteristics and don't 595 * update anything that the user "locked". 596 */ 597 if (tp->t_rttupdated >= 16) { 598 register u_long i = 0; 599 #ifdef INET6 600 if (isipv6) { 601 struct sockaddr_in6 *sin6; 602 603 if ((rt = inp->in6p_route.ro_rt) == NULL) 604 goto no_valid_rt; 605 sin6 = (struct sockaddr_in6 *)rt_key(rt); 606 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 607 goto no_valid_rt; 608 } 609 else 610 #endif /* INET6 */ 611 if ((rt = inp->inp_route.ro_rt) == NULL || 612 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr 613 == INADDR_ANY) 614 goto no_valid_rt; 615 616 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) { 617 i = tp->t_srtt * 618 (RTM_RTTUNIT / (hz * TCP_RTT_SCALE)); 619 if (rt->rt_rmx.rmx_rtt && i) 620 /* 621 * filter this update to half the old & half 622 * the new values, converting scale. 623 * See route.h and tcp_var.h for a 624 * description of the scaling constants. 625 */ 626 rt->rt_rmx.rmx_rtt = 627 (rt->rt_rmx.rmx_rtt + i) / 2; 628 else 629 rt->rt_rmx.rmx_rtt = i; 630 tcpstat.tcps_cachedrtt++; 631 } 632 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) { 633 i = tp->t_rttvar * 634 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE)); 635 if (rt->rt_rmx.rmx_rttvar && i) 636 rt->rt_rmx.rmx_rttvar = 637 (rt->rt_rmx.rmx_rttvar + i) / 2; 638 else 639 rt->rt_rmx.rmx_rttvar = i; 640 tcpstat.tcps_cachedrttvar++; 641 } 642 /* 643 * The old comment here said: 644 * update the pipelimit (ssthresh) if it has been updated 645 * already or if a pipesize was specified & the threshhold 646 * got below half the pipesize. I.e., wait for bad news 647 * before we start updating, then update on both good 648 * and bad news. 649 * 650 * But we want to save the ssthresh even if no pipesize is 651 * specified explicitly in the route, because such 652 * connections still have an implicit pipesize specified 653 * by the global tcp_sendspace. In the absence of a reliable 654 * way to calculate the pipesize, it will have to do. 655 */ 656 i = tp->snd_ssthresh; 657 if (rt->rt_rmx.rmx_sendpipe != 0) 658 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2); 659 else 660 dosavessthresh = (i < so->so_snd.sb_hiwat / 2); 661 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 && 662 i != 0 && rt->rt_rmx.rmx_ssthresh != 0) 663 || dosavessthresh) { 664 /* 665 * convert the limit from user data bytes to 666 * packets then to packet data bytes. 667 */ 668 i = (i + tp->t_maxseg / 2) / tp->t_maxseg; 669 if (i < 2) 670 i = 2; 671 i *= (u_long)(tp->t_maxseg + 672 #ifdef INET6 673 (isipv6 ? sizeof (struct ip6_hdr) + 674 sizeof (struct tcphdr) : 675 #endif 676 sizeof (struct tcpiphdr) 677 #ifdef INET6 678 ) 679 #endif 680 ); 681 if (rt->rt_rmx.rmx_ssthresh) 682 rt->rt_rmx.rmx_ssthresh = 683 (rt->rt_rmx.rmx_ssthresh + i) / 2; 684 else 685 rt->rt_rmx.rmx_ssthresh = i; 686 tcpstat.tcps_cachedssthresh++; 687 } 688 } 689 no_valid_rt: 690 /* free the reassembly queue, if any */ 691 while((q = LIST_FIRST(&tp->t_segq)) != NULL) { 692 LIST_REMOVE(q, tqe_q); 693 m_freem(q->tqe_m); 694 FREE(q, M_TSEGQ); 695 } 696 if (tp->t_template) 697 (void) m_free(dtom(tp->t_template)); 698 inp->inp_ppcb = NULL; 699 soisdisconnected(so); 700 #ifdef INET6 701 if (INP_CHECK_SOCKAF(so, AF_INET6)) 702 in6_pcbdetach(inp); 703 else 704 #endif /* INET6 */ 705 in_pcbdetach(inp); 706 tcpstat.tcps_closed++; 707 return ((struct tcpcb *)0); 708 } 709 710 void 711 tcp_drain() 712 { 713 if (do_tcpdrain) 714 { 715 struct inpcb *inpb; 716 struct tcpcb *tcpb; 717 struct tseg_qent *te; 718 719 /* 720 * Walk the tcpbs, if existing, and flush the reassembly queue, 721 * if there is one... 722 * XXX: The "Net/3" implementation doesn't imply that the TCP 723 * reassembly queue should be flushed, but in a situation 724 * where we're really low on mbufs, this is potentially 725 * usefull. 726 */ 727 for (inpb = tcbinfo.listhead->lh_first; inpb; 728 inpb = inpb->inp_list.le_next) { 729 if ((tcpb = intotcpcb(inpb))) { 730 while ((te = LIST_FIRST(&tcpb->t_segq)) 731 != NULL) { 732 LIST_REMOVE(te, tqe_q); 733 m_freem(te->tqe_m); 734 FREE(te, M_TSEGQ); 735 } 736 } 737 } 738 739 } 740 } 741 742 /* 743 * Notify a tcp user of an asynchronous error; 744 * store error as soft error, but wake up user 745 * (for now, won't do anything until can select for soft error). 746 */ 747 static void 748 tcp_notify(inp, error) 749 struct inpcb *inp; 750 int error; 751 { 752 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb; 753 register struct socket *so = inp->inp_socket; 754 755 /* 756 * Ignore some errors if we are hooked up. 757 * If connection hasn't completed, has retransmitted several times, 758 * and receives a second error, give up now. This is better 759 * than waiting a long time to establish a connection that 760 * can never complete. 761 */ 762 if (tp->t_state == TCPS_ESTABLISHED && 763 (error == EHOSTUNREACH || error == ENETUNREACH || 764 error == EHOSTDOWN)) { 765 return; 766 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 && 767 tp->t_softerror) 768 so->so_error = error; 769 else 770 tp->t_softerror = error; 771 wakeup((caddr_t) &so->so_timeo); 772 sorwakeup(so); 773 sowwakeup(so); 774 } 775 776 static int 777 tcp_pcblist SYSCTL_HANDLER_ARGS 778 { 779 int error, i, n, s; 780 struct inpcb *inp, **inp_list; 781 inp_gen_t gencnt; 782 struct xinpgen xig; 783 784 /* 785 * The process of preparing the TCB list is too time-consuming and 786 * resource-intensive to repeat twice on every request. 787 */ 788 if (req->oldptr == 0) { 789 n = tcbinfo.ipi_count; 790 req->oldidx = 2 * (sizeof xig) 791 + (n + n/8) * sizeof(struct xtcpcb); 792 return 0; 793 } 794 795 if (req->newptr != 0) 796 return EPERM; 797 798 /* 799 * OK, now we're committed to doing something. 800 */ 801 s = splnet(); 802 gencnt = tcbinfo.ipi_gencnt; 803 n = tcbinfo.ipi_count; 804 splx(s); 805 806 xig.xig_len = sizeof xig; 807 xig.xig_count = n; 808 xig.xig_gen = gencnt; 809 xig.xig_sogen = so_gencnt; 810 error = SYSCTL_OUT(req, &xig, sizeof xig); 811 if (error) 812 return error; 813 814 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK); 815 if (inp_list == 0) 816 return ENOMEM; 817 818 s = splnet(); 819 for (inp = tcbinfo.listhead->lh_first, i = 0; inp && i < n; 820 inp = inp->inp_list.le_next) { 821 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp)) 822 inp_list[i++] = inp; 823 } 824 splx(s); 825 n = i; 826 827 error = 0; 828 for (i = 0; i < n; i++) { 829 inp = inp_list[i]; 830 if (inp->inp_gencnt <= gencnt) { 831 struct xtcpcb xt; 832 caddr_t inp_ppcb; 833 xt.xt_len = sizeof xt; 834 /* XXX should avoid extra copy */ 835 bcopy(inp, &xt.xt_inp, sizeof *inp); 836 inp_ppcb = inp->inp_ppcb; 837 if (inp_ppcb != NULL) 838 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp); 839 else 840 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp); 841 if (inp->inp_socket) 842 sotoxsocket(inp->inp_socket, &xt.xt_socket); 843 error = SYSCTL_OUT(req, &xt, sizeof xt); 844 } 845 } 846 if (!error) { 847 /* 848 * Give the user an updated idea of our state. 849 * If the generation differs from what we told 850 * her before, she knows that something happened 851 * while we were processing this request, and it 852 * might be necessary to retry. 853 */ 854 s = splnet(); 855 xig.xig_gen = tcbinfo.ipi_gencnt; 856 xig.xig_sogen = so_gencnt; 857 xig.xig_count = tcbinfo.ipi_count; 858 splx(s); 859 error = SYSCTL_OUT(req, &xig, sizeof xig); 860 } 861 free(inp_list, M_TEMP); 862 return error; 863 } 864 865 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0, 866 tcp_pcblist, "S,xtcpcb", "List of active TCP connections"); 867 868 static int 869 tcp_getcred SYSCTL_HANDLER_ARGS 870 { 871 struct sockaddr_in addrs[2]; 872 struct inpcb *inp; 873 int error, s; 874 875 error = suser(req->p); 876 if (error) 877 return (error); 878 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 879 if (error) 880 return (error); 881 s = splnet(); 882 inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port, 883 addrs[0].sin_addr, addrs[0].sin_port, 0, NULL); 884 if (inp == NULL || inp->inp_socket == NULL) { 885 error = ENOENT; 886 goto out; 887 } 888 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred)); 889 out: 890 splx(s); 891 return (error); 892 } 893 894 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 895 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection"); 896 897 #ifdef INET6 898 static int 899 tcp6_getcred SYSCTL_HANDLER_ARGS 900 { 901 struct sockaddr_in6 addrs[2]; 902 struct inpcb *inp; 903 int error, s, mapped = 0; 904 905 error = suser(req->p); 906 if (error) 907 return (error); 908 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 909 if (error) 910 return (error); 911 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) { 912 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr)) 913 mapped = 1; 914 else 915 return (EINVAL); 916 } 917 s = splnet(); 918 if (mapped == 1) 919 inp = in_pcblookup_hash(&tcbinfo, 920 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12], 921 addrs[1].sin6_port, 922 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12], 923 addrs[0].sin6_port, 924 0, NULL); 925 else 926 inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr, 927 addrs[1].sin6_port, 928 &addrs[0].sin6_addr, addrs[0].sin6_port, 929 0, NULL); 930 if (inp == NULL || inp->inp_socket == NULL) { 931 error = ENOENT; 932 goto out; 933 } 934 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, 935 sizeof(struct ucred)); 936 out: 937 splx(s); 938 return (error); 939 } 940 941 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW, 942 0, 0, 943 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection"); 944 #endif 945 946 947 void 948 tcp_ctlinput(cmd, sa, vip) 949 int cmd; 950 struct sockaddr *sa; 951 void *vip; 952 { 953 register struct ip *ip = vip; 954 register struct tcphdr *th; 955 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 956 957 if (cmd == PRC_QUENCH) 958 notify = tcp_quench; 959 else if (cmd == PRC_MSGSIZE) 960 notify = tcp_mtudisc; 961 else if (!PRC_IS_REDIRECT(cmd) && 962 ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)) 963 return; 964 if (ip) { 965 th = (struct tcphdr *)((caddr_t)ip 966 + (IP_VHL_HL(ip->ip_vhl) << 2)); 967 in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport, 968 cmd, notify); 969 } else 970 in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify); 971 } 972 973 #ifdef INET6 974 void 975 tcp6_ctlinput(cmd, sa, d) 976 int cmd; 977 struct sockaddr *sa; 978 void *d; 979 { 980 register struct tcphdr *thp; 981 struct tcphdr th; 982 void (*notify) __P((struct inpcb *, int)) = tcp_notify; 983 struct sockaddr_in6 sa6; 984 struct ip6_hdr *ip6; 985 struct mbuf *m; 986 int off; 987 988 if (sa->sa_family != AF_INET6 || 989 sa->sa_len != sizeof(struct sockaddr_in6)) 990 return; 991 992 if (cmd == PRC_QUENCH) 993 notify = tcp_quench; 994 else if (cmd == PRC_MSGSIZE) 995 notify = tcp_mtudisc; 996 else if (!PRC_IS_REDIRECT(cmd) && 997 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0)) 998 return; 999 1000 /* if the parameter is from icmp6, decode it. */ 1001 if (d != NULL) { 1002 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d; 1003 m = ip6cp->ip6c_m; 1004 ip6 = ip6cp->ip6c_ip6; 1005 off = ip6cp->ip6c_off; 1006 } else { 1007 m = NULL; 1008 ip6 = NULL; 1009 } 1010 1011 /* 1012 * Translate addresses into internal form. 1013 * Sa check if it is AF_INET6 is done at the top of this funciton. 1014 */ 1015 sa6 = *(struct sockaddr_in6 *)sa; 1016 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL && 1017 m->m_pkthdr.rcvif != NULL) 1018 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1019 1020 if (ip6) { 1021 /* 1022 * XXX: We assume that when IPV6 is non NULL, 1023 * M and OFF are valid. 1024 */ 1025 struct in6_addr s; 1026 1027 /* translate addresses into internal form */ 1028 memcpy(&s, &ip6->ip6_src, sizeof(s)); 1029 if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL && 1030 m->m_pkthdr.rcvif != NULL) 1031 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index); 1032 1033 if (m->m_len < off + sizeof(*thp)) { 1034 /* 1035 * this should be rare case 1036 * because now MINCLSIZE is "(MHLEN + 1)", 1037 * so we compromise on this copy... 1038 */ 1039 m_copydata(m, off, sizeof(th), (caddr_t)&th); 1040 thp = &th; 1041 } else 1042 thp = (struct tcphdr *)(mtod(m, caddr_t) + off); 1043 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport, 1044 &s, thp->th_sport, cmd, notify); 1045 } else 1046 in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr, 1047 0, cmd, notify); 1048 } 1049 #endif /* INET6 */ 1050 1051 /* 1052 * When a source quench is received, close congestion window 1053 * to one segment. We will gradually open it again as we proceed. 1054 */ 1055 void 1056 tcp_quench(inp, errno) 1057 struct inpcb *inp; 1058 int errno; 1059 { 1060 struct tcpcb *tp = intotcpcb(inp); 1061 1062 if (tp) 1063 tp->snd_cwnd = tp->t_maxseg; 1064 } 1065 1066 /* 1067 * When `need fragmentation' ICMP is received, update our idea of the MSS 1068 * based on the new value in the route. Also nudge TCP to send something, 1069 * since we know the packet we just sent was dropped. 1070 * This duplicates some code in the tcp_mss() function in tcp_input.c. 1071 */ 1072 void 1073 tcp_mtudisc(inp, errno) 1074 struct inpcb *inp; 1075 int errno; 1076 { 1077 struct tcpcb *tp = intotcpcb(inp); 1078 struct rtentry *rt; 1079 struct rmxp_tao *taop; 1080 struct socket *so = inp->inp_socket; 1081 int offered; 1082 int mss; 1083 #ifdef INET6 1084 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; 1085 #endif /* INET6 */ 1086 1087 if (tp) { 1088 #ifdef INET6 1089 if (isipv6) 1090 rt = tcp_rtlookup6(inp); 1091 else 1092 #endif /* INET6 */ 1093 rt = tcp_rtlookup(inp); 1094 if (!rt || !rt->rt_rmx.rmx_mtu) { 1095 tp->t_maxopd = tp->t_maxseg = 1096 #ifdef INET6 1097 isipv6 ? tcp_v6mssdflt : 1098 #endif /* INET6 */ 1099 tcp_mssdflt; 1100 return; 1101 } 1102 taop = rmx_taop(rt->rt_rmx); 1103 offered = taop->tao_mssopt; 1104 mss = rt->rt_rmx.rmx_mtu - 1105 #ifdef INET6 1106 (isipv6 ? 1107 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) : 1108 #endif /* INET6 */ 1109 sizeof(struct tcpiphdr) 1110 #ifdef INET6 1111 ) 1112 #endif /* INET6 */ 1113 ; 1114 1115 if (offered) 1116 mss = min(mss, offered); 1117 /* 1118 * XXX - The above conditional probably violates the TCP 1119 * spec. The problem is that, since we don't know the 1120 * other end's MSS, we are supposed to use a conservative 1121 * default. But, if we do that, then MTU discovery will 1122 * never actually take place, because the conservative 1123 * default is much less than the MTUs typically seen 1124 * on the Internet today. For the moment, we'll sweep 1125 * this under the carpet. 1126 * 1127 * The conservative default might not actually be a problem 1128 * if the only case this occurs is when sending an initial 1129 * SYN with options and data to a host we've never talked 1130 * to before. Then, they will reply with an MSS value which 1131 * will get recorded and the new parameters should get 1132 * recomputed. For Further Study. 1133 */ 1134 if (tp->t_maxopd <= mss) 1135 return; 1136 tp->t_maxopd = mss; 1137 1138 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && 1139 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP) 1140 mss -= TCPOLEN_TSTAMP_APPA; 1141 if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC && 1142 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC) 1143 mss -= TCPOLEN_CC_APPA; 1144 #if (MCLBYTES & (MCLBYTES - 1)) == 0 1145 if (mss > MCLBYTES) 1146 mss &= ~(MCLBYTES-1); 1147 #else 1148 if (mss > MCLBYTES) 1149 mss = mss / MCLBYTES * MCLBYTES; 1150 #endif 1151 if (so->so_snd.sb_hiwat < mss) 1152 mss = so->so_snd.sb_hiwat; 1153 1154 tp->t_maxseg = mss; 1155 1156 tcpstat.tcps_mturesent++; 1157 tp->t_rtttime = 0; 1158 tp->snd_nxt = tp->snd_una; 1159 tcp_output(tp); 1160 } 1161 } 1162 1163 /* 1164 * Look-up the routing entry to the peer of this inpcb. If no route 1165 * is found and it cannot be allocated the return NULL. This routine 1166 * is called by TCP routines that access the rmx structure and by tcp_mss 1167 * to get the interface MTU. 1168 */ 1169 struct rtentry * 1170 tcp_rtlookup(inp) 1171 struct inpcb *inp; 1172 { 1173 struct route *ro; 1174 struct rtentry *rt; 1175 1176 ro = &inp->inp_route; 1177 rt = ro->ro_rt; 1178 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1179 /* No route yet, so try to acquire one */ 1180 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1181 ro->ro_dst.sa_family = AF_INET; 1182 ro->ro_dst.sa_len = sizeof(ro->ro_dst); 1183 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = 1184 inp->inp_faddr; 1185 rtalloc(ro); 1186 rt = ro->ro_rt; 1187 } 1188 } 1189 return rt; 1190 } 1191 1192 #ifdef INET6 1193 struct rtentry * 1194 tcp_rtlookup6(inp) 1195 struct inpcb *inp; 1196 { 1197 struct route_in6 *ro6; 1198 struct rtentry *rt; 1199 1200 ro6 = &inp->in6p_route; 1201 rt = ro6->ro_rt; 1202 if (rt == NULL || !(rt->rt_flags & RTF_UP)) { 1203 /* No route yet, so try to acquire one */ 1204 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { 1205 ro6->ro_dst.sin6_family = AF_INET6; 1206 ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst); 1207 ro6->ro_dst.sin6_addr = inp->in6p_faddr; 1208 rtalloc((struct route *)ro6); 1209 rt = ro6->ro_rt; 1210 } 1211 } 1212 return rt; 1213 } 1214 #endif /* INET6 */ 1215 1216 #ifdef IPSEC 1217 /* compute ESP/AH header size for TCP, including outer IP header. */ 1218 size_t 1219 ipsec_hdrsiz_tcp(tp) 1220 struct tcpcb *tp; 1221 { 1222 struct inpcb *inp; 1223 struct mbuf *m; 1224 size_t hdrsiz; 1225 struct ip *ip; 1226 #ifdef INET6 1227 struct ip6_hdr *ip6; 1228 #endif /* INET6 */ 1229 struct tcphdr *th; 1230 1231 if (!tp || !tp->t_template || !(inp = tp->t_inpcb)) 1232 return 0; 1233 MGETHDR(m, M_DONTWAIT, MT_DATA); 1234 if (!m) 1235 return 0; 1236 1237 #ifdef INET6 1238 if ((inp->inp_vflag & INP_IPV6) != 0) { 1239 ip6 = mtod(m, struct ip6_hdr *); 1240 th = (struct tcphdr *)(ip6 + 1); 1241 m->m_pkthdr.len = m->m_len = 1242 sizeof(struct ip6_hdr) + sizeof(struct tcphdr); 1243 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6, 1244 sizeof(struct ip6_hdr)); 1245 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1246 sizeof(struct tcphdr)); 1247 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1248 } else 1249 #endif /* INET6 */ 1250 { 1251 ip = mtod(m, struct ip *); 1252 th = (struct tcphdr *)(ip + 1); 1253 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr); 1254 bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip, 1255 sizeof(struct ip)); 1256 bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th, 1257 sizeof(struct tcphdr)); 1258 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp); 1259 } 1260 1261 m_free(m); 1262 return hdrsiz; 1263 } 1264 #endif /*IPSEC*/ 1265 1266 /* 1267 * Return a pointer to the cached information about the remote host. 1268 * The cached information is stored in the protocol specific part of 1269 * the route metrics. 1270 */ 1271 struct rmxp_tao * 1272 tcp_gettaocache(inp) 1273 struct inpcb *inp; 1274 { 1275 struct rtentry *rt; 1276 1277 #ifdef INET6 1278 if ((inp->inp_vflag & INP_IPV6) != 0) 1279 rt = tcp_rtlookup6(inp); 1280 else 1281 #endif /* INET6 */ 1282 rt = tcp_rtlookup(inp); 1283 1284 /* Make sure this is a host route and is up. */ 1285 if (rt == NULL || 1286 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) 1287 return NULL; 1288 1289 return rmx_taop(rt->rt_rmx); 1290 } 1291 1292 /* 1293 * Clear all the TAO cache entries, called from tcp_init. 1294 * 1295 * XXX 1296 * This routine is just an empty one, because we assume that the routing 1297 * routing tables are initialized at the same time when TCP, so there is 1298 * nothing in the cache left over. 1299 */ 1300 static void 1301 tcp_cleartaocache() 1302 { 1303 } 1304