xref: /freebsd/sys/netinet/tcp_subr.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/ip_icmp.h>
80 #include <netinet/tcp.h>
81 #include <netinet/tcp_fsm.h>
82 #include <netinet/tcp_seq.h>
83 #include <netinet/tcp_timer.h>
84 #include <netinet/tcp_var.h>
85 #ifdef INET6
86 #include <netinet6/tcp6_var.h>
87 #endif
88 #include <netinet/tcpip.h>
89 #ifdef TCPDEBUG
90 #include <netinet/tcp_debug.h>
91 #endif
92 #include <netinet6/ip6protosw.h>
93 
94 #ifdef IPSEC
95 #include <netinet6/ipsec.h>
96 #ifdef INET6
97 #include <netinet6/ipsec6.h>
98 #endif
99 #include <netkey/key.h>
100 #endif /*IPSEC*/
101 
102 #ifdef FAST_IPSEC
103 #include <netipsec/ipsec.h>
104 #include <netipsec/xform.h>
105 #ifdef INET6
106 #include <netipsec/ipsec6.h>
107 #endif
108 #include <netipsec/key.h>
109 #define	IPSEC
110 #endif /*FAST_IPSEC*/
111 
112 #include <machine/in_cksum.h>
113 #include <sys/md5.h>
114 
115 int	tcp_mssdflt = TCP_MSS;
116 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
117     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
118 
119 #ifdef INET6
120 int	tcp_v6mssdflt = TCP6_MSS;
121 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
122 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
123 	"Default TCP Maximum Segment Size for IPv6");
124 #endif
125 
126 /*
127  * Minimum MSS we accept and use. This prevents DoS attacks where
128  * we are forced to a ridiculous low MSS like 20 and send hundreds
129  * of packets instead of one. The effect scales with the available
130  * bandwidth and quickly saturates the CPU and network interface
131  * with packet generation and sending. Set to zero to disable MINMSS
132  * checking. This setting prevents us from sending too small packets.
133  */
134 int	tcp_minmss = TCP_MINMSS;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
136     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
137 /*
138  * Number of TCP segments per second we accept from remote host
139  * before we start to calculate average segment size. If average
140  * segment size drops below the minimum TCP MSS we assume a DoS
141  * attack and reset+drop the connection. Care has to be taken not to
142  * set this value too small to not kill interactive type connections
143  * (telnet, SSH) which send many small packets.
144  */
145 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
147     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
148     "be under the MINMSS Size");
149 
150 #if 0
151 static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
152 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
153     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
154 #endif
155 
156 int	tcp_do_rfc1323 = 1;
157 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
158     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
159 
160 static int	tcp_tcbhashsize = 0;
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
162      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
163 
164 static int	do_tcpdrain = 1;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
166      "Enable tcp_drain routine for extra help when low on mbufs");
167 
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
169     &tcbinfo.ipi_count, 0, "Number of active PCBs");
170 
171 static int	icmp_may_rst = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
173     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
174 
175 static int	tcp_isn_reseed_interval = 0;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
177     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
178 
179 /*
180  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
181  * 1024 exists only for debugging.  A good production default would be
182  * something like 6100.
183  */
184 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
185     "TCP inflight data limiting");
186 
187 static int	tcp_inflight_enable = 1;
188 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
189     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
190 
191 static int	tcp_inflight_debug = 0;
192 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
193     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
194 
195 static int	tcp_inflight_min = 6144;
196 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
197     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
198 
199 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
200 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
201     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
202 
203 static int	tcp_inflight_stab = 20;
204 SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
205     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
206 
207 uma_zone_t sack_hole_zone;
208 
209 static struct inpcb *tcp_notify(struct inpcb *, int);
210 static void	tcp_discardcb(struct tcpcb *);
211 static void	tcp_isn_tick(void *);
212 
213 /*
214  * Target size of TCP PCB hash tables. Must be a power of two.
215  *
216  * Note that this can be overridden by the kernel environment
217  * variable net.inet.tcp.tcbhashsize
218  */
219 #ifndef TCBHASHSIZE
220 #define TCBHASHSIZE	512
221 #endif
222 
223 /*
224  * XXX
225  * Callouts should be moved into struct tcp directly.  They are currently
226  * separate because the tcpcb structure is exported to userland for sysctl
227  * parsing purposes, which do not know about callouts.
228  */
229 struct	tcpcb_mem {
230 	struct	tcpcb tcb;
231 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
232 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
233 };
234 
235 static uma_zone_t tcpcb_zone;
236 static uma_zone_t tcptw_zone;
237 struct callout isn_callout;
238 
239 /*
240  * Tcp initialization
241  */
242 void
243 tcp_init()
244 {
245 	int hashsize = TCBHASHSIZE;
246 
247 	tcp_delacktime = TCPTV_DELACK;
248 	tcp_keepinit = TCPTV_KEEP_INIT;
249 	tcp_keepidle = TCPTV_KEEP_IDLE;
250 	tcp_keepintvl = TCPTV_KEEPINTVL;
251 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
252 	tcp_msl = TCPTV_MSL;
253 	tcp_rexmit_min = TCPTV_MIN;
254 	tcp_rexmit_slop = TCPTV_CPU_VAR;
255 
256 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
257 	LIST_INIT(&tcb);
258 	tcbinfo.listhead = &tcb;
259 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
260 	if (!powerof2(hashsize)) {
261 		printf("WARNING: TCB hash size not a power of 2\n");
262 		hashsize = 512; /* safe default */
263 	}
264 	tcp_tcbhashsize = hashsize;
265 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
266 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
267 					&tcbinfo.porthashmask);
268 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
269 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
270 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
271 #ifdef INET6
272 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
273 #else /* INET6 */
274 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
275 #endif /* INET6 */
276 	if (max_protohdr < TCP_MINPROTOHDR)
277 		max_protohdr = TCP_MINPROTOHDR;
278 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
279 		panic("tcp_init");
280 #undef TCP_MINPROTOHDR
281 	/*
282 	 * These have to be type stable for the benefit of the timers.
283 	 */
284 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
285 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
286 	uma_zone_set_max(tcpcb_zone, maxsockets);
287 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
288 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
289 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
290 	tcp_timer_init();
291 	syncache_init();
292 	tcp_hc_init();
293 	tcp_reass_init();
294 	callout_init(&isn_callout, CALLOUT_MPSAFE);
295 	tcp_isn_tick(NULL);
296 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
297 		SHUTDOWN_PRI_DEFAULT);
298 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
299 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
300 }
301 
302 void
303 tcp_fini(xtp)
304 	void *xtp;
305 {
306 	callout_stop(&isn_callout);
307 
308 }
309 
310 /*
311  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
312  * tcp_template used to store this data in mbufs, but we now recopy it out
313  * of the tcpcb each time to conserve mbufs.
314  */
315 void
316 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
317 	struct inpcb *inp;
318 	void *ip_ptr;
319 	void *tcp_ptr;
320 {
321 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
322 
323 	INP_LOCK_ASSERT(inp);
324 
325 #ifdef INET6
326 	if ((inp->inp_vflag & INP_IPV6) != 0) {
327 		struct ip6_hdr *ip6;
328 
329 		ip6 = (struct ip6_hdr *)ip_ptr;
330 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
331 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
332 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
333 			(IPV6_VERSION & IPV6_VERSION_MASK);
334 		ip6->ip6_nxt = IPPROTO_TCP;
335 		ip6->ip6_plen = sizeof(struct tcphdr);
336 		ip6->ip6_src = inp->in6p_laddr;
337 		ip6->ip6_dst = inp->in6p_faddr;
338 	} else
339 #endif
340 	{
341 		struct ip *ip;
342 
343 		ip = (struct ip *)ip_ptr;
344 		ip->ip_v = IPVERSION;
345 		ip->ip_hl = 5;
346 		ip->ip_tos = inp->inp_ip_tos;
347 		ip->ip_len = 0;
348 		ip->ip_id = 0;
349 		ip->ip_off = 0;
350 		ip->ip_ttl = inp->inp_ip_ttl;
351 		ip->ip_sum = 0;
352 		ip->ip_p = IPPROTO_TCP;
353 		ip->ip_src = inp->inp_laddr;
354 		ip->ip_dst = inp->inp_faddr;
355 	}
356 	th->th_sport = inp->inp_lport;
357 	th->th_dport = inp->inp_fport;
358 	th->th_seq = 0;
359 	th->th_ack = 0;
360 	th->th_x2 = 0;
361 	th->th_off = 5;
362 	th->th_flags = 0;
363 	th->th_win = 0;
364 	th->th_urp = 0;
365 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
366 }
367 
368 /*
369  * Create template to be used to send tcp packets on a connection.
370  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
371  * use for this function is in keepalives, which use tcp_respond.
372  */
373 struct tcptemp *
374 tcpip_maketemplate(inp)
375 	struct inpcb *inp;
376 {
377 	struct mbuf *m;
378 	struct tcptemp *n;
379 
380 	m = m_get(M_DONTWAIT, MT_HEADER);
381 	if (m == NULL)
382 		return (0);
383 	m->m_len = sizeof(struct tcptemp);
384 	n = mtod(m, struct tcptemp *);
385 
386 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
387 	return (n);
388 }
389 
390 /*
391  * Send a single message to the TCP at address specified by
392  * the given TCP/IP header.  If m == NULL, then we make a copy
393  * of the tcpiphdr at ti and send directly to the addressed host.
394  * This is used to force keep alive messages out using the TCP
395  * template for a connection.  If flags are given then we send
396  * a message back to the TCP which originated the * segment ti,
397  * and discard the mbuf containing it and any other attached mbufs.
398  *
399  * In any case the ack and sequence number of the transmitted
400  * segment are as specified by the parameters.
401  *
402  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
403  */
404 void
405 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
406 	struct tcpcb *tp;
407 	void *ipgen;
408 	register struct tcphdr *th;
409 	register struct mbuf *m;
410 	tcp_seq ack, seq;
411 	int flags;
412 {
413 	register int tlen;
414 	int win = 0;
415 	struct ip *ip;
416 	struct tcphdr *nth;
417 #ifdef INET6
418 	struct ip6_hdr *ip6;
419 	int isipv6;
420 #endif /* INET6 */
421 	int ipflags = 0;
422 	struct inpcb *inp;
423 
424 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
425 
426 #ifdef INET6
427 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
428 	ip6 = ipgen;
429 #endif /* INET6 */
430 	ip = ipgen;
431 
432 	if (tp != NULL) {
433 		inp = tp->t_inpcb;
434 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
435 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
436 		INP_LOCK_ASSERT(inp);
437 	} else
438 		inp = NULL;
439 
440 	if (tp != NULL) {
441 		if (!(flags & TH_RST)) {
442 			win = sbspace(&inp->inp_socket->so_rcv);
443 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
444 				win = (long)TCP_MAXWIN << tp->rcv_scale;
445 		}
446 	}
447 	if (m == NULL) {
448 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
449 		if (m == NULL)
450 			return;
451 		tlen = 0;
452 		m->m_data += max_linkhdr;
453 #ifdef INET6
454 		if (isipv6) {
455 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
456 			      sizeof(struct ip6_hdr));
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			nth = (struct tcphdr *)(ip6 + 1);
459 		} else
460 #endif /* INET6 */
461 	      {
462 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
463 		ip = mtod(m, struct ip *);
464 		nth = (struct tcphdr *)(ip + 1);
465 	      }
466 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
467 		flags = TH_ACK;
468 	} else {
469 		m_freem(m->m_next);
470 		m->m_next = NULL;
471 		m->m_data = (caddr_t)ipgen;
472 		/* m_len is set later */
473 		tlen = 0;
474 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
475 #ifdef INET6
476 		if (isipv6) {
477 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
478 			nth = (struct tcphdr *)(ip6 + 1);
479 		} else
480 #endif /* INET6 */
481 	      {
482 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
483 		nth = (struct tcphdr *)(ip + 1);
484 	      }
485 		if (th != nth) {
486 			/*
487 			 * this is usually a case when an extension header
488 			 * exists between the IPv6 header and the
489 			 * TCP header.
490 			 */
491 			nth->th_sport = th->th_sport;
492 			nth->th_dport = th->th_dport;
493 		}
494 		xchg(nth->th_dport, nth->th_sport, n_short);
495 #undef xchg
496 	}
497 #ifdef INET6
498 	if (isipv6) {
499 		ip6->ip6_flow = 0;
500 		ip6->ip6_vfc = IPV6_VERSION;
501 		ip6->ip6_nxt = IPPROTO_TCP;
502 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
503 						tlen));
504 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
505 	} else
506 #endif
507 	{
508 		tlen += sizeof (struct tcpiphdr);
509 		ip->ip_len = tlen;
510 		ip->ip_ttl = ip_defttl;
511 		if (path_mtu_discovery)
512 			ip->ip_off |= IP_DF;
513 	}
514 	m->m_len = tlen;
515 	m->m_pkthdr.len = tlen;
516 	m->m_pkthdr.rcvif = NULL;
517 #ifdef MAC
518 	if (inp != NULL) {
519 		/*
520 		 * Packet is associated with a socket, so allow the
521 		 * label of the response to reflect the socket label.
522 		 */
523 		INP_LOCK_ASSERT(inp);
524 		mac_create_mbuf_from_inpcb(inp, m);
525 	} else {
526 		/*
527 		 * Packet is not associated with a socket, so possibly
528 		 * update the label in place.
529 		 */
530 		mac_reflect_mbuf_tcp(m);
531 	}
532 #endif
533 	nth->th_seq = htonl(seq);
534 	nth->th_ack = htonl(ack);
535 	nth->th_x2 = 0;
536 	nth->th_off = sizeof (struct tcphdr) >> 2;
537 	nth->th_flags = flags;
538 	if (tp != NULL)
539 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
540 	else
541 		nth->th_win = htons((u_short)win);
542 	nth->th_urp = 0;
543 #ifdef INET6
544 	if (isipv6) {
545 		nth->th_sum = 0;
546 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
547 					sizeof(struct ip6_hdr),
548 					tlen - sizeof(struct ip6_hdr));
549 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
550 		    NULL, NULL);
551 	} else
552 #endif /* INET6 */
553 	{
554 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
555 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
556 		m->m_pkthdr.csum_flags = CSUM_TCP;
557 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
558 	}
559 #ifdef TCPDEBUG
560 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
561 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
562 #endif
563 #ifdef INET6
564 	if (isipv6)
565 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
566 	else
567 #endif /* INET6 */
568 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
569 }
570 
571 /*
572  * Create a new TCP control block, making an
573  * empty reassembly queue and hooking it to the argument
574  * protocol control block.  The `inp' parameter must have
575  * come from the zone allocator set up in tcp_init().
576  */
577 struct tcpcb *
578 tcp_newtcpcb(inp)
579 	struct inpcb *inp;
580 {
581 	struct tcpcb_mem *tm;
582 	struct tcpcb *tp;
583 #ifdef INET6
584 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
585 #endif /* INET6 */
586 
587 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
588 	if (tm == NULL)
589 		return (NULL);
590 	tp = &tm->tcb;
591 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
592 	tp->t_maxseg = tp->t_maxopd =
593 #ifdef INET6
594 		isipv6 ? tcp_v6mssdflt :
595 #endif /* INET6 */
596 		tcp_mssdflt;
597 
598 	/* Set up our timeouts. */
599 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
600 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
601 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
602 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
603 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
604 
605 	if (tcp_do_rfc1323)
606 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
607 	tp->sack_enable = tcp_do_sack;
608 	if (tp->sack_enable)
609 		TAILQ_INIT(&tp->snd_holes);
610 	tp->t_inpcb = inp;	/* XXX */
611 	/*
612 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
613 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
614 	 * reasonable initial retransmit time.
615 	 */
616 	tp->t_srtt = TCPTV_SRTTBASE;
617 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
618 	tp->t_rttmin = tcp_rexmit_min;
619 	tp->t_rxtcur = TCPTV_RTOBASE;
620 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
621 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
622 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
623 	tp->t_rcvtime = ticks;
624 	tp->t_bw_rtttime = ticks;
625 	/*
626 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
627 	 * because the socket may be bound to an IPv6 wildcard address,
628 	 * which may match an IPv4-mapped IPv6 address.
629 	 */
630 	inp->inp_ip_ttl = ip_defttl;
631 	inp->inp_ppcb = (caddr_t)tp;
632 	return (tp);		/* XXX */
633 }
634 
635 /*
636  * Drop a TCP connection, reporting
637  * the specified error.  If connection is synchronized,
638  * then send a RST to peer.
639  */
640 struct tcpcb *
641 tcp_drop(tp, errno)
642 	register struct tcpcb *tp;
643 	int errno;
644 {
645 	struct socket *so = tp->t_inpcb->inp_socket;
646 
647 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
648 	INP_LOCK_ASSERT(tp->t_inpcb);
649 
650 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
651 		tp->t_state = TCPS_CLOSED;
652 		(void) tcp_output(tp);
653 		tcpstat.tcps_drops++;
654 	} else
655 		tcpstat.tcps_conndrops++;
656 	if (errno == ETIMEDOUT && tp->t_softerror)
657 		errno = tp->t_softerror;
658 	so->so_error = errno;
659 	return (tcp_close(tp));
660 }
661 
662 static void
663 tcp_discardcb(tp)
664 	struct tcpcb *tp;
665 {
666 	struct tseg_qent *q;
667 	struct inpcb *inp = tp->t_inpcb;
668 	struct socket *so = inp->inp_socket;
669 #ifdef INET6
670 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
671 #endif /* INET6 */
672 
673 	INP_LOCK_ASSERT(inp);
674 
675 	/*
676 	 * Make sure that all of our timers are stopped before we
677 	 * delete the PCB.
678 	 */
679 	callout_stop(tp->tt_rexmt);
680 	callout_stop(tp->tt_persist);
681 	callout_stop(tp->tt_keep);
682 	callout_stop(tp->tt_2msl);
683 	callout_stop(tp->tt_delack);
684 
685 	/*
686 	 * If we got enough samples through the srtt filter,
687 	 * save the rtt and rttvar in the routing entry.
688 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
689 	 * 4 samples is enough for the srtt filter to converge
690 	 * to within enough % of the correct value; fewer samples
691 	 * and we could save a bogus rtt. The danger is not high
692 	 * as tcp quickly recovers from everything.
693 	 * XXX: Works very well but needs some more statistics!
694 	 */
695 	if (tp->t_rttupdated >= 4) {
696 		struct hc_metrics_lite metrics;
697 		u_long ssthresh;
698 
699 		bzero(&metrics, sizeof(metrics));
700 		/*
701 		 * Update the ssthresh always when the conditions below
702 		 * are satisfied. This gives us better new start value
703 		 * for the congestion avoidance for new connections.
704 		 * ssthresh is only set if packet loss occured on a session.
705 		 */
706 		ssthresh = tp->snd_ssthresh;
707 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
708 			/*
709 			 * convert the limit from user data bytes to
710 			 * packets then to packet data bytes.
711 			 */
712 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
713 			if (ssthresh < 2)
714 				ssthresh = 2;
715 			ssthresh *= (u_long)(tp->t_maxseg +
716 #ifdef INET6
717 				      (isipv6 ? sizeof (struct ip6_hdr) +
718 					       sizeof (struct tcphdr) :
719 #endif
720 				       sizeof (struct tcpiphdr)
721 #ifdef INET6
722 				       )
723 #endif
724 				      );
725 		} else
726 			ssthresh = 0;
727 		metrics.rmx_ssthresh = ssthresh;
728 
729 		metrics.rmx_rtt = tp->t_srtt;
730 		metrics.rmx_rttvar = tp->t_rttvar;
731 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
732 		metrics.rmx_bandwidth = tp->snd_bandwidth;
733 		metrics.rmx_cwnd = tp->snd_cwnd;
734 		metrics.rmx_sendpipe = 0;
735 		metrics.rmx_recvpipe = 0;
736 
737 		tcp_hc_update(&inp->inp_inc, &metrics);
738 	}
739 
740 	/* free the reassembly queue, if any */
741 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
742 		LIST_REMOVE(q, tqe_q);
743 		m_freem(q->tqe_m);
744 		uma_zfree(tcp_reass_zone, q);
745 		tp->t_segqlen--;
746 		tcp_reass_qsize--;
747 	}
748 	tcp_free_sackholes(tp);
749 	inp->inp_ppcb = NULL;
750 	tp->t_inpcb = NULL;
751 	uma_zfree(tcpcb_zone, tp);
752 	soisdisconnected(so);
753 }
754 
755 /*
756  * Close a TCP control block:
757  *    discard all space held by the tcp
758  *    discard internet protocol block
759  *    wake up any sleepers
760  */
761 struct tcpcb *
762 tcp_close(tp)
763 	struct tcpcb *tp;
764 {
765 	struct inpcb *inp = tp->t_inpcb;
766 #ifdef INET6
767 	struct socket *so = inp->inp_socket;
768 #endif
769 
770 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
771 	INP_LOCK_ASSERT(inp);
772 
773 	tcp_discardcb(tp);
774 #ifdef INET6
775 	if (INP_CHECK_SOCKAF(so, AF_INET6))
776 		in6_pcbdetach(inp);
777 	else
778 #endif
779 		in_pcbdetach(inp);
780 	tcpstat.tcps_closed++;
781 	return (NULL);
782 }
783 
784 void
785 tcp_drain()
786 {
787 	if (do_tcpdrain)
788 	{
789 		struct inpcb *inpb;
790 		struct tcpcb *tcpb;
791 		struct tseg_qent *te;
792 
793 	/*
794 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
795 	 * if there is one...
796 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
797 	 *      reassembly queue should be flushed, but in a situation
798 	 *	where we're really low on mbufs, this is potentially
799 	 *	usefull.
800 	 */
801 		INP_INFO_RLOCK(&tcbinfo);
802 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
803 			if (inpb->inp_vflag & INP_TIMEWAIT)
804 				continue;
805 			INP_LOCK(inpb);
806 			if ((tcpb = intotcpcb(inpb)) != NULL) {
807 				while ((te = LIST_FIRST(&tcpb->t_segq))
808 			            != NULL) {
809 					LIST_REMOVE(te, tqe_q);
810 					m_freem(te->tqe_m);
811 					uma_zfree(tcp_reass_zone, te);
812 					tcpb->t_segqlen--;
813 					tcp_reass_qsize--;
814 				}
815 				tcp_clean_sackreport(tcpb);
816 			}
817 			INP_UNLOCK(inpb);
818 		}
819 		INP_INFO_RUNLOCK(&tcbinfo);
820 	}
821 }
822 
823 /*
824  * Notify a tcp user of an asynchronous error;
825  * store error as soft error, but wake up user
826  * (for now, won't do anything until can select for soft error).
827  *
828  * Do not wake up user since there currently is no mechanism for
829  * reporting soft errors (yet - a kqueue filter may be added).
830  */
831 static struct inpcb *
832 tcp_notify(inp, error)
833 	struct inpcb *inp;
834 	int error;
835 {
836 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
837 
838 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
839 	INP_LOCK_ASSERT(inp);
840 
841 	/*
842 	 * Ignore some errors if we are hooked up.
843 	 * If connection hasn't completed, has retransmitted several times,
844 	 * and receives a second error, give up now.  This is better
845 	 * than waiting a long time to establish a connection that
846 	 * can never complete.
847 	 */
848 	if (tp->t_state == TCPS_ESTABLISHED &&
849 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
850 	     error == EHOSTDOWN)) {
851 		return (inp);
852 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
853 	    tp->t_softerror) {
854 		tcp_drop(tp, error);
855 		return (struct inpcb *)0;
856 	} else {
857 		tp->t_softerror = error;
858 		return (inp);
859 	}
860 #if 0
861 	wakeup( &so->so_timeo);
862 	sorwakeup(so);
863 	sowwakeup(so);
864 #endif
865 }
866 
867 static int
868 tcp_pcblist(SYSCTL_HANDLER_ARGS)
869 {
870 	int error, i, n, s;
871 	struct inpcb *inp, **inp_list;
872 	inp_gen_t gencnt;
873 	struct xinpgen xig;
874 
875 	/*
876 	 * The process of preparing the TCB list is too time-consuming and
877 	 * resource-intensive to repeat twice on every request.
878 	 */
879 	if (req->oldptr == NULL) {
880 		n = tcbinfo.ipi_count;
881 		req->oldidx = 2 * (sizeof xig)
882 			+ (n + n/8) * sizeof(struct xtcpcb);
883 		return (0);
884 	}
885 
886 	if (req->newptr != NULL)
887 		return (EPERM);
888 
889 	/*
890 	 * OK, now we're committed to doing something.
891 	 */
892 	s = splnet();
893 	INP_INFO_RLOCK(&tcbinfo);
894 	gencnt = tcbinfo.ipi_gencnt;
895 	n = tcbinfo.ipi_count;
896 	INP_INFO_RUNLOCK(&tcbinfo);
897 	splx(s);
898 
899 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
900 		+ n * sizeof(struct xtcpcb));
901 	if (error != 0)
902 		return (error);
903 
904 	xig.xig_len = sizeof xig;
905 	xig.xig_count = n;
906 	xig.xig_gen = gencnt;
907 	xig.xig_sogen = so_gencnt;
908 	error = SYSCTL_OUT(req, &xig, sizeof xig);
909 	if (error)
910 		return (error);
911 
912 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
913 	if (inp_list == NULL)
914 		return (ENOMEM);
915 
916 	s = splnet();
917 	INP_INFO_RLOCK(&tcbinfo);
918 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
919 	     inp = LIST_NEXT(inp, inp_list)) {
920 		INP_LOCK(inp);
921 		if (inp->inp_gencnt <= gencnt) {
922 			/*
923 			 * XXX: This use of cr_cansee(), introduced with
924 			 * TCP state changes, is not quite right, but for
925 			 * now, better than nothing.
926 			 */
927 			if (inp->inp_vflag & INP_TIMEWAIT)
928 				error = cr_cansee(req->td->td_ucred,
929 				    intotw(inp)->tw_cred);
930 			else
931 				error = cr_canseesocket(req->td->td_ucred,
932 				    inp->inp_socket);
933 			if (error == 0)
934 				inp_list[i++] = inp;
935 		}
936 		INP_UNLOCK(inp);
937 	}
938 	INP_INFO_RUNLOCK(&tcbinfo);
939 	splx(s);
940 	n = i;
941 
942 	error = 0;
943 	for (i = 0; i < n; i++) {
944 		inp = inp_list[i];
945 		if (inp->inp_gencnt <= gencnt) {
946 			struct xtcpcb xt;
947 			caddr_t inp_ppcb;
948 
949 			bzero(&xt, sizeof(xt));
950 			xt.xt_len = sizeof xt;
951 			/* XXX should avoid extra copy */
952 			bcopy(inp, &xt.xt_inp, sizeof *inp);
953 			inp_ppcb = inp->inp_ppcb;
954 			if (inp_ppcb == NULL)
955 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
956 			else if (inp->inp_vflag & INP_TIMEWAIT) {
957 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
958 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
959 			} else
960 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
961 			if (inp->inp_socket != NULL)
962 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
963 			else {
964 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
965 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
966 			}
967 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
968 			error = SYSCTL_OUT(req, &xt, sizeof xt);
969 		}
970 	}
971 	if (!error) {
972 		/*
973 		 * Give the user an updated idea of our state.
974 		 * If the generation differs from what we told
975 		 * her before, she knows that something happened
976 		 * while we were processing this request, and it
977 		 * might be necessary to retry.
978 		 */
979 		s = splnet();
980 		INP_INFO_RLOCK(&tcbinfo);
981 		xig.xig_gen = tcbinfo.ipi_gencnt;
982 		xig.xig_sogen = so_gencnt;
983 		xig.xig_count = tcbinfo.ipi_count;
984 		INP_INFO_RUNLOCK(&tcbinfo);
985 		splx(s);
986 		error = SYSCTL_OUT(req, &xig, sizeof xig);
987 	}
988 	free(inp_list, M_TEMP);
989 	return (error);
990 }
991 
992 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
993 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
994 
995 static int
996 tcp_getcred(SYSCTL_HANDLER_ARGS)
997 {
998 	struct xucred xuc;
999 	struct sockaddr_in addrs[2];
1000 	struct inpcb *inp;
1001 	int error, s;
1002 
1003 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1004 	if (error)
1005 		return (error);
1006 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1007 	if (error)
1008 		return (error);
1009 	s = splnet();
1010 	INP_INFO_RLOCK(&tcbinfo);
1011 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1012 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1013 	if (inp == NULL) {
1014 		error = ENOENT;
1015 		goto outunlocked;
1016 	}
1017 	INP_LOCK(inp);
1018 	if (inp->inp_socket == NULL) {
1019 		error = ENOENT;
1020 		goto out;
1021 	}
1022 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1023 	if (error)
1024 		goto out;
1025 	cru2x(inp->inp_socket->so_cred, &xuc);
1026 out:
1027 	INP_UNLOCK(inp);
1028 outunlocked:
1029 	INP_INFO_RUNLOCK(&tcbinfo);
1030 	splx(s);
1031 	if (error == 0)
1032 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1033 	return (error);
1034 }
1035 
1036 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1037     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1038     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1039 
1040 #ifdef INET6
1041 static int
1042 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1043 {
1044 	struct xucred xuc;
1045 	struct sockaddr_in6 addrs[2];
1046 	struct in6_addr a6[2];
1047 	struct inpcb *inp;
1048 	int error, s, mapped = 0;
1049 
1050 	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1051 	if (error)
1052 		return (error);
1053 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1054 	if (error)
1055 		return (error);
1056 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1057 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1058 			mapped = 1;
1059 		else
1060 			return (EINVAL);
1061 	} else {
1062 		error = in6_embedscope(&a6[0], &addrs[0], NULL, NULL);
1063 		if (error)
1064 			return (EINVAL);
1065 		error = in6_embedscope(&a6[1], &addrs[1], NULL, NULL);
1066 		if (error)
1067 			return (EINVAL);
1068 	}
1069 	s = splnet();
1070 	INP_INFO_RLOCK(&tcbinfo);
1071 	if (mapped == 1)
1072 		inp = in_pcblookup_hash(&tcbinfo,
1073 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1074 			addrs[1].sin6_port,
1075 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1076 			addrs[0].sin6_port,
1077 			0, NULL);
1078 	else
1079 		inp = in6_pcblookup_hash(&tcbinfo, &a6[1], addrs[1].sin6_port,
1080 			&a6[0], addrs[0].sin6_port, 0, NULL);
1081 	if (inp == NULL) {
1082 		error = ENOENT;
1083 		goto outunlocked;
1084 	}
1085 	INP_LOCK(inp);
1086 	if (inp->inp_socket == NULL) {
1087 		error = ENOENT;
1088 		goto out;
1089 	}
1090 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1091 	if (error)
1092 		goto out;
1093 	cru2x(inp->inp_socket->so_cred, &xuc);
1094 out:
1095 	INP_UNLOCK(inp);
1096 outunlocked:
1097 	INP_INFO_RUNLOCK(&tcbinfo);
1098 	splx(s);
1099 	if (error == 0)
1100 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1101 	return (error);
1102 }
1103 
1104 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1105     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1106     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1107 #endif
1108 
1109 
1110 void
1111 tcp_ctlinput(cmd, sa, vip)
1112 	int cmd;
1113 	struct sockaddr *sa;
1114 	void *vip;
1115 {
1116 	struct ip *ip = vip;
1117 	struct tcphdr *th;
1118 	struct in_addr faddr;
1119 	struct inpcb *inp;
1120 	struct tcpcb *tp;
1121 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1122 	struct icmp *icp;
1123 	struct in_conninfo inc;
1124 	tcp_seq icmp_tcp_seq;
1125 	int mtu, s;
1126 
1127 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1128 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1129 		return;
1130 
1131 	if (cmd == PRC_MSGSIZE)
1132 		notify = tcp_mtudisc;
1133 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1134 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1135 		notify = tcp_drop_syn_sent;
1136 	/*
1137 	 * Redirects don't need to be handled up here.
1138 	 */
1139 	else if (PRC_IS_REDIRECT(cmd))
1140 		return;
1141 	/*
1142 	 * Source quench is depreciated.
1143 	 */
1144 	else if (cmd == PRC_QUENCH)
1145 		return;
1146 	/*
1147 	 * Hostdead is ugly because it goes linearly through all PCBs.
1148 	 * XXX: We never get this from ICMP, otherwise it makes an
1149 	 * excellent DoS attack on machines with many connections.
1150 	 */
1151 	else if (cmd == PRC_HOSTDEAD)
1152 		ip = NULL;
1153 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1154 		return;
1155 	if (ip != NULL) {
1156 		s = splnet();
1157 		icp = (struct icmp *)((caddr_t)ip
1158 				      - offsetof(struct icmp, icmp_ip));
1159 		th = (struct tcphdr *)((caddr_t)ip
1160 				       + (ip->ip_hl << 2));
1161 		INP_INFO_WLOCK(&tcbinfo);
1162 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1163 		    ip->ip_src, th->th_sport, 0, NULL);
1164 		if (inp != NULL)  {
1165 			INP_LOCK(inp);
1166 			if (inp->inp_socket != NULL) {
1167 				icmp_tcp_seq = htonl(th->th_seq);
1168 				tp = intotcpcb(inp);
1169 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1170 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1171 					if (cmd == PRC_MSGSIZE) {
1172 					    /*
1173 					     * MTU discovery:
1174 					     * If we got a needfrag set the MTU
1175 					     * in the route to the suggested new
1176 					     * value (if given) and then notify.
1177 					     */
1178 					    bzero(&inc, sizeof(inc));
1179 					    inc.inc_flags = 0;	/* IPv4 */
1180 					    inc.inc_faddr = faddr;
1181 
1182 					    mtu = ntohs(icp->icmp_nextmtu);
1183 					    /*
1184 					     * If no alternative MTU was
1185 					     * proposed, try the next smaller
1186 					     * one.
1187 					     */
1188 					    if (!mtu)
1189 						mtu = ip_next_mtu(ntohs(ip->ip_len),
1190 						 1);
1191 					    if (mtu < max(296, (tcp_minmss)
1192 						 + sizeof(struct tcpiphdr)))
1193 						mtu = 0;
1194 					    if (!mtu)
1195 						mtu = tcp_mssdflt
1196 						 + sizeof(struct tcpiphdr);
1197 					    /*
1198 					     * Only cache the the MTU if it
1199 					     * is smaller than the interface
1200 					     * or route MTU.  tcp_mtudisc()
1201 					     * will do right thing by itself.
1202 					     */
1203 					    if (mtu <= tcp_maxmtu(&inc))
1204 						tcp_hc_updatemtu(&inc, mtu);
1205 					}
1206 
1207 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1208 				}
1209 			}
1210 			if (inp != NULL)
1211 				INP_UNLOCK(inp);
1212 		} else {
1213 			inc.inc_fport = th->th_dport;
1214 			inc.inc_lport = th->th_sport;
1215 			inc.inc_faddr = faddr;
1216 			inc.inc_laddr = ip->ip_src;
1217 #ifdef INET6
1218 			inc.inc_isipv6 = 0;
1219 #endif
1220 			syncache_unreach(&inc, th);
1221 		}
1222 		INP_INFO_WUNLOCK(&tcbinfo);
1223 		splx(s);
1224 	} else
1225 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1226 }
1227 
1228 #ifdef INET6
1229 void
1230 tcp6_ctlinput(cmd, sa, d)
1231 	int cmd;
1232 	struct sockaddr *sa;
1233 	void *d;
1234 {
1235 	struct tcphdr th;
1236 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1237 	struct ip6_hdr *ip6;
1238 	struct mbuf *m;
1239 	struct ip6ctlparam *ip6cp = NULL;
1240 	const struct sockaddr_in6 *sa6_src = NULL;
1241 	int off;
1242 	struct tcp_portonly {
1243 		u_int16_t th_sport;
1244 		u_int16_t th_dport;
1245 	} *thp;
1246 
1247 	if (sa->sa_family != AF_INET6 ||
1248 	    sa->sa_len != sizeof(struct sockaddr_in6))
1249 		return;
1250 
1251 	if (cmd == PRC_MSGSIZE)
1252 		notify = tcp_mtudisc;
1253 	else if (!PRC_IS_REDIRECT(cmd) &&
1254 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1255 		return;
1256 	/* Source quench is depreciated. */
1257 	else if (cmd == PRC_QUENCH)
1258 		return;
1259 
1260 	/* if the parameter is from icmp6, decode it. */
1261 	if (d != NULL) {
1262 		ip6cp = (struct ip6ctlparam *)d;
1263 		m = ip6cp->ip6c_m;
1264 		ip6 = ip6cp->ip6c_ip6;
1265 		off = ip6cp->ip6c_off;
1266 		sa6_src = ip6cp->ip6c_src;
1267 	} else {
1268 		m = NULL;
1269 		ip6 = NULL;
1270 		off = 0;	/* fool gcc */
1271 		sa6_src = &sa6_any;
1272 	}
1273 
1274 	if (ip6 != NULL) {
1275 		struct in_conninfo inc;
1276 		/*
1277 		 * XXX: We assume that when IPV6 is non NULL,
1278 		 * M and OFF are valid.
1279 		 */
1280 
1281 		/* check if we can safely examine src and dst ports */
1282 		if (m->m_pkthdr.len < off + sizeof(*thp))
1283 			return;
1284 
1285 		bzero(&th, sizeof(th));
1286 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1287 
1288 		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1289 		    (struct sockaddr *)ip6cp->ip6c_src,
1290 		    th.th_sport, cmd, NULL, notify);
1291 
1292 		inc.inc_fport = th.th_dport;
1293 		inc.inc_lport = th.th_sport;
1294 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1295 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1296 		inc.inc_isipv6 = 1;
1297 		INP_INFO_WLOCK(&tcbinfo);
1298 		syncache_unreach(&inc, &th);
1299 		INP_INFO_WUNLOCK(&tcbinfo);
1300 	} else
1301 		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1302 			      0, cmd, NULL, notify);
1303 }
1304 #endif /* INET6 */
1305 
1306 
1307 /*
1308  * Following is where TCP initial sequence number generation occurs.
1309  *
1310  * There are two places where we must use initial sequence numbers:
1311  * 1.  In SYN-ACK packets.
1312  * 2.  In SYN packets.
1313  *
1314  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1315  * tcp_syncache.c for details.
1316  *
1317  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1318  * depends on this property.  In addition, these ISNs should be
1319  * unguessable so as to prevent connection hijacking.  To satisfy
1320  * the requirements of this situation, the algorithm outlined in
1321  * RFC 1948 is used, with only small modifications.
1322  *
1323  * Implementation details:
1324  *
1325  * Time is based off the system timer, and is corrected so that it
1326  * increases by one megabyte per second.  This allows for proper
1327  * recycling on high speed LANs while still leaving over an hour
1328  * before rollover.
1329  *
1330  * As reading the *exact* system time is too expensive to be done
1331  * whenever setting up a TCP connection, we increment the time
1332  * offset in two ways.  First, a small random positive increment
1333  * is added to isn_offset for each connection that is set up.
1334  * Second, the function tcp_isn_tick fires once per clock tick
1335  * and increments isn_offset as necessary so that sequence numbers
1336  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1337  * random positive increments serve only to ensure that the same
1338  * exact sequence number is never sent out twice (as could otherwise
1339  * happen when a port is recycled in less than the system tick
1340  * interval.)
1341  *
1342  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1343  * between seeding of isn_secret.  This is normally set to zero,
1344  * as reseeding should not be necessary.
1345  *
1346  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1347  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1348  * general, this means holding an exclusive (write) lock.
1349  */
1350 
1351 #define ISN_BYTES_PER_SECOND 1048576
1352 #define ISN_STATIC_INCREMENT 4096
1353 #define ISN_RANDOM_INCREMENT (4096 - 1)
1354 
1355 static u_char isn_secret[32];
1356 static int isn_last_reseed;
1357 static u_int32_t isn_offset, isn_offset_old;
1358 static MD5_CTX isn_ctx;
1359 
1360 tcp_seq
1361 tcp_new_isn(tp)
1362 	struct tcpcb *tp;
1363 {
1364 	u_int32_t md5_buffer[4];
1365 	tcp_seq new_isn;
1366 
1367 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1368 	INP_LOCK_ASSERT(tp->t_inpcb);
1369 
1370 	/* Seed if this is the first use, reseed if requested. */
1371 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1372 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1373 		< (u_int)ticks))) {
1374 		read_random(&isn_secret, sizeof(isn_secret));
1375 		isn_last_reseed = ticks;
1376 	}
1377 
1378 	/* Compute the md5 hash and return the ISN. */
1379 	MD5Init(&isn_ctx);
1380 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1381 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1382 #ifdef INET6
1383 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1384 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1385 			  sizeof(struct in6_addr));
1386 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1387 			  sizeof(struct in6_addr));
1388 	} else
1389 #endif
1390 	{
1391 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1392 			  sizeof(struct in_addr));
1393 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1394 			  sizeof(struct in_addr));
1395 	}
1396 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1397 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1398 	new_isn = (tcp_seq) md5_buffer[0];
1399 	isn_offset += ISN_STATIC_INCREMENT +
1400 		(arc4random() & ISN_RANDOM_INCREMENT);
1401 	new_isn += isn_offset;
1402 	return (new_isn);
1403 }
1404 
1405 /*
1406  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1407  * to keep time flowing at a relatively constant rate.  If the random
1408  * increments have already pushed us past the projected offset, do nothing.
1409  */
1410 static void
1411 tcp_isn_tick(xtp)
1412 	void *xtp;
1413 {
1414 	u_int32_t projected_offset;
1415 
1416 	INP_INFO_WLOCK(&tcbinfo);
1417 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1418 
1419 	if (projected_offset > isn_offset)
1420 		isn_offset = projected_offset;
1421 
1422 	isn_offset_old = isn_offset;
1423 	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1424 	INP_INFO_WUNLOCK(&tcbinfo);
1425 }
1426 
1427 /*
1428  * When a specific ICMP unreachable message is received and the
1429  * connection state is SYN-SENT, drop the connection.  This behavior
1430  * is controlled by the icmp_may_rst sysctl.
1431  */
1432 struct inpcb *
1433 tcp_drop_syn_sent(inp, errno)
1434 	struct inpcb *inp;
1435 	int errno;
1436 {
1437 	struct tcpcb *tp = intotcpcb(inp);
1438 
1439 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1440 	INP_LOCK_ASSERT(inp);
1441 
1442 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1443 		tcp_drop(tp, errno);
1444 		return (NULL);
1445 	}
1446 	return (inp);
1447 }
1448 
1449 /*
1450  * When `need fragmentation' ICMP is received, update our idea of the MSS
1451  * based on the new value in the route.  Also nudge TCP to send something,
1452  * since we know the packet we just sent was dropped.
1453  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1454  */
1455 struct inpcb *
1456 tcp_mtudisc(inp, errno)
1457 	struct inpcb *inp;
1458 	int errno;
1459 {
1460 	struct tcpcb *tp = intotcpcb(inp);
1461 	struct socket *so = inp->inp_socket;
1462 	u_int maxmtu;
1463 	u_int romtu;
1464 	int mss;
1465 #ifdef INET6
1466 	int isipv6;
1467 #endif /* INET6 */
1468 
1469 	INP_LOCK_ASSERT(inp);
1470 	if (tp != NULL) {
1471 #ifdef INET6
1472 		isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1473 #endif
1474 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1475 		romtu =
1476 #ifdef INET6
1477 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1478 #endif /* INET6 */
1479 		    tcp_maxmtu(&inp->inp_inc);
1480 		if (!maxmtu)
1481 			maxmtu = romtu;
1482 		else
1483 			maxmtu = min(maxmtu, romtu);
1484 		if (!maxmtu) {
1485 			tp->t_maxopd = tp->t_maxseg =
1486 #ifdef INET6
1487 				isipv6 ? tcp_v6mssdflt :
1488 #endif /* INET6 */
1489 				tcp_mssdflt;
1490 			return (inp);
1491 		}
1492 		mss = maxmtu -
1493 #ifdef INET6
1494 			(isipv6 ?
1495 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1496 #endif /* INET6 */
1497 			 sizeof(struct tcpiphdr)
1498 #ifdef INET6
1499 			 )
1500 #endif /* INET6 */
1501 			;
1502 
1503 		/*
1504 		 * XXX - The above conditional probably violates the TCP
1505 		 * spec.  The problem is that, since we don't know the
1506 		 * other end's MSS, we are supposed to use a conservative
1507 		 * default.  But, if we do that, then MTU discovery will
1508 		 * never actually take place, because the conservative
1509 		 * default is much less than the MTUs typically seen
1510 		 * on the Internet today.  For the moment, we'll sweep
1511 		 * this under the carpet.
1512 		 *
1513 		 * The conservative default might not actually be a problem
1514 		 * if the only case this occurs is when sending an initial
1515 		 * SYN with options and data to a host we've never talked
1516 		 * to before.  Then, they will reply with an MSS value which
1517 		 * will get recorded and the new parameters should get
1518 		 * recomputed.  For Further Study.
1519 		 */
1520 		if (tp->t_maxopd <= mss)
1521 			return (inp);
1522 		tp->t_maxopd = mss;
1523 
1524 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1525 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1526 			mss -= TCPOLEN_TSTAMP_APPA;
1527 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1528 		if (mss > MCLBYTES)
1529 			mss &= ~(MCLBYTES-1);
1530 #else
1531 		if (mss > MCLBYTES)
1532 			mss = mss / MCLBYTES * MCLBYTES;
1533 #endif
1534 		if (so->so_snd.sb_hiwat < mss)
1535 			mss = so->so_snd.sb_hiwat;
1536 
1537 		tp->t_maxseg = mss;
1538 
1539 		tcpstat.tcps_mturesent++;
1540 		tp->t_rtttime = 0;
1541 		tp->snd_nxt = tp->snd_una;
1542 		tcp_output(tp);
1543 	}
1544 	return (inp);
1545 }
1546 
1547 /*
1548  * Look-up the routing entry to the peer of this inpcb.  If no route
1549  * is found and it cannot be allocated, then return NULL.  This routine
1550  * is called by TCP routines that access the rmx structure and by tcp_mss
1551  * to get the interface MTU.
1552  */
1553 u_long
1554 tcp_maxmtu(inc)
1555 	struct in_conninfo *inc;
1556 {
1557 	struct route sro;
1558 	struct sockaddr_in *dst;
1559 	struct ifnet *ifp;
1560 	u_long maxmtu = 0;
1561 
1562 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1563 
1564 	bzero(&sro, sizeof(sro));
1565 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1566 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1567 		dst->sin_family = AF_INET;
1568 		dst->sin_len = sizeof(*dst);
1569 		dst->sin_addr = inc->inc_faddr;
1570 		rtalloc_ign(&sro, RTF_CLONING);
1571 	}
1572 	if (sro.ro_rt != NULL) {
1573 		ifp = sro.ro_rt->rt_ifp;
1574 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1575 			maxmtu = ifp->if_mtu;
1576 		else
1577 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1578 		RTFREE(sro.ro_rt);
1579 	}
1580 	return (maxmtu);
1581 }
1582 
1583 #ifdef INET6
1584 u_long
1585 tcp_maxmtu6(inc)
1586 	struct in_conninfo *inc;
1587 {
1588 	struct route_in6 sro6;
1589 	struct ifnet *ifp;
1590 	u_long maxmtu = 0;
1591 
1592 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1593 
1594 	bzero(&sro6, sizeof(sro6));
1595 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1596 		sro6.ro_dst.sin6_family = AF_INET6;
1597 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1598 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1599 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1600 	}
1601 	if (sro6.ro_rt != NULL) {
1602 		ifp = sro6.ro_rt->rt_ifp;
1603 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1604 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1605 		else
1606 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1607 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1608 		RTFREE(sro6.ro_rt);
1609 	}
1610 
1611 	return (maxmtu);
1612 }
1613 #endif /* INET6 */
1614 
1615 #ifdef IPSEC
1616 /* compute ESP/AH header size for TCP, including outer IP header. */
1617 size_t
1618 ipsec_hdrsiz_tcp(tp)
1619 	struct tcpcb *tp;
1620 {
1621 	struct inpcb *inp;
1622 	struct mbuf *m;
1623 	size_t hdrsiz;
1624 	struct ip *ip;
1625 #ifdef INET6
1626 	struct ip6_hdr *ip6;
1627 #endif
1628 	struct tcphdr *th;
1629 
1630 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1631 		return (0);
1632 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1633 	if (!m)
1634 		return (0);
1635 
1636 #ifdef INET6
1637 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1638 		ip6 = mtod(m, struct ip6_hdr *);
1639 		th = (struct tcphdr *)(ip6 + 1);
1640 		m->m_pkthdr.len = m->m_len =
1641 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1642 		tcpip_fillheaders(inp, ip6, th);
1643 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1644 	} else
1645 #endif /* INET6 */
1646 	{
1647 		ip = mtod(m, struct ip *);
1648 		th = (struct tcphdr *)(ip + 1);
1649 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1650 		tcpip_fillheaders(inp, ip, th);
1651 		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1652 	}
1653 
1654 	m_free(m);
1655 	return (hdrsiz);
1656 }
1657 #endif /*IPSEC*/
1658 
1659 /*
1660  * Move a TCP connection into TIME_WAIT state.
1661  *    tcbinfo is locked.
1662  *    inp is locked, and is unlocked before returning.
1663  */
1664 void
1665 tcp_twstart(tp)
1666 	struct tcpcb *tp;
1667 {
1668 	struct tcptw *tw;
1669 	struct inpcb *inp;
1670 	int tw_time, acknow;
1671 	struct socket *so;
1672 
1673 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1674 	INP_LOCK_ASSERT(tp->t_inpcb);
1675 
1676 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1677 	if (tw == NULL) {
1678 		tw = tcp_timer_2msl_tw(1);
1679 		if (tw == NULL) {
1680 			tcp_close(tp);
1681 			return;
1682 		}
1683 	}
1684 	inp = tp->t_inpcb;
1685 	tw->tw_inpcb = inp;
1686 
1687 	/*
1688 	 * Recover last window size sent.
1689 	 */
1690 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1691 
1692 	/*
1693 	 * Set t_recent if timestamps are used on the connection.
1694 	 */
1695 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1696 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1697 		tw->t_recent = tp->ts_recent;
1698 	else
1699 		tw->t_recent = 0;
1700 
1701 	tw->snd_nxt = tp->snd_nxt;
1702 	tw->rcv_nxt = tp->rcv_nxt;
1703 	tw->iss     = tp->iss;
1704 	tw->irs     = tp->irs;
1705 	tw->t_starttime = tp->t_starttime;
1706 	tw->tw_time = 0;
1707 
1708 /* XXX
1709  * If this code will
1710  * be used for fin-wait-2 state also, then we may need
1711  * a ts_recent from the last segment.
1712  */
1713 	tw_time = 2 * tcp_msl;
1714 	acknow = tp->t_flags & TF_ACKNOW;
1715 	tcp_discardcb(tp);
1716 	so = inp->inp_socket;
1717 	ACCEPT_LOCK();
1718 	SOCK_LOCK(so);
1719 	so->so_pcb = NULL;
1720 	tw->tw_cred = crhold(so->so_cred);
1721 	tw->tw_so_options = so->so_options;
1722 	sotryfree(so);
1723 	inp->inp_socket = NULL;
1724 	if (acknow)
1725 		tcp_twrespond(tw, TH_ACK);
1726 	inp->inp_ppcb = (caddr_t)tw;
1727 	inp->inp_vflag |= INP_TIMEWAIT;
1728 	tcp_timer_2msl_reset(tw, tw_time);
1729 	INP_UNLOCK(inp);
1730 }
1731 
1732 /*
1733  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1734  * the actual rate is slightly higher due to the addition of
1735  * random positive increments.
1736  *
1737  * Most other new OSes use semi-randomized ISN values, so we
1738  * do not need to worry about them.
1739  */
1740 #define MS_ISN_BYTES_PER_SECOND		250000
1741 
1742 /*
1743  * Determine if the ISN we will generate has advanced beyond the last
1744  * sequence number used by the previous connection.  If so, indicate
1745  * that it is safe to recycle this tw socket by returning 1.
1746  *
1747  * XXXRW: This function should assert the inpcb lock as it does multiple
1748  * non-atomic reads from the tcptw, but is currently called without it from
1749  * in_pcb.c:in_pcblookup_local().
1750  */
1751 int
1752 tcp_twrecycleable(struct tcptw *tw)
1753 {
1754 	tcp_seq new_iss = tw->iss;
1755 	tcp_seq new_irs = tw->irs;
1756 
1757 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1758 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1759 
1760 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1761 		return (1);
1762 	else
1763 		return (0);
1764 }
1765 
1766 struct tcptw *
1767 tcp_twclose(struct tcptw *tw, int reuse)
1768 {
1769 	struct inpcb *inp;
1770 
1771 	inp = tw->tw_inpcb;
1772 	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1773 	INP_LOCK_ASSERT(inp);
1774 
1775 	tw->tw_inpcb = NULL;
1776 	tcp_timer_2msl_stop(tw);
1777 	inp->inp_ppcb = NULL;
1778 #ifdef INET6
1779 	if (inp->inp_vflag & INP_IPV6PROTO)
1780 		in6_pcbdetach(inp);
1781 	else
1782 #endif
1783 		in_pcbdetach(inp);
1784 	tcpstat.tcps_closed++;
1785 	crfree(tw->tw_cred);
1786 	tw->tw_cred = NULL;
1787 	if (reuse)
1788 		return (tw);
1789 	uma_zfree(tcptw_zone, tw);
1790 	return (NULL);
1791 }
1792 
1793 int
1794 tcp_twrespond(struct tcptw *tw, int flags)
1795 {
1796 	struct inpcb *inp = tw->tw_inpcb;
1797 	struct tcphdr *th;
1798 	struct mbuf *m;
1799 	struct ip *ip = NULL;
1800 	u_int8_t *optp;
1801 	u_int hdrlen, optlen;
1802 	int error;
1803 #ifdef INET6
1804 	struct ip6_hdr *ip6 = NULL;
1805 	int isipv6 = inp->inp_inc.inc_isipv6;
1806 #endif
1807 
1808 	INP_LOCK_ASSERT(inp);
1809 
1810 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1811 	if (m == NULL)
1812 		return (ENOBUFS);
1813 	m->m_data += max_linkhdr;
1814 
1815 #ifdef MAC
1816 	mac_create_mbuf_from_inpcb(inp, m);
1817 #endif
1818 
1819 #ifdef INET6
1820 	if (isipv6) {
1821 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1822 		ip6 = mtod(m, struct ip6_hdr *);
1823 		th = (struct tcphdr *)(ip6 + 1);
1824 		tcpip_fillheaders(inp, ip6, th);
1825 	} else
1826 #endif
1827 	{
1828 		hdrlen = sizeof(struct tcpiphdr);
1829 		ip = mtod(m, struct ip *);
1830 		th = (struct tcphdr *)(ip + 1);
1831 		tcpip_fillheaders(inp, ip, th);
1832 	}
1833 	optp = (u_int8_t *)(th + 1);
1834 
1835 	/*
1836 	 * Send a timestamp and echo-reply if both our side and our peer
1837 	 * have sent timestamps in our SYN's and this is not a RST.
1838 	 */
1839 	if (tw->t_recent && flags == TH_ACK) {
1840 		u_int32_t *lp = (u_int32_t *)optp;
1841 
1842 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1843 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1844 		*lp++ = htonl(ticks);
1845 		*lp   = htonl(tw->t_recent);
1846 		optp += TCPOLEN_TSTAMP_APPA;
1847 	}
1848 
1849 	optlen = optp - (u_int8_t *)(th + 1);
1850 
1851 	m->m_len = hdrlen + optlen;
1852 	m->m_pkthdr.len = m->m_len;
1853 
1854 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1855 
1856 	th->th_seq = htonl(tw->snd_nxt);
1857 	th->th_ack = htonl(tw->rcv_nxt);
1858 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1859 	th->th_flags = flags;
1860 	th->th_win = htons(tw->last_win);
1861 
1862 #ifdef INET6
1863 	if (isipv6) {
1864 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1865 		    sizeof(struct tcphdr) + optlen);
1866 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1867 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1868 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1869 	} else
1870 #endif
1871 	{
1872 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1873 		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1874 		m->m_pkthdr.csum_flags = CSUM_TCP;
1875 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1876 		ip->ip_len = m->m_pkthdr.len;
1877 		if (path_mtu_discovery)
1878 			ip->ip_off |= IP_DF;
1879 		error = ip_output(m, inp->inp_options, NULL,
1880 		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
1881 		    NULL, inp);
1882 	}
1883 	if (flags & TH_ACK)
1884 		tcpstat.tcps_sndacks++;
1885 	else
1886 		tcpstat.tcps_sndctrl++;
1887 	tcpstat.tcps_sndtotal++;
1888 	return (error);
1889 }
1890 
1891 /*
1892  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1893  *
1894  * This code attempts to calculate the bandwidth-delay product as a
1895  * means of determining the optimal window size to maximize bandwidth,
1896  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1897  * routers.  This code also does a fairly good job keeping RTTs in check
1898  * across slow links like modems.  We implement an algorithm which is very
1899  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1900  * transmitter side of a TCP connection and so only effects the transmit
1901  * side of the connection.
1902  *
1903  * BACKGROUND:  TCP makes no provision for the management of buffer space
1904  * at the end points or at the intermediate routers and switches.  A TCP
1905  * stream, whether using NewReno or not, will eventually buffer as
1906  * many packets as it is able and the only reason this typically works is
1907  * due to the fairly small default buffers made available for a connection
1908  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1909  * scaling it is now fairly easy for even a single TCP connection to blow-out
1910  * all available buffer space not only on the local interface, but on
1911  * intermediate routers and switches as well.  NewReno makes a misguided
1912  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1913  * then backing off, then steadily increasing the window again until another
1914  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1915  * is only made worse as network loads increase and the idea of intentionally
1916  * blowing out network buffers is, frankly, a terrible way to manage network
1917  * resources.
1918  *
1919  * It is far better to limit the transmit window prior to the failure
1920  * condition being achieved.  There are two general ways to do this:  First
1921  * you can 'scan' through different transmit window sizes and locate the
1922  * point where the RTT stops increasing, indicating that you have filled the
1923  * pipe, then scan backwards until you note that RTT stops decreasing, then
1924  * repeat ad-infinitum.  This method works in principle but has severe
1925  * implementation issues due to RTT variances, timer granularity, and
1926  * instability in the algorithm which can lead to many false positives and
1927  * create oscillations as well as interact badly with other TCP streams
1928  * implementing the same algorithm.
1929  *
1930  * The second method is to limit the window to the bandwidth delay product
1931  * of the link.  This is the method we implement.  RTT variances and our
1932  * own manipulation of the congestion window, bwnd, can potentially
1933  * destabilize the algorithm.  For this reason we have to stabilize the
1934  * elements used to calculate the window.  We do this by using the minimum
1935  * observed RTT, the long term average of the observed bandwidth, and
1936  * by adding two segments worth of slop.  It isn't perfect but it is able
1937  * to react to changing conditions and gives us a very stable basis on
1938  * which to extend the algorithm.
1939  */
1940 void
1941 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1942 {
1943 	u_long bw;
1944 	u_long bwnd;
1945 	int save_ticks;
1946 
1947 	INP_LOCK_ASSERT(tp->t_inpcb);
1948 
1949 	/*
1950 	 * If inflight_enable is disabled in the middle of a tcp connection,
1951 	 * make sure snd_bwnd is effectively disabled.
1952 	 */
1953 	if (tcp_inflight_enable == 0) {
1954 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1955 		tp->snd_bandwidth = 0;
1956 		return;
1957 	}
1958 
1959 	/*
1960 	 * Figure out the bandwidth.  Due to the tick granularity this
1961 	 * is a very rough number and it MUST be averaged over a fairly
1962 	 * long period of time.  XXX we need to take into account a link
1963 	 * that is not using all available bandwidth, but for now our
1964 	 * slop will ramp us up if this case occurs and the bandwidth later
1965 	 * increases.
1966 	 *
1967 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1968 	 * effectively reset t_bw_rtttime for this case.
1969 	 */
1970 	save_ticks = ticks;
1971 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1972 		return;
1973 
1974 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1975 	    (save_ticks - tp->t_bw_rtttime);
1976 	tp->t_bw_rtttime = save_ticks;
1977 	tp->t_bw_rtseq = ack_seq;
1978 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1979 		return;
1980 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1981 
1982 	tp->snd_bandwidth = bw;
1983 
1984 	/*
1985 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1986 	 * segments.  The additional slop puts us squarely in the sweet
1987 	 * spot and also handles the bandwidth run-up case and stabilization.
1988 	 * Without the slop we could be locking ourselves into a lower
1989 	 * bandwidth.
1990 	 *
1991 	 * Situations Handled:
1992 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1993 	 *	    high speed LANs, allowing larger TCP buffers to be
1994 	 *	    specified, and also does a good job preventing
1995 	 *	    over-queueing of packets over choke points like modems
1996 	 *	    (at least for the transmit side).
1997 	 *
1998 	 *	(2) Is able to handle changing network loads (bandwidth
1999 	 *	    drops so bwnd drops, bandwidth increases so bwnd
2000 	 *	    increases).
2001 	 *
2002 	 *	(3) Theoretically should stabilize in the face of multiple
2003 	 *	    connections implementing the same algorithm (this may need
2004 	 *	    a little work).
2005 	 *
2006 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2007 	 *	    be adjusted with a sysctl but typically only needs to be
2008 	 *	    on very slow connections.  A value no smaller then 5
2009 	 *	    should be used, but only reduce this default if you have
2010 	 *	    no other choice.
2011 	 */
2012 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2013 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2014 #undef USERTT
2015 
2016 	if (tcp_inflight_debug > 0) {
2017 		static int ltime;
2018 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2019 			ltime = ticks;
2020 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2021 			    tp,
2022 			    bw,
2023 			    tp->t_rttbest,
2024 			    tp->t_srtt,
2025 			    bwnd
2026 			);
2027 		}
2028 	}
2029 	if ((long)bwnd < tcp_inflight_min)
2030 		bwnd = tcp_inflight_min;
2031 	if (bwnd > tcp_inflight_max)
2032 		bwnd = tcp_inflight_max;
2033 	if ((long)bwnd < tp->t_maxseg * 2)
2034 		bwnd = tp->t_maxseg * 2;
2035 	tp->snd_bwnd = bwnd;
2036 }
2037 
2038 #ifdef TCP_SIGNATURE
2039 /*
2040  * Callback function invoked by m_apply() to digest TCP segment data
2041  * contained within an mbuf chain.
2042  */
2043 static int
2044 tcp_signature_apply(void *fstate, void *data, u_int len)
2045 {
2046 
2047 	MD5Update(fstate, (u_char *)data, len);
2048 	return (0);
2049 }
2050 
2051 /*
2052  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2053  *
2054  * Parameters:
2055  * m		pointer to head of mbuf chain
2056  * off0		offset to TCP header within the mbuf chain
2057  * len		length of TCP segment data, excluding options
2058  * optlen	length of TCP segment options
2059  * buf		pointer to storage for computed MD5 digest
2060  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2061  *
2062  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2063  * When called from tcp_input(), we can be sure that th_sum has been
2064  * zeroed out and verified already.
2065  *
2066  * This function is for IPv4 use only. Calling this function with an
2067  * IPv6 packet in the mbuf chain will yield undefined results.
2068  *
2069  * Return 0 if successful, otherwise return -1.
2070  *
2071  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2072  * search with the destination IP address, and a 'magic SPI' to be
2073  * determined by the application. This is hardcoded elsewhere to 1179
2074  * right now. Another branch of this code exists which uses the SPD to
2075  * specify per-application flows but it is unstable.
2076  */
2077 int
2078 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2079     u_char *buf, u_int direction)
2080 {
2081 	union sockaddr_union dst;
2082 	struct ippseudo ippseudo;
2083 	MD5_CTX ctx;
2084 	int doff;
2085 	struct ip *ip;
2086 	struct ipovly *ipovly;
2087 	struct secasvar *sav;
2088 	struct tcphdr *th;
2089 	u_short savecsum;
2090 
2091 	KASSERT(m != NULL, ("NULL mbuf chain"));
2092 	KASSERT(buf != NULL, ("NULL signature pointer"));
2093 
2094 	/* Extract the destination from the IP header in the mbuf. */
2095 	ip = mtod(m, struct ip *);
2096 	bzero(&dst, sizeof(union sockaddr_union));
2097 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2098 	dst.sa.sa_family = AF_INET;
2099 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2100 	    ip->ip_src : ip->ip_dst;
2101 
2102 	/* Look up an SADB entry which matches the address of the peer. */
2103 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2104 	if (sav == NULL) {
2105 		printf("%s: SADB lookup failed for %s\n", __func__,
2106 		    inet_ntoa(dst.sin.sin_addr));
2107 		return (EINVAL);
2108 	}
2109 
2110 	MD5Init(&ctx);
2111 	ipovly = (struct ipovly *)ip;
2112 	th = (struct tcphdr *)((u_char *)ip + off0);
2113 	doff = off0 + sizeof(struct tcphdr) + optlen;
2114 
2115 	/*
2116 	 * Step 1: Update MD5 hash with IP pseudo-header.
2117 	 *
2118 	 * XXX The ippseudo header MUST be digested in network byte order,
2119 	 * or else we'll fail the regression test. Assume all fields we've
2120 	 * been doing arithmetic on have been in host byte order.
2121 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2122 	 * tcp_output(), the underlying ip_len member has not yet been set.
2123 	 */
2124 	ippseudo.ippseudo_src = ipovly->ih_src;
2125 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2126 	ippseudo.ippseudo_pad = 0;
2127 	ippseudo.ippseudo_p = IPPROTO_TCP;
2128 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2129 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2130 
2131 	/*
2132 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2133 	 * The TCP checksum must be set to zero.
2134 	 */
2135 	savecsum = th->th_sum;
2136 	th->th_sum = 0;
2137 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2138 	th->th_sum = savecsum;
2139 
2140 	/*
2141 	 * Step 3: Update MD5 hash with TCP segment data.
2142 	 *         Use m_apply() to avoid an early m_pullup().
2143 	 */
2144 	if (len > 0)
2145 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2146 
2147 	/*
2148 	 * Step 4: Update MD5 hash with shared secret.
2149 	 */
2150 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2151 	MD5Final(buf, &ctx);
2152 
2153 	key_sa_recordxfer(sav, m);
2154 	KEY_FREESAV(&sav);
2155 	return (0);
2156 }
2157 #endif /* TCP_SIGNATURE */
2158 
2159 static int
2160 sysctl_drop(SYSCTL_HANDLER_ARGS)
2161 {
2162 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2163 	struct sockaddr_storage addrs[2];
2164 	struct inpcb *inp;
2165 	struct tcpcb *tp;
2166 	struct sockaddr_in *fin, *lin;
2167 #ifdef INET6
2168 	struct sockaddr_in6 *fin6, *lin6;
2169 	struct in6_addr f6, l6;
2170 #endif
2171 	int error;
2172 
2173 	inp = NULL;
2174 	fin = lin = NULL;
2175 #ifdef INET6
2176 	fin6 = lin6 = NULL;
2177 #endif
2178 	error = 0;
2179 
2180 	if (req->oldptr != NULL || req->oldlen != 0)
2181 		return (EINVAL);
2182 	if (req->newptr == NULL)
2183 		return (EPERM);
2184 	if (req->newlen < sizeof(addrs))
2185 		return (ENOMEM);
2186 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2187 	if (error)
2188 		return (error);
2189 
2190 	switch (addrs[0].ss_family) {
2191 #ifdef INET6
2192 	case AF_INET6:
2193 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2194 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2195 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2196 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2197 			return (EINVAL);
2198 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2199 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2200 				return (EINVAL);
2201 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2202 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2203 			fin = (struct sockaddr_in *)&addrs[0];
2204 			lin = (struct sockaddr_in *)&addrs[1];
2205 			break;
2206 		}
2207 		error = in6_embedscope(&f6, fin6, NULL, NULL);
2208 		if (error)
2209 			return (EINVAL);
2210 		error = in6_embedscope(&l6, lin6, NULL, NULL);
2211 		if (error)
2212 			return (EINVAL);
2213 		break;
2214 #endif
2215 	case AF_INET:
2216 		fin = (struct sockaddr_in *)&addrs[0];
2217 		lin = (struct sockaddr_in *)&addrs[1];
2218 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2219 		    lin->sin_len != sizeof(struct sockaddr_in))
2220 			return (EINVAL);
2221 		break;
2222 	default:
2223 		return (EINVAL);
2224 	}
2225 	INP_INFO_WLOCK(&tcbinfo);
2226 	switch (addrs[0].ss_family) {
2227 #ifdef INET6
2228 	case AF_INET6:
2229 		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2230 		    &l6, lin6->sin6_port, 0, NULL);
2231 		break;
2232 #endif
2233 	case AF_INET:
2234 		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2235 		    lin->sin_addr, lin->sin_port, 0, NULL);
2236 		break;
2237 	}
2238 	if (inp != NULL) {
2239 		INP_LOCK(inp);
2240 		if ((tp = intotcpcb(inp)) &&
2241 		    ((inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
2242 			tp = tcp_drop(tp, ECONNABORTED);
2243 			if (tp != NULL)
2244 				INP_UNLOCK(inp);
2245 		} else
2246 			INP_UNLOCK(inp);
2247 	} else
2248 		error = ESRCH;
2249 	INP_INFO_WUNLOCK(&tcbinfo);
2250 	return (error);
2251 }
2252 
2253 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2254     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2255     0, sysctl_drop, "", "Drop TCP connection");
2256