xref: /freebsd/sys/netinet/tcp_subr.c (revision d37ea99837e6ad50837fd9fe1771ddf1c3ba6002)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_compat.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ipsec.h"
37 #include "opt_mac.h"
38 #include "opt_tcpdebug.h"
39 #include "opt_tcp_sack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/uma.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 #include <netinet/in_pcb.h>
70 #ifdef INET6
71 #include <netinet6/in6_pcb.h>
72 #endif
73 #include <netinet/in_var.h>
74 #include <netinet/ip_var.h>
75 #ifdef INET6
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #ifdef FAST_IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/xform.h>
103 #ifdef INET6
104 #include <netipsec/ipsec6.h>
105 #endif
106 #include <netipsec/key.h>
107 #define	IPSEC
108 #endif /*FAST_IPSEC*/
109 
110 #include <machine/in_cksum.h>
111 #include <sys/md5.h>
112 
113 int 	tcp_mssdflt = TCP_MSS;
114 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
115     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
116 
117 #ifdef INET6
118 int	tcp_v6mssdflt = TCP6_MSS;
119 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
120 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
121 	"Default TCP Maximum Segment Size for IPv6");
122 #endif
123 
124 /*
125  * Minimum MSS we accept and use. This prevents DoS attacks where
126  * we are forced to a ridiculous low MSS like 20 and send hundreds
127  * of packets instead of one. The effect scales with the available
128  * bandwidth and quickly saturates the CPU and network interface
129  * with packet generation and sending. Set to zero to disable MINMSS
130  * checking. This setting prevents us from sending too small packets.
131  */
132 int	tcp_minmss = TCP_MINMSS;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
134     &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
135 /*
136  * Number of TCP segments per second we accept from remote host
137  * before we start to calculate average segment size. If average
138  * segment size drops below the minimum TCP MSS we assume a DoS
139  * attack and reset+drop the connection. Care has to be taken not to
140  * set this value too small to not kill interactive type connections
141  * (telnet, SSH) which send many small packets.
142  */
143 int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
145     &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
146     "be under the MINMSS Size");
147 
148 #if 0
149 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
150 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
151     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
152 #endif
153 
154 int	tcp_do_rfc1323 = 1;
155 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
156     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
157 
158 int	tcp_do_rfc1644 = 0;
159 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
160     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
161 
162 static int	tcp_tcbhashsize = 0;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
164      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
165 
166 static int	do_tcpdrain = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
168      "Enable tcp_drain routine for extra help when low on mbufs");
169 
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
171     &tcbinfo.ipi_count, 0, "Number of active PCBs");
172 
173 static int	icmp_may_rst = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
175     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
176 
177 static int	tcp_isn_reseed_interval = 0;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
179     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
180 
181 /*
182  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
183  * 1024 exists only for debugging.  A good production default would be
184  * something like 6100.
185  */
186 static int	tcp_inflight_enable = 1;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
188     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
189 
190 static int	tcp_inflight_debug = 0;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
192     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
193 
194 static int	tcp_inflight_min = 6144;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
196     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
197 
198 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
200     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
201 static int	tcp_inflight_stab = 20;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
203     &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
204 
205 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
206 int tcp_do_sack = 1;
207 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
208     &tcp_do_sack, 0, "Enable/Disable TCP SACK support");
209 
210 int tcp_sackhole_limit = 10 * 1024; /* Arbitrarily set */
211 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, sackhole_limit, CTLFLAG_RW,
212     &tcp_sackhole_limit, 0, "Limit on the total SACK scoreboard elements");
213 
214 uma_zone_t sack_hole_zone;
215 
216 static struct inpcb *tcp_notify(struct inpcb *, int);
217 static void	tcp_discardcb(struct tcpcb *);
218 static void	tcp_isn_tick(void *);
219 
220 /*
221  * Target size of TCP PCB hash tables. Must be a power of two.
222  *
223  * Note that this can be overridden by the kernel environment
224  * variable net.inet.tcp.tcbhashsize
225  */
226 #ifndef TCBHASHSIZE
227 #define TCBHASHSIZE	512
228 #endif
229 
230 /*
231  * XXX
232  * Callouts should be moved into struct tcp directly.  They are currently
233  * separate because the tcpcb structure is exported to userland for sysctl
234  * parsing purposes, which do not know about callouts.
235  */
236 struct	tcpcb_mem {
237 	struct	tcpcb tcb;
238 	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
239 	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
240 };
241 
242 static uma_zone_t tcpcb_zone;
243 static uma_zone_t tcptw_zone;
244 struct callout isn_callout;
245 
246 /*
247  * Tcp initialization
248  */
249 void
250 tcp_init()
251 {
252 	int hashsize = TCBHASHSIZE;
253 
254 	tcp_ccgen = 1;
255 
256 	tcp_delacktime = TCPTV_DELACK;
257 	tcp_keepinit = TCPTV_KEEP_INIT;
258 	tcp_keepidle = TCPTV_KEEP_IDLE;
259 	tcp_keepintvl = TCPTV_KEEPINTVL;
260 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
261 	tcp_msl = TCPTV_MSL;
262 	tcp_rexmit_min = TCPTV_MIN;
263 	tcp_rexmit_slop = TCPTV_CPU_VAR;
264 
265 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
266 	LIST_INIT(&tcb);
267 	tcbinfo.listhead = &tcb;
268 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
269 	if (!powerof2(hashsize)) {
270 		printf("WARNING: TCB hash size not a power of 2\n");
271 		hashsize = 512; /* safe default */
272 	}
273 	tcp_tcbhashsize = hashsize;
274 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
275 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
276 					&tcbinfo.porthashmask);
277 	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
278 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
279 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
280 #ifdef INET6
281 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
282 #else /* INET6 */
283 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
284 #endif /* INET6 */
285 	if (max_protohdr < TCP_MINPROTOHDR)
286 		max_protohdr = TCP_MINPROTOHDR;
287 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
288 		panic("tcp_init");
289 #undef TCP_MINPROTOHDR
290 	/*
291 	 * These have to be type stable for the benefit of the timers.
292 	 */
293 	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
294 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
295 	uma_zone_set_max(tcpcb_zone, maxsockets);
296 	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
297 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
298 	uma_zone_set_max(tcptw_zone, maxsockets / 5);
299 	tcp_timer_init();
300 	syncache_init();
301 	tcp_hc_init();
302 	tcp_reass_init();
303 	callout_init(&isn_callout, CALLOUT_MPSAFE);
304 	tcp_isn_tick(NULL);
305 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
306 		SHUTDOWN_PRI_DEFAULT);
307 	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
308 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309 }
310 
311 void
312 tcp_fini(xtp)
313 	void *xtp;
314 {
315 	callout_stop(&isn_callout);
316 
317 }
318 
319 /*
320  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
321  * tcp_template used to store this data in mbufs, but we now recopy it out
322  * of the tcpcb each time to conserve mbufs.
323  */
324 void
325 tcpip_fillheaders(inp, ip_ptr, tcp_ptr)
326 	struct inpcb *inp;
327 	void *ip_ptr;
328 	void *tcp_ptr;
329 {
330 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
331 
332 #ifdef INET6
333 	if ((inp->inp_vflag & INP_IPV6) != 0) {
334 		struct ip6_hdr *ip6;
335 
336 		ip6 = (struct ip6_hdr *)ip_ptr;
337 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
338 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
339 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
340 			(IPV6_VERSION & IPV6_VERSION_MASK);
341 		ip6->ip6_nxt = IPPROTO_TCP;
342 		ip6->ip6_plen = sizeof(struct tcphdr);
343 		ip6->ip6_src = inp->in6p_laddr;
344 		ip6->ip6_dst = inp->in6p_faddr;
345 	} else
346 #endif
347 	{
348 		struct ip *ip;
349 
350 		ip = (struct ip *)ip_ptr;
351 		ip->ip_v = IPVERSION;
352 		ip->ip_hl = 5;
353 		ip->ip_tos = inp->inp_ip_tos;
354 		ip->ip_len = 0;
355 		ip->ip_id = 0;
356 		ip->ip_off = 0;
357 		ip->ip_ttl = inp->inp_ip_ttl;
358 		ip->ip_sum = 0;
359 		ip->ip_p = IPPROTO_TCP;
360 		ip->ip_src = inp->inp_laddr;
361 		ip->ip_dst = inp->inp_faddr;
362 	}
363 	th->th_sport = inp->inp_lport;
364 	th->th_dport = inp->inp_fport;
365 	th->th_seq = 0;
366 	th->th_ack = 0;
367 	th->th_x2 = 0;
368 	th->th_off = 5;
369 	th->th_flags = 0;
370 	th->th_win = 0;
371 	th->th_urp = 0;
372 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
373 }
374 
375 /*
376  * Create template to be used to send tcp packets on a connection.
377  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
378  * use for this function is in keepalives, which use tcp_respond.
379  */
380 struct tcptemp *
381 tcpip_maketemplate(inp)
382 	struct inpcb *inp;
383 {
384 	struct mbuf *m;
385 	struct tcptemp *n;
386 
387 	m = m_get(M_DONTWAIT, MT_HEADER);
388 	if (m == NULL)
389 		return (0);
390 	m->m_len = sizeof(struct tcptemp);
391 	n = mtod(m, struct tcptemp *);
392 
393 	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
394 	return (n);
395 }
396 
397 /*
398  * Send a single message to the TCP at address specified by
399  * the given TCP/IP header.  If m == NULL, then we make a copy
400  * of the tcpiphdr at ti and send directly to the addressed host.
401  * This is used to force keep alive messages out using the TCP
402  * template for a connection.  If flags are given then we send
403  * a message back to the TCP which originated the * segment ti,
404  * and discard the mbuf containing it and any other attached mbufs.
405  *
406  * In any case the ack and sequence number of the transmitted
407  * segment are as specified by the parameters.
408  *
409  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
410  */
411 void
412 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
413 	struct tcpcb *tp;
414 	void *ipgen;
415 	register struct tcphdr *th;
416 	register struct mbuf *m;
417 	tcp_seq ack, seq;
418 	int flags;
419 {
420 	register int tlen;
421 	int win = 0;
422 	struct ip *ip;
423 	struct tcphdr *nth;
424 #ifdef INET6
425 	struct ip6_hdr *ip6;
426 	int isipv6;
427 #endif /* INET6 */
428 	int ipflags = 0;
429 	struct inpcb *inp;
430 
431 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
432 
433 #ifdef INET6
434 	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
435 	ip6 = ipgen;
436 #endif /* INET6 */
437 	ip = ipgen;
438 
439 	if (tp != NULL) {
440 		inp = tp->t_inpcb;
441 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
442 		INP_INFO_WLOCK_ASSERT(&tcbinfo);
443 		INP_LOCK_ASSERT(inp);
444 	} else
445 		inp = NULL;
446 
447 	if (tp != NULL) {
448 		if (!(flags & TH_RST)) {
449 			win = sbspace(&inp->inp_socket->so_rcv);
450 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
451 				win = (long)TCP_MAXWIN << tp->rcv_scale;
452 		}
453 	}
454 	if (m == NULL) {
455 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
456 		if (m == NULL)
457 			return;
458 		tlen = 0;
459 		m->m_data += max_linkhdr;
460 #ifdef INET6
461 		if (isipv6) {
462 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
463 			      sizeof(struct ip6_hdr));
464 			ip6 = mtod(m, struct ip6_hdr *);
465 			nth = (struct tcphdr *)(ip6 + 1);
466 		} else
467 #endif /* INET6 */
468 	      {
469 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
470 		ip = mtod(m, struct ip *);
471 		nth = (struct tcphdr *)(ip + 1);
472 	      }
473 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
474 		flags = TH_ACK;
475 	} else {
476 		m_freem(m->m_next);
477 		m->m_next = NULL;
478 		m->m_data = (caddr_t)ipgen;
479 		/* m_len is set later */
480 		tlen = 0;
481 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
482 #ifdef INET6
483 		if (isipv6) {
484 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
485 			nth = (struct tcphdr *)(ip6 + 1);
486 		} else
487 #endif /* INET6 */
488 	      {
489 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
490 		nth = (struct tcphdr *)(ip + 1);
491 	      }
492 		if (th != nth) {
493 			/*
494 			 * this is usually a case when an extension header
495 			 * exists between the IPv6 header and the
496 			 * TCP header.
497 			 */
498 			nth->th_sport = th->th_sport;
499 			nth->th_dport = th->th_dport;
500 		}
501 		xchg(nth->th_dport, nth->th_sport, n_short);
502 #undef xchg
503 	}
504 #ifdef INET6
505 	if (isipv6) {
506 		ip6->ip6_flow = 0;
507 		ip6->ip6_vfc = IPV6_VERSION;
508 		ip6->ip6_nxt = IPPROTO_TCP;
509 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
510 						tlen));
511 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
512 	} else
513 #endif
514       {
515 	tlen += sizeof (struct tcpiphdr);
516 	ip->ip_len = tlen;
517 	ip->ip_ttl = ip_defttl;
518 	if (path_mtu_discovery)
519 		ip->ip_off |= IP_DF;
520       }
521 	m->m_len = tlen;
522 	m->m_pkthdr.len = tlen;
523 	m->m_pkthdr.rcvif = NULL;
524 #ifdef MAC
525 	if (inp != NULL) {
526 		/*
527 		 * Packet is associated with a socket, so allow the
528 		 * label of the response to reflect the socket label.
529 		 */
530 		INP_LOCK_ASSERT(inp);
531 		mac_create_mbuf_from_inpcb(inp, m);
532 	} else {
533 		/*
534 		 * Packet is not associated with a socket, so possibly
535 		 * update the label in place.
536 		 */
537 		mac_reflect_mbuf_tcp(m);
538 	}
539 #endif
540 	nth->th_seq = htonl(seq);
541 	nth->th_ack = htonl(ack);
542 	nth->th_x2 = 0;
543 	nth->th_off = sizeof (struct tcphdr) >> 2;
544 	nth->th_flags = flags;
545 	if (tp != NULL)
546 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
547 	else
548 		nth->th_win = htons((u_short)win);
549 	nth->th_urp = 0;
550 #ifdef INET6
551 	if (isipv6) {
552 		nth->th_sum = 0;
553 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
554 					sizeof(struct ip6_hdr),
555 					tlen - sizeof(struct ip6_hdr));
556 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
557 		    NULL, NULL);
558 	} else
559 #endif /* INET6 */
560       {
561         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
562 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
563         m->m_pkthdr.csum_flags = CSUM_TCP;
564         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
565       }
566 #ifdef TCPDEBUG
567 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
568 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
569 #endif
570 #ifdef INET6
571 	if (isipv6)
572 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
573 	else
574 #endif /* INET6 */
575 	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
576 }
577 
578 /*
579  * Create a new TCP control block, making an
580  * empty reassembly queue and hooking it to the argument
581  * protocol control block.  The `inp' parameter must have
582  * come from the zone allocator set up in tcp_init().
583  */
584 struct tcpcb *
585 tcp_newtcpcb(inp)
586 	struct inpcb *inp;
587 {
588 	struct tcpcb_mem *tm;
589 	struct tcpcb *tp;
590 #ifdef INET6
591 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
592 #endif /* INET6 */
593 	int callout_flag;
594 
595 	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
596 	if (tm == NULL)
597 		return (NULL);
598 	tp = &tm->tcb;
599 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
600 	tp->t_maxseg = tp->t_maxopd =
601 #ifdef INET6
602 		isipv6 ? tcp_v6mssdflt :
603 #endif /* INET6 */
604 		tcp_mssdflt;
605 
606 	/* Set up our timeouts. */
607 	/*
608 	 * XXXRW: Are these actually MPSAFE?  I think so, but need to
609 	 * review the timed wait code, as it has some list variables,
610 	 * etc, that are global.
611 	 */
612 	callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
613 	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, callout_flag);
614 	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, callout_flag);
615 	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, callout_flag);
616 	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, callout_flag);
617 	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, callout_flag);
618 
619 	if (tcp_do_rfc1323)
620 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
621 	if (tcp_do_rfc1644)
622 		tp->t_flags |= TF_REQ_CC;
623 	tp->sack_enable = tcp_do_sack;
624 	tp->t_inpcb = inp;	/* XXX */
625 	/*
626 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
627 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
628 	 * reasonable initial retransmit time.
629 	 */
630 	tp->t_srtt = TCPTV_SRTTBASE;
631 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
632 	tp->t_rttmin = tcp_rexmit_min;
633 	tp->t_rxtcur = TCPTV_RTOBASE;
634 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
635 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
636 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
637 	tp->t_rcvtime = ticks;
638 	tp->t_bw_rtttime = ticks;
639         /*
640 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
641 	 * because the socket may be bound to an IPv6 wildcard address,
642 	 * which may match an IPv4-mapped IPv6 address.
643 	 */
644 	inp->inp_ip_ttl = ip_defttl;
645 	inp->inp_ppcb = (caddr_t)tp;
646 	return (tp);		/* XXX */
647 }
648 
649 /*
650  * Drop a TCP connection, reporting
651  * the specified error.  If connection is synchronized,
652  * then send a RST to peer.
653  */
654 struct tcpcb *
655 tcp_drop(tp, errno)
656 	register struct tcpcb *tp;
657 	int errno;
658 {
659 	struct socket *so = tp->t_inpcb->inp_socket;
660 
661 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
662 		tp->t_state = TCPS_CLOSED;
663 		(void) tcp_output(tp);
664 		tcpstat.tcps_drops++;
665 	} else
666 		tcpstat.tcps_conndrops++;
667 	if (errno == ETIMEDOUT && tp->t_softerror)
668 		errno = tp->t_softerror;
669 	so->so_error = errno;
670 	return (tcp_close(tp));
671 }
672 
673 static void
674 tcp_discardcb(tp)
675 	struct tcpcb *tp;
676 {
677 	struct tseg_qent *q;
678 	struct inpcb *inp = tp->t_inpcb;
679 	struct socket *so = inp->inp_socket;
680 #ifdef INET6
681 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
682 #endif /* INET6 */
683 
684 	/*
685 	 * Make sure that all of our timers are stopped before we
686 	 * delete the PCB.
687 	 */
688 	callout_stop(tp->tt_rexmt);
689 	callout_stop(tp->tt_persist);
690 	callout_stop(tp->tt_keep);
691 	callout_stop(tp->tt_2msl);
692 	callout_stop(tp->tt_delack);
693 
694 	/*
695 	 * If we got enough samples through the srtt filter,
696 	 * save the rtt and rttvar in the routing entry.
697 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
698 	 * 4 samples is enough for the srtt filter to converge
699 	 * to within enough % of the correct value; fewer samples
700 	 * and we could save a bogus rtt. The danger is not high
701 	 * as tcp quickly recovers from everything.
702 	 * XXX: Works very well but needs some more statistics!
703 	 */
704 	if (tp->t_rttupdated >= 4) {
705 		struct hc_metrics_lite metrics;
706 		u_long ssthresh;
707 
708 		bzero(&metrics, sizeof(metrics));
709 		/*
710 		 * Update the ssthresh always when the conditions below
711 		 * are satisfied. This gives us better new start value
712 		 * for the congestion avoidance for new connections.
713 		 * ssthresh is only set if packet loss occured on a session.
714 		 */
715 		ssthresh = tp->snd_ssthresh;
716 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
717 			/*
718 			 * convert the limit from user data bytes to
719 			 * packets then to packet data bytes.
720 			 */
721 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
722 			if (ssthresh < 2)
723 				ssthresh = 2;
724 			ssthresh *= (u_long)(tp->t_maxseg +
725 #ifdef INET6
726 				      (isipv6 ? sizeof (struct ip6_hdr) +
727 					       sizeof (struct tcphdr) :
728 #endif
729 				       sizeof (struct tcpiphdr)
730 #ifdef INET6
731 				       )
732 #endif
733 				      );
734 		} else
735 			ssthresh = 0;
736 		metrics.rmx_ssthresh = ssthresh;
737 
738 		metrics.rmx_rtt = tp->t_srtt;
739 		metrics.rmx_rttvar = tp->t_rttvar;
740 		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
741 		metrics.rmx_bandwidth = tp->snd_bandwidth;
742 		metrics.rmx_cwnd = tp->snd_cwnd;
743 		metrics.rmx_sendpipe = 0;
744 		metrics.rmx_recvpipe = 0;
745 
746 		tcp_hc_update(&inp->inp_inc, &metrics);
747 	}
748 
749 	/* free the reassembly queue, if any */
750 	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
751 		LIST_REMOVE(q, tqe_q);
752 		m_freem(q->tqe_m);
753 		uma_zfree(tcp_reass_zone, q);
754 		tp->t_segqlen--;
755 		tcp_reass_qsize--;
756 	}
757 	tcp_free_sackholes(tp);
758 	inp->inp_ppcb = NULL;
759 	tp->t_inpcb = NULL;
760 	uma_zfree(tcpcb_zone, tp);
761 	soisdisconnected(so);
762 }
763 
764 /*
765  * Close a TCP control block:
766  *    discard all space held by the tcp
767  *    discard internet protocol block
768  *    wake up any sleepers
769  */
770 struct tcpcb *
771 tcp_close(tp)
772 	struct tcpcb *tp;
773 {
774 	struct inpcb *inp = tp->t_inpcb;
775 #ifdef INET6
776 	struct socket *so = inp->inp_socket;
777 #endif
778 
779 	tcp_discardcb(tp);
780 #ifdef INET6
781 	if (INP_CHECK_SOCKAF(so, AF_INET6))
782 		in6_pcbdetach(inp);
783 	else
784 #endif
785 		in_pcbdetach(inp);
786 	tcpstat.tcps_closed++;
787 	return (NULL);
788 }
789 
790 void
791 tcp_drain()
792 {
793 	if (do_tcpdrain)
794 	{
795 		struct inpcb *inpb;
796 		struct tcpcb *tcpb;
797 		struct tseg_qent *te;
798 
799 	/*
800 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
801 	 * if there is one...
802 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
803 	 *      reassembly queue should be flushed, but in a situation
804 	 * 	where we're really low on mbufs, this is potentially
805 	 *  	usefull.
806 	 */
807 		INP_INFO_RLOCK(&tcbinfo);
808 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
809 			if (inpb->inp_vflag & INP_TIMEWAIT)
810 				continue;
811 			INP_LOCK(inpb);
812 			if ((tcpb = intotcpcb(inpb)) != NULL) {
813 				while ((te = LIST_FIRST(&tcpb->t_segq))
814 			            != NULL) {
815 					LIST_REMOVE(te, tqe_q);
816 					m_freem(te->tqe_m);
817 					uma_zfree(tcp_reass_zone, te);
818 					tcpb->t_segqlen--;
819 					tcp_reass_qsize--;
820 				}
821 			}
822 			INP_UNLOCK(inpb);
823 		}
824 		INP_INFO_RUNLOCK(&tcbinfo);
825 	}
826 }
827 
828 /*
829  * Notify a tcp user of an asynchronous error;
830  * store error as soft error, but wake up user
831  * (for now, won't do anything until can select for soft error).
832  *
833  * Do not wake up user since there currently is no mechanism for
834  * reporting soft errors (yet - a kqueue filter may be added).
835  */
836 static struct inpcb *
837 tcp_notify(inp, error)
838 	struct inpcb *inp;
839 	int error;
840 {
841 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
842 
843 	/*
844 	 * Ignore some errors if we are hooked up.
845 	 * If connection hasn't completed, has retransmitted several times,
846 	 * and receives a second error, give up now.  This is better
847 	 * than waiting a long time to establish a connection that
848 	 * can never complete.
849 	 */
850 	if (tp->t_state == TCPS_ESTABLISHED &&
851 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
852 	     error == EHOSTDOWN)) {
853 		return inp;
854 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
855 	    tp->t_softerror) {
856 		tcp_drop(tp, error);
857 		return (struct inpcb *)0;
858 	} else {
859 		tp->t_softerror = error;
860 		return inp;
861 	}
862 #if 0
863 	wakeup( &so->so_timeo);
864 	sorwakeup(so);
865 	sowwakeup(so);
866 #endif
867 }
868 
869 static int
870 tcp_pcblist(SYSCTL_HANDLER_ARGS)
871 {
872 	int error, i, n, s;
873 	struct inpcb *inp, **inp_list;
874 	inp_gen_t gencnt;
875 	struct xinpgen xig;
876 
877 	/*
878 	 * The process of preparing the TCB list is too time-consuming and
879 	 * resource-intensive to repeat twice on every request.
880 	 */
881 	if (req->oldptr == NULL) {
882 		n = tcbinfo.ipi_count;
883 		req->oldidx = 2 * (sizeof xig)
884 			+ (n + n/8) * sizeof(struct xtcpcb);
885 		return 0;
886 	}
887 
888 	if (req->newptr != NULL)
889 		return EPERM;
890 
891 	/*
892 	 * OK, now we're committed to doing something.
893 	 */
894 	s = splnet();
895 	INP_INFO_RLOCK(&tcbinfo);
896 	gencnt = tcbinfo.ipi_gencnt;
897 	n = tcbinfo.ipi_count;
898 	INP_INFO_RUNLOCK(&tcbinfo);
899 	splx(s);
900 
901 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
902 		+ n * sizeof(struct xtcpcb));
903 	if (error != 0)
904 		return (error);
905 
906 	xig.xig_len = sizeof xig;
907 	xig.xig_count = n;
908 	xig.xig_gen = gencnt;
909 	xig.xig_sogen = so_gencnt;
910 	error = SYSCTL_OUT(req, &xig, sizeof xig);
911 	if (error)
912 		return error;
913 
914 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
915 	if (inp_list == NULL)
916 		return ENOMEM;
917 
918 	s = splnet();
919 	INP_INFO_RLOCK(&tcbinfo);
920 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
921 	     inp = LIST_NEXT(inp, inp_list)) {
922 		INP_LOCK(inp);
923 		if (inp->inp_gencnt <= gencnt) {
924 			/*
925 			 * XXX: This use of cr_cansee(), introduced with
926 			 * TCP state changes, is not quite right, but for
927 			 * now, better than nothing.
928 			 */
929 			if (inp->inp_vflag & INP_TIMEWAIT)
930 				error = cr_cansee(req->td->td_ucred,
931 				    intotw(inp)->tw_cred);
932 			else
933 				error = cr_canseesocket(req->td->td_ucred,
934 				    inp->inp_socket);
935 			if (error == 0)
936 				inp_list[i++] = inp;
937 		}
938 		INP_UNLOCK(inp);
939 	}
940 	INP_INFO_RUNLOCK(&tcbinfo);
941 	splx(s);
942 	n = i;
943 
944 	error = 0;
945 	for (i = 0; i < n; i++) {
946 		inp = inp_list[i];
947 		if (inp->inp_gencnt <= gencnt) {
948 			struct xtcpcb xt;
949 			caddr_t inp_ppcb;
950 			xt.xt_len = sizeof xt;
951 			/* XXX should avoid extra copy */
952 			bcopy(inp, &xt.xt_inp, sizeof *inp);
953 			inp_ppcb = inp->inp_ppcb;
954 			if (inp_ppcb == NULL)
955 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
956 			else if (inp->inp_vflag & INP_TIMEWAIT) {
957 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
958 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
959 			} else
960 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
961 			if (inp->inp_socket != NULL)
962 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
963 			else {
964 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
965 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
966 			}
967 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
968 			error = SYSCTL_OUT(req, &xt, sizeof xt);
969 		}
970 	}
971 	if (!error) {
972 		/*
973 		 * Give the user an updated idea of our state.
974 		 * If the generation differs from what we told
975 		 * her before, she knows that something happened
976 		 * while we were processing this request, and it
977 		 * might be necessary to retry.
978 		 */
979 		s = splnet();
980 		INP_INFO_RLOCK(&tcbinfo);
981 		xig.xig_gen = tcbinfo.ipi_gencnt;
982 		xig.xig_sogen = so_gencnt;
983 		xig.xig_count = tcbinfo.ipi_count;
984 		INP_INFO_RUNLOCK(&tcbinfo);
985 		splx(s);
986 		error = SYSCTL_OUT(req, &xig, sizeof xig);
987 	}
988 	free(inp_list, M_TEMP);
989 	return error;
990 }
991 
992 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
993 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
994 
995 static int
996 tcp_getcred(SYSCTL_HANDLER_ARGS)
997 {
998 	struct xucred xuc;
999 	struct sockaddr_in addrs[2];
1000 	struct inpcb *inp;
1001 	int error, s;
1002 
1003 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1004 	if (error)
1005 		return (error);
1006 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1007 	if (error)
1008 		return (error);
1009 	s = splnet();
1010 	INP_INFO_RLOCK(&tcbinfo);
1011 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1012 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1013 	if (inp == NULL) {
1014 		error = ENOENT;
1015 		goto outunlocked;
1016 	}
1017 	INP_LOCK(inp);
1018 	if (inp->inp_socket == NULL) {
1019 		error = ENOENT;
1020 		goto out;
1021 	}
1022 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1023 	if (error)
1024 		goto out;
1025 	cru2x(inp->inp_socket->so_cred, &xuc);
1026 out:
1027 	INP_UNLOCK(inp);
1028 outunlocked:
1029 	INP_INFO_RUNLOCK(&tcbinfo);
1030 	splx(s);
1031 	if (error == 0)
1032 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1033 	return (error);
1034 }
1035 
1036 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1037     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1038     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1039 
1040 #ifdef INET6
1041 static int
1042 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1043 {
1044 	struct xucred xuc;
1045 	struct sockaddr_in6 addrs[2];
1046 	struct inpcb *inp;
1047 	int error, s, mapped = 0;
1048 
1049 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1050 	if (error)
1051 		return (error);
1052 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1053 	if (error)
1054 		return (error);
1055 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1056 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1057 			mapped = 1;
1058 		else
1059 			return (EINVAL);
1060 	}
1061 	s = splnet();
1062 	INP_INFO_RLOCK(&tcbinfo);
1063 	if (mapped == 1)
1064 		inp = in_pcblookup_hash(&tcbinfo,
1065 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1066 			addrs[1].sin6_port,
1067 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1068 			addrs[0].sin6_port,
1069 			0, NULL);
1070 	else
1071 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1072 				 addrs[1].sin6_port,
1073 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1074 				 0, NULL);
1075 	if (inp == NULL) {
1076 		error = ENOENT;
1077 		goto outunlocked;
1078 	}
1079 	INP_LOCK(inp);
1080 	if (inp->inp_socket == NULL) {
1081 		error = ENOENT;
1082 		goto out;
1083 	}
1084 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1085 	if (error)
1086 		goto out;
1087 	cru2x(inp->inp_socket->so_cred, &xuc);
1088 out:
1089 	INP_UNLOCK(inp);
1090 outunlocked:
1091 	INP_INFO_RUNLOCK(&tcbinfo);
1092 	splx(s);
1093 	if (error == 0)
1094 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095 	return (error);
1096 }
1097 
1098 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1099     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1101 #endif
1102 
1103 
1104 void
1105 tcp_ctlinput(cmd, sa, vip)
1106 	int cmd;
1107 	struct sockaddr *sa;
1108 	void *vip;
1109 {
1110 	struct ip *ip = vip;
1111 	struct tcphdr *th;
1112 	struct in_addr faddr;
1113 	struct inpcb *inp;
1114 	struct tcpcb *tp;
1115 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1116 	tcp_seq icmp_seq;
1117 	int s;
1118 
1119 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1120 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1121 		return;
1122 
1123 	if (cmd == PRC_QUENCH)
1124 		notify = tcp_quench;
1125 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1126 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1127 		notify = tcp_drop_syn_sent;
1128 	else if (cmd == PRC_MSGSIZE)
1129 		notify = tcp_mtudisc;
1130 	/*
1131 	 * Redirects don't need to be handled up here.
1132 	 */
1133 	else if (PRC_IS_REDIRECT(cmd))
1134 		return;
1135 	/*
1136 	 * Hostdead is ugly because it goes linearly through all PCBs.
1137 	 * XXX: We never get this from ICMP, otherwise it makes an
1138 	 * excellent DoS attack on machines with many connections.
1139 	 */
1140 	else if (cmd == PRC_HOSTDEAD)
1141 		ip = NULL;
1142 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1143 		return;
1144 	if (ip != NULL) {
1145 		s = splnet();
1146 		th = (struct tcphdr *)((caddr_t)ip
1147 				       + (ip->ip_hl << 2));
1148 		INP_INFO_WLOCK(&tcbinfo);
1149 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1150 		    ip->ip_src, th->th_sport, 0, NULL);
1151 		if (inp != NULL)  {
1152 			INP_LOCK(inp);
1153 			if (inp->inp_socket != NULL) {
1154 				icmp_seq = htonl(th->th_seq);
1155 				tp = intotcpcb(inp);
1156 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1157 			    		SEQ_LT(icmp_seq, tp->snd_max))
1158 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1159 			}
1160 			if (inp != NULL)
1161 				INP_UNLOCK(inp);
1162 		} else {
1163 			struct in_conninfo inc;
1164 
1165 			inc.inc_fport = th->th_dport;
1166 			inc.inc_lport = th->th_sport;
1167 			inc.inc_faddr = faddr;
1168 			inc.inc_laddr = ip->ip_src;
1169 #ifdef INET6
1170 			inc.inc_isipv6 = 0;
1171 #endif
1172 			syncache_unreach(&inc, th);
1173 		}
1174 		INP_INFO_WUNLOCK(&tcbinfo);
1175 		splx(s);
1176 	} else
1177 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1178 }
1179 
1180 #ifdef INET6
1181 void
1182 tcp6_ctlinput(cmd, sa, d)
1183 	int cmd;
1184 	struct sockaddr *sa;
1185 	void *d;
1186 {
1187 	struct tcphdr th;
1188 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1189 	struct ip6_hdr *ip6;
1190 	struct mbuf *m;
1191 	struct ip6ctlparam *ip6cp = NULL;
1192 	const struct sockaddr_in6 *sa6_src = NULL;
1193 	int off;
1194 	struct tcp_portonly {
1195 		u_int16_t th_sport;
1196 		u_int16_t th_dport;
1197 	} *thp;
1198 
1199 	if (sa->sa_family != AF_INET6 ||
1200 	    sa->sa_len != sizeof(struct sockaddr_in6))
1201 		return;
1202 
1203 	if (cmd == PRC_QUENCH)
1204 		notify = tcp_quench;
1205 	else if (cmd == PRC_MSGSIZE)
1206 		notify = tcp_mtudisc;
1207 	else if (!PRC_IS_REDIRECT(cmd) &&
1208 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1209 		return;
1210 
1211 	/* if the parameter is from icmp6, decode it. */
1212 	if (d != NULL) {
1213 		ip6cp = (struct ip6ctlparam *)d;
1214 		m = ip6cp->ip6c_m;
1215 		ip6 = ip6cp->ip6c_ip6;
1216 		off = ip6cp->ip6c_off;
1217 		sa6_src = ip6cp->ip6c_src;
1218 	} else {
1219 		m = NULL;
1220 		ip6 = NULL;
1221 		off = 0;	/* fool gcc */
1222 		sa6_src = &sa6_any;
1223 	}
1224 
1225 	if (ip6 != NULL) {
1226 		struct in_conninfo inc;
1227 		/*
1228 		 * XXX: We assume that when IPV6 is non NULL,
1229 		 * M and OFF are valid.
1230 		 */
1231 
1232 		/* check if we can safely examine src and dst ports */
1233 		if (m->m_pkthdr.len < off + sizeof(*thp))
1234 			return;
1235 
1236 		bzero(&th, sizeof(th));
1237 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1238 
1239 		in6_pcbnotify(&tcb, sa, th.th_dport,
1240 		    (struct sockaddr *)ip6cp->ip6c_src,
1241 		    th.th_sport, cmd, NULL, notify);
1242 
1243 		inc.inc_fport = th.th_dport;
1244 		inc.inc_lport = th.th_sport;
1245 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1246 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1247 		inc.inc_isipv6 = 1;
1248 		syncache_unreach(&inc, &th);
1249 	} else
1250 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1251 			      0, cmd, NULL, notify);
1252 }
1253 #endif /* INET6 */
1254 
1255 
1256 /*
1257  * Following is where TCP initial sequence number generation occurs.
1258  *
1259  * There are two places where we must use initial sequence numbers:
1260  * 1.  In SYN-ACK packets.
1261  * 2.  In SYN packets.
1262  *
1263  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1264  * tcp_syncache.c for details.
1265  *
1266  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1267  * depends on this property.  In addition, these ISNs should be
1268  * unguessable so as to prevent connection hijacking.  To satisfy
1269  * the requirements of this situation, the algorithm outlined in
1270  * RFC 1948 is used, with only small modifications.
1271  *
1272  * Implementation details:
1273  *
1274  * Time is based off the system timer, and is corrected so that it
1275  * increases by one megabyte per second.  This allows for proper
1276  * recycling on high speed LANs while still leaving over an hour
1277  * before rollover.
1278  *
1279  * As reading the *exact* system time is too expensive to be done
1280  * whenever setting up a TCP connection, we increment the time
1281  * offset in two ways.  First, a small random positive increment
1282  * is added to isn_offset for each connection that is set up.
1283  * Second, the function tcp_isn_tick fires once per clock tick
1284  * and increments isn_offset as necessary so that sequence numbers
1285  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1286  * random positive increments serve only to ensure that the same
1287  * exact sequence number is never sent out twice (as could otherwise
1288  * happen when a port is recycled in less than the system tick
1289  * interval.)
1290  *
1291  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1292  * between seeding of isn_secret.  This is normally set to zero,
1293  * as reseeding should not be necessary.
1294  *
1295  */
1296 
1297 #define ISN_BYTES_PER_SECOND 1048576
1298 #define ISN_STATIC_INCREMENT 4096
1299 #define ISN_RANDOM_INCREMENT (4096 - 1)
1300 
1301 u_char isn_secret[32];
1302 int isn_last_reseed;
1303 u_int32_t isn_offset, isn_offset_old;
1304 MD5_CTX isn_ctx;
1305 
1306 tcp_seq
1307 tcp_new_isn(tp)
1308 	struct tcpcb *tp;
1309 {
1310 	u_int32_t md5_buffer[4];
1311 	tcp_seq new_isn;
1312 
1313 	/* Seed if this is the first use, reseed if requested. */
1314 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1315 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1316 		< (u_int)ticks))) {
1317 		read_random(&isn_secret, sizeof(isn_secret));
1318 		isn_last_reseed = ticks;
1319 	}
1320 
1321 	/* Compute the md5 hash and return the ISN. */
1322 	MD5Init(&isn_ctx);
1323 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1324 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1325 #ifdef INET6
1326 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1327 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1328 			  sizeof(struct in6_addr));
1329 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1330 			  sizeof(struct in6_addr));
1331 	} else
1332 #endif
1333 	{
1334 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1335 			  sizeof(struct in_addr));
1336 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1337 			  sizeof(struct in_addr));
1338 	}
1339 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1340 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1341 	new_isn = (tcp_seq) md5_buffer[0];
1342 	isn_offset += ISN_STATIC_INCREMENT +
1343 		(arc4random() & ISN_RANDOM_INCREMENT);
1344 	new_isn += isn_offset;
1345 	return new_isn;
1346 }
1347 
1348 /*
1349  * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1350  * to keep time flowing at a relatively constant rate.  If the random
1351  * increments have already pushed us past the projected offset, do nothing.
1352  */
1353 static void
1354 tcp_isn_tick(xtp)
1355 	void *xtp;
1356 {
1357 	u_int32_t projected_offset;
1358 
1359 	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / hz;
1360 
1361 	if (projected_offset > isn_offset)
1362 		isn_offset = projected_offset;
1363 
1364 	isn_offset_old = isn_offset;
1365 	callout_reset(&isn_callout, 1, tcp_isn_tick, NULL);
1366 }
1367 
1368 /*
1369  * When a source quench is received, close congestion window
1370  * to one segment.  We will gradually open it again as we proceed.
1371  */
1372 struct inpcb *
1373 tcp_quench(inp, errno)
1374 	struct inpcb *inp;
1375 	int errno;
1376 {
1377 	struct tcpcb *tp = intotcpcb(inp);
1378 
1379 	if (tp != NULL)
1380 		tp->snd_cwnd = tp->t_maxseg;
1381 	return (inp);
1382 }
1383 
1384 /*
1385  * When a specific ICMP unreachable message is received and the
1386  * connection state is SYN-SENT, drop the connection.  This behavior
1387  * is controlled by the icmp_may_rst sysctl.
1388  */
1389 struct inpcb *
1390 tcp_drop_syn_sent(inp, errno)
1391 	struct inpcb *inp;
1392 	int errno;
1393 {
1394 	struct tcpcb *tp = intotcpcb(inp);
1395 
1396 	if (tp != NULL && tp->t_state == TCPS_SYN_SENT) {
1397 		tcp_drop(tp, errno);
1398 		return (struct inpcb *)0;
1399 	}
1400 	return inp;
1401 }
1402 
1403 /*
1404  * When `need fragmentation' ICMP is received, update our idea of the MSS
1405  * based on the new value in the route.  Also nudge TCP to send something,
1406  * since we know the packet we just sent was dropped.
1407  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1408  */
1409 struct inpcb *
1410 tcp_mtudisc(inp, errno)
1411 	struct inpcb *inp;
1412 	int errno;
1413 {
1414 	struct tcpcb *tp = intotcpcb(inp);
1415 	struct rmxp_tao tao;
1416 	struct socket *so = inp->inp_socket;
1417 	u_int maxmtu;
1418 	u_int romtu;
1419 	int mss;
1420 #ifdef INET6
1421 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1422 #endif /* INET6 */
1423 	bzero(&tao, sizeof(tao));
1424 
1425 	if (tp != NULL) {
1426 		maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1427 		romtu =
1428 #ifdef INET6
1429 		    isipv6 ? tcp_maxmtu6(&inp->inp_inc) :
1430 #endif /* INET6 */
1431 		    tcp_maxmtu(&inp->inp_inc);
1432 		if (!maxmtu)
1433 			maxmtu = romtu;
1434 		else
1435 			maxmtu = min(maxmtu, romtu);
1436 		if (!maxmtu) {
1437 			tp->t_maxopd = tp->t_maxseg =
1438 #ifdef INET6
1439 				isipv6 ? tcp_v6mssdflt :
1440 #endif /* INET6 */
1441 				tcp_mssdflt;
1442 			return inp;
1443 		}
1444 		mss = maxmtu -
1445 #ifdef INET6
1446 			(isipv6 ?
1447 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1448 #endif /* INET6 */
1449 			 sizeof(struct tcpiphdr)
1450 #ifdef INET6
1451 			 )
1452 #endif /* INET6 */
1453 			;
1454 
1455 		if (tcp_do_rfc1644) {
1456 			tcp_hc_gettao(&inp->inp_inc, &tao);
1457 			if (tao.tao_mssopt)
1458 				mss = min(mss, tao.tao_mssopt);
1459 		}
1460 		/*
1461 		 * XXX - The above conditional probably violates the TCP
1462 		 * spec.  The problem is that, since we don't know the
1463 		 * other end's MSS, we are supposed to use a conservative
1464 		 * default.  But, if we do that, then MTU discovery will
1465 		 * never actually take place, because the conservative
1466 		 * default is much less than the MTUs typically seen
1467 		 * on the Internet today.  For the moment, we'll sweep
1468 		 * this under the carpet.
1469 		 *
1470 		 * The conservative default might not actually be a problem
1471 		 * if the only case this occurs is when sending an initial
1472 		 * SYN with options and data to a host we've never talked
1473 		 * to before.  Then, they will reply with an MSS value which
1474 		 * will get recorded and the new parameters should get
1475 		 * recomputed.  For Further Study.
1476 		 */
1477 		if (tp->t_maxopd <= mss)
1478 			return inp;
1479 		tp->t_maxopd = mss;
1480 
1481 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1482 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1483 			mss -= TCPOLEN_TSTAMP_APPA;
1484 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1485 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1486 			mss -= TCPOLEN_CC_APPA;
1487 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1488 		if (mss > MCLBYTES)
1489 			mss &= ~(MCLBYTES-1);
1490 #else
1491 		if (mss > MCLBYTES)
1492 			mss = mss / MCLBYTES * MCLBYTES;
1493 #endif
1494 		if (so->so_snd.sb_hiwat < mss)
1495 			mss = so->so_snd.sb_hiwat;
1496 
1497 		tp->t_maxseg = mss;
1498 
1499 		tcpstat.tcps_mturesent++;
1500 		tp->t_rtttime = 0;
1501 		tp->snd_nxt = tp->snd_una;
1502 		tcp_output(tp);
1503 	}
1504 	return inp;
1505 }
1506 
1507 /*
1508  * Look-up the routing entry to the peer of this inpcb.  If no route
1509  * is found and it cannot be allocated, then return NULL.  This routine
1510  * is called by TCP routines that access the rmx structure and by tcp_mss
1511  * to get the interface MTU.
1512  */
1513 u_long
1514 tcp_maxmtu(inc)
1515 	struct in_conninfo *inc;
1516 {
1517 	struct route sro;
1518 	struct sockaddr_in *dst;
1519 	struct ifnet *ifp;
1520 	u_long maxmtu = 0;
1521 
1522 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1523 
1524 	bzero(&sro, sizeof(sro));
1525 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1526 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1527 		dst->sin_family = AF_INET;
1528 		dst->sin_len = sizeof(*dst);
1529 		dst->sin_addr = inc->inc_faddr;
1530 		rtalloc_ign(&sro, RTF_CLONING);
1531 	}
1532 	if (sro.ro_rt != NULL) {
1533 		ifp = sro.ro_rt->rt_ifp;
1534 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1535 			maxmtu = ifp->if_mtu;
1536 		else
1537 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1538 		RTFREE(sro.ro_rt);
1539 	}
1540 	return (maxmtu);
1541 }
1542 
1543 #ifdef INET6
1544 u_long
1545 tcp_maxmtu6(inc)
1546 	struct in_conninfo *inc;
1547 {
1548 	struct route_in6 sro6;
1549 	struct ifnet *ifp;
1550 	u_long maxmtu = 0;
1551 
1552 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1553 
1554 	bzero(&sro6, sizeof(sro6));
1555 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1556 		sro6.ro_dst.sin6_family = AF_INET6;
1557 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1558 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1559 		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1560 	}
1561 	if (sro6.ro_rt != NULL) {
1562 		ifp = sro6.ro_rt->rt_ifp;
1563 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1564 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1565 		else
1566 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1567 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1568 		RTFREE(sro6.ro_rt);
1569 	}
1570 
1571 	return (maxmtu);
1572 }
1573 #endif /* INET6 */
1574 
1575 #ifdef IPSEC
1576 /* compute ESP/AH header size for TCP, including outer IP header. */
1577 size_t
1578 ipsec_hdrsiz_tcp(tp)
1579 	struct tcpcb *tp;
1580 {
1581 	struct inpcb *inp;
1582 	struct mbuf *m;
1583 	size_t hdrsiz;
1584 	struct ip *ip;
1585 #ifdef INET6
1586 	struct ip6_hdr *ip6;
1587 #endif
1588 	struct tcphdr *th;
1589 
1590 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1591 		return 0;
1592 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1593 	if (!m)
1594 		return 0;
1595 
1596 #ifdef INET6
1597 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1598 		ip6 = mtod(m, struct ip6_hdr *);
1599 		th = (struct tcphdr *)(ip6 + 1);
1600 		m->m_pkthdr.len = m->m_len =
1601 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1602 		tcpip_fillheaders(inp, ip6, th);
1603 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1604 	} else
1605 #endif /* INET6 */
1606       {
1607 	ip = mtod(m, struct ip *);
1608 	th = (struct tcphdr *)(ip + 1);
1609 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1610 	tcpip_fillheaders(inp, ip, th);
1611 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1612       }
1613 
1614 	m_free(m);
1615 	return hdrsiz;
1616 }
1617 #endif /*IPSEC*/
1618 
1619 /*
1620  * Move a TCP connection into TIME_WAIT state.
1621  *    tcbinfo is unlocked.
1622  *    inp is locked, and is unlocked before returning.
1623  */
1624 void
1625 tcp_twstart(tp)
1626 	struct tcpcb *tp;
1627 {
1628 	struct tcptw *tw;
1629 	struct inpcb *inp;
1630 	int tw_time, acknow;
1631 	struct socket *so;
1632 
1633 	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1634 	if (tw == NULL) {
1635 		tw = tcp_timer_2msl_tw(1);
1636 		if (tw == NULL) {
1637 			tcp_close(tp);
1638 			return;
1639 		}
1640 	}
1641 	inp = tp->t_inpcb;
1642 	tw->tw_inpcb = inp;
1643 
1644 	/*
1645 	 * Recover last window size sent.
1646 	 */
1647 	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1648 
1649 	/*
1650 	 * Set t_recent if timestamps are used on the connection.
1651 	 */
1652         if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1653             (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1654 		tw->t_recent = tp->ts_recent;
1655 	else
1656 		tw->t_recent = 0;
1657 
1658 	tw->snd_nxt = tp->snd_nxt;
1659 	tw->rcv_nxt = tp->rcv_nxt;
1660 	tw->iss     = tp->iss;
1661 	tw->irs     = tp->irs;
1662 	tw->cc_recv = tp->cc_recv;
1663 	tw->cc_send = tp->cc_send;
1664 	tw->t_starttime = tp->t_starttime;
1665 	tw->tw_time = 0;
1666 
1667 /* XXX
1668  * If this code will
1669  * be used for fin-wait-2 state also, then we may need
1670  * a ts_recent from the last segment.
1671  */
1672 	/* Shorten TIME_WAIT [RFC-1644, p.28] */
1673 	if (tp->cc_recv != 0 && (ticks - tp->t_starttime) < tcp_msl) {
1674 		tw_time = tp->t_rxtcur * TCPTV_TWTRUNC;
1675 		/* For T/TCP client, force ACK now. */
1676 		acknow = 1;
1677 	} else {
1678 		tw_time = 2 * tcp_msl;
1679 		acknow = tp->t_flags & TF_ACKNOW;
1680 	}
1681 	tcp_discardcb(tp);
1682 	so = inp->inp_socket;
1683 	SOCK_LOCK(so);
1684 	so->so_pcb = NULL;
1685 	tw->tw_cred = crhold(so->so_cred);
1686 	tw->tw_so_options = so->so_options;
1687 	sotryfree(so);
1688 	inp->inp_socket = NULL;
1689 	if (acknow)
1690 		tcp_twrespond(tw, TH_ACK);
1691 	inp->inp_ppcb = (caddr_t)tw;
1692 	inp->inp_vflag |= INP_TIMEWAIT;
1693 	tcp_timer_2msl_reset(tw, tw_time);
1694 	INP_UNLOCK(inp);
1695 }
1696 
1697 /*
1698  * The appromixate rate of ISN increase of Microsoft TCP stacks;
1699  * the actual rate is slightly higher due to the addition of
1700  * random positive increments.
1701  *
1702  * Most other new OSes use semi-randomized ISN values, so we
1703  * do not need to worry about them.
1704  */
1705 #define MS_ISN_BYTES_PER_SECOND		250000
1706 
1707 /*
1708  * Determine if the ISN we will generate has advanced beyond the last
1709  * sequence number used by the previous connection.  If so, indicate
1710  * that it is safe to recycle this tw socket by returning 1.
1711  */
1712 int
1713 tcp_twrecycleable(struct tcptw *tw)
1714 {
1715 	tcp_seq new_iss = tw->iss;
1716 	tcp_seq new_irs = tw->irs;
1717 
1718 	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1719 	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1720 
1721 	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1722 		return 1;
1723 	else
1724 		return 0;
1725 }
1726 
1727 struct tcptw *
1728 tcp_twclose(struct tcptw *tw, int reuse)
1729 {
1730 	struct inpcb *inp;
1731 
1732 	inp = tw->tw_inpcb;
1733 	tw->tw_inpcb = NULL;
1734 	tcp_timer_2msl_stop(tw);
1735 	inp->inp_ppcb = NULL;
1736 #ifdef INET6
1737 	if (inp->inp_vflag & INP_IPV6PROTO)
1738 		in6_pcbdetach(inp);
1739 	else
1740 #endif
1741 		in_pcbdetach(inp);
1742 	tcpstat.tcps_closed++;
1743 	crfree(tw->tw_cred);
1744 	tw->tw_cred = NULL;
1745 	if (reuse)
1746 		return (tw);
1747 	uma_zfree(tcptw_zone, tw);
1748 	return (NULL);
1749 }
1750 
1751 int
1752 tcp_twrespond(struct tcptw *tw, int flags)
1753 {
1754 	struct inpcb *inp = tw->tw_inpcb;
1755 	struct tcphdr *th;
1756 	struct mbuf *m;
1757 	struct ip *ip = NULL;
1758 	u_int8_t *optp;
1759 	u_int hdrlen, optlen;
1760 	int error;
1761 #ifdef INET6
1762 	struct ip6_hdr *ip6 = NULL;
1763 	int isipv6 = inp->inp_inc.inc_isipv6;
1764 #endif
1765 
1766 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1767 	if (m == NULL)
1768 		return (ENOBUFS);
1769 	m->m_data += max_linkhdr;
1770 
1771 #ifdef MAC
1772 	mac_create_mbuf_from_inpcb(inp, m);
1773 #endif
1774 
1775 #ifdef INET6
1776 	if (isipv6) {
1777 		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1778 		ip6 = mtod(m, struct ip6_hdr *);
1779 		th = (struct tcphdr *)(ip6 + 1);
1780 		tcpip_fillheaders(inp, ip6, th);
1781 	} else
1782 #endif
1783 	{
1784 		hdrlen = sizeof(struct tcpiphdr);
1785 		ip = mtod(m, struct ip *);
1786 		th = (struct tcphdr *)(ip + 1);
1787 		tcpip_fillheaders(inp, ip, th);
1788 	}
1789 	optp = (u_int8_t *)(th + 1);
1790 
1791  	/*
1792 	 * Send a timestamp and echo-reply if both our side and our peer
1793 	 * have sent timestamps in our SYN's and this is not a RST.
1794  	 */
1795 	if (tw->t_recent && flags == TH_ACK) {
1796 		u_int32_t *lp = (u_int32_t *)optp;
1797 
1798  		/* Form timestamp option as shown in appendix A of RFC 1323. */
1799  		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1800  		*lp++ = htonl(ticks);
1801  		*lp   = htonl(tw->t_recent);
1802  		optp += TCPOLEN_TSTAMP_APPA;
1803  	}
1804 
1805  	/*
1806 	 * Send `CC-family' options if needed, and it's not a RST.
1807  	 */
1808 	if (tw->cc_recv != 0 && flags == TH_ACK) {
1809 		u_int32_t *lp = (u_int32_t *)optp;
1810 
1811 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1812 		*lp   = htonl(tw->cc_send);
1813 		optp += TCPOLEN_CC_APPA;
1814  	}
1815 	optlen = optp - (u_int8_t *)(th + 1);
1816 
1817 	m->m_len = hdrlen + optlen;
1818 	m->m_pkthdr.len = m->m_len;
1819 
1820 	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1821 
1822 	th->th_seq = htonl(tw->snd_nxt);
1823 	th->th_ack = htonl(tw->rcv_nxt);
1824 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1825 	th->th_flags = flags;
1826 	th->th_win = htons(tw->last_win);
1827 
1828 #ifdef INET6
1829 	if (isipv6) {
1830 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
1831 		    sizeof(struct tcphdr) + optlen);
1832 		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
1833 		error = ip6_output(m, inp->in6p_outputopts, NULL,
1834 		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
1835 	} else
1836 #endif
1837 	{
1838 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1839                     htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
1840 		m->m_pkthdr.csum_flags = CSUM_TCP;
1841 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1842 		ip->ip_len = m->m_pkthdr.len;
1843 		if (path_mtu_discovery)
1844 			ip->ip_off |= IP_DF;
1845 		error = ip_output(m, inp->inp_options, NULL,
1846 		    (tw->tw_so_options & SO_DONTROUTE), NULL, inp);
1847 	}
1848 	if (flags & TH_ACK)
1849 		tcpstat.tcps_sndacks++;
1850 	else
1851 		tcpstat.tcps_sndctrl++;
1852 	tcpstat.tcps_sndtotal++;
1853 	return (error);
1854 }
1855 
1856 /*
1857  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1858  *
1859  * This code attempts to calculate the bandwidth-delay product as a
1860  * means of determining the optimal window size to maximize bandwidth,
1861  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1862  * routers.  This code also does a fairly good job keeping RTTs in check
1863  * across slow links like modems.  We implement an algorithm which is very
1864  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1865  * transmitter side of a TCP connection and so only effects the transmit
1866  * side of the connection.
1867  *
1868  * BACKGROUND:  TCP makes no provision for the management of buffer space
1869  * at the end points or at the intermediate routers and switches.  A TCP
1870  * stream, whether using NewReno or not, will eventually buffer as
1871  * many packets as it is able and the only reason this typically works is
1872  * due to the fairly small default buffers made available for a connection
1873  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1874  * scaling it is now fairly easy for even a single TCP connection to blow-out
1875  * all available buffer space not only on the local interface, but on
1876  * intermediate routers and switches as well.  NewReno makes a misguided
1877  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1878  * then backing off, then steadily increasing the window again until another
1879  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1880  * is only made worse as network loads increase and the idea of intentionally
1881  * blowing out network buffers is, frankly, a terrible way to manage network
1882  * resources.
1883  *
1884  * It is far better to limit the transmit window prior to the failure
1885  * condition being achieved.  There are two general ways to do this:  First
1886  * you can 'scan' through different transmit window sizes and locate the
1887  * point where the RTT stops increasing, indicating that you have filled the
1888  * pipe, then scan backwards until you note that RTT stops decreasing, then
1889  * repeat ad-infinitum.  This method works in principle but has severe
1890  * implementation issues due to RTT variances, timer granularity, and
1891  * instability in the algorithm which can lead to many false positives and
1892  * create oscillations as well as interact badly with other TCP streams
1893  * implementing the same algorithm.
1894  *
1895  * The second method is to limit the window to the bandwidth delay product
1896  * of the link.  This is the method we implement.  RTT variances and our
1897  * own manipulation of the congestion window, bwnd, can potentially
1898  * destabilize the algorithm.  For this reason we have to stabilize the
1899  * elements used to calculate the window.  We do this by using the minimum
1900  * observed RTT, the long term average of the observed bandwidth, and
1901  * by adding two segments worth of slop.  It isn't perfect but it is able
1902  * to react to changing conditions and gives us a very stable basis on
1903  * which to extend the algorithm.
1904  */
1905 void
1906 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1907 {
1908 	u_long bw;
1909 	u_long bwnd;
1910 	int save_ticks;
1911 
1912 	/*
1913 	 * If inflight_enable is disabled in the middle of a tcp connection,
1914 	 * make sure snd_bwnd is effectively disabled.
1915 	 */
1916 	if (tcp_inflight_enable == 0) {
1917 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1918 		tp->snd_bandwidth = 0;
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Figure out the bandwidth.  Due to the tick granularity this
1924 	 * is a very rough number and it MUST be averaged over a fairly
1925 	 * long period of time.  XXX we need to take into account a link
1926 	 * that is not using all available bandwidth, but for now our
1927 	 * slop will ramp us up if this case occurs and the bandwidth later
1928 	 * increases.
1929 	 *
1930 	 * Note: if ticks rollover 'bw' may wind up negative.  We must
1931 	 * effectively reset t_bw_rtttime for this case.
1932 	 */
1933 	save_ticks = ticks;
1934 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1935 		return;
1936 
1937 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1938 	    (save_ticks - tp->t_bw_rtttime);
1939 	tp->t_bw_rtttime = save_ticks;
1940 	tp->t_bw_rtseq = ack_seq;
1941 	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1942 		return;
1943 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1944 
1945 	tp->snd_bandwidth = bw;
1946 
1947 	/*
1948 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1949 	 * segments.  The additional slop puts us squarely in the sweet
1950 	 * spot and also handles the bandwidth run-up case and stabilization.
1951 	 * Without the slop we could be locking ourselves into a lower
1952 	 * bandwidth.
1953 	 *
1954 	 * Situations Handled:
1955 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1956 	 *	    high speed LANs, allowing larger TCP buffers to be
1957 	 *	    specified, and also does a good job preventing
1958 	 *	    over-queueing of packets over choke points like modems
1959 	 *	    (at least for the transmit side).
1960 	 *
1961 	 *	(2) Is able to handle changing network loads (bandwidth
1962 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1963 	 *	    increases).
1964 	 *
1965 	 *	(3) Theoretically should stabilize in the face of multiple
1966 	 *	    connections implementing the same algorithm (this may need
1967 	 *	    a little work).
1968 	 *
1969 	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
1970 	 *	    be adjusted with a sysctl but typically only needs to be
1971 	 *	    on very slow connections.  A value no smaller then 5
1972 	 *	    should be used, but only reduce this default if you have
1973 	 *	    no other choice.
1974 	 */
1975 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1976 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
1977 #undef USERTT
1978 
1979 	if (tcp_inflight_debug > 0) {
1980 		static int ltime;
1981 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1982 			ltime = ticks;
1983 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1984 			    tp,
1985 			    bw,
1986 			    tp->t_rttbest,
1987 			    tp->t_srtt,
1988 			    bwnd
1989 			);
1990 		}
1991 	}
1992 	if ((long)bwnd < tcp_inflight_min)
1993 		bwnd = tcp_inflight_min;
1994 	if (bwnd > tcp_inflight_max)
1995 		bwnd = tcp_inflight_max;
1996 	if ((long)bwnd < tp->t_maxseg * 2)
1997 		bwnd = tp->t_maxseg * 2;
1998 	tp->snd_bwnd = bwnd;
1999 }
2000 
2001 #ifdef TCP_SIGNATURE
2002 /*
2003  * Callback function invoked by m_apply() to digest TCP segment data
2004  * contained within an mbuf chain.
2005  */
2006 static int
2007 tcp_signature_apply(void *fstate, void *data, u_int len)
2008 {
2009 
2010 	MD5Update(fstate, (u_char *)data, len);
2011 	return (0);
2012 }
2013 
2014 /*
2015  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2016  *
2017  * Parameters:
2018  * m		pointer to head of mbuf chain
2019  * off0		offset to TCP header within the mbuf chain
2020  * len		length of TCP segment data, excluding options
2021  * optlen	length of TCP segment options
2022  * buf		pointer to storage for computed MD5 digest
2023  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2024  *
2025  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2026  * When called from tcp_input(), we can be sure that th_sum has been
2027  * zeroed out and verified already.
2028  *
2029  * This function is for IPv4 use only. Calling this function with an
2030  * IPv6 packet in the mbuf chain will yield undefined results.
2031  *
2032  * Return 0 if successful, otherwise return -1.
2033  *
2034  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2035  * search with the destination IP address, and a 'magic SPI' to be
2036  * determined by the application. This is hardcoded elsewhere to 1179
2037  * right now. Another branch of this code exists which uses the SPD to
2038  * specify per-application flows but it is unstable.
2039  */
2040 int
2041 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2042     u_char *buf, u_int direction)
2043 {
2044 	union sockaddr_union dst;
2045 	struct ippseudo ippseudo;
2046 	MD5_CTX ctx;
2047 	int doff;
2048 	struct ip *ip;
2049 	struct ipovly *ipovly;
2050 	struct secasvar *sav;
2051 	struct tcphdr *th;
2052 	u_short savecsum;
2053 
2054 	KASSERT(m != NULL, ("NULL mbuf chain"));
2055 	KASSERT(buf != NULL, ("NULL signature pointer"));
2056 
2057 	/* Extract the destination from the IP header in the mbuf. */
2058 	ip = mtod(m, struct ip *);
2059 	bzero(&dst, sizeof(union sockaddr_union));
2060 	dst.sa.sa_len = sizeof(struct sockaddr_in);
2061 	dst.sa.sa_family = AF_INET;
2062 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2063 	    ip->ip_src : ip->ip_dst;
2064 
2065 	/* Look up an SADB entry which matches the address of the peer. */
2066 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2067 	if (sav == NULL) {
2068 		printf("%s: SADB lookup failed for %s\n", __func__,
2069 		    inet_ntoa(dst.sin.sin_addr));
2070 		return (EINVAL);
2071 	}
2072 
2073 	MD5Init(&ctx);
2074 	ipovly = (struct ipovly *)ip;
2075 	th = (struct tcphdr *)((u_char *)ip + off0);
2076 	doff = off0 + sizeof(struct tcphdr) + optlen;
2077 
2078 	/*
2079 	 * Step 1: Update MD5 hash with IP pseudo-header.
2080 	 *
2081 	 * XXX The ippseudo header MUST be digested in network byte order,
2082 	 * or else we'll fail the regression test. Assume all fields we've
2083 	 * been doing arithmetic on have been in host byte order.
2084 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2085 	 * tcp_output(), the underlying ip_len member has not yet been set.
2086 	 */
2087 	ippseudo.ippseudo_src = ipovly->ih_src;
2088 	ippseudo.ippseudo_dst = ipovly->ih_dst;
2089 	ippseudo.ippseudo_pad = 0;
2090 	ippseudo.ippseudo_p = IPPROTO_TCP;
2091 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2092 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2093 
2094 	/*
2095 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2096 	 * The TCP checksum must be set to zero.
2097 	 */
2098 	savecsum = th->th_sum;
2099 	th->th_sum = 0;
2100 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2101 	th->th_sum = savecsum;
2102 
2103 	/*
2104 	 * Step 3: Update MD5 hash with TCP segment data.
2105 	 *         Use m_apply() to avoid an early m_pullup().
2106 	 */
2107 	if (len > 0)
2108 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2109 
2110 	/*
2111 	 * Step 4: Update MD5 hash with shared secret.
2112 	 */
2113 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2114 	MD5Final(buf, &ctx);
2115 
2116 	key_sa_recordxfer(sav, m);
2117 	KEY_FREESAV(&sav);
2118 	return (0);
2119 }
2120 #endif /* TCP_SIGNATURE */
2121