xref: /freebsd/sys/netinet/tcp_subr.c (revision ce4946daa5ce852d28008dac492029500ab2ee95)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #ifdef INET6
50 #include <sys/domain.h>
51 #endif
52 #include <sys/proc.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/random.h>
57 
58 #include <vm/vm_zone.h>
59 
60 #include <net/route.h>
61 #include <net/if.h>
62 
63 #define _IP_VHL
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/ip.h>
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 #include <netinet/in_pcb.h>
71 #ifdef INET6
72 #include <netinet6/in6_pcb.h>
73 #endif
74 #include <netinet/in_var.h>
75 #include <netinet/ip_var.h>
76 #ifdef INET6
77 #include <netinet6/ip6_var.h>
78 #endif
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #ifdef INET6
85 #include <netinet6/tcp6_var.h>
86 #endif
87 #include <netinet/tcpip.h>
88 #ifdef TCPDEBUG
89 #include <netinet/tcp_debug.h>
90 #endif
91 #include <netinet6/ip6protosw.h>
92 
93 #ifdef IPSEC
94 #include <netinet6/ipsec.h>
95 #ifdef INET6
96 #include <netinet6/ipsec6.h>
97 #endif
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 
102 int 	tcp_mssdflt = TCP_MSS;
103 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
104     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
105 
106 #ifdef INET6
107 int	tcp_v6mssdflt = TCP6_MSS;
108 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
109 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
110 	"Default TCP Maximum Segment Size for IPv6");
111 #endif
112 
113 #if 0
114 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
115 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
116     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
117 #endif
118 
119 static int	tcp_do_rfc1323 = 1;
120 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
121     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
122 
123 static int	tcp_do_rfc1644 = 0;
124 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
125     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
126 
127 static int	tcp_tcbhashsize = 0;
128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
129      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
130 
131 static int	do_tcpdrain = 1;
132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
133      "Enable tcp_drain routine for extra help when low on mbufs");
134 
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
136     &tcbinfo.ipi_count, 0, "Number of active PCBs");
137 
138 static int	icmp_may_rst = 1;
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
140     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
141 
142 static void	tcp_cleartaocache __P((void));
143 static void	tcp_notify __P((struct inpcb *, int));
144 
145 /*
146  * Target size of TCP PCB hash tables. Must be a power of two.
147  *
148  * Note that this can be overridden by the kernel environment
149  * variable net.inet.tcp.tcbhashsize
150  */
151 #ifndef TCBHASHSIZE
152 #define TCBHASHSIZE	512
153 #endif
154 
155 /*
156  * This is the actual shape of what we allocate using the zone
157  * allocator.  Doing it this way allows us to protect both structures
158  * using the same generation count, and also eliminates the overhead
159  * of allocating tcpcbs separately.  By hiding the structure here,
160  * we avoid changing most of the rest of the code (although it needs
161  * to be changed, eventually, for greater efficiency).
162  */
163 #define	ALIGNMENT	32
164 #define	ALIGNM1		(ALIGNMENT - 1)
165 struct	inp_tp {
166 	union {
167 		struct	inpcb inp;
168 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
169 	} inp_tp_u;
170 	struct	tcpcb tcb;
171 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
172 	struct	callout inp_tp_delack;
173 };
174 #undef ALIGNMENT
175 #undef ALIGNM1
176 
177 /*
178  * Tcp initialization
179  */
180 void
181 tcp_init()
182 {
183 	int hashsize;
184 
185 	tcp_ccgen = 1;
186 	tcp_cleartaocache();
187 
188 	tcp_delacktime = TCPTV_DELACK;
189 	tcp_keepinit = TCPTV_KEEP_INIT;
190 	tcp_keepidle = TCPTV_KEEP_IDLE;
191 	tcp_keepintvl = TCPTV_KEEPINTVL;
192 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
193 	tcp_msl = TCPTV_MSL;
194 
195 	LIST_INIT(&tcb);
196 	tcbinfo.listhead = &tcb;
197 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", TCBHASHSIZE, hashsize);
198 	if (!powerof2(hashsize)) {
199 		printf("WARNING: TCB hash size not a power of 2\n");
200 		hashsize = 512; /* safe default */
201 	}
202 	tcp_tcbhashsize = hashsize;
203 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
204 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
205 					&tcbinfo.porthashmask);
206 	tcbinfo.ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
207 				 ZONE_INTERRUPT, 0);
208 #ifdef INET6
209 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
210 #else /* INET6 */
211 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
212 #endif /* INET6 */
213 	if (max_protohdr < TCP_MINPROTOHDR)
214 		max_protohdr = TCP_MINPROTOHDR;
215 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
216 		panic("tcp_init");
217 #undef TCP_MINPROTOHDR
218 }
219 
220 /*
221  * Create template to be used to send tcp packets on a connection.
222  * Call after host entry created, allocates an mbuf and fills
223  * in a skeletal tcp/ip header, minimizing the amount of work
224  * necessary when the connection is used.
225  */
226 struct tcptemp *
227 tcp_template(tp)
228 	struct tcpcb *tp;
229 {
230 	register struct inpcb *inp = tp->t_inpcb;
231 	register struct mbuf *m;
232 	register struct tcptemp *n;
233 
234 	if ((n = tp->t_template) == 0) {
235 		m = m_get(M_DONTWAIT, MT_HEADER);
236 		if (m == NULL)
237 			return (0);
238 		m->m_len = sizeof (struct tcptemp);
239 		n = mtod(m, struct tcptemp *);
240 	}
241 #ifdef INET6
242 	if ((inp->inp_vflag & INP_IPV6) != 0) {
243 		register struct ip6_hdr *ip6;
244 
245 		ip6 = (struct ip6_hdr *)n->tt_ipgen;
246 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
247 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
248 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
249 			(IPV6_VERSION & IPV6_VERSION_MASK);
250 		ip6->ip6_nxt = IPPROTO_TCP;
251 		ip6->ip6_plen = sizeof(struct tcphdr);
252 		ip6->ip6_src = inp->in6p_laddr;
253 		ip6->ip6_dst = inp->in6p_faddr;
254 		n->tt_t.th_sum = 0;
255 	} else
256 #endif
257       {
258 	struct ip *ip = (struct ip *)n->tt_ipgen;
259 
260 	bzero(ip, sizeof(struct ip));		/* XXX overkill? */
261 	ip->ip_vhl = IP_VHL_BORING;
262 	ip->ip_p = IPPROTO_TCP;
263 	ip->ip_src = inp->inp_laddr;
264 	ip->ip_dst = inp->inp_faddr;
265 	n->tt_t.th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
266 	    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
267       }
268 	n->tt_t.th_sport = inp->inp_lport;
269 	n->tt_t.th_dport = inp->inp_fport;
270 	n->tt_t.th_seq = 0;
271 	n->tt_t.th_ack = 0;
272 	n->tt_t.th_x2 = 0;
273 	n->tt_t.th_off = 5;
274 	n->tt_t.th_flags = 0;
275 	n->tt_t.th_win = 0;
276 	n->tt_t.th_urp = 0;
277 	return (n);
278 }
279 
280 /*
281  * Send a single message to the TCP at address specified by
282  * the given TCP/IP header.  If m == 0, then we make a copy
283  * of the tcpiphdr at ti and send directly to the addressed host.
284  * This is used to force keep alive messages out using the TCP
285  * template for a connection tp->t_template.  If flags are given
286  * then we send a message back to the TCP which originated the
287  * segment ti, and discard the mbuf containing it and any other
288  * attached mbufs.
289  *
290  * In any case the ack and sequence number of the transmitted
291  * segment are as specified by the parameters.
292  *
293  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
294  */
295 void
296 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
297 	struct tcpcb *tp;
298 	void *ipgen;
299 	register struct tcphdr *th;
300 	register struct mbuf *m;
301 	tcp_seq ack, seq;
302 	int flags;
303 {
304 	register int tlen;
305 	int win = 0;
306 	struct route *ro = 0;
307 	struct route sro;
308 	struct ip *ip;
309 	struct tcphdr *nth;
310 #ifdef INET6
311 	struct route_in6 *ro6 = 0;
312 	struct route_in6 sro6;
313 	struct ip6_hdr *ip6;
314 	int isipv6;
315 #endif /* INET6 */
316 	int ipflags = 0;
317 
318 #ifdef INET6
319 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
320 	ip6 = ipgen;
321 #endif /* INET6 */
322 	ip = ipgen;
323 
324 	if (tp) {
325 		if (!(flags & TH_RST)) {
326 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
327 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
328 				win = (long)TCP_MAXWIN << tp->rcv_scale;
329 		}
330 #ifdef INET6
331 		if (isipv6)
332 			ro6 = &tp->t_inpcb->in6p_route;
333 		else
334 #endif /* INET6 */
335 		ro = &tp->t_inpcb->inp_route;
336 	} else {
337 #ifdef INET6
338 		if (isipv6) {
339 			ro6 = &sro6;
340 			bzero(ro6, sizeof *ro6);
341 		} else
342 #endif /* INET6 */
343 	      {
344 		ro = &sro;
345 		bzero(ro, sizeof *ro);
346 	      }
347 	}
348 	if (m == 0) {
349 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
350 		if (m == NULL)
351 			return;
352 		tlen = 0;
353 		m->m_data += max_linkhdr;
354 #ifdef INET6
355 		if (isipv6) {
356 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
357 			      sizeof(struct ip6_hdr));
358 			ip6 = mtod(m, struct ip6_hdr *);
359 			nth = (struct tcphdr *)(ip6 + 1);
360 		} else
361 #endif /* INET6 */
362 	      {
363 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
364 		ip = mtod(m, struct ip *);
365 		nth = (struct tcphdr *)(ip + 1);
366 	      }
367 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
368 		flags = TH_ACK;
369 	} else {
370 		m_freem(m->m_next);
371 		m->m_next = 0;
372 		m->m_data = (caddr_t)ipgen;
373 		/* m_len is set later */
374 		tlen = 0;
375 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
376 #ifdef INET6
377 		if (isipv6) {
378 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
379 			nth = (struct tcphdr *)(ip6 + 1);
380 		} else
381 #endif /* INET6 */
382 	      {
383 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
384 		nth = (struct tcphdr *)(ip + 1);
385 	      }
386 		if (th != nth) {
387 			/*
388 			 * this is usually a case when an extension header
389 			 * exists between the IPv6 header and the
390 			 * TCP header.
391 			 */
392 			nth->th_sport = th->th_sport;
393 			nth->th_dport = th->th_dport;
394 		}
395 		xchg(nth->th_dport, nth->th_sport, n_short);
396 #undef xchg
397 	}
398 #ifdef INET6
399 	if (isipv6) {
400 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
401 						tlen));
402 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
403 	} else
404 #endif
405       {
406 	tlen += sizeof (struct tcpiphdr);
407 	ip->ip_len = tlen;
408 	ip->ip_ttl = ip_defttl;
409       }
410 	m->m_len = tlen;
411 	m->m_pkthdr.len = tlen;
412 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
413 	nth->th_seq = htonl(seq);
414 	nth->th_ack = htonl(ack);
415 	nth->th_x2 = 0;
416 	nth->th_off = sizeof (struct tcphdr) >> 2;
417 	nth->th_flags = flags;
418 	if (tp)
419 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
420 	else
421 		nth->th_win = htons((u_short)win);
422 	nth->th_urp = 0;
423 #ifdef INET6
424 	if (isipv6) {
425 		nth->th_sum = 0;
426 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
427 					sizeof(struct ip6_hdr),
428 					tlen - sizeof(struct ip6_hdr));
429 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
430 					       ro6 && ro6->ro_rt ?
431 					       ro6->ro_rt->rt_ifp :
432 					       NULL);
433 	} else
434 #endif /* INET6 */
435       {
436         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
437 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
438         m->m_pkthdr.csum_flags = CSUM_TCP;
439         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
440       }
441 #ifdef TCPDEBUG
442 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
443 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
444 #endif
445 #ifdef IPSEC
446 	ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL);
447 #endif
448 #ifdef INET6
449 	if (isipv6) {
450 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
451 		if (ro6 == &sro6 && ro6->ro_rt) {
452 			RTFREE(ro6->ro_rt);
453 			ro6->ro_rt = NULL;
454 		}
455 	} else
456 #endif /* INET6 */
457       {
458 	(void) ip_output(m, NULL, ro, ipflags, NULL);
459 	if (ro == &sro && ro->ro_rt) {
460 		RTFREE(ro->ro_rt);
461 		ro->ro_rt = NULL;
462 	}
463       }
464 }
465 
466 /*
467  * Create a new TCP control block, making an
468  * empty reassembly queue and hooking it to the argument
469  * protocol control block.  The `inp' parameter must have
470  * come from the zone allocator set up in tcp_init().
471  */
472 struct tcpcb *
473 tcp_newtcpcb(inp)
474 	struct inpcb *inp;
475 {
476 	struct inp_tp *it;
477 	register struct tcpcb *tp;
478 #ifdef INET6
479 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
480 #endif /* INET6 */
481 
482 	it = (struct inp_tp *)inp;
483 	tp = &it->tcb;
484 	bzero((char *) tp, sizeof(struct tcpcb));
485 	LIST_INIT(&tp->t_segq);
486 	tp->t_maxseg = tp->t_maxopd =
487 #ifdef INET6
488 		isipv6 ? tcp_v6mssdflt :
489 #endif /* INET6 */
490 		tcp_mssdflt;
491 
492 	/* Set up our timeouts. */
493 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
494 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
495 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
496 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
497 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
498 
499 	if (tcp_do_rfc1323)
500 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
501 	if (tcp_do_rfc1644)
502 		tp->t_flags |= TF_REQ_CC;
503 	tp->t_inpcb = inp;	/* XXX */
504 	/*
505 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
506 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
507 	 * reasonable initial retransmit time.
508 	 */
509 	tp->t_srtt = TCPTV_SRTTBASE;
510 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
511 	tp->t_rttmin = TCPTV_MIN;
512 	tp->t_rxtcur = TCPTV_RTOBASE;
513 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
514 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
515 	tp->t_rcvtime = ticks;
516         /*
517 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
518 	 * because the socket may be bound to an IPv6 wildcard address,
519 	 * which may match an IPv4-mapped IPv6 address.
520 	 */
521 	inp->inp_ip_ttl = ip_defttl;
522 	inp->inp_ppcb = (caddr_t)tp;
523 	return (tp);		/* XXX */
524 }
525 
526 /*
527  * Drop a TCP connection, reporting
528  * the specified error.  If connection is synchronized,
529  * then send a RST to peer.
530  */
531 struct tcpcb *
532 tcp_drop(tp, errno)
533 	register struct tcpcb *tp;
534 	int errno;
535 {
536 	struct socket *so = tp->t_inpcb->inp_socket;
537 
538 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
539 		tp->t_state = TCPS_CLOSED;
540 		(void) tcp_output(tp);
541 		tcpstat.tcps_drops++;
542 	} else
543 		tcpstat.tcps_conndrops++;
544 	if (errno == ETIMEDOUT && tp->t_softerror)
545 		errno = tp->t_softerror;
546 	so->so_error = errno;
547 	return (tcp_close(tp));
548 }
549 
550 /*
551  * Close a TCP control block:
552  *	discard all space held by the tcp
553  *	discard internet protocol block
554  *	wake up any sleepers
555  */
556 struct tcpcb *
557 tcp_close(tp)
558 	register struct tcpcb *tp;
559 {
560 	register struct tseg_qent *q;
561 	struct inpcb *inp = tp->t_inpcb;
562 	struct socket *so = inp->inp_socket;
563 #ifdef INET6
564 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
565 #endif /* INET6 */
566 	register struct rtentry *rt;
567 	int dosavessthresh;
568 
569 	/*
570 	 * Make sure that all of our timers are stopped before we
571 	 * delete the PCB.
572 	 */
573 	callout_stop(tp->tt_rexmt);
574 	callout_stop(tp->tt_persist);
575 	callout_stop(tp->tt_keep);
576 	callout_stop(tp->tt_2msl);
577 	callout_stop(tp->tt_delack);
578 
579 	/*
580 	 * If we got enough samples through the srtt filter,
581 	 * save the rtt and rttvar in the routing entry.
582 	 * 'Enough' is arbitrarily defined as the 16 samples.
583 	 * 16 samples is enough for the srtt filter to converge
584 	 * to within 5% of the correct value; fewer samples and
585 	 * we could save a very bogus rtt.
586 	 *
587 	 * Don't update the default route's characteristics and don't
588 	 * update anything that the user "locked".
589 	 */
590 	if (tp->t_rttupdated >= 16) {
591 		register u_long i = 0;
592 #ifdef INET6
593 		if (isipv6) {
594 			struct sockaddr_in6 *sin6;
595 
596 			if ((rt = inp->in6p_route.ro_rt) == NULL)
597 				goto no_valid_rt;
598 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
599 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
600 				goto no_valid_rt;
601 		}
602 		else
603 #endif /* INET6 */
604 		if ((rt = inp->inp_route.ro_rt) == NULL ||
605 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
606 		    == INADDR_ANY)
607 			goto no_valid_rt;
608 
609 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
610 			i = tp->t_srtt *
611 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
612 			if (rt->rt_rmx.rmx_rtt && i)
613 				/*
614 				 * filter this update to half the old & half
615 				 * the new values, converting scale.
616 				 * See route.h and tcp_var.h for a
617 				 * description of the scaling constants.
618 				 */
619 				rt->rt_rmx.rmx_rtt =
620 				    (rt->rt_rmx.rmx_rtt + i) / 2;
621 			else
622 				rt->rt_rmx.rmx_rtt = i;
623 			tcpstat.tcps_cachedrtt++;
624 		}
625 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
626 			i = tp->t_rttvar *
627 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
628 			if (rt->rt_rmx.rmx_rttvar && i)
629 				rt->rt_rmx.rmx_rttvar =
630 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
631 			else
632 				rt->rt_rmx.rmx_rttvar = i;
633 			tcpstat.tcps_cachedrttvar++;
634 		}
635 		/*
636 		 * The old comment here said:
637 		 * update the pipelimit (ssthresh) if it has been updated
638 		 * already or if a pipesize was specified & the threshhold
639 		 * got below half the pipesize.  I.e., wait for bad news
640 		 * before we start updating, then update on both good
641 		 * and bad news.
642 		 *
643 		 * But we want to save the ssthresh even if no pipesize is
644 		 * specified explicitly in the route, because such
645 		 * connections still have an implicit pipesize specified
646 		 * by the global tcp_sendspace.  In the absence of a reliable
647 		 * way to calculate the pipesize, it will have to do.
648 		 */
649 		i = tp->snd_ssthresh;
650 		if (rt->rt_rmx.rmx_sendpipe != 0)
651 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
652 		else
653 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
654 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
655 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
656 		    || dosavessthresh) {
657 			/*
658 			 * convert the limit from user data bytes to
659 			 * packets then to packet data bytes.
660 			 */
661 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
662 			if (i < 2)
663 				i = 2;
664 			i *= (u_long)(tp->t_maxseg +
665 #ifdef INET6
666 				      (isipv6 ? sizeof (struct ip6_hdr) +
667 					       sizeof (struct tcphdr) :
668 #endif
669 				       sizeof (struct tcpiphdr)
670 #ifdef INET6
671 				       )
672 #endif
673 				      );
674 			if (rt->rt_rmx.rmx_ssthresh)
675 				rt->rt_rmx.rmx_ssthresh =
676 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
677 			else
678 				rt->rt_rmx.rmx_ssthresh = i;
679 			tcpstat.tcps_cachedssthresh++;
680 		}
681 	}
682 	rt = inp->inp_route.ro_rt;
683 	if (rt) {
684 		/*
685 		 * mark route for deletion if no information is
686 		 * cached.
687 		 */
688 		if ((tp->t_flags & TF_LQ_OVERFLOW) &&
689 		    ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0)){
690 			if (rt->rt_rmx.rmx_rtt == 0)
691 				rt->rt_flags |= RTF_DELCLONE;
692 		}
693 	}
694     no_valid_rt:
695 	/* free the reassembly queue, if any */
696 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
697 		LIST_REMOVE(q, tqe_q);
698 		m_freem(q->tqe_m);
699 		FREE(q, M_TSEGQ);
700 	}
701 	if (tp->t_template)
702 		(void) m_free(dtom(tp->t_template));
703 	inp->inp_ppcb = NULL;
704 	soisdisconnected(so);
705 #ifdef INET6
706 	if (INP_CHECK_SOCKAF(so, AF_INET6))
707 		in6_pcbdetach(inp);
708 	else
709 #endif /* INET6 */
710 	in_pcbdetach(inp);
711 	tcpstat.tcps_closed++;
712 	return ((struct tcpcb *)0);
713 }
714 
715 void
716 tcp_drain()
717 {
718 	if (do_tcpdrain)
719 	{
720 		struct inpcb *inpb;
721 		struct tcpcb *tcpb;
722 		struct tseg_qent *te;
723 
724 	/*
725 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
726 	 * if there is one...
727 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
728 	 *      reassembly queue should be flushed, but in a situation
729 	 * 	where we're really low on mbufs, this is potentially
730 	 *  	usefull.
731 	 */
732 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
733 			if ((tcpb = intotcpcb(inpb))) {
734 				while ((te = LIST_FIRST(&tcpb->t_segq))
735 			            != NULL) {
736 					LIST_REMOVE(te, tqe_q);
737 					m_freem(te->tqe_m);
738 					FREE(te, M_TSEGQ);
739 				}
740 			}
741 		}
742 	}
743 }
744 
745 /*
746  * Notify a tcp user of an asynchronous error;
747  * store error as soft error, but wake up user
748  * (for now, won't do anything until can select for soft error).
749  *
750  * Do not wake up user since there currently is no mechanism for
751  * reporting soft errors (yet - a kqueue filter may be added).
752  */
753 static void
754 tcp_notify(inp, error)
755 	struct inpcb *inp;
756 	int error;
757 {
758 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
759 
760 	/*
761 	 * Ignore some errors if we are hooked up.
762 	 * If connection hasn't completed, has retransmitted several times,
763 	 * and receives a second error, give up now.  This is better
764 	 * than waiting a long time to establish a connection that
765 	 * can never complete.
766 	 */
767 	if (tp->t_state == TCPS_ESTABLISHED &&
768 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
769 	      error == EHOSTDOWN)) {
770 		return;
771 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
772 	    tp->t_softerror)
773 		tcp_drop(tp, error);
774 	else
775 		tp->t_softerror = error;
776 #if 0
777 	wakeup((caddr_t) &so->so_timeo);
778 	sorwakeup(so);
779 	sowwakeup(so);
780 #endif
781 }
782 
783 static int
784 tcp_pcblist(SYSCTL_HANDLER_ARGS)
785 {
786 	int error, i, n, s;
787 	struct inpcb *inp, **inp_list;
788 	inp_gen_t gencnt;
789 	struct xinpgen xig;
790 
791 	/*
792 	 * The process of preparing the TCB list is too time-consuming and
793 	 * resource-intensive to repeat twice on every request.
794 	 */
795 	if (req->oldptr == 0) {
796 		n = tcbinfo.ipi_count;
797 		req->oldidx = 2 * (sizeof xig)
798 			+ (n + n/8) * sizeof(struct xtcpcb);
799 		return 0;
800 	}
801 
802 	if (req->newptr != 0)
803 		return EPERM;
804 
805 	/*
806 	 * OK, now we're committed to doing something.
807 	 */
808 	s = splnet();
809 	gencnt = tcbinfo.ipi_gencnt;
810 	n = tcbinfo.ipi_count;
811 	splx(s);
812 
813 	xig.xig_len = sizeof xig;
814 	xig.xig_count = n;
815 	xig.xig_gen = gencnt;
816 	xig.xig_sogen = so_gencnt;
817 	error = SYSCTL_OUT(req, &xig, sizeof xig);
818 	if (error)
819 		return error;
820 
821 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
822 	if (inp_list == 0)
823 		return ENOMEM;
824 
825 	s = splnet();
826 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
827 	     inp = LIST_NEXT(inp, inp_list)) {
828 		if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
829 			inp_list[i++] = inp;
830 	}
831 	splx(s);
832 	n = i;
833 
834 	error = 0;
835 	for (i = 0; i < n; i++) {
836 		inp = inp_list[i];
837 		if (inp->inp_gencnt <= gencnt) {
838 			struct xtcpcb xt;
839 			caddr_t inp_ppcb;
840 			xt.xt_len = sizeof xt;
841 			/* XXX should avoid extra copy */
842 			bcopy(inp, &xt.xt_inp, sizeof *inp);
843 			inp_ppcb = inp->inp_ppcb;
844 			if (inp_ppcb != NULL)
845 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
846 			else
847 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
848 			if (inp->inp_socket)
849 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
850 			error = SYSCTL_OUT(req, &xt, sizeof xt);
851 		}
852 	}
853 	if (!error) {
854 		/*
855 		 * Give the user an updated idea of our state.
856 		 * If the generation differs from what we told
857 		 * her before, she knows that something happened
858 		 * while we were processing this request, and it
859 		 * might be necessary to retry.
860 		 */
861 		s = splnet();
862 		xig.xig_gen = tcbinfo.ipi_gencnt;
863 		xig.xig_sogen = so_gencnt;
864 		xig.xig_count = tcbinfo.ipi_count;
865 		splx(s);
866 		error = SYSCTL_OUT(req, &xig, sizeof xig);
867 	}
868 	free(inp_list, M_TEMP);
869 	return error;
870 }
871 
872 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
873 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
874 
875 static int
876 tcp_getcred(SYSCTL_HANDLER_ARGS)
877 {
878 	struct xucred xuc;
879 	struct sockaddr_in addrs[2];
880 	struct inpcb *inp;
881 	int error, s;
882 
883 	error = suser(req->p);
884 	if (error)
885 		return (error);
886 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
887 	if (error)
888 		return (error);
889 	s = splnet();
890 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
891 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
892 	if (inp == NULL || inp->inp_socket == NULL) {
893 		error = ENOENT;
894 		goto out;
895 	}
896 	bzero(&xuc, sizeof(xuc));
897 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
898 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
899 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
900 	    sizeof(xuc.cr_groups));
901 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
902 out:
903 	splx(s);
904 	return (error);
905 }
906 
907 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
908     0, 0, tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
909 
910 #ifdef INET6
911 static int
912 tcp6_getcred(SYSCTL_HANDLER_ARGS)
913 {
914 	struct xucred xuc;
915 	struct sockaddr_in6 addrs[2];
916 	struct inpcb *inp;
917 	int error, s, mapped = 0;
918 
919 	error = suser(req->p);
920 	if (error)
921 		return (error);
922 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
923 	if (error)
924 		return (error);
925 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
926 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
927 			mapped = 1;
928 		else
929 			return (EINVAL);
930 	}
931 	s = splnet();
932 	if (mapped == 1)
933 		inp = in_pcblookup_hash(&tcbinfo,
934 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
935 			addrs[1].sin6_port,
936 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
937 			addrs[0].sin6_port,
938 			0, NULL);
939 	else
940 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
941 				 addrs[1].sin6_port,
942 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
943 				 0, NULL);
944 	if (inp == NULL || inp->inp_socket == NULL) {
945 		error = ENOENT;
946 		goto out;
947 	}
948 	bzero(&xuc, sizeof(xuc));
949 	xuc.cr_uid = inp->inp_socket->so_cred->cr_uid;
950 	xuc.cr_ngroups = inp->inp_socket->so_cred->cr_ngroups;
951 	bcopy(inp->inp_socket->so_cred->cr_groups, xuc.cr_groups,
952 	    sizeof(xuc.cr_groups));
953 	error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
954 out:
955 	splx(s);
956 	return (error);
957 }
958 
959 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, CTLTYPE_OPAQUE|CTLFLAG_RW,
960 	    0, 0,
961 	    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
962 #endif
963 
964 
965 void
966 tcp_ctlinput(cmd, sa, vip)
967 	int cmd;
968 	struct sockaddr *sa;
969 	void *vip;
970 {
971 	struct ip *ip = vip;
972 	struct tcphdr *th;
973 	struct in_addr faddr;
974 	struct inpcb *inp;
975 	struct tcpcb *tp;
976 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
977 	tcp_seq icmp_seq;
978 	int s;
979 
980 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
981 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
982 		return;
983 
984 	if (cmd == PRC_QUENCH)
985 		notify = tcp_quench;
986 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
987 		cmd == PRC_UNREACH_PORT) && ip)
988 		notify = tcp_drop_syn_sent;
989 	else if (cmd == PRC_MSGSIZE)
990 		notify = tcp_mtudisc;
991 	else if (PRC_IS_REDIRECT(cmd)) {
992 		ip = 0;
993 		notify = in_rtchange;
994 	} else if (cmd == PRC_HOSTDEAD)
995 		ip = 0;
996 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
997 		return;
998 	if (ip) {
999 		s = splnet();
1000 		th = (struct tcphdr *)((caddr_t)ip
1001 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1002 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1003 		    ip->ip_src, th->th_sport, 0, NULL);
1004 		if (inp != NULL && inp->inp_socket != NULL) {
1005 			icmp_seq = htonl(th->th_seq);
1006 			tp = intotcpcb(inp);
1007 			if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1008 			    SEQ_LT(icmp_seq, tp->snd_max))
1009 				(*notify)(inp, inetctlerrmap[cmd]);
1010 		}
1011 		splx(s);
1012 	} else
1013 		in_pcbnotifyall(&tcb, faddr, inetctlerrmap[cmd], notify);
1014 }
1015 
1016 #ifdef INET6
1017 void
1018 tcp6_ctlinput(cmd, sa, d)
1019 	int cmd;
1020 	struct sockaddr *sa;
1021 	void *d;
1022 {
1023 	register struct tcphdr *thp;
1024 	struct tcphdr th;
1025 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1026 	struct sockaddr_in6 sa6;
1027 	struct ip6_hdr *ip6;
1028 	struct mbuf *m;
1029 	int off;
1030 
1031 	if (sa->sa_family != AF_INET6 ||
1032 	    sa->sa_len != sizeof(struct sockaddr_in6))
1033 		return;
1034 
1035 	if (cmd == PRC_QUENCH)
1036 		notify = tcp_quench;
1037 	else if (cmd == PRC_MSGSIZE)
1038 		notify = tcp_mtudisc;
1039 	else if (!PRC_IS_REDIRECT(cmd) &&
1040 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1041 		return;
1042 
1043 	/* if the parameter is from icmp6, decode it. */
1044 	if (d != NULL) {
1045 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1046 		m = ip6cp->ip6c_m;
1047 		ip6 = ip6cp->ip6c_ip6;
1048 		off = ip6cp->ip6c_off;
1049 	} else {
1050 		m = NULL;
1051 		ip6 = NULL;
1052 		off = 0;	/* fool gcc */
1053 	}
1054 
1055 	/*
1056 	 * Translate addresses into internal form.
1057 	 * Sa check if it is AF_INET6 is done at the top of this funciton.
1058 	 */
1059 	sa6 = *(struct sockaddr_in6 *)sa;
1060 	if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) != 0 && m != NULL &&
1061 	    m->m_pkthdr.rcvif != NULL)
1062 		sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1063 
1064 	if (ip6) {
1065 		/*
1066 		 * XXX: We assume that when IPV6 is non NULL,
1067 		 * M and OFF are valid.
1068 		 */
1069 		struct in6_addr s;
1070 
1071 		/* translate addresses into internal form */
1072 		memcpy(&s, &ip6->ip6_src, sizeof(s));
1073 		if (IN6_IS_ADDR_LINKLOCAL(&s) != 0 && m != NULL &&
1074 		    m->m_pkthdr.rcvif != NULL)
1075 			s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1076 
1077 		/* check if we can safely examine src and dst ports */
1078 		if (m->m_pkthdr.len < off + sizeof(th))
1079 			return;
1080 
1081 		if (m->m_len < off + sizeof(th)) {
1082 			/*
1083 			 * this should be rare case
1084 			 * because now MINCLSIZE is "(MHLEN + 1)",
1085 			 * so we compromise on this copy...
1086 			 */
1087 			m_copydata(m, off, sizeof(th), (caddr_t)&th);
1088 			thp = &th;
1089 		} else
1090 			thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1091 		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, thp->th_dport,
1092 			      &s, thp->th_sport, cmd, notify);
1093 	} else
1094 		in6_pcbnotify(&tcb, (struct sockaddr *)&sa6, 0, &zeroin6_addr,
1095 			      0, cmd, notify);
1096 }
1097 #endif /* INET6 */
1098 
1099 #define TCP_RNDISS_ROUNDS	16
1100 #define TCP_RNDISS_OUT	7200
1101 #define TCP_RNDISS_MAX	30000
1102 
1103 u_int8_t tcp_rndiss_sbox[128];
1104 u_int16_t tcp_rndiss_msb;
1105 u_int16_t tcp_rndiss_cnt;
1106 long tcp_rndiss_reseed;
1107 
1108 u_int16_t
1109 tcp_rndiss_encrypt(val)
1110 	u_int16_t val;
1111 {
1112 	u_int16_t sum = 0, i;
1113 
1114 	for (i = 0; i < TCP_RNDISS_ROUNDS; i++) {
1115 		sum += 0x79b9;
1116 		val ^= ((u_int16_t)tcp_rndiss_sbox[(val^sum) & 0x7f]) << 7;
1117 		val = ((val & 0xff) << 7) | (val >> 8);
1118 	}
1119 
1120 	return val;
1121 }
1122 
1123 void
1124 tcp_rndiss_init()
1125 {
1126 	struct timeval time;
1127 
1128 	getmicrotime(&time);
1129 	read_random(tcp_rndiss_sbox, sizeof(tcp_rndiss_sbox));
1130 
1131 	tcp_rndiss_reseed = time.tv_sec + TCP_RNDISS_OUT;
1132 	tcp_rndiss_msb = tcp_rndiss_msb == 0x8000 ? 0 : 0x8000;
1133 	tcp_rndiss_cnt = 0;
1134 }
1135 
1136 tcp_seq
1137 tcp_rndiss_next()
1138 {
1139 	u_int16_t tmp;
1140 	struct timeval time;
1141 
1142 	getmicrotime(&time);
1143 
1144         if (tcp_rndiss_cnt >= TCP_RNDISS_MAX ||
1145 	    time.tv_sec > tcp_rndiss_reseed)
1146                 tcp_rndiss_init();
1147 
1148 	read_random(&tmp, sizeof(tmp));
1149 
1150 	/* (tmp & 0x7fff) ensures a 32768 byte gap between ISS */
1151 	return ((tcp_rndiss_encrypt(tcp_rndiss_cnt++) | tcp_rndiss_msb) <<16) |
1152 		(tmp & 0x7fff);
1153 }
1154 
1155 
1156 /*
1157  * When a source quench is received, close congestion window
1158  * to one segment.  We will gradually open it again as we proceed.
1159  */
1160 void
1161 tcp_quench(inp, errno)
1162 	struct inpcb *inp;
1163 	int errno;
1164 {
1165 	struct tcpcb *tp = intotcpcb(inp);
1166 
1167 	if (tp)
1168 		tp->snd_cwnd = tp->t_maxseg;
1169 }
1170 
1171 /*
1172  * When a specific ICMP unreachable message is received and the
1173  * connection state is SYN-SENT, drop the connection.  This behavior
1174  * is controlled by the icmp_may_rst sysctl.
1175  */
1176 void
1177 tcp_drop_syn_sent(inp, errno)
1178 	struct inpcb *inp;
1179 	int errno;
1180 {
1181 	struct tcpcb *tp = intotcpcb(inp);
1182 
1183 	if (tp && tp->t_state == TCPS_SYN_SENT)
1184 		tcp_drop(tp, errno);
1185 }
1186 
1187 /*
1188  * When `need fragmentation' ICMP is received, update our idea of the MSS
1189  * based on the new value in the route.  Also nudge TCP to send something,
1190  * since we know the packet we just sent was dropped.
1191  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1192  */
1193 void
1194 tcp_mtudisc(inp, errno)
1195 	struct inpcb *inp;
1196 	int errno;
1197 {
1198 	struct tcpcb *tp = intotcpcb(inp);
1199 	struct rtentry *rt;
1200 	struct rmxp_tao *taop;
1201 	struct socket *so = inp->inp_socket;
1202 	int offered;
1203 	int mss;
1204 #ifdef INET6
1205 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1206 #endif /* INET6 */
1207 
1208 	if (tp) {
1209 #ifdef INET6
1210 		if (isipv6)
1211 			rt = tcp_rtlookup6(inp);
1212 		else
1213 #endif /* INET6 */
1214 		rt = tcp_rtlookup(inp);
1215 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1216 			tp->t_maxopd = tp->t_maxseg =
1217 #ifdef INET6
1218 				isipv6 ? tcp_v6mssdflt :
1219 #endif /* INET6 */
1220 				tcp_mssdflt;
1221 			return;
1222 		}
1223 		taop = rmx_taop(rt->rt_rmx);
1224 		offered = taop->tao_mssopt;
1225 		mss = rt->rt_rmx.rmx_mtu -
1226 #ifdef INET6
1227 			(isipv6 ?
1228 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1229 #endif /* INET6 */
1230 			 sizeof(struct tcpiphdr)
1231 #ifdef INET6
1232 			 )
1233 #endif /* INET6 */
1234 			;
1235 
1236 		if (offered)
1237 			mss = min(mss, offered);
1238 		/*
1239 		 * XXX - The above conditional probably violates the TCP
1240 		 * spec.  The problem is that, since we don't know the
1241 		 * other end's MSS, we are supposed to use a conservative
1242 		 * default.  But, if we do that, then MTU discovery will
1243 		 * never actually take place, because the conservative
1244 		 * default is much less than the MTUs typically seen
1245 		 * on the Internet today.  For the moment, we'll sweep
1246 		 * this under the carpet.
1247 		 *
1248 		 * The conservative default might not actually be a problem
1249 		 * if the only case this occurs is when sending an initial
1250 		 * SYN with options and data to a host we've never talked
1251 		 * to before.  Then, they will reply with an MSS value which
1252 		 * will get recorded and the new parameters should get
1253 		 * recomputed.  For Further Study.
1254 		 */
1255 		if (tp->t_maxopd <= mss)
1256 			return;
1257 		tp->t_maxopd = mss;
1258 
1259 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1260 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1261 			mss -= TCPOLEN_TSTAMP_APPA;
1262 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1263 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1264 			mss -= TCPOLEN_CC_APPA;
1265 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1266 		if (mss > MCLBYTES)
1267 			mss &= ~(MCLBYTES-1);
1268 #else
1269 		if (mss > MCLBYTES)
1270 			mss = mss / MCLBYTES * MCLBYTES;
1271 #endif
1272 		if (so->so_snd.sb_hiwat < mss)
1273 			mss = so->so_snd.sb_hiwat;
1274 
1275 		tp->t_maxseg = mss;
1276 
1277 		tcpstat.tcps_mturesent++;
1278 		tp->t_rtttime = 0;
1279 		tp->snd_nxt = tp->snd_una;
1280 		tcp_output(tp);
1281 	}
1282 }
1283 
1284 /*
1285  * Look-up the routing entry to the peer of this inpcb.  If no route
1286  * is found and it cannot be allocated the return NULL.  This routine
1287  * is called by TCP routines that access the rmx structure and by tcp_mss
1288  * to get the interface MTU.
1289  */
1290 struct rtentry *
1291 tcp_rtlookup(inp)
1292 	struct inpcb *inp;
1293 {
1294 	struct route *ro;
1295 	struct rtentry *rt;
1296 
1297 	ro = &inp->inp_route;
1298 	rt = ro->ro_rt;
1299 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1300 		/* No route yet, so try to acquire one */
1301 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1302 			ro->ro_dst.sa_family = AF_INET;
1303 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1304 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1305 				inp->inp_faddr;
1306 			rtalloc(ro);
1307 			rt = ro->ro_rt;
1308 		}
1309 	}
1310 	return rt;
1311 }
1312 
1313 #ifdef INET6
1314 struct rtentry *
1315 tcp_rtlookup6(inp)
1316 	struct inpcb *inp;
1317 {
1318 	struct route_in6 *ro6;
1319 	struct rtentry *rt;
1320 
1321 	ro6 = &inp->in6p_route;
1322 	rt = ro6->ro_rt;
1323 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1324 		/* No route yet, so try to acquire one */
1325 		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
1326 			ro6->ro_dst.sin6_family = AF_INET6;
1327 			ro6->ro_dst.sin6_len = sizeof(ro6->ro_dst);
1328 			ro6->ro_dst.sin6_addr = inp->in6p_faddr;
1329 			rtalloc((struct route *)ro6);
1330 			rt = ro6->ro_rt;
1331 		}
1332 	}
1333 	return rt;
1334 }
1335 #endif /* INET6 */
1336 
1337 #ifdef IPSEC
1338 /* compute ESP/AH header size for TCP, including outer IP header. */
1339 size_t
1340 ipsec_hdrsiz_tcp(tp)
1341 	struct tcpcb *tp;
1342 {
1343 	struct inpcb *inp;
1344 	struct mbuf *m;
1345 	size_t hdrsiz;
1346 	struct ip *ip;
1347 #ifdef INET6
1348 	struct ip6_hdr *ip6;
1349 #endif /* INET6 */
1350 	struct tcphdr *th;
1351 
1352 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1353 		return 0;
1354 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1355 	if (!m)
1356 		return 0;
1357 
1358 #ifdef INET6
1359 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1360 		ip6 = mtod(m, struct ip6_hdr *);
1361 		th = (struct tcphdr *)(ip6 + 1);
1362 		m->m_pkthdr.len = m->m_len =
1363 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1364 		bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip6,
1365 		      sizeof(struct ip6_hdr));
1366 		bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1367 		      sizeof(struct tcphdr));
1368 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1369 	} else
1370 #endif /* INET6 */
1371       {
1372 	ip = mtod(m, struct ip *);
1373 	th = (struct tcphdr *)(ip + 1);
1374 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1375 	bcopy((caddr_t)tp->t_template->tt_ipgen, (caddr_t)ip,
1376 	      sizeof(struct ip));
1377 	bcopy((caddr_t)&tp->t_template->tt_t, (caddr_t)th,
1378 	      sizeof(struct tcphdr));
1379 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1380       }
1381 
1382 	m_free(m);
1383 	return hdrsiz;
1384 }
1385 #endif /*IPSEC*/
1386 
1387 /*
1388  * Return a pointer to the cached information about the remote host.
1389  * The cached information is stored in the protocol specific part of
1390  * the route metrics.
1391  */
1392 struct rmxp_tao *
1393 tcp_gettaocache(inp)
1394 	struct inpcb *inp;
1395 {
1396 	struct rtentry *rt;
1397 
1398 #ifdef INET6
1399 	if ((inp->inp_vflag & INP_IPV6) != 0)
1400 		rt = tcp_rtlookup6(inp);
1401 	else
1402 #endif /* INET6 */
1403 	rt = tcp_rtlookup(inp);
1404 
1405 	/* Make sure this is a host route and is up. */
1406 	if (rt == NULL ||
1407 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1408 		return NULL;
1409 
1410 	return rmx_taop(rt->rt_rmx);
1411 }
1412 
1413 /*
1414  * Clear all the TAO cache entries, called from tcp_init.
1415  *
1416  * XXX
1417  * This routine is just an empty one, because we assume that the routing
1418  * routing tables are initialized at the same time when TCP, so there is
1419  * nothing in the cache left over.
1420  */
1421 static void
1422 tcp_cleartaocache()
1423 {
1424 }
1425