xref: /freebsd/sys/netinet/tcp_subr.c (revision d8b878873e7aa8df1972cc6a642804b17eb61087)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/jail.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/protosw.h>
57 #include <sys/random.h>
58 
59 #include <vm/uma.h>
60 
61 #include <net/route.h>
62 #include <net/if.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #endif
71 #include <netinet/in_pcb.h>
72 #ifdef INET6
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/in_var.h>
76 #include <netinet/ip_var.h>
77 #ifdef INET6
78 #include <netinet6/ip6_var.h>
79 #include <netinet6/scope6_var.h>
80 #include <netinet6/nd6.h>
81 #endif
82 #include <netinet/ip_icmp.h>
83 #include <netinet/tcp.h>
84 #include <netinet/tcp_fsm.h>
85 #include <netinet/tcp_seq.h>
86 #include <netinet/tcp_timer.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/tcp_syncache.h>
89 #include <netinet/tcp_offload.h>
90 #ifdef INET6
91 #include <netinet6/tcp6_var.h>
92 #endif
93 #include <netinet/tcpip.h>
94 #ifdef TCPDEBUG
95 #include <netinet/tcp_debug.h>
96 #endif
97 #include <netinet6/ip6protosw.h>
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/xform.h>
102 #ifdef INET6
103 #include <netipsec/ipsec6.h>
104 #endif
105 #include <netipsec/key.h>
106 #include <sys/syslog.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 #include <sys/md5.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 VNET_DEFINE(int, tcp_mssdflt);
115 #ifdef INET6
116 VNET_DEFINE(int, tcp_v6mssdflt);
117 #endif
118 VNET_DEFINE(int, tcp_minmss);
119 VNET_DEFINE(int, tcp_do_rfc1323);
120 
121 static VNET_DEFINE(int, icmp_may_rst);
122 static VNET_DEFINE(int, tcp_isn_reseed_interval);
123 static VNET_DEFINE(int, tcp_inflight_enable);
124 static VNET_DEFINE(int, tcp_inflight_rttthresh);
125 static VNET_DEFINE(int, tcp_inflight_min);
126 static VNET_DEFINE(int, tcp_inflight_max);
127 static VNET_DEFINE(int, tcp_inflight_stab);
128 
129 #define	V_icmp_may_rst			VNET(icmp_may_rst)
130 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
131 #define	V_tcp_inflight_enable		VNET(tcp_inflight_enable)
132 #define	V_tcp_inflight_rttthresh	VNET(tcp_inflight_rttthresh)
133 #define	V_tcp_inflight_min		VNET(tcp_inflight_min)
134 #define	V_tcp_inflight_max		VNET(tcp_inflight_max)
135 #define	V_tcp_inflight_stab		VNET(tcp_inflight_stab)
136 
137 static int
138 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
139 {
140 	int error, new;
141 
142 	new = V_tcp_mssdflt;
143 	error = sysctl_handle_int(oidp, &new, 0, req);
144 	if (error == 0 && req->newptr) {
145 		if (new < TCP_MINMSS)
146 			error = EINVAL;
147 		else
148 			V_tcp_mssdflt = new;
149 	}
150 	return (error);
151 }
152 
153 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
154     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
155     &sysctl_net_inet_tcp_mss_check, "I",
156     "Default TCP Maximum Segment Size");
157 
158 #ifdef INET6
159 static int
160 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
161 {
162 	int error, new;
163 
164 	new = V_tcp_v6mssdflt;
165 	error = sysctl_handle_int(oidp, &new, 0, req);
166 	if (error == 0 && req->newptr) {
167 		if (new < TCP_MINMSS)
168 			error = EINVAL;
169 		else
170 			V_tcp_v6mssdflt = new;
171 	}
172 	return (error);
173 }
174 
175 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
176     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
177     &sysctl_net_inet_tcp_mss_v6_check, "I",
178    "Default TCP Maximum Segment Size for IPv6");
179 #endif
180 
181 static int
182 vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS)
183 {
184 
185 	VNET_SYSCTL_ARG(req, arg1);
186 	return (sysctl_msec_to_ticks(oidp, arg1, arg2, req));
187 }
188 
189 /*
190  * Minimum MSS we accept and use. This prevents DoS attacks where
191  * we are forced to a ridiculous low MSS like 20 and send hundreds
192  * of packets instead of one. The effect scales with the available
193  * bandwidth and quickly saturates the CPU and network interface
194  * with packet generation and sending. Set to zero to disable MINMSS
195  * checking. This setting prevents us from sending too small packets.
196  */
197 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
198      &VNET_NAME(tcp_minmss), 0,
199     "Minmum TCP Maximum Segment Size");
200 
201 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
202     &VNET_NAME(tcp_do_rfc1323), 0,
203     "Enable rfc1323 (high performance TCP) extensions");
204 
205 static int	tcp_log_debug = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
207     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
208 
209 static int	tcp_tcbhashsize = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
211     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
212 
213 static int	do_tcpdrain = 1;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
215     "Enable tcp_drain routine for extra help when low on mbufs");
216 
217 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
218     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
219 
220 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
221     &VNET_NAME(icmp_may_rst), 0,
222     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
223 
224 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
225     &VNET_NAME(tcp_isn_reseed_interval), 0,
226     "Seconds between reseeding of ISN secret");
227 
228 /*
229  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
230  * 1024 exists only for debugging.  A good production default would be
231  * something like 6100.
232  */
233 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
234     "TCP inflight data limiting");
235 
236 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
237     &VNET_NAME(tcp_inflight_enable), 0,
238     "Enable automatic TCP inflight data limiting");
239 
240 static int	tcp_inflight_debug = 0;
241 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
242     &tcp_inflight_debug, 0,
243     "Debug TCP inflight calculations");
244 
245 SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh,
246     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0,
247     vnet_sysctl_msec_to_ticks, "I",
248     "RTT threshold below which inflight will deactivate itself");
249 
250 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
251     &VNET_NAME(tcp_inflight_min), 0,
252     "Lower-bound for TCP inflight window");
253 
254 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
255     &VNET_NAME(tcp_inflight_max), 0,
256     "Upper-bound for TCP inflight window");
257 
258 SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259     &VNET_NAME(tcp_inflight_stab), 0,
260     "Inflight Algorithm Stabilization 20 = 2 packets");
261 
262 #ifdef TCP_SORECEIVE_STREAM
263 static int	tcp_soreceive_stream = 0;
264 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
265     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
266 #endif
267 
268 VNET_DEFINE(uma_zone_t, sack_hole_zone);
269 #define	V_sack_hole_zone		VNET(sack_hole_zone)
270 
271 static struct inpcb *tcp_notify(struct inpcb *, int);
272 static void	tcp_isn_tick(void *);
273 
274 /*
275  * Target size of TCP PCB hash tables. Must be a power of two.
276  *
277  * Note that this can be overridden by the kernel environment
278  * variable net.inet.tcp.tcbhashsize
279  */
280 #ifndef TCBHASHSIZE
281 #define TCBHASHSIZE	512
282 #endif
283 
284 /*
285  * XXX
286  * Callouts should be moved into struct tcp directly.  They are currently
287  * separate because the tcpcb structure is exported to userland for sysctl
288  * parsing purposes, which do not know about callouts.
289  */
290 struct tcpcb_mem {
291 	struct	tcpcb		tcb;
292 	struct	tcp_timer	tt;
293 };
294 
295 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
296 #define	V_tcpcb_zone			VNET(tcpcb_zone)
297 
298 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
299 struct callout isn_callout;
300 static struct mtx isn_mtx;
301 
302 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
303 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
304 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
305 
306 /*
307  * TCP initialization.
308  */
309 static void
310 tcp_zone_change(void *tag)
311 {
312 
313 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
314 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
315 	tcp_tw_zone_change();
316 }
317 
318 static int
319 tcp_inpcb_init(void *mem, int size, int flags)
320 {
321 	struct inpcb *inp = mem;
322 
323 	INP_LOCK_INIT(inp, "inp", "tcpinp");
324 	return (0);
325 }
326 
327 void
328 tcp_init(void)
329 {
330 	int hashsize;
331 
332 	V_blackhole = 0;
333 	V_tcp_delack_enabled = 1;
334 	V_drop_synfin = 0;
335 	V_tcp_do_rfc3042 = 1;
336 	V_tcp_do_rfc3390 = 1;
337 	V_tcp_do_ecn = 0;
338 	V_tcp_ecn_maxretries = 1;
339 	V_tcp_insecure_rst = 0;
340 	V_tcp_do_autorcvbuf = 1;
341 	V_tcp_autorcvbuf_inc = 16*1024;
342 	V_tcp_autorcvbuf_max = 256*1024;
343 	V_tcp_do_rfc3465 = 1;
344 	V_tcp_abc_l_var = 2;
345 
346 	V_tcp_mssdflt = TCP_MSS;
347 #ifdef INET6
348 	V_tcp_v6mssdflt = TCP6_MSS;
349 #endif
350 	V_tcp_minmss = TCP_MINMSS;
351 	V_tcp_do_rfc1323 = 1;
352 	V_icmp_may_rst = 1;
353 	V_tcp_isn_reseed_interval = 0;
354 	V_tcp_inflight_enable = 1;
355 	V_tcp_inflight_min = 6144;
356 	V_tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
357 	V_tcp_inflight_stab = 20;
358 
359 	V_path_mtu_discovery = 1;
360 	V_ss_fltsz = 1;
361 	V_ss_fltsz_local = 4;
362 	V_tcp_do_newreno = 1;
363 	V_tcp_do_tso = 1;
364 	V_tcp_do_autosndbuf = 1;
365 	V_tcp_autosndbuf_inc = 8*1024;
366 	V_tcp_autosndbuf_max = 256*1024;
367 
368 	V_nolocaltimewait = 0;
369 
370 	V_tcp_do_sack = 1;
371 	V_tcp_sack_maxholes = 128;
372 	V_tcp_sack_globalmaxholes = 65536;
373 	V_tcp_sack_globalholes = 0;
374 
375 	V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
376 
377 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
378 
379 	hashsize = TCBHASHSIZE;
380 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
381 	if (!powerof2(hashsize)) {
382 		printf("WARNING: TCB hash size not a power of 2\n");
383 		hashsize = 512; /* safe default */
384 	}
385 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
386 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE);
387 
388 	/*
389 	 * These have to be type stable for the benefit of the timers.
390 	 */
391 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
392 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
393 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
394 	tcp_tw_init();
395 	syncache_init();
396 	tcp_hc_init();
397 	tcp_reass_init();
398 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
399 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
400 
401 	/* Skip initialization of globals for non-default instances. */
402 	if (!IS_DEFAULT_VNET(curvnet))
403 		return;
404 
405 	/* XXX virtualize those bellow? */
406 	tcp_delacktime = TCPTV_DELACK;
407 	tcp_keepinit = TCPTV_KEEP_INIT;
408 	tcp_keepidle = TCPTV_KEEP_IDLE;
409 	tcp_keepintvl = TCPTV_KEEPINTVL;
410 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
411 	tcp_msl = TCPTV_MSL;
412 	tcp_rexmit_min = TCPTV_MIN;
413 	if (tcp_rexmit_min < 1)
414 		tcp_rexmit_min = 1;
415 	tcp_rexmit_slop = TCPTV_CPU_VAR;
416 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
417 	tcp_tcbhashsize = hashsize;
418 
419 #ifdef TCP_SORECEIVE_STREAM
420 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
421 	if (tcp_soreceive_stream) {
422 		tcp_usrreqs.pru_soreceive = soreceive_stream;
423 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
424 	}
425 #endif
426 
427 #ifdef INET6
428 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
429 #else /* INET6 */
430 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
431 #endif /* INET6 */
432 	if (max_protohdr < TCP_MINPROTOHDR)
433 		max_protohdr = TCP_MINPROTOHDR;
434 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
435 		panic("tcp_init");
436 #undef TCP_MINPROTOHDR
437 
438 	ISN_LOCK_INIT();
439 	callout_init(&isn_callout, CALLOUT_MPSAFE);
440 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
441 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
442 		SHUTDOWN_PRI_DEFAULT);
443 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
444 		EVENTHANDLER_PRI_ANY);
445 }
446 
447 #ifdef VIMAGE
448 void
449 tcp_destroy(void)
450 {
451 
452 	tcp_reass_destroy();
453 	tcp_hc_destroy();
454 	syncache_destroy();
455 	tcp_tw_destroy();
456 	in_pcbinfo_destroy(&V_tcbinfo);
457 	uma_zdestroy(V_sack_hole_zone);
458 	uma_zdestroy(V_tcpcb_zone);
459 }
460 #endif
461 
462 void
463 tcp_fini(void *xtp)
464 {
465 
466 	callout_stop(&isn_callout);
467 }
468 
469 /*
470  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
471  * tcp_template used to store this data in mbufs, but we now recopy it out
472  * of the tcpcb each time to conserve mbufs.
473  */
474 void
475 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
476 {
477 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
478 
479 	INP_WLOCK_ASSERT(inp);
480 
481 #ifdef INET6
482 	if ((inp->inp_vflag & INP_IPV6) != 0) {
483 		struct ip6_hdr *ip6;
484 
485 		ip6 = (struct ip6_hdr *)ip_ptr;
486 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
487 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
488 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
489 			(IPV6_VERSION & IPV6_VERSION_MASK);
490 		ip6->ip6_nxt = IPPROTO_TCP;
491 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
492 		ip6->ip6_src = inp->in6p_laddr;
493 		ip6->ip6_dst = inp->in6p_faddr;
494 	} else
495 #endif
496 	{
497 		struct ip *ip;
498 
499 		ip = (struct ip *)ip_ptr;
500 		ip->ip_v = IPVERSION;
501 		ip->ip_hl = 5;
502 		ip->ip_tos = inp->inp_ip_tos;
503 		ip->ip_len = 0;
504 		ip->ip_id = 0;
505 		ip->ip_off = 0;
506 		ip->ip_ttl = inp->inp_ip_ttl;
507 		ip->ip_sum = 0;
508 		ip->ip_p = IPPROTO_TCP;
509 		ip->ip_src = inp->inp_laddr;
510 		ip->ip_dst = inp->inp_faddr;
511 	}
512 	th->th_sport = inp->inp_lport;
513 	th->th_dport = inp->inp_fport;
514 	th->th_seq = 0;
515 	th->th_ack = 0;
516 	th->th_x2 = 0;
517 	th->th_off = 5;
518 	th->th_flags = 0;
519 	th->th_win = 0;
520 	th->th_urp = 0;
521 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
522 }
523 
524 /*
525  * Create template to be used to send tcp packets on a connection.
526  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
527  * use for this function is in keepalives, which use tcp_respond.
528  */
529 struct tcptemp *
530 tcpip_maketemplate(struct inpcb *inp)
531 {
532 	struct tcptemp *t;
533 
534 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
535 	if (t == NULL)
536 		return (NULL);
537 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
538 	return (t);
539 }
540 
541 /*
542  * Send a single message to the TCP at address specified by
543  * the given TCP/IP header.  If m == NULL, then we make a copy
544  * of the tcpiphdr at ti and send directly to the addressed host.
545  * This is used to force keep alive messages out using the TCP
546  * template for a connection.  If flags are given then we send
547  * a message back to the TCP which originated the * segment ti,
548  * and discard the mbuf containing it and any other attached mbufs.
549  *
550  * In any case the ack and sequence number of the transmitted
551  * segment are as specified by the parameters.
552  *
553  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
554  */
555 void
556 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
557     tcp_seq ack, tcp_seq seq, int flags)
558 {
559 	int tlen;
560 	int win = 0;
561 	struct ip *ip;
562 	struct tcphdr *nth;
563 #ifdef INET6
564 	struct ip6_hdr *ip6;
565 	int isipv6;
566 #endif /* INET6 */
567 	int ipflags = 0;
568 	struct inpcb *inp;
569 
570 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
571 
572 #ifdef INET6
573 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
574 	ip6 = ipgen;
575 #endif /* INET6 */
576 	ip = ipgen;
577 
578 	if (tp != NULL) {
579 		inp = tp->t_inpcb;
580 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
581 		INP_WLOCK_ASSERT(inp);
582 	} else
583 		inp = NULL;
584 
585 	if (tp != NULL) {
586 		if (!(flags & TH_RST)) {
587 			win = sbspace(&inp->inp_socket->so_rcv);
588 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
589 				win = (long)TCP_MAXWIN << tp->rcv_scale;
590 		}
591 	}
592 	if (m == NULL) {
593 		m = m_gethdr(M_DONTWAIT, MT_DATA);
594 		if (m == NULL)
595 			return;
596 		tlen = 0;
597 		m->m_data += max_linkhdr;
598 #ifdef INET6
599 		if (isipv6) {
600 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
601 			      sizeof(struct ip6_hdr));
602 			ip6 = mtod(m, struct ip6_hdr *);
603 			nth = (struct tcphdr *)(ip6 + 1);
604 		} else
605 #endif /* INET6 */
606 	      {
607 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
608 		ip = mtod(m, struct ip *);
609 		nth = (struct tcphdr *)(ip + 1);
610 	      }
611 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
612 		flags = TH_ACK;
613 	} else {
614 		/*
615 		 *  reuse the mbuf.
616 		 * XXX MRT We inherrit the FIB, which is lucky.
617 		 */
618 		m_freem(m->m_next);
619 		m->m_next = NULL;
620 		m->m_data = (caddr_t)ipgen;
621 		/* m_len is set later */
622 		tlen = 0;
623 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
624 #ifdef INET6
625 		if (isipv6) {
626 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
627 			nth = (struct tcphdr *)(ip6 + 1);
628 		} else
629 #endif /* INET6 */
630 	      {
631 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
632 		nth = (struct tcphdr *)(ip + 1);
633 	      }
634 		if (th != nth) {
635 			/*
636 			 * this is usually a case when an extension header
637 			 * exists between the IPv6 header and the
638 			 * TCP header.
639 			 */
640 			nth->th_sport = th->th_sport;
641 			nth->th_dport = th->th_dport;
642 		}
643 		xchg(nth->th_dport, nth->th_sport, uint16_t);
644 #undef xchg
645 	}
646 #ifdef INET6
647 	if (isipv6) {
648 		ip6->ip6_flow = 0;
649 		ip6->ip6_vfc = IPV6_VERSION;
650 		ip6->ip6_nxt = IPPROTO_TCP;
651 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
652 						tlen));
653 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
654 	} else
655 #endif
656 	{
657 		tlen += sizeof (struct tcpiphdr);
658 		ip->ip_len = tlen;
659 		ip->ip_ttl = V_ip_defttl;
660 		if (V_path_mtu_discovery)
661 			ip->ip_off |= IP_DF;
662 	}
663 	m->m_len = tlen;
664 	m->m_pkthdr.len = tlen;
665 	m->m_pkthdr.rcvif = NULL;
666 #ifdef MAC
667 	if (inp != NULL) {
668 		/*
669 		 * Packet is associated with a socket, so allow the
670 		 * label of the response to reflect the socket label.
671 		 */
672 		INP_WLOCK_ASSERT(inp);
673 		mac_inpcb_create_mbuf(inp, m);
674 	} else {
675 		/*
676 		 * Packet is not associated with a socket, so possibly
677 		 * update the label in place.
678 		 */
679 		mac_netinet_tcp_reply(m);
680 	}
681 #endif
682 	nth->th_seq = htonl(seq);
683 	nth->th_ack = htonl(ack);
684 	nth->th_x2 = 0;
685 	nth->th_off = sizeof (struct tcphdr) >> 2;
686 	nth->th_flags = flags;
687 	if (tp != NULL)
688 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
689 	else
690 		nth->th_win = htons((u_short)win);
691 	nth->th_urp = 0;
692 #ifdef INET6
693 	if (isipv6) {
694 		nth->th_sum = 0;
695 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
696 					sizeof(struct ip6_hdr),
697 					tlen - sizeof(struct ip6_hdr));
698 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
699 		    NULL, NULL);
700 	} else
701 #endif /* INET6 */
702 	{
703 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
704 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
705 		m->m_pkthdr.csum_flags = CSUM_TCP;
706 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
707 	}
708 #ifdef TCPDEBUG
709 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
710 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
711 #endif
712 #ifdef INET6
713 	if (isipv6)
714 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
715 	else
716 #endif /* INET6 */
717 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
718 }
719 
720 /*
721  * Create a new TCP control block, making an
722  * empty reassembly queue and hooking it to the argument
723  * protocol control block.  The `inp' parameter must have
724  * come from the zone allocator set up in tcp_init().
725  */
726 struct tcpcb *
727 tcp_newtcpcb(struct inpcb *inp)
728 {
729 	struct tcpcb_mem *tm;
730 	struct tcpcb *tp;
731 #ifdef INET6
732 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
733 #endif /* INET6 */
734 
735 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
736 	if (tm == NULL)
737 		return (NULL);
738 	tp = &tm->tcb;
739 #ifdef VIMAGE
740 	tp->t_vnet = inp->inp_vnet;
741 #endif
742 	tp->t_timers = &tm->tt;
743 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
744 	tp->t_maxseg = tp->t_maxopd =
745 #ifdef INET6
746 		isipv6 ? V_tcp_v6mssdflt :
747 #endif /* INET6 */
748 		V_tcp_mssdflt;
749 
750 	/* Set up our timeouts. */
751 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
752 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
753 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
754 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
755 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
756 
757 	if (V_tcp_do_rfc1323)
758 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
759 	if (V_tcp_do_sack)
760 		tp->t_flags |= TF_SACK_PERMIT;
761 	TAILQ_INIT(&tp->snd_holes);
762 	tp->t_inpcb = inp;	/* XXX */
763 	/*
764 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
765 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
766 	 * reasonable initial retransmit time.
767 	 */
768 	tp->t_srtt = TCPTV_SRTTBASE;
769 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
770 	tp->t_rttmin = tcp_rexmit_min;
771 	tp->t_rxtcur = TCPTV_RTOBASE;
772 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
773 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
774 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
775 	tp->t_rcvtime = ticks;
776 	tp->t_bw_rtttime = ticks;
777 	/*
778 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
779 	 * because the socket may be bound to an IPv6 wildcard address,
780 	 * which may match an IPv4-mapped IPv6 address.
781 	 */
782 	inp->inp_ip_ttl = V_ip_defttl;
783 	inp->inp_ppcb = tp;
784 	return (tp);		/* XXX */
785 }
786 
787 /*
788  * Drop a TCP connection, reporting
789  * the specified error.  If connection is synchronized,
790  * then send a RST to peer.
791  */
792 struct tcpcb *
793 tcp_drop(struct tcpcb *tp, int errno)
794 {
795 	struct socket *so = tp->t_inpcb->inp_socket;
796 
797 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
798 	INP_WLOCK_ASSERT(tp->t_inpcb);
799 
800 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
801 		tp->t_state = TCPS_CLOSED;
802 		(void) tcp_output_reset(tp);
803 		TCPSTAT_INC(tcps_drops);
804 	} else
805 		TCPSTAT_INC(tcps_conndrops);
806 	if (errno == ETIMEDOUT && tp->t_softerror)
807 		errno = tp->t_softerror;
808 	so->so_error = errno;
809 	return (tcp_close(tp));
810 }
811 
812 void
813 tcp_discardcb(struct tcpcb *tp)
814 {
815 	struct tseg_qent *q;
816 	struct inpcb *inp = tp->t_inpcb;
817 	struct socket *so = inp->inp_socket;
818 #ifdef INET6
819 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
820 #endif /* INET6 */
821 
822 	INP_WLOCK_ASSERT(inp);
823 
824 	/*
825 	 * Make sure that all of our timers are stopped before we delete the
826 	 * PCB.
827 	 *
828 	 * XXXRW: Really, we would like to use callout_drain() here in order
829 	 * to avoid races experienced in tcp_timer.c where a timer is already
830 	 * executing at this point.  However, we can't, both because we're
831 	 * running in a context where we can't sleep, and also because we
832 	 * hold locks required by the timers.  What we instead need to do is
833 	 * test to see if callout_drain() is required, and if so, defer some
834 	 * portion of the remainder of tcp_discardcb() to an asynchronous
835 	 * context that can callout_drain() and then continue.  Some care
836 	 * will be required to ensure that no further processing takes place
837 	 * on the tcpcb, even though it hasn't been freed (a flag?).
838 	 */
839 	callout_stop(&tp->t_timers->tt_rexmt);
840 	callout_stop(&tp->t_timers->tt_persist);
841 	callout_stop(&tp->t_timers->tt_keep);
842 	callout_stop(&tp->t_timers->tt_2msl);
843 	callout_stop(&tp->t_timers->tt_delack);
844 
845 	/*
846 	 * If we got enough samples through the srtt filter,
847 	 * save the rtt and rttvar in the routing entry.
848 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
849 	 * 4 samples is enough for the srtt filter to converge
850 	 * to within enough % of the correct value; fewer samples
851 	 * and we could save a bogus rtt. The danger is not high
852 	 * as tcp quickly recovers from everything.
853 	 * XXX: Works very well but needs some more statistics!
854 	 */
855 	if (tp->t_rttupdated >= 4) {
856 		struct hc_metrics_lite metrics;
857 		u_long ssthresh;
858 
859 		bzero(&metrics, sizeof(metrics));
860 		/*
861 		 * Update the ssthresh always when the conditions below
862 		 * are satisfied. This gives us better new start value
863 		 * for the congestion avoidance for new connections.
864 		 * ssthresh is only set if packet loss occured on a session.
865 		 *
866 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
867 		 * being torn down.  Ideally this code would not use 'so'.
868 		 */
869 		ssthresh = tp->snd_ssthresh;
870 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
871 			/*
872 			 * convert the limit from user data bytes to
873 			 * packets then to packet data bytes.
874 			 */
875 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
876 			if (ssthresh < 2)
877 				ssthresh = 2;
878 			ssthresh *= (u_long)(tp->t_maxseg +
879 #ifdef INET6
880 				      (isipv6 ? sizeof (struct ip6_hdr) +
881 					       sizeof (struct tcphdr) :
882 #endif
883 				       sizeof (struct tcpiphdr)
884 #ifdef INET6
885 				       )
886 #endif
887 				      );
888 		} else
889 			ssthresh = 0;
890 		metrics.rmx_ssthresh = ssthresh;
891 
892 		metrics.rmx_rtt = tp->t_srtt;
893 		metrics.rmx_rttvar = tp->t_rttvar;
894 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
895 		metrics.rmx_bandwidth = tp->snd_bandwidth;
896 		metrics.rmx_cwnd = tp->snd_cwnd;
897 		metrics.rmx_sendpipe = 0;
898 		metrics.rmx_recvpipe = 0;
899 
900 		tcp_hc_update(&inp->inp_inc, &metrics);
901 	}
902 
903 	/* free the reassembly queue, if any */
904 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
905 		LIST_REMOVE(q, tqe_q);
906 		m_freem(q->tqe_m);
907 		uma_zfree(V_tcp_reass_zone, q);
908 		tp->t_segqlen--;
909 		V_tcp_reass_qsize--;
910 	}
911 	/* Disconnect offload device, if any. */
912 	tcp_offload_detach(tp);
913 
914 	tcp_free_sackholes(tp);
915 	inp->inp_ppcb = NULL;
916 	tp->t_inpcb = NULL;
917 	uma_zfree(V_tcpcb_zone, tp);
918 }
919 
920 /*
921  * Attempt to close a TCP control block, marking it as dropped, and freeing
922  * the socket if we hold the only reference.
923  */
924 struct tcpcb *
925 tcp_close(struct tcpcb *tp)
926 {
927 	struct inpcb *inp = tp->t_inpcb;
928 	struct socket *so;
929 
930 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
931 	INP_WLOCK_ASSERT(inp);
932 
933 	/* Notify any offload devices of listener close */
934 	if (tp->t_state == TCPS_LISTEN)
935 		tcp_offload_listen_close(tp);
936 	in_pcbdrop(inp);
937 	TCPSTAT_INC(tcps_closed);
938 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
939 	so = inp->inp_socket;
940 	soisdisconnected(so);
941 	if (inp->inp_flags & INP_SOCKREF) {
942 		KASSERT(so->so_state & SS_PROTOREF,
943 		    ("tcp_close: !SS_PROTOREF"));
944 		inp->inp_flags &= ~INP_SOCKREF;
945 		INP_WUNLOCK(inp);
946 		ACCEPT_LOCK();
947 		SOCK_LOCK(so);
948 		so->so_state &= ~SS_PROTOREF;
949 		sofree(so);
950 		return (NULL);
951 	}
952 	return (tp);
953 }
954 
955 void
956 tcp_drain(void)
957 {
958 	VNET_ITERATOR_DECL(vnet_iter);
959 
960 	if (!do_tcpdrain)
961 		return;
962 
963 	VNET_LIST_RLOCK_NOSLEEP();
964 	VNET_FOREACH(vnet_iter) {
965 		CURVNET_SET(vnet_iter);
966 		struct inpcb *inpb;
967 		struct tcpcb *tcpb;
968 		struct tseg_qent *te;
969 
970 	/*
971 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
972 	 * if there is one...
973 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
974 	 *      reassembly queue should be flushed, but in a situation
975 	 *	where we're really low on mbufs, this is potentially
976 	 *	usefull.
977 	 */
978 		INP_INFO_RLOCK(&V_tcbinfo);
979 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
980 			if (inpb->inp_flags & INP_TIMEWAIT)
981 				continue;
982 			INP_WLOCK(inpb);
983 			if ((tcpb = intotcpcb(inpb)) != NULL) {
984 				while ((te = LIST_FIRST(&tcpb->t_segq))
985 			            != NULL) {
986 					LIST_REMOVE(te, tqe_q);
987 					m_freem(te->tqe_m);
988 					uma_zfree(V_tcp_reass_zone, te);
989 					tcpb->t_segqlen--;
990 					V_tcp_reass_qsize--;
991 				}
992 				tcp_clean_sackreport(tcpb);
993 			}
994 			INP_WUNLOCK(inpb);
995 		}
996 		INP_INFO_RUNLOCK(&V_tcbinfo);
997 		CURVNET_RESTORE();
998 	}
999 	VNET_LIST_RUNLOCK_NOSLEEP();
1000 }
1001 
1002 /*
1003  * Notify a tcp user of an asynchronous error;
1004  * store error as soft error, but wake up user
1005  * (for now, won't do anything until can select for soft error).
1006  *
1007  * Do not wake up user since there currently is no mechanism for
1008  * reporting soft errors (yet - a kqueue filter may be added).
1009  */
1010 static struct inpcb *
1011 tcp_notify(struct inpcb *inp, int error)
1012 {
1013 	struct tcpcb *tp;
1014 
1015 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1016 	INP_WLOCK_ASSERT(inp);
1017 
1018 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1019 	    (inp->inp_flags & INP_DROPPED))
1020 		return (inp);
1021 
1022 	tp = intotcpcb(inp);
1023 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1024 
1025 	/*
1026 	 * Ignore some errors if we are hooked up.
1027 	 * If connection hasn't completed, has retransmitted several times,
1028 	 * and receives a second error, give up now.  This is better
1029 	 * than waiting a long time to establish a connection that
1030 	 * can never complete.
1031 	 */
1032 	if (tp->t_state == TCPS_ESTABLISHED &&
1033 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1034 	     error == EHOSTDOWN)) {
1035 		return (inp);
1036 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1037 	    tp->t_softerror) {
1038 		tp = tcp_drop(tp, error);
1039 		if (tp != NULL)
1040 			return (inp);
1041 		else
1042 			return (NULL);
1043 	} else {
1044 		tp->t_softerror = error;
1045 		return (inp);
1046 	}
1047 #if 0
1048 	wakeup( &so->so_timeo);
1049 	sorwakeup(so);
1050 	sowwakeup(so);
1051 #endif
1052 }
1053 
1054 static int
1055 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1056 {
1057 	int error, i, m, n, pcb_count;
1058 	struct inpcb *inp, **inp_list;
1059 	inp_gen_t gencnt;
1060 	struct xinpgen xig;
1061 
1062 	/*
1063 	 * The process of preparing the TCB list is too time-consuming and
1064 	 * resource-intensive to repeat twice on every request.
1065 	 */
1066 	if (req->oldptr == NULL) {
1067 		m = syncache_pcbcount();
1068 		n = V_tcbinfo.ipi_count;
1069 		req->oldidx = 2 * (sizeof xig)
1070 			+ ((m + n) + n/8) * sizeof(struct xtcpcb);
1071 		return (0);
1072 	}
1073 
1074 	if (req->newptr != NULL)
1075 		return (EPERM);
1076 
1077 	/*
1078 	 * OK, now we're committed to doing something.
1079 	 */
1080 	INP_INFO_RLOCK(&V_tcbinfo);
1081 	gencnt = V_tcbinfo.ipi_gencnt;
1082 	n = V_tcbinfo.ipi_count;
1083 	INP_INFO_RUNLOCK(&V_tcbinfo);
1084 
1085 	m = syncache_pcbcount();
1086 
1087 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1088 		+ (n + m) * sizeof(struct xtcpcb));
1089 	if (error != 0)
1090 		return (error);
1091 
1092 	xig.xig_len = sizeof xig;
1093 	xig.xig_count = n + m;
1094 	xig.xig_gen = gencnt;
1095 	xig.xig_sogen = so_gencnt;
1096 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1097 	if (error)
1098 		return (error);
1099 
1100 	error = syncache_pcblist(req, m, &pcb_count);
1101 	if (error)
1102 		return (error);
1103 
1104 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1105 	if (inp_list == NULL)
1106 		return (ENOMEM);
1107 
1108 	INP_INFO_RLOCK(&V_tcbinfo);
1109 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1110 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1111 		INP_WLOCK(inp);
1112 		if (inp->inp_gencnt <= gencnt) {
1113 			/*
1114 			 * XXX: This use of cr_cansee(), introduced with
1115 			 * TCP state changes, is not quite right, but for
1116 			 * now, better than nothing.
1117 			 */
1118 			if (inp->inp_flags & INP_TIMEWAIT) {
1119 				if (intotw(inp) != NULL)
1120 					error = cr_cansee(req->td->td_ucred,
1121 					    intotw(inp)->tw_cred);
1122 				else
1123 					error = EINVAL;	/* Skip this inp. */
1124 			} else
1125 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1126 			if (error == 0) {
1127 				in_pcbref(inp);
1128 				inp_list[i++] = inp;
1129 			}
1130 		}
1131 		INP_WUNLOCK(inp);
1132 	}
1133 	INP_INFO_RUNLOCK(&V_tcbinfo);
1134 	n = i;
1135 
1136 	error = 0;
1137 	for (i = 0; i < n; i++) {
1138 		inp = inp_list[i];
1139 		INP_RLOCK(inp);
1140 		if (inp->inp_gencnt <= gencnt) {
1141 			struct xtcpcb xt;
1142 			void *inp_ppcb;
1143 
1144 			bzero(&xt, sizeof(xt));
1145 			xt.xt_len = sizeof xt;
1146 			/* XXX should avoid extra copy */
1147 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1148 			inp_ppcb = inp->inp_ppcb;
1149 			if (inp_ppcb == NULL)
1150 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1151 			else if (inp->inp_flags & INP_TIMEWAIT) {
1152 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1153 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1154 			} else {
1155 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1156 				if (xt.xt_tp.t_timers)
1157 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1158 			}
1159 			if (inp->inp_socket != NULL)
1160 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1161 			else {
1162 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1163 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1164 			}
1165 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1166 			INP_RUNLOCK(inp);
1167 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1168 		} else
1169 			INP_RUNLOCK(inp);
1170 	}
1171 	INP_INFO_WLOCK(&V_tcbinfo);
1172 	for (i = 0; i < n; i++) {
1173 		inp = inp_list[i];
1174 		INP_WLOCK(inp);
1175 		if (!in_pcbrele(inp))
1176 			INP_WUNLOCK(inp);
1177 	}
1178 	INP_INFO_WUNLOCK(&V_tcbinfo);
1179 
1180 	if (!error) {
1181 		/*
1182 		 * Give the user an updated idea of our state.
1183 		 * If the generation differs from what we told
1184 		 * her before, she knows that something happened
1185 		 * while we were processing this request, and it
1186 		 * might be necessary to retry.
1187 		 */
1188 		INP_INFO_RLOCK(&V_tcbinfo);
1189 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1190 		xig.xig_sogen = so_gencnt;
1191 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1192 		INP_INFO_RUNLOCK(&V_tcbinfo);
1193 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1194 	}
1195 	free(inp_list, M_TEMP);
1196 	return (error);
1197 }
1198 
1199 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1200     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1201 
1202 static int
1203 tcp_getcred(SYSCTL_HANDLER_ARGS)
1204 {
1205 	struct xucred xuc;
1206 	struct sockaddr_in addrs[2];
1207 	struct inpcb *inp;
1208 	int error;
1209 
1210 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1211 	if (error)
1212 		return (error);
1213 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1214 	if (error)
1215 		return (error);
1216 	INP_INFO_RLOCK(&V_tcbinfo);
1217 	inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1218 	    addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1219 	if (inp != NULL) {
1220 		INP_RLOCK(inp);
1221 		INP_INFO_RUNLOCK(&V_tcbinfo);
1222 		if (inp->inp_socket == NULL)
1223 			error = ENOENT;
1224 		if (error == 0)
1225 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1226 		if (error == 0)
1227 			cru2x(inp->inp_cred, &xuc);
1228 		INP_RUNLOCK(inp);
1229 	} else {
1230 		INP_INFO_RUNLOCK(&V_tcbinfo);
1231 		error = ENOENT;
1232 	}
1233 	if (error == 0)
1234 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1235 	return (error);
1236 }
1237 
1238 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1239     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1240     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1241 
1242 #ifdef INET6
1243 static int
1244 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1245 {
1246 	struct xucred xuc;
1247 	struct sockaddr_in6 addrs[2];
1248 	struct inpcb *inp;
1249 	int error, mapped = 0;
1250 
1251 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1252 	if (error)
1253 		return (error);
1254 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1255 	if (error)
1256 		return (error);
1257 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1258 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1259 		return (error);
1260 	}
1261 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1262 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1263 			mapped = 1;
1264 		else
1265 			return (EINVAL);
1266 	}
1267 
1268 	INP_INFO_RLOCK(&V_tcbinfo);
1269 	if (mapped == 1)
1270 		inp = in_pcblookup_hash(&V_tcbinfo,
1271 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1272 			addrs[1].sin6_port,
1273 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1274 			addrs[0].sin6_port,
1275 			0, NULL);
1276 	else
1277 		inp = in6_pcblookup_hash(&V_tcbinfo,
1278 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1279 			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1280 	if (inp != NULL) {
1281 		INP_RLOCK(inp);
1282 		INP_INFO_RUNLOCK(&V_tcbinfo);
1283 		if (inp->inp_socket == NULL)
1284 			error = ENOENT;
1285 		if (error == 0)
1286 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1287 		if (error == 0)
1288 			cru2x(inp->inp_cred, &xuc);
1289 		INP_RUNLOCK(inp);
1290 	} else {
1291 		INP_INFO_RUNLOCK(&V_tcbinfo);
1292 		error = ENOENT;
1293 	}
1294 	if (error == 0)
1295 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1296 	return (error);
1297 }
1298 
1299 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1300     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1301     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1302 #endif
1303 
1304 
1305 void
1306 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1307 {
1308 	struct ip *ip = vip;
1309 	struct tcphdr *th;
1310 	struct in_addr faddr;
1311 	struct inpcb *inp;
1312 	struct tcpcb *tp;
1313 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1314 	struct icmp *icp;
1315 	struct in_conninfo inc;
1316 	tcp_seq icmp_tcp_seq;
1317 	int mtu;
1318 
1319 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1320 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1321 		return;
1322 
1323 	if (cmd == PRC_MSGSIZE)
1324 		notify = tcp_mtudisc;
1325 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1326 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1327 		notify = tcp_drop_syn_sent;
1328 	/*
1329 	 * Redirects don't need to be handled up here.
1330 	 */
1331 	else if (PRC_IS_REDIRECT(cmd))
1332 		return;
1333 	/*
1334 	 * Source quench is depreciated.
1335 	 */
1336 	else if (cmd == PRC_QUENCH)
1337 		return;
1338 	/*
1339 	 * Hostdead is ugly because it goes linearly through all PCBs.
1340 	 * XXX: We never get this from ICMP, otherwise it makes an
1341 	 * excellent DoS attack on machines with many connections.
1342 	 */
1343 	else if (cmd == PRC_HOSTDEAD)
1344 		ip = NULL;
1345 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1346 		return;
1347 	if (ip != NULL) {
1348 		icp = (struct icmp *)((caddr_t)ip
1349 				      - offsetof(struct icmp, icmp_ip));
1350 		th = (struct tcphdr *)((caddr_t)ip
1351 				       + (ip->ip_hl << 2));
1352 		INP_INFO_WLOCK(&V_tcbinfo);
1353 		inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1354 		    ip->ip_src, th->th_sport, 0, NULL);
1355 		if (inp != NULL)  {
1356 			INP_WLOCK(inp);
1357 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1358 			    !(inp->inp_flags & INP_DROPPED) &&
1359 			    !(inp->inp_socket == NULL)) {
1360 				icmp_tcp_seq = htonl(th->th_seq);
1361 				tp = intotcpcb(inp);
1362 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1363 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1364 					if (cmd == PRC_MSGSIZE) {
1365 					    /*
1366 					     * MTU discovery:
1367 					     * If we got a needfrag set the MTU
1368 					     * in the route to the suggested new
1369 					     * value (if given) and then notify.
1370 					     */
1371 					    bzero(&inc, sizeof(inc));
1372 					    inc.inc_faddr = faddr;
1373 					    inc.inc_fibnum =
1374 						inp->inp_inc.inc_fibnum;
1375 
1376 					    mtu = ntohs(icp->icmp_nextmtu);
1377 					    /*
1378 					     * If no alternative MTU was
1379 					     * proposed, try the next smaller
1380 					     * one.  ip->ip_len has already
1381 					     * been swapped in icmp_input().
1382 					     */
1383 					    if (!mtu)
1384 						mtu = ip_next_mtu(ip->ip_len,
1385 						 1);
1386 					    if (mtu < max(296, V_tcp_minmss
1387 						 + sizeof(struct tcpiphdr)))
1388 						mtu = 0;
1389 					    if (!mtu)
1390 						mtu = V_tcp_mssdflt
1391 						 + sizeof(struct tcpiphdr);
1392 					    /*
1393 					     * Only cache the the MTU if it
1394 					     * is smaller than the interface
1395 					     * or route MTU.  tcp_mtudisc()
1396 					     * will do right thing by itself.
1397 					     */
1398 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1399 						tcp_hc_updatemtu(&inc, mtu);
1400 					}
1401 
1402 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1403 				}
1404 			}
1405 			if (inp != NULL)
1406 				INP_WUNLOCK(inp);
1407 		} else {
1408 			bzero(&inc, sizeof(inc));
1409 			inc.inc_fport = th->th_dport;
1410 			inc.inc_lport = th->th_sport;
1411 			inc.inc_faddr = faddr;
1412 			inc.inc_laddr = ip->ip_src;
1413 			syncache_unreach(&inc, th);
1414 		}
1415 		INP_INFO_WUNLOCK(&V_tcbinfo);
1416 	} else
1417 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1418 }
1419 
1420 #ifdef INET6
1421 void
1422 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1423 {
1424 	struct tcphdr th;
1425 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1426 	struct ip6_hdr *ip6;
1427 	struct mbuf *m;
1428 	struct ip6ctlparam *ip6cp = NULL;
1429 	const struct sockaddr_in6 *sa6_src = NULL;
1430 	int off;
1431 	struct tcp_portonly {
1432 		u_int16_t th_sport;
1433 		u_int16_t th_dport;
1434 	} *thp;
1435 
1436 	if (sa->sa_family != AF_INET6 ||
1437 	    sa->sa_len != sizeof(struct sockaddr_in6))
1438 		return;
1439 
1440 	if (cmd == PRC_MSGSIZE)
1441 		notify = tcp_mtudisc;
1442 	else if (!PRC_IS_REDIRECT(cmd) &&
1443 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1444 		return;
1445 	/* Source quench is depreciated. */
1446 	else if (cmd == PRC_QUENCH)
1447 		return;
1448 
1449 	/* if the parameter is from icmp6, decode it. */
1450 	if (d != NULL) {
1451 		ip6cp = (struct ip6ctlparam *)d;
1452 		m = ip6cp->ip6c_m;
1453 		ip6 = ip6cp->ip6c_ip6;
1454 		off = ip6cp->ip6c_off;
1455 		sa6_src = ip6cp->ip6c_src;
1456 	} else {
1457 		m = NULL;
1458 		ip6 = NULL;
1459 		off = 0;	/* fool gcc */
1460 		sa6_src = &sa6_any;
1461 	}
1462 
1463 	if (ip6 != NULL) {
1464 		struct in_conninfo inc;
1465 		/*
1466 		 * XXX: We assume that when IPV6 is non NULL,
1467 		 * M and OFF are valid.
1468 		 */
1469 
1470 		/* check if we can safely examine src and dst ports */
1471 		if (m->m_pkthdr.len < off + sizeof(*thp))
1472 			return;
1473 
1474 		bzero(&th, sizeof(th));
1475 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1476 
1477 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1478 		    (struct sockaddr *)ip6cp->ip6c_src,
1479 		    th.th_sport, cmd, NULL, notify);
1480 
1481 		bzero(&inc, sizeof(inc));
1482 		inc.inc_fport = th.th_dport;
1483 		inc.inc_lport = th.th_sport;
1484 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1485 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1486 		inc.inc_flags |= INC_ISIPV6;
1487 		INP_INFO_WLOCK(&V_tcbinfo);
1488 		syncache_unreach(&inc, &th);
1489 		INP_INFO_WUNLOCK(&V_tcbinfo);
1490 	} else
1491 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1492 			      0, cmd, NULL, notify);
1493 }
1494 #endif /* INET6 */
1495 
1496 
1497 /*
1498  * Following is where TCP initial sequence number generation occurs.
1499  *
1500  * There are two places where we must use initial sequence numbers:
1501  * 1.  In SYN-ACK packets.
1502  * 2.  In SYN packets.
1503  *
1504  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1505  * tcp_syncache.c for details.
1506  *
1507  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1508  * depends on this property.  In addition, these ISNs should be
1509  * unguessable so as to prevent connection hijacking.  To satisfy
1510  * the requirements of this situation, the algorithm outlined in
1511  * RFC 1948 is used, with only small modifications.
1512  *
1513  * Implementation details:
1514  *
1515  * Time is based off the system timer, and is corrected so that it
1516  * increases by one megabyte per second.  This allows for proper
1517  * recycling on high speed LANs while still leaving over an hour
1518  * before rollover.
1519  *
1520  * As reading the *exact* system time is too expensive to be done
1521  * whenever setting up a TCP connection, we increment the time
1522  * offset in two ways.  First, a small random positive increment
1523  * is added to isn_offset for each connection that is set up.
1524  * Second, the function tcp_isn_tick fires once per clock tick
1525  * and increments isn_offset as necessary so that sequence numbers
1526  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1527  * random positive increments serve only to ensure that the same
1528  * exact sequence number is never sent out twice (as could otherwise
1529  * happen when a port is recycled in less than the system tick
1530  * interval.)
1531  *
1532  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1533  * between seeding of isn_secret.  This is normally set to zero,
1534  * as reseeding should not be necessary.
1535  *
1536  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1537  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1538  * general, this means holding an exclusive (write) lock.
1539  */
1540 
1541 #define ISN_BYTES_PER_SECOND 1048576
1542 #define ISN_STATIC_INCREMENT 4096
1543 #define ISN_RANDOM_INCREMENT (4096 - 1)
1544 
1545 static VNET_DEFINE(u_char, isn_secret[32]);
1546 static VNET_DEFINE(int, isn_last_reseed);
1547 static VNET_DEFINE(u_int32_t, isn_offset);
1548 static VNET_DEFINE(u_int32_t, isn_offset_old);
1549 
1550 #define	V_isn_secret			VNET(isn_secret)
1551 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1552 #define	V_isn_offset			VNET(isn_offset)
1553 #define	V_isn_offset_old		VNET(isn_offset_old)
1554 
1555 tcp_seq
1556 tcp_new_isn(struct tcpcb *tp)
1557 {
1558 	MD5_CTX isn_ctx;
1559 	u_int32_t md5_buffer[4];
1560 	tcp_seq new_isn;
1561 
1562 	INP_WLOCK_ASSERT(tp->t_inpcb);
1563 
1564 	ISN_LOCK();
1565 	/* Seed if this is the first use, reseed if requested. */
1566 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1567 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1568 		< (u_int)ticks))) {
1569 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1570 		V_isn_last_reseed = ticks;
1571 	}
1572 
1573 	/* Compute the md5 hash and return the ISN. */
1574 	MD5Init(&isn_ctx);
1575 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1576 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1577 #ifdef INET6
1578 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1579 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1580 			  sizeof(struct in6_addr));
1581 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1582 			  sizeof(struct in6_addr));
1583 	} else
1584 #endif
1585 	{
1586 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1587 			  sizeof(struct in_addr));
1588 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1589 			  sizeof(struct in_addr));
1590 	}
1591 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1592 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1593 	new_isn = (tcp_seq) md5_buffer[0];
1594 	V_isn_offset += ISN_STATIC_INCREMENT +
1595 		(arc4random() & ISN_RANDOM_INCREMENT);
1596 	new_isn += V_isn_offset;
1597 	ISN_UNLOCK();
1598 	return (new_isn);
1599 }
1600 
1601 /*
1602  * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1603  * to keep time flowing at a relatively constant rate.  If the random
1604  * increments have already pushed us past the projected offset, do nothing.
1605  */
1606 static void
1607 tcp_isn_tick(void *xtp)
1608 {
1609 	VNET_ITERATOR_DECL(vnet_iter);
1610 	u_int32_t projected_offset;
1611 
1612 	VNET_LIST_RLOCK_NOSLEEP();
1613 	ISN_LOCK();
1614 	VNET_FOREACH(vnet_iter) {
1615 		CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1616 		projected_offset =
1617 		    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1618 
1619 		if (SEQ_GT(projected_offset, V_isn_offset))
1620 			V_isn_offset = projected_offset;
1621 
1622 		V_isn_offset_old = V_isn_offset;
1623 		CURVNET_RESTORE();
1624 	}
1625 	ISN_UNLOCK();
1626 	VNET_LIST_RUNLOCK_NOSLEEP();
1627 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1628 }
1629 
1630 /*
1631  * When a specific ICMP unreachable message is received and the
1632  * connection state is SYN-SENT, drop the connection.  This behavior
1633  * is controlled by the icmp_may_rst sysctl.
1634  */
1635 struct inpcb *
1636 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1637 {
1638 	struct tcpcb *tp;
1639 
1640 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1641 	INP_WLOCK_ASSERT(inp);
1642 
1643 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1644 	    (inp->inp_flags & INP_DROPPED))
1645 		return (inp);
1646 
1647 	tp = intotcpcb(inp);
1648 	if (tp->t_state != TCPS_SYN_SENT)
1649 		return (inp);
1650 
1651 	tp = tcp_drop(tp, errno);
1652 	if (tp != NULL)
1653 		return (inp);
1654 	else
1655 		return (NULL);
1656 }
1657 
1658 /*
1659  * When `need fragmentation' ICMP is received, update our idea of the MSS
1660  * based on the new value in the route.  Also nudge TCP to send something,
1661  * since we know the packet we just sent was dropped.
1662  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1663  */
1664 struct inpcb *
1665 tcp_mtudisc(struct inpcb *inp, int errno)
1666 {
1667 	struct tcpcb *tp;
1668 	struct socket *so;
1669 
1670 	INP_WLOCK_ASSERT(inp);
1671 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1672 	    (inp->inp_flags & INP_DROPPED))
1673 		return (inp);
1674 
1675 	tp = intotcpcb(inp);
1676 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1677 
1678 	tcp_mss_update(tp, -1, NULL, NULL);
1679 
1680 	so = inp->inp_socket;
1681 	SOCKBUF_LOCK(&so->so_snd);
1682 	/* If the mss is larger than the socket buffer, decrease the mss. */
1683 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1684 		tp->t_maxseg = so->so_snd.sb_hiwat;
1685 	SOCKBUF_UNLOCK(&so->so_snd);
1686 
1687 	TCPSTAT_INC(tcps_mturesent);
1688 	tp->t_rtttime = 0;
1689 	tp->snd_nxt = tp->snd_una;
1690 	tcp_free_sackholes(tp);
1691 	tp->snd_recover = tp->snd_max;
1692 	if (tp->t_flags & TF_SACK_PERMIT)
1693 		EXIT_FASTRECOVERY(tp);
1694 	tcp_output_send(tp);
1695 	return (inp);
1696 }
1697 
1698 /*
1699  * Look-up the routing entry to the peer of this inpcb.  If no route
1700  * is found and it cannot be allocated, then return 0.  This routine
1701  * is called by TCP routines that access the rmx structure and by
1702  * tcp_mss_update to get the peer/interface MTU.
1703  */
1704 u_long
1705 tcp_maxmtu(struct in_conninfo *inc, int *flags)
1706 {
1707 	struct route sro;
1708 	struct sockaddr_in *dst;
1709 	struct ifnet *ifp;
1710 	u_long maxmtu = 0;
1711 
1712 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1713 
1714 	bzero(&sro, sizeof(sro));
1715 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1716 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1717 		dst->sin_family = AF_INET;
1718 		dst->sin_len = sizeof(*dst);
1719 		dst->sin_addr = inc->inc_faddr;
1720 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1721 	}
1722 	if (sro.ro_rt != NULL) {
1723 		ifp = sro.ro_rt->rt_ifp;
1724 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1725 			maxmtu = ifp->if_mtu;
1726 		else
1727 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1728 
1729 		/* Report additional interface capabilities. */
1730 		if (flags != NULL) {
1731 			if (ifp->if_capenable & IFCAP_TSO4 &&
1732 			    ifp->if_hwassist & CSUM_TSO)
1733 				*flags |= CSUM_TSO;
1734 		}
1735 		RTFREE(sro.ro_rt);
1736 	}
1737 	return (maxmtu);
1738 }
1739 
1740 #ifdef INET6
1741 u_long
1742 tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1743 {
1744 	struct route_in6 sro6;
1745 	struct ifnet *ifp;
1746 	u_long maxmtu = 0;
1747 
1748 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1749 
1750 	bzero(&sro6, sizeof(sro6));
1751 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1752 		sro6.ro_dst.sin6_family = AF_INET6;
1753 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1754 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1755 		rtalloc_ign((struct route *)&sro6, 0);
1756 	}
1757 	if (sro6.ro_rt != NULL) {
1758 		ifp = sro6.ro_rt->rt_ifp;
1759 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1760 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1761 		else
1762 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1763 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1764 
1765 		/* Report additional interface capabilities. */
1766 		if (flags != NULL) {
1767 			if (ifp->if_capenable & IFCAP_TSO6 &&
1768 			    ifp->if_hwassist & CSUM_TSO)
1769 				*flags |= CSUM_TSO;
1770 		}
1771 		RTFREE(sro6.ro_rt);
1772 	}
1773 
1774 	return (maxmtu);
1775 }
1776 #endif /* INET6 */
1777 
1778 #ifdef IPSEC
1779 /* compute ESP/AH header size for TCP, including outer IP header. */
1780 size_t
1781 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1782 {
1783 	struct inpcb *inp;
1784 	struct mbuf *m;
1785 	size_t hdrsiz;
1786 	struct ip *ip;
1787 #ifdef INET6
1788 	struct ip6_hdr *ip6;
1789 #endif
1790 	struct tcphdr *th;
1791 
1792 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1793 		return (0);
1794 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1795 	if (!m)
1796 		return (0);
1797 
1798 #ifdef INET6
1799 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1800 		ip6 = mtod(m, struct ip6_hdr *);
1801 		th = (struct tcphdr *)(ip6 + 1);
1802 		m->m_pkthdr.len = m->m_len =
1803 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1804 		tcpip_fillheaders(inp, ip6, th);
1805 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1806 	} else
1807 #endif /* INET6 */
1808 	{
1809 		ip = mtod(m, struct ip *);
1810 		th = (struct tcphdr *)(ip + 1);
1811 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1812 		tcpip_fillheaders(inp, ip, th);
1813 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1814 	}
1815 
1816 	m_free(m);
1817 	return (hdrsiz);
1818 }
1819 #endif /* IPSEC */
1820 
1821 /*
1822  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1823  *
1824  * This code attempts to calculate the bandwidth-delay product as a
1825  * means of determining the optimal window size to maximize bandwidth,
1826  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1827  * routers.  This code also does a fairly good job keeping RTTs in check
1828  * across slow links like modems.  We implement an algorithm which is very
1829  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1830  * transmitter side of a TCP connection and so only effects the transmit
1831  * side of the connection.
1832  *
1833  * BACKGROUND:  TCP makes no provision for the management of buffer space
1834  * at the end points or at the intermediate routers and switches.  A TCP
1835  * stream, whether using NewReno or not, will eventually buffer as
1836  * many packets as it is able and the only reason this typically works is
1837  * due to the fairly small default buffers made available for a connection
1838  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1839  * scaling it is now fairly easy for even a single TCP connection to blow-out
1840  * all available buffer space not only on the local interface, but on
1841  * intermediate routers and switches as well.  NewReno makes a misguided
1842  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1843  * then backing off, then steadily increasing the window again until another
1844  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1845  * is only made worse as network loads increase and the idea of intentionally
1846  * blowing out network buffers is, frankly, a terrible way to manage network
1847  * resources.
1848  *
1849  * It is far better to limit the transmit window prior to the failure
1850  * condition being achieved.  There are two general ways to do this:  First
1851  * you can 'scan' through different transmit window sizes and locate the
1852  * point where the RTT stops increasing, indicating that you have filled the
1853  * pipe, then scan backwards until you note that RTT stops decreasing, then
1854  * repeat ad-infinitum.  This method works in principle but has severe
1855  * implementation issues due to RTT variances, timer granularity, and
1856  * instability in the algorithm which can lead to many false positives and
1857  * create oscillations as well as interact badly with other TCP streams
1858  * implementing the same algorithm.
1859  *
1860  * The second method is to limit the window to the bandwidth delay product
1861  * of the link.  This is the method we implement.  RTT variances and our
1862  * own manipulation of the congestion window, bwnd, can potentially
1863  * destabilize the algorithm.  For this reason we have to stabilize the
1864  * elements used to calculate the window.  We do this by using the minimum
1865  * observed RTT, the long term average of the observed bandwidth, and
1866  * by adding two segments worth of slop.  It isn't perfect but it is able
1867  * to react to changing conditions and gives us a very stable basis on
1868  * which to extend the algorithm.
1869  */
1870 void
1871 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1872 {
1873 	u_long bw;
1874 	u_long bwnd;
1875 	int save_ticks;
1876 
1877 	INP_WLOCK_ASSERT(tp->t_inpcb);
1878 
1879 	/*
1880 	 * If inflight_enable is disabled in the middle of a tcp connection,
1881 	 * make sure snd_bwnd is effectively disabled.
1882 	 */
1883 	if (V_tcp_inflight_enable == 0 ||
1884 	    tp->t_rttlow < V_tcp_inflight_rttthresh) {
1885 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1886 		tp->snd_bandwidth = 0;
1887 		return;
1888 	}
1889 
1890 	/*
1891 	 * Figure out the bandwidth.  Due to the tick granularity this
1892 	 * is a very rough number and it MUST be averaged over a fairly
1893 	 * long period of time.  XXX we need to take into account a link
1894 	 * that is not using all available bandwidth, but for now our
1895 	 * slop will ramp us up if this case occurs and the bandwidth later
1896 	 * increases.
1897 	 *
1898 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1899 	 * effectively reset t_bw_rtttime for this case.
1900 	 */
1901 	save_ticks = ticks;
1902 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1903 		return;
1904 
1905 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1906 	    (save_ticks - tp->t_bw_rtttime);
1907 	tp->t_bw_rtttime = save_ticks;
1908 	tp->t_bw_rtseq = ack_seq;
1909 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1910 		return;
1911 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1912 
1913 	tp->snd_bandwidth = bw;
1914 
1915 	/*
1916 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1917 	 * segments.  The additional slop puts us squarely in the sweet
1918 	 * spot and also handles the bandwidth run-up case and stabilization.
1919 	 * Without the slop we could be locking ourselves into a lower
1920 	 * bandwidth.
1921 	 *
1922 	 * Situations Handled:
1923 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1924 	 *	    high speed LANs, allowing larger TCP buffers to be
1925 	 *	    specified, and also does a good job preventing
1926 	 *	    over-queueing of packets over choke points like modems
1927 	 *	    (at least for the transmit side).
1928 	 *
1929 	 *	(2) Is able to handle changing network loads (bandwidth
1930 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1931 	 *	    increases).
1932 	 *
1933 	 *	(3) Theoretically should stabilize in the face of multiple
1934 	 *	    connections implementing the same algorithm (this may need
1935 	 *	    a little work).
1936 	 *
1937 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1938 	 *	    be adjusted with a sysctl but typically only needs to be
1939 	 *	    on very slow connections.  A value no smaller then 5
1940 	 *	    should be used, but only reduce this default if you have
1941 	 *	    no other choice.
1942 	 */
1943 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1944 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
1945 #undef USERTT
1946 
1947 	if (tcp_inflight_debug > 0) {
1948 		static int ltime;
1949 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1950 			ltime = ticks;
1951 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1952 			    tp,
1953 			    bw,
1954 			    tp->t_rttbest,
1955 			    tp->t_srtt,
1956 			    bwnd
1957 			);
1958 		}
1959 	}
1960 	if ((long)bwnd < V_tcp_inflight_min)
1961 		bwnd = V_tcp_inflight_min;
1962 	if (bwnd > V_tcp_inflight_max)
1963 		bwnd = V_tcp_inflight_max;
1964 	if ((long)bwnd < tp->t_maxseg * 2)
1965 		bwnd = tp->t_maxseg * 2;
1966 	tp->snd_bwnd = bwnd;
1967 }
1968 
1969 #ifdef TCP_SIGNATURE
1970 /*
1971  * Callback function invoked by m_apply() to digest TCP segment data
1972  * contained within an mbuf chain.
1973  */
1974 static int
1975 tcp_signature_apply(void *fstate, void *data, u_int len)
1976 {
1977 
1978 	MD5Update(fstate, (u_char *)data, len);
1979 	return (0);
1980 }
1981 
1982 /*
1983  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1984  *
1985  * Parameters:
1986  * m		pointer to head of mbuf chain
1987  * _unused
1988  * len		length of TCP segment data, excluding options
1989  * optlen	length of TCP segment options
1990  * buf		pointer to storage for computed MD5 digest
1991  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1992  *
1993  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1994  * When called from tcp_input(), we can be sure that th_sum has been
1995  * zeroed out and verified already.
1996  *
1997  * Return 0 if successful, otherwise return -1.
1998  *
1999  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2000  * search with the destination IP address, and a 'magic SPI' to be
2001  * determined by the application. This is hardcoded elsewhere to 1179
2002  * right now. Another branch of this code exists which uses the SPD to
2003  * specify per-application flows but it is unstable.
2004  */
2005 int
2006 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2007     u_char *buf, u_int direction)
2008 {
2009 	union sockaddr_union dst;
2010 	struct ippseudo ippseudo;
2011 	MD5_CTX ctx;
2012 	int doff;
2013 	struct ip *ip;
2014 	struct ipovly *ipovly;
2015 	struct secasvar *sav;
2016 	struct tcphdr *th;
2017 #ifdef INET6
2018 	struct ip6_hdr *ip6;
2019 	struct in6_addr in6;
2020 	char ip6buf[INET6_ADDRSTRLEN];
2021 	uint32_t plen;
2022 	uint16_t nhdr;
2023 #endif
2024 	u_short savecsum;
2025 
2026 	KASSERT(m != NULL, ("NULL mbuf chain"));
2027 	KASSERT(buf != NULL, ("NULL signature pointer"));
2028 
2029 	/* Extract the destination from the IP header in the mbuf. */
2030 	bzero(&dst, sizeof(union sockaddr_union));
2031 	ip = mtod(m, struct ip *);
2032 #ifdef INET6
2033 	ip6 = NULL;	/* Make the compiler happy. */
2034 #endif
2035 	switch (ip->ip_v) {
2036 	case IPVERSION:
2037 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2038 		dst.sa.sa_family = AF_INET;
2039 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2040 		    ip->ip_src : ip->ip_dst;
2041 		break;
2042 #ifdef INET6
2043 	case (IPV6_VERSION >> 4):
2044 		ip6 = mtod(m, struct ip6_hdr *);
2045 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2046 		dst.sa.sa_family = AF_INET6;
2047 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2048 		    ip6->ip6_src : ip6->ip6_dst;
2049 		break;
2050 #endif
2051 	default:
2052 		return (EINVAL);
2053 		/* NOTREACHED */
2054 		break;
2055 	}
2056 
2057 	/* Look up an SADB entry which matches the address of the peer. */
2058 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2059 	if (sav == NULL) {
2060 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2061 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2062 #ifdef INET6
2063 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2064 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2065 #endif
2066 			"(unsupported)"));
2067 		return (EINVAL);
2068 	}
2069 
2070 	MD5Init(&ctx);
2071 	/*
2072 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2073 	 *
2074 	 * XXX The ippseudo header MUST be digested in network byte order,
2075 	 * or else we'll fail the regression test. Assume all fields we've
2076 	 * been doing arithmetic on have been in host byte order.
2077 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2078 	 * tcp_output(), the underlying ip_len member has not yet been set.
2079 	 */
2080 	switch (ip->ip_v) {
2081 	case IPVERSION:
2082 		ipovly = (struct ipovly *)ip;
2083 		ippseudo.ippseudo_src = ipovly->ih_src;
2084 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2085 		ippseudo.ippseudo_pad = 0;
2086 		ippseudo.ippseudo_p = IPPROTO_TCP;
2087 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2088 		    optlen);
2089 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2090 
2091 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2092 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2093 		break;
2094 #ifdef INET6
2095 	/*
2096 	 * RFC 2385, 2.0  Proposal
2097 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2098 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2099 	 * extended next header value (to form 32 bits), and 32-bit segment
2100 	 * length.
2101 	 * Note: Upper-Layer Packet Length comes before Next Header.
2102 	 */
2103 	case (IPV6_VERSION >> 4):
2104 		in6 = ip6->ip6_src;
2105 		in6_clearscope(&in6);
2106 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2107 		in6 = ip6->ip6_dst;
2108 		in6_clearscope(&in6);
2109 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2110 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2111 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2112 		nhdr = 0;
2113 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2114 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2115 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2116 		nhdr = IPPROTO_TCP;
2117 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2118 
2119 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2120 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2121 		break;
2122 #endif
2123 	default:
2124 		return (EINVAL);
2125 		/* NOTREACHED */
2126 		break;
2127 	}
2128 
2129 
2130 	/*
2131 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2132 	 * The TCP checksum must be set to zero.
2133 	 */
2134 	savecsum = th->th_sum;
2135 	th->th_sum = 0;
2136 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2137 	th->th_sum = savecsum;
2138 
2139 	/*
2140 	 * Step 3: Update MD5 hash with TCP segment data.
2141 	 *         Use m_apply() to avoid an early m_pullup().
2142 	 */
2143 	if (len > 0)
2144 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2145 
2146 	/*
2147 	 * Step 4: Update MD5 hash with shared secret.
2148 	 */
2149 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2150 	MD5Final(buf, &ctx);
2151 
2152 	key_sa_recordxfer(sav, m);
2153 	KEY_FREESAV(&sav);
2154 	return (0);
2155 }
2156 #endif /* TCP_SIGNATURE */
2157 
2158 static int
2159 sysctl_drop(SYSCTL_HANDLER_ARGS)
2160 {
2161 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2162 	struct sockaddr_storage addrs[2];
2163 	struct inpcb *inp;
2164 	struct tcpcb *tp;
2165 	struct tcptw *tw;
2166 	struct sockaddr_in *fin, *lin;
2167 #ifdef INET6
2168 	struct sockaddr_in6 *fin6, *lin6;
2169 #endif
2170 	int error;
2171 
2172 	inp = NULL;
2173 	fin = lin = NULL;
2174 #ifdef INET6
2175 	fin6 = lin6 = NULL;
2176 #endif
2177 	error = 0;
2178 
2179 	if (req->oldptr != NULL || req->oldlen != 0)
2180 		return (EINVAL);
2181 	if (req->newptr == NULL)
2182 		return (EPERM);
2183 	if (req->newlen < sizeof(addrs))
2184 		return (ENOMEM);
2185 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2186 	if (error)
2187 		return (error);
2188 
2189 	switch (addrs[0].ss_family) {
2190 #ifdef INET6
2191 	case AF_INET6:
2192 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2193 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2194 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2195 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2196 			return (EINVAL);
2197 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2198 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2199 				return (EINVAL);
2200 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2201 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2202 			fin = (struct sockaddr_in *)&addrs[0];
2203 			lin = (struct sockaddr_in *)&addrs[1];
2204 			break;
2205 		}
2206 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2207 		if (error)
2208 			return (error);
2209 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2210 		if (error)
2211 			return (error);
2212 		break;
2213 #endif
2214 	case AF_INET:
2215 		fin = (struct sockaddr_in *)&addrs[0];
2216 		lin = (struct sockaddr_in *)&addrs[1];
2217 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2218 		    lin->sin_len != sizeof(struct sockaddr_in))
2219 			return (EINVAL);
2220 		break;
2221 	default:
2222 		return (EINVAL);
2223 	}
2224 	INP_INFO_WLOCK(&V_tcbinfo);
2225 	switch (addrs[0].ss_family) {
2226 #ifdef INET6
2227 	case AF_INET6:
2228 		inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
2229 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
2230 		    NULL);
2231 		break;
2232 #endif
2233 	case AF_INET:
2234 		inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2235 		    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2236 		break;
2237 	}
2238 	if (inp != NULL) {
2239 		INP_WLOCK(inp);
2240 		if (inp->inp_flags & INP_TIMEWAIT) {
2241 			/*
2242 			 * XXXRW: There currently exists a state where an
2243 			 * inpcb is present, but its timewait state has been
2244 			 * discarded.  For now, don't allow dropping of this
2245 			 * type of inpcb.
2246 			 */
2247 			tw = intotw(inp);
2248 			if (tw != NULL)
2249 				tcp_twclose(tw, 0);
2250 			else
2251 				INP_WUNLOCK(inp);
2252 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2253 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2254 			tp = intotcpcb(inp);
2255 			tp = tcp_drop(tp, ECONNABORTED);
2256 			if (tp != NULL)
2257 				INP_WUNLOCK(inp);
2258 		} else
2259 			INP_WUNLOCK(inp);
2260 	} else
2261 		error = ESRCH;
2262 	INP_INFO_WUNLOCK(&V_tcbinfo);
2263 	return (error);
2264 }
2265 
2266 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2267     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2268     0, sysctl_drop, "", "Drop TCP connection");
2269 
2270 /*
2271  * Generate a standardized TCP log line for use throughout the
2272  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2273  * allow use in the interrupt context.
2274  *
2275  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2276  * NB: The function may return NULL if memory allocation failed.
2277  *
2278  * Due to header inclusion and ordering limitations the struct ip
2279  * and ip6_hdr pointers have to be passed as void pointers.
2280  */
2281 char *
2282 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2283     const void *ip6hdr)
2284 {
2285 	char *s, *sp;
2286 	size_t size;
2287 	struct ip *ip;
2288 #ifdef INET6
2289 	const struct ip6_hdr *ip6;
2290 
2291 	ip6 = (const struct ip6_hdr *)ip6hdr;
2292 #endif /* INET6 */
2293 	ip = (struct ip *)ip4hdr;
2294 
2295 	/*
2296 	 * The log line looks like this:
2297 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2298 	 */
2299 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2300 	    sizeof(PRINT_TH_FLAGS) + 1 +
2301 #ifdef INET6
2302 	    2 * INET6_ADDRSTRLEN;
2303 #else
2304 	    2 * INET_ADDRSTRLEN;
2305 #endif /* INET6 */
2306 
2307 	/* Is logging enabled? */
2308 	if (tcp_log_debug == 0 && tcp_log_in_vain == 0)
2309 		return (NULL);
2310 
2311 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2312 	if (s == NULL)
2313 		return (NULL);
2314 
2315 	strcat(s, "TCP: [");
2316 	sp = s + strlen(s);
2317 
2318 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2319 		inet_ntoa_r(inc->inc_faddr, sp);
2320 		sp = s + strlen(s);
2321 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2322 		sp = s + strlen(s);
2323 		inet_ntoa_r(inc->inc_laddr, sp);
2324 		sp = s + strlen(s);
2325 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2326 #ifdef INET6
2327 	} else if (inc) {
2328 		ip6_sprintf(sp, &inc->inc6_faddr);
2329 		sp = s + strlen(s);
2330 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2331 		sp = s + strlen(s);
2332 		ip6_sprintf(sp, &inc->inc6_laddr);
2333 		sp = s + strlen(s);
2334 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2335 	} else if (ip6 && th) {
2336 		ip6_sprintf(sp, &ip6->ip6_src);
2337 		sp = s + strlen(s);
2338 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2339 		sp = s + strlen(s);
2340 		ip6_sprintf(sp, &ip6->ip6_dst);
2341 		sp = s + strlen(s);
2342 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2343 #endif /* INET6 */
2344 	} else if (ip && th) {
2345 		inet_ntoa_r(ip->ip_src, sp);
2346 		sp = s + strlen(s);
2347 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2348 		sp = s + strlen(s);
2349 		inet_ntoa_r(ip->ip_dst, sp);
2350 		sp = s + strlen(s);
2351 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2352 	} else {
2353 		free(s, M_TCPLOG);
2354 		return (NULL);
2355 	}
2356 	sp = s + strlen(s);
2357 	if (th)
2358 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2359 	if (*(s + size - 1) != '\0')
2360 		panic("%s: string too long", __func__);
2361 	return (s);
2362 }
2363