xref: /freebsd/sys/netinet/tcp_subr.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_kdtrace.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #ifdef INET6
53 #include <sys/domain.h>
54 #endif
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/sdt.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/protosw.h>
61 #include <sys/random.h>
62 
63 #include <vm/uma.h>
64 
65 #include <net/route.h>
66 #include <net/if.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/cc.h>
70 #include <netinet/in.h>
71 #include <netinet/in_kdtrace.h>
72 #include <netinet/in_pcb.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/ip_icmp.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet/ip6.h>
80 #include <netinet6/in6_pcb.h>
81 #include <netinet6/ip6_var.h>
82 #include <netinet6/scope6_var.h>
83 #include <netinet6/nd6.h>
84 #endif
85 
86 #include <netinet/tcp_fsm.h>
87 #include <netinet/tcp_seq.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/tcp_syncache.h>
91 #ifdef INET6
92 #include <netinet6/tcp6_var.h>
93 #endif
94 #include <netinet/tcpip.h>
95 #ifdef TCPDEBUG
96 #include <netinet/tcp_debug.h>
97 #endif
98 #ifdef INET6
99 #include <netinet6/ip6protosw.h>
100 #endif
101 #ifdef TCP_OFFLOAD
102 #include <netinet/tcp_offload.h>
103 #endif
104 
105 #ifdef IPSEC
106 #include <netipsec/ipsec.h>
107 #include <netipsec/xform.h>
108 #ifdef INET6
109 #include <netipsec/ipsec6.h>
110 #endif
111 #include <netipsec/key.h>
112 #include <sys/syslog.h>
113 #endif /*IPSEC*/
114 
115 #include <machine/in_cksum.h>
116 #include <sys/md5.h>
117 
118 #include <security/mac/mac_framework.h>
119 
120 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
121 #ifdef INET6
122 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
123 #endif
124 
125 static int
126 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
127 {
128 	int error, new;
129 
130 	new = V_tcp_mssdflt;
131 	error = sysctl_handle_int(oidp, &new, 0, req);
132 	if (error == 0 && req->newptr) {
133 		if (new < TCP_MINMSS)
134 			error = EINVAL;
135 		else
136 			V_tcp_mssdflt = new;
137 	}
138 	return (error);
139 }
140 
141 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
142     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
143     &sysctl_net_inet_tcp_mss_check, "I",
144     "Default TCP Maximum Segment Size");
145 
146 #ifdef INET6
147 static int
148 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
149 {
150 	int error, new;
151 
152 	new = V_tcp_v6mssdflt;
153 	error = sysctl_handle_int(oidp, &new, 0, req);
154 	if (error == 0 && req->newptr) {
155 		if (new < TCP_MINMSS)
156 			error = EINVAL;
157 		else
158 			V_tcp_v6mssdflt = new;
159 	}
160 	return (error);
161 }
162 
163 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
164     CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
165     &sysctl_net_inet_tcp_mss_v6_check, "I",
166    "Default TCP Maximum Segment Size for IPv6");
167 #endif /* INET6 */
168 
169 /*
170  * Minimum MSS we accept and use. This prevents DoS attacks where
171  * we are forced to a ridiculous low MSS like 20 and send hundreds
172  * of packets instead of one. The effect scales with the available
173  * bandwidth and quickly saturates the CPU and network interface
174  * with packet generation and sending. Set to zero to disable MINMSS
175  * checking. This setting prevents us from sending too small packets.
176  */
177 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
178 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
179      &VNET_NAME(tcp_minmss), 0,
180     "Minimum TCP Maximum Segment Size");
181 
182 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
183 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
184     &VNET_NAME(tcp_do_rfc1323), 0,
185     "Enable rfc1323 (high performance TCP) extensions");
186 
187 static int	tcp_log_debug = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
189     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
190 
191 static int	tcp_tcbhashsize = 0;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
193     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
194 
195 static int	do_tcpdrain = 1;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197     "Enable tcp_drain routine for extra help when low on mbufs");
198 
199 SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
200     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
201 
202 static VNET_DEFINE(int, icmp_may_rst) = 1;
203 #define	V_icmp_may_rst			VNET(icmp_may_rst)
204 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
205     &VNET_NAME(icmp_may_rst), 0,
206     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207 
208 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
209 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
210 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
211     &VNET_NAME(tcp_isn_reseed_interval), 0,
212     "Seconds between reseeding of ISN secret");
213 
214 static int	tcp_soreceive_stream = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
216     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
217 
218 #ifdef TCP_SIGNATURE
219 static int	tcp_sig_checksigs = 1;
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
221     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
222 #endif
223 
224 VNET_DEFINE(uma_zone_t, sack_hole_zone);
225 #define	V_sack_hole_zone		VNET(sack_hole_zone)
226 
227 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
228 
229 static struct inpcb *tcp_notify(struct inpcb *, int);
230 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
231 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
232 		    void *ip4hdr, const void *ip6hdr);
233 
234 /*
235  * Target size of TCP PCB hash tables. Must be a power of two.
236  *
237  * Note that this can be overridden by the kernel environment
238  * variable net.inet.tcp.tcbhashsize
239  */
240 #ifndef TCBHASHSIZE
241 #define TCBHASHSIZE	0
242 #endif
243 
244 /*
245  * XXX
246  * Callouts should be moved into struct tcp directly.  They are currently
247  * separate because the tcpcb structure is exported to userland for sysctl
248  * parsing purposes, which do not know about callouts.
249  */
250 struct tcpcb_mem {
251 	struct	tcpcb		tcb;
252 	struct	tcp_timer	tt;
253 	struct	cc_var		ccv;
254 	struct	osd		osd;
255 };
256 
257 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
258 #define	V_tcpcb_zone			VNET(tcpcb_zone)
259 
260 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
261 static struct mtx isn_mtx;
262 
263 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
264 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
265 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
266 
267 /*
268  * TCP initialization.
269  */
270 static void
271 tcp_zone_change(void *tag)
272 {
273 
274 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
275 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
276 	tcp_tw_zone_change();
277 }
278 
279 static int
280 tcp_inpcb_init(void *mem, int size, int flags)
281 {
282 	struct inpcb *inp = mem;
283 
284 	INP_LOCK_INIT(inp, "inp", "tcpinp");
285 	return (0);
286 }
287 
288 /*
289  * Take a value and get the next power of 2 that doesn't overflow.
290  * Used to size the tcp_inpcb hash buckets.
291  */
292 static int
293 maketcp_hashsize(int size)
294 {
295 	int hashsize;
296 
297 	/*
298 	 * auto tune.
299 	 * get the next power of 2 higher than maxsockets.
300 	 */
301 	hashsize = 1 << fls(size);
302 	/* catch overflow, and just go one power of 2 smaller */
303 	if (hashsize < size) {
304 		hashsize = 1 << (fls(size) - 1);
305 	}
306 	return (hashsize);
307 }
308 
309 void
310 tcp_init(void)
311 {
312 	const char *tcbhash_tuneable;
313 	int hashsize;
314 
315 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
316 
317 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
318 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
319 		printf("%s: WARNING: unable to register helper hook\n", __func__);
320 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
321 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
322 		printf("%s: WARNING: unable to register helper hook\n", __func__);
323 
324 	hashsize = TCBHASHSIZE;
325 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
326 	if (hashsize == 0) {
327 		/*
328 		 * Auto tune the hash size based on maxsockets.
329 		 * A perfect hash would have a 1:1 mapping
330 		 * (hashsize = maxsockets) however it's been
331 		 * suggested that O(2) average is better.
332 		 */
333 		hashsize = maketcp_hashsize(maxsockets / 4);
334 		/*
335 		 * Our historical default is 512,
336 		 * do not autotune lower than this.
337 		 */
338 		if (hashsize < 512)
339 			hashsize = 512;
340 		if (bootverbose)
341 			printf("%s: %s auto tuned to %d\n", __func__,
342 			    tcbhash_tuneable, hashsize);
343 	}
344 	/*
345 	 * We require a hashsize to be a power of two.
346 	 * Previously if it was not a power of two we would just reset it
347 	 * back to 512, which could be a nasty surprise if you did not notice
348 	 * the error message.
349 	 * Instead what we do is clip it to the closest power of two lower
350 	 * than the specified hash value.
351 	 */
352 	if (!powerof2(hashsize)) {
353 		int oldhashsize = hashsize;
354 
355 		hashsize = maketcp_hashsize(hashsize);
356 		/* prevent absurdly low value */
357 		if (hashsize < 16)
358 			hashsize = 16;
359 		printf("%s: WARNING: TCB hash size not a power of 2, "
360 		    "clipped from %d to %d.\n", __func__, oldhashsize,
361 		    hashsize);
362 	}
363 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
364 	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
365 	    IPI_HASHFIELDS_4TUPLE);
366 
367 	/*
368 	 * These have to be type stable for the benefit of the timers.
369 	 */
370 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
371 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
372 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
373 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
374 
375 	tcp_tw_init();
376 	syncache_init();
377 	tcp_hc_init();
378 	tcp_reass_init();
379 
380 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
381 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
382 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
383 
384 	/* Skip initialization of globals for non-default instances. */
385 	if (!IS_DEFAULT_VNET(curvnet))
386 		return;
387 
388 	/* XXX virtualize those bellow? */
389 	tcp_delacktime = TCPTV_DELACK;
390 	tcp_keepinit = TCPTV_KEEP_INIT;
391 	tcp_keepidle = TCPTV_KEEP_IDLE;
392 	tcp_keepintvl = TCPTV_KEEPINTVL;
393 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
394 	tcp_msl = TCPTV_MSL;
395 	tcp_rexmit_min = TCPTV_MIN;
396 	if (tcp_rexmit_min < 1)
397 		tcp_rexmit_min = 1;
398 	tcp_rexmit_slop = TCPTV_CPU_VAR;
399 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
400 	tcp_tcbhashsize = hashsize;
401 
402 	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
403 	if (tcp_soreceive_stream) {
404 #ifdef INET
405 		tcp_usrreqs.pru_soreceive = soreceive_stream;
406 #endif
407 #ifdef INET6
408 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
409 #endif /* INET6 */
410 	}
411 
412 #ifdef INET6
413 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
414 #else /* INET6 */
415 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
416 #endif /* INET6 */
417 	if (max_protohdr < TCP_MINPROTOHDR)
418 		max_protohdr = TCP_MINPROTOHDR;
419 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
420 		panic("tcp_init");
421 #undef TCP_MINPROTOHDR
422 
423 	ISN_LOCK_INIT();
424 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
425 		SHUTDOWN_PRI_DEFAULT);
426 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
427 		EVENTHANDLER_PRI_ANY);
428 }
429 
430 #ifdef VIMAGE
431 void
432 tcp_destroy(void)
433 {
434 
435 	tcp_reass_destroy();
436 	tcp_hc_destroy();
437 	syncache_destroy();
438 	tcp_tw_destroy();
439 	in_pcbinfo_destroy(&V_tcbinfo);
440 	uma_zdestroy(V_sack_hole_zone);
441 	uma_zdestroy(V_tcpcb_zone);
442 }
443 #endif
444 
445 void
446 tcp_fini(void *xtp)
447 {
448 
449 }
450 
451 /*
452  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
453  * tcp_template used to store this data in mbufs, but we now recopy it out
454  * of the tcpcb each time to conserve mbufs.
455  */
456 void
457 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
458 {
459 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
460 
461 	INP_WLOCK_ASSERT(inp);
462 
463 #ifdef INET6
464 	if ((inp->inp_vflag & INP_IPV6) != 0) {
465 		struct ip6_hdr *ip6;
466 
467 		ip6 = (struct ip6_hdr *)ip_ptr;
468 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
469 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
470 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
471 			(IPV6_VERSION & IPV6_VERSION_MASK);
472 		ip6->ip6_nxt = IPPROTO_TCP;
473 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
474 		ip6->ip6_src = inp->in6p_laddr;
475 		ip6->ip6_dst = inp->in6p_faddr;
476 	}
477 #endif /* INET6 */
478 #if defined(INET6) && defined(INET)
479 	else
480 #endif
481 #ifdef INET
482 	{
483 		struct ip *ip;
484 
485 		ip = (struct ip *)ip_ptr;
486 		ip->ip_v = IPVERSION;
487 		ip->ip_hl = 5;
488 		ip->ip_tos = inp->inp_ip_tos;
489 		ip->ip_len = 0;
490 		ip->ip_id = 0;
491 		ip->ip_off = 0;
492 		ip->ip_ttl = inp->inp_ip_ttl;
493 		ip->ip_sum = 0;
494 		ip->ip_p = IPPROTO_TCP;
495 		ip->ip_src = inp->inp_laddr;
496 		ip->ip_dst = inp->inp_faddr;
497 	}
498 #endif /* INET */
499 	th->th_sport = inp->inp_lport;
500 	th->th_dport = inp->inp_fport;
501 	th->th_seq = 0;
502 	th->th_ack = 0;
503 	th->th_x2 = 0;
504 	th->th_off = 5;
505 	th->th_flags = 0;
506 	th->th_win = 0;
507 	th->th_urp = 0;
508 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
509 }
510 
511 /*
512  * Create template to be used to send tcp packets on a connection.
513  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
514  * use for this function is in keepalives, which use tcp_respond.
515  */
516 struct tcptemp *
517 tcpip_maketemplate(struct inpcb *inp)
518 {
519 	struct tcptemp *t;
520 
521 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
522 	if (t == NULL)
523 		return (NULL);
524 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
525 	return (t);
526 }
527 
528 /*
529  * Send a single message to the TCP at address specified by
530  * the given TCP/IP header.  If m == NULL, then we make a copy
531  * of the tcpiphdr at ti and send directly to the addressed host.
532  * This is used to force keep alive messages out using the TCP
533  * template for a connection.  If flags are given then we send
534  * a message back to the TCP which originated the * segment ti,
535  * and discard the mbuf containing it and any other attached mbufs.
536  *
537  * In any case the ack and sequence number of the transmitted
538  * segment are as specified by the parameters.
539  *
540  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
541  */
542 void
543 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
544     tcp_seq ack, tcp_seq seq, int flags)
545 {
546 	int tlen;
547 	int win = 0;
548 	struct ip *ip;
549 	struct tcphdr *nth;
550 #ifdef INET6
551 	struct ip6_hdr *ip6;
552 	int isipv6;
553 #endif /* INET6 */
554 	int ipflags = 0;
555 	struct inpcb *inp;
556 
557 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
558 
559 #ifdef INET6
560 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
561 	ip6 = ipgen;
562 #endif /* INET6 */
563 	ip = ipgen;
564 
565 	if (tp != NULL) {
566 		inp = tp->t_inpcb;
567 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
568 		INP_WLOCK_ASSERT(inp);
569 	} else
570 		inp = NULL;
571 
572 	if (tp != NULL) {
573 		if (!(flags & TH_RST)) {
574 			win = sbspace(&inp->inp_socket->so_rcv);
575 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
576 				win = (long)TCP_MAXWIN << tp->rcv_scale;
577 		}
578 	}
579 	if (m == NULL) {
580 		m = m_gethdr(M_NOWAIT, MT_DATA);
581 		if (m == NULL)
582 			return;
583 		tlen = 0;
584 		m->m_data += max_linkhdr;
585 #ifdef INET6
586 		if (isipv6) {
587 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
588 			      sizeof(struct ip6_hdr));
589 			ip6 = mtod(m, struct ip6_hdr *);
590 			nth = (struct tcphdr *)(ip6 + 1);
591 		} else
592 #endif /* INET6 */
593 		{
594 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
595 			ip = mtod(m, struct ip *);
596 			nth = (struct tcphdr *)(ip + 1);
597 		}
598 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
599 		flags = TH_ACK;
600 	} else {
601 		/*
602 		 *  reuse the mbuf.
603 		 * XXX MRT We inherrit the FIB, which is lucky.
604 		 */
605 		m_freem(m->m_next);
606 		m->m_next = NULL;
607 		m->m_data = (caddr_t)ipgen;
608 		/* m_len is set later */
609 		tlen = 0;
610 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
611 #ifdef INET6
612 		if (isipv6) {
613 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
614 			nth = (struct tcphdr *)(ip6 + 1);
615 		} else
616 #endif /* INET6 */
617 		{
618 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
619 			nth = (struct tcphdr *)(ip + 1);
620 		}
621 		if (th != nth) {
622 			/*
623 			 * this is usually a case when an extension header
624 			 * exists between the IPv6 header and the
625 			 * TCP header.
626 			 */
627 			nth->th_sport = th->th_sport;
628 			nth->th_dport = th->th_dport;
629 		}
630 		xchg(nth->th_dport, nth->th_sport, uint16_t);
631 #undef xchg
632 	}
633 #ifdef INET6
634 	if (isipv6) {
635 		ip6->ip6_flow = 0;
636 		ip6->ip6_vfc = IPV6_VERSION;
637 		ip6->ip6_nxt = IPPROTO_TCP;
638 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
639 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
640 	}
641 #endif
642 #if defined(INET) && defined(INET6)
643 	else
644 #endif
645 #ifdef INET
646 	{
647 		tlen += sizeof (struct tcpiphdr);
648 		ip->ip_len = htons(tlen);
649 		ip->ip_ttl = V_ip_defttl;
650 		if (V_path_mtu_discovery)
651 			ip->ip_off |= htons(IP_DF);
652 	}
653 #endif
654 	m->m_len = tlen;
655 	m->m_pkthdr.len = tlen;
656 	m->m_pkthdr.rcvif = NULL;
657 #ifdef MAC
658 	if (inp != NULL) {
659 		/*
660 		 * Packet is associated with a socket, so allow the
661 		 * label of the response to reflect the socket label.
662 		 */
663 		INP_WLOCK_ASSERT(inp);
664 		mac_inpcb_create_mbuf(inp, m);
665 	} else {
666 		/*
667 		 * Packet is not associated with a socket, so possibly
668 		 * update the label in place.
669 		 */
670 		mac_netinet_tcp_reply(m);
671 	}
672 #endif
673 	nth->th_seq = htonl(seq);
674 	nth->th_ack = htonl(ack);
675 	nth->th_x2 = 0;
676 	nth->th_off = sizeof (struct tcphdr) >> 2;
677 	nth->th_flags = flags;
678 	if (tp != NULL)
679 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
680 	else
681 		nth->th_win = htons((u_short)win);
682 	nth->th_urp = 0;
683 
684 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
685 #ifdef INET6
686 	if (isipv6) {
687 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
688 		nth->th_sum = in6_cksum_pseudo(ip6,
689 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
690 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
691 		    NULL, NULL);
692 	}
693 #endif /* INET6 */
694 #if defined(INET6) && defined(INET)
695 	else
696 #endif
697 #ifdef INET
698 	{
699 		m->m_pkthdr.csum_flags = CSUM_TCP;
700 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
701 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
702 	}
703 #endif /* INET */
704 #ifdef TCPDEBUG
705 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
706 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
707 #endif
708 	if (flags & TH_RST)
709 		TCP_PROBE5(accept_refused, NULL, NULL, m->m_data, tp, nth);
710 
711 	TCP_PROBE5(send, NULL, tp, m->m_data, tp, nth);
712 #ifdef INET6
713 	if (isipv6)
714 		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
715 #endif /* INET6 */
716 #if defined(INET) && defined(INET6)
717 	else
718 #endif
719 #ifdef INET
720 		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
721 #endif
722 }
723 
724 /*
725  * Create a new TCP control block, making an
726  * empty reassembly queue and hooking it to the argument
727  * protocol control block.  The `inp' parameter must have
728  * come from the zone allocator set up in tcp_init().
729  */
730 struct tcpcb *
731 tcp_newtcpcb(struct inpcb *inp)
732 {
733 	struct tcpcb_mem *tm;
734 	struct tcpcb *tp;
735 #ifdef INET6
736 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
737 #endif /* INET6 */
738 
739 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
740 	if (tm == NULL)
741 		return (NULL);
742 	tp = &tm->tcb;
743 
744 	/* Initialise cc_var struct for this tcpcb. */
745 	tp->ccv = &tm->ccv;
746 	tp->ccv->type = IPPROTO_TCP;
747 	tp->ccv->ccvc.tcp = tp;
748 
749 	/*
750 	 * Use the current system default CC algorithm.
751 	 */
752 	CC_LIST_RLOCK();
753 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
754 	CC_ALGO(tp) = CC_DEFAULT();
755 	CC_LIST_RUNLOCK();
756 
757 	if (CC_ALGO(tp)->cb_init != NULL)
758 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
759 			uma_zfree(V_tcpcb_zone, tm);
760 			return (NULL);
761 		}
762 
763 	tp->osd = &tm->osd;
764 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
765 		uma_zfree(V_tcpcb_zone, tm);
766 		return (NULL);
767 	}
768 
769 #ifdef VIMAGE
770 	tp->t_vnet = inp->inp_vnet;
771 #endif
772 	tp->t_timers = &tm->tt;
773 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
774 	tp->t_maxseg = tp->t_maxopd =
775 #ifdef INET6
776 		isipv6 ? V_tcp_v6mssdflt :
777 #endif /* INET6 */
778 		V_tcp_mssdflt;
779 
780 	/* Set up our timeouts. */
781 	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
782 	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
783 	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
784 	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
785 	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
786 
787 	if (V_tcp_do_rfc1323)
788 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
789 	if (V_tcp_do_sack)
790 		tp->t_flags |= TF_SACK_PERMIT;
791 	TAILQ_INIT(&tp->snd_holes);
792 	tp->t_inpcb = inp;	/* XXX */
793 	/*
794 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
795 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
796 	 * reasonable initial retransmit time.
797 	 */
798 	tp->t_srtt = TCPTV_SRTTBASE;
799 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
800 	tp->t_rttmin = tcp_rexmit_min;
801 	tp->t_rxtcur = TCPTV_RTOBASE;
802 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
803 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
804 	tp->t_rcvtime = ticks;
805 	/*
806 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
807 	 * because the socket may be bound to an IPv6 wildcard address,
808 	 * which may match an IPv4-mapped IPv6 address.
809 	 */
810 	inp->inp_ip_ttl = V_ip_defttl;
811 	inp->inp_ppcb = tp;
812 	return (tp);		/* XXX */
813 }
814 
815 /*
816  * Switch the congestion control algorithm back to NewReno for any active
817  * control blocks using an algorithm which is about to go away.
818  * This ensures the CC framework can allow the unload to proceed without leaving
819  * any dangling pointers which would trigger a panic.
820  * Returning non-zero would inform the CC framework that something went wrong
821  * and it would be unsafe to allow the unload to proceed. However, there is no
822  * way for this to occur with this implementation so we always return zero.
823  */
824 int
825 tcp_ccalgounload(struct cc_algo *unload_algo)
826 {
827 	struct cc_algo *tmpalgo;
828 	struct inpcb *inp;
829 	struct tcpcb *tp;
830 	VNET_ITERATOR_DECL(vnet_iter);
831 
832 	/*
833 	 * Check all active control blocks across all network stacks and change
834 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
835 	 * requires cleanup code to be run, call it.
836 	 */
837 	VNET_LIST_RLOCK();
838 	VNET_FOREACH(vnet_iter) {
839 		CURVNET_SET(vnet_iter);
840 		INP_INFO_RLOCK(&V_tcbinfo);
841 		/*
842 		 * New connections already part way through being initialised
843 		 * with the CC algo we're removing will not race with this code
844 		 * because the INP_INFO_WLOCK is held during initialisation. We
845 		 * therefore don't enter the loop below until the connection
846 		 * list has stabilised.
847 		 */
848 		LIST_FOREACH(inp, &V_tcb, inp_list) {
849 			INP_WLOCK(inp);
850 			/* Important to skip tcptw structs. */
851 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
852 			    (tp = intotcpcb(inp)) != NULL) {
853 				/*
854 				 * By holding INP_WLOCK here, we are assured
855 				 * that the connection is not currently
856 				 * executing inside the CC module's functions
857 				 * i.e. it is safe to make the switch back to
858 				 * NewReno.
859 				 */
860 				if (CC_ALGO(tp) == unload_algo) {
861 					tmpalgo = CC_ALGO(tp);
862 					/* NewReno does not require any init. */
863 					CC_ALGO(tp) = &newreno_cc_algo;
864 					if (tmpalgo->cb_destroy != NULL)
865 						tmpalgo->cb_destroy(tp->ccv);
866 				}
867 			}
868 			INP_WUNLOCK(inp);
869 		}
870 		INP_INFO_RUNLOCK(&V_tcbinfo);
871 		CURVNET_RESTORE();
872 	}
873 	VNET_LIST_RUNLOCK();
874 
875 	return (0);
876 }
877 
878 /*
879  * Drop a TCP connection, reporting
880  * the specified error.  If connection is synchronized,
881  * then send a RST to peer.
882  */
883 struct tcpcb *
884 tcp_drop(struct tcpcb *tp, int errno)
885 {
886 	struct socket *so = tp->t_inpcb->inp_socket;
887 
888 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
889 	INP_WLOCK_ASSERT(tp->t_inpcb);
890 
891 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
892 		tcp_state_change(tp, TCPS_CLOSED);
893 		(void) tcp_output(tp);
894 		TCPSTAT_INC(tcps_drops);
895 	} else
896 		TCPSTAT_INC(tcps_conndrops);
897 	if (errno == ETIMEDOUT && tp->t_softerror)
898 		errno = tp->t_softerror;
899 	so->so_error = errno;
900 	return (tcp_close(tp));
901 }
902 
903 void
904 tcp_discardcb(struct tcpcb *tp)
905 {
906 	struct inpcb *inp = tp->t_inpcb;
907 	struct socket *so = inp->inp_socket;
908 #ifdef INET6
909 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
910 #endif /* INET6 */
911 
912 	INP_WLOCK_ASSERT(inp);
913 
914 	/*
915 	 * Make sure that all of our timers are stopped before we delete the
916 	 * PCB.
917 	 *
918 	 * XXXRW: Really, we would like to use callout_drain() here in order
919 	 * to avoid races experienced in tcp_timer.c where a timer is already
920 	 * executing at this point.  However, we can't, both because we're
921 	 * running in a context where we can't sleep, and also because we
922 	 * hold locks required by the timers.  What we instead need to do is
923 	 * test to see if callout_drain() is required, and if so, defer some
924 	 * portion of the remainder of tcp_discardcb() to an asynchronous
925 	 * context that can callout_drain() and then continue.  Some care
926 	 * will be required to ensure that no further processing takes place
927 	 * on the tcpcb, even though it hasn't been freed (a flag?).
928 	 */
929 	callout_stop(&tp->t_timers->tt_rexmt);
930 	callout_stop(&tp->t_timers->tt_persist);
931 	callout_stop(&tp->t_timers->tt_keep);
932 	callout_stop(&tp->t_timers->tt_2msl);
933 	callout_stop(&tp->t_timers->tt_delack);
934 
935 	/*
936 	 * If we got enough samples through the srtt filter,
937 	 * save the rtt and rttvar in the routing entry.
938 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
939 	 * 4 samples is enough for the srtt filter to converge
940 	 * to within enough % of the correct value; fewer samples
941 	 * and we could save a bogus rtt. The danger is not high
942 	 * as tcp quickly recovers from everything.
943 	 * XXX: Works very well but needs some more statistics!
944 	 */
945 	if (tp->t_rttupdated >= 4) {
946 		struct hc_metrics_lite metrics;
947 		u_long ssthresh;
948 
949 		bzero(&metrics, sizeof(metrics));
950 		/*
951 		 * Update the ssthresh always when the conditions below
952 		 * are satisfied. This gives us better new start value
953 		 * for the congestion avoidance for new connections.
954 		 * ssthresh is only set if packet loss occured on a session.
955 		 *
956 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
957 		 * being torn down.  Ideally this code would not use 'so'.
958 		 */
959 		ssthresh = tp->snd_ssthresh;
960 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
961 			/*
962 			 * convert the limit from user data bytes to
963 			 * packets then to packet data bytes.
964 			 */
965 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
966 			if (ssthresh < 2)
967 				ssthresh = 2;
968 			ssthresh *= (u_long)(tp->t_maxseg +
969 #ifdef INET6
970 			    (isipv6 ? sizeof (struct ip6_hdr) +
971 				sizeof (struct tcphdr) :
972 #endif
973 				sizeof (struct tcpiphdr)
974 #ifdef INET6
975 			    )
976 #endif
977 			    );
978 		} else
979 			ssthresh = 0;
980 		metrics.rmx_ssthresh = ssthresh;
981 
982 		metrics.rmx_rtt = tp->t_srtt;
983 		metrics.rmx_rttvar = tp->t_rttvar;
984 		metrics.rmx_cwnd = tp->snd_cwnd;
985 		metrics.rmx_sendpipe = 0;
986 		metrics.rmx_recvpipe = 0;
987 
988 		tcp_hc_update(&inp->inp_inc, &metrics);
989 	}
990 
991 	/* free the reassembly queue, if any */
992 	tcp_reass_flush(tp);
993 
994 #ifdef TCP_OFFLOAD
995 	/* Disconnect offload device, if any. */
996 	if (tp->t_flags & TF_TOE)
997 		tcp_offload_detach(tp);
998 #endif
999 
1000 	tcp_free_sackholes(tp);
1001 
1002 	/* Allow the CC algorithm to clean up after itself. */
1003 	if (CC_ALGO(tp)->cb_destroy != NULL)
1004 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1005 
1006 	khelp_destroy_osd(tp->osd);
1007 
1008 	CC_ALGO(tp) = NULL;
1009 	inp->inp_ppcb = NULL;
1010 	tp->t_inpcb = NULL;
1011 	uma_zfree(V_tcpcb_zone, tp);
1012 }
1013 
1014 /*
1015  * Attempt to close a TCP control block, marking it as dropped, and freeing
1016  * the socket if we hold the only reference.
1017  */
1018 struct tcpcb *
1019 tcp_close(struct tcpcb *tp)
1020 {
1021 	struct inpcb *inp = tp->t_inpcb;
1022 	struct socket *so;
1023 
1024 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1025 	INP_WLOCK_ASSERT(inp);
1026 
1027 #ifdef TCP_OFFLOAD
1028 	if (tp->t_state == TCPS_LISTEN)
1029 		tcp_offload_listen_stop(tp);
1030 #endif
1031 	in_pcbdrop(inp);
1032 	TCPSTAT_INC(tcps_closed);
1033 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1034 	so = inp->inp_socket;
1035 	soisdisconnected(so);
1036 	if (inp->inp_flags & INP_SOCKREF) {
1037 		KASSERT(so->so_state & SS_PROTOREF,
1038 		    ("tcp_close: !SS_PROTOREF"));
1039 		inp->inp_flags &= ~INP_SOCKREF;
1040 		INP_WUNLOCK(inp);
1041 		ACCEPT_LOCK();
1042 		SOCK_LOCK(so);
1043 		so->so_state &= ~SS_PROTOREF;
1044 		sofree(so);
1045 		return (NULL);
1046 	}
1047 	return (tp);
1048 }
1049 
1050 void
1051 tcp_drain(void)
1052 {
1053 	VNET_ITERATOR_DECL(vnet_iter);
1054 
1055 	if (!do_tcpdrain)
1056 		return;
1057 
1058 	VNET_LIST_RLOCK_NOSLEEP();
1059 	VNET_FOREACH(vnet_iter) {
1060 		CURVNET_SET(vnet_iter);
1061 		struct inpcb *inpb;
1062 		struct tcpcb *tcpb;
1063 
1064 	/*
1065 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1066 	 * if there is one...
1067 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1068 	 *      reassembly queue should be flushed, but in a situation
1069 	 *	where we're really low on mbufs, this is potentially
1070 	 *	useful.
1071 	 */
1072 		INP_INFO_RLOCK(&V_tcbinfo);
1073 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1074 			if (inpb->inp_flags & INP_TIMEWAIT)
1075 				continue;
1076 			INP_WLOCK(inpb);
1077 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1078 				tcp_reass_flush(tcpb);
1079 				tcp_clean_sackreport(tcpb);
1080 			}
1081 			INP_WUNLOCK(inpb);
1082 		}
1083 		INP_INFO_RUNLOCK(&V_tcbinfo);
1084 		CURVNET_RESTORE();
1085 	}
1086 	VNET_LIST_RUNLOCK_NOSLEEP();
1087 }
1088 
1089 /*
1090  * Notify a tcp user of an asynchronous error;
1091  * store error as soft error, but wake up user
1092  * (for now, won't do anything until can select for soft error).
1093  *
1094  * Do not wake up user since there currently is no mechanism for
1095  * reporting soft errors (yet - a kqueue filter may be added).
1096  */
1097 static struct inpcb *
1098 tcp_notify(struct inpcb *inp, int error)
1099 {
1100 	struct tcpcb *tp;
1101 
1102 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1103 	INP_WLOCK_ASSERT(inp);
1104 
1105 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1106 	    (inp->inp_flags & INP_DROPPED))
1107 		return (inp);
1108 
1109 	tp = intotcpcb(inp);
1110 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1111 
1112 	/*
1113 	 * Ignore some errors if we are hooked up.
1114 	 * If connection hasn't completed, has retransmitted several times,
1115 	 * and receives a second error, give up now.  This is better
1116 	 * than waiting a long time to establish a connection that
1117 	 * can never complete.
1118 	 */
1119 	if (tp->t_state == TCPS_ESTABLISHED &&
1120 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1121 	     error == EHOSTDOWN)) {
1122 		return (inp);
1123 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1124 	    tp->t_softerror) {
1125 		tp = tcp_drop(tp, error);
1126 		if (tp != NULL)
1127 			return (inp);
1128 		else
1129 			return (NULL);
1130 	} else {
1131 		tp->t_softerror = error;
1132 		return (inp);
1133 	}
1134 #if 0
1135 	wakeup( &so->so_timeo);
1136 	sorwakeup(so);
1137 	sowwakeup(so);
1138 #endif
1139 }
1140 
1141 static int
1142 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1143 {
1144 	int error, i, m, n, pcb_count;
1145 	struct inpcb *inp, **inp_list;
1146 	inp_gen_t gencnt;
1147 	struct xinpgen xig;
1148 
1149 	/*
1150 	 * The process of preparing the TCB list is too time-consuming and
1151 	 * resource-intensive to repeat twice on every request.
1152 	 */
1153 	if (req->oldptr == NULL) {
1154 		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1155 		n += imax(n / 8, 10);
1156 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1157 		return (0);
1158 	}
1159 
1160 	if (req->newptr != NULL)
1161 		return (EPERM);
1162 
1163 	/*
1164 	 * OK, now we're committed to doing something.
1165 	 */
1166 	INP_INFO_RLOCK(&V_tcbinfo);
1167 	gencnt = V_tcbinfo.ipi_gencnt;
1168 	n = V_tcbinfo.ipi_count;
1169 	INP_INFO_RUNLOCK(&V_tcbinfo);
1170 
1171 	m = syncache_pcbcount();
1172 
1173 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1174 		+ (n + m) * sizeof(struct xtcpcb));
1175 	if (error != 0)
1176 		return (error);
1177 
1178 	xig.xig_len = sizeof xig;
1179 	xig.xig_count = n + m;
1180 	xig.xig_gen = gencnt;
1181 	xig.xig_sogen = so_gencnt;
1182 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1183 	if (error)
1184 		return (error);
1185 
1186 	error = syncache_pcblist(req, m, &pcb_count);
1187 	if (error)
1188 		return (error);
1189 
1190 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1191 	if (inp_list == NULL)
1192 		return (ENOMEM);
1193 
1194 	INP_INFO_RLOCK(&V_tcbinfo);
1195 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1196 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1197 		INP_WLOCK(inp);
1198 		if (inp->inp_gencnt <= gencnt) {
1199 			/*
1200 			 * XXX: This use of cr_cansee(), introduced with
1201 			 * TCP state changes, is not quite right, but for
1202 			 * now, better than nothing.
1203 			 */
1204 			if (inp->inp_flags & INP_TIMEWAIT) {
1205 				if (intotw(inp) != NULL)
1206 					error = cr_cansee(req->td->td_ucred,
1207 					    intotw(inp)->tw_cred);
1208 				else
1209 					error = EINVAL;	/* Skip this inp. */
1210 			} else
1211 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1212 			if (error == 0) {
1213 				in_pcbref(inp);
1214 				inp_list[i++] = inp;
1215 			}
1216 		}
1217 		INP_WUNLOCK(inp);
1218 	}
1219 	INP_INFO_RUNLOCK(&V_tcbinfo);
1220 	n = i;
1221 
1222 	error = 0;
1223 	for (i = 0; i < n; i++) {
1224 		inp = inp_list[i];
1225 		INP_RLOCK(inp);
1226 		if (inp->inp_gencnt <= gencnt) {
1227 			struct xtcpcb xt;
1228 			void *inp_ppcb;
1229 
1230 			bzero(&xt, sizeof(xt));
1231 			xt.xt_len = sizeof xt;
1232 			/* XXX should avoid extra copy */
1233 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1234 			inp_ppcb = inp->inp_ppcb;
1235 			if (inp_ppcb == NULL)
1236 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1237 			else if (inp->inp_flags & INP_TIMEWAIT) {
1238 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1239 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1240 			} else {
1241 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1242 				if (xt.xt_tp.t_timers)
1243 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1244 			}
1245 			if (inp->inp_socket != NULL)
1246 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1247 			else {
1248 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1249 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1250 			}
1251 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1252 			INP_RUNLOCK(inp);
1253 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1254 		} else
1255 			INP_RUNLOCK(inp);
1256 	}
1257 	INP_INFO_WLOCK(&V_tcbinfo);
1258 	for (i = 0; i < n; i++) {
1259 		inp = inp_list[i];
1260 		INP_RLOCK(inp);
1261 		if (!in_pcbrele_rlocked(inp))
1262 			INP_RUNLOCK(inp);
1263 	}
1264 	INP_INFO_WUNLOCK(&V_tcbinfo);
1265 
1266 	if (!error) {
1267 		/*
1268 		 * Give the user an updated idea of our state.
1269 		 * If the generation differs from what we told
1270 		 * her before, she knows that something happened
1271 		 * while we were processing this request, and it
1272 		 * might be necessary to retry.
1273 		 */
1274 		INP_INFO_RLOCK(&V_tcbinfo);
1275 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1276 		xig.xig_sogen = so_gencnt;
1277 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1278 		INP_INFO_RUNLOCK(&V_tcbinfo);
1279 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1280 	}
1281 	free(inp_list, M_TEMP);
1282 	return (error);
1283 }
1284 
1285 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1286     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1287     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1288 
1289 #ifdef INET
1290 static int
1291 tcp_getcred(SYSCTL_HANDLER_ARGS)
1292 {
1293 	struct xucred xuc;
1294 	struct sockaddr_in addrs[2];
1295 	struct inpcb *inp;
1296 	int error;
1297 
1298 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1299 	if (error)
1300 		return (error);
1301 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1302 	if (error)
1303 		return (error);
1304 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1305 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1306 	if (inp != NULL) {
1307 		if (inp->inp_socket == NULL)
1308 			error = ENOENT;
1309 		if (error == 0)
1310 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1311 		if (error == 0)
1312 			cru2x(inp->inp_cred, &xuc);
1313 		INP_RUNLOCK(inp);
1314 	} else
1315 		error = ENOENT;
1316 	if (error == 0)
1317 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1318 	return (error);
1319 }
1320 
1321 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1322     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1323     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1324 #endif /* INET */
1325 
1326 #ifdef INET6
1327 static int
1328 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1329 {
1330 	struct xucred xuc;
1331 	struct sockaddr_in6 addrs[2];
1332 	struct inpcb *inp;
1333 	int error;
1334 #ifdef INET
1335 	int mapped = 0;
1336 #endif
1337 
1338 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1339 	if (error)
1340 		return (error);
1341 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1342 	if (error)
1343 		return (error);
1344 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1345 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1346 		return (error);
1347 	}
1348 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1349 #ifdef INET
1350 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1351 			mapped = 1;
1352 		else
1353 #endif
1354 			return (EINVAL);
1355 	}
1356 
1357 #ifdef INET
1358 	if (mapped == 1)
1359 		inp = in_pcblookup(&V_tcbinfo,
1360 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1361 			addrs[1].sin6_port,
1362 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1363 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1364 	else
1365 #endif
1366 		inp = in6_pcblookup(&V_tcbinfo,
1367 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1368 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1369 			INPLOOKUP_RLOCKPCB, NULL);
1370 	if (inp != NULL) {
1371 		if (inp->inp_socket == NULL)
1372 			error = ENOENT;
1373 		if (error == 0)
1374 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1375 		if (error == 0)
1376 			cru2x(inp->inp_cred, &xuc);
1377 		INP_RUNLOCK(inp);
1378 	} else
1379 		error = ENOENT;
1380 	if (error == 0)
1381 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1382 	return (error);
1383 }
1384 
1385 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1386     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1387     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1388 #endif /* INET6 */
1389 
1390 
1391 #ifdef INET
1392 void
1393 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1394 {
1395 	struct ip *ip = vip;
1396 	struct tcphdr *th;
1397 	struct in_addr faddr;
1398 	struct inpcb *inp;
1399 	struct tcpcb *tp;
1400 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1401 	struct icmp *icp;
1402 	struct in_conninfo inc;
1403 	tcp_seq icmp_tcp_seq;
1404 	int mtu;
1405 
1406 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1407 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1408 		return;
1409 
1410 	if (cmd == PRC_MSGSIZE)
1411 		notify = tcp_mtudisc_notify;
1412 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1413 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1414 		notify = tcp_drop_syn_sent;
1415 	/*
1416 	 * Redirects don't need to be handled up here.
1417 	 */
1418 	else if (PRC_IS_REDIRECT(cmd))
1419 		return;
1420 	/*
1421 	 * Source quench is depreciated.
1422 	 */
1423 	else if (cmd == PRC_QUENCH)
1424 		return;
1425 	/*
1426 	 * Hostdead is ugly because it goes linearly through all PCBs.
1427 	 * XXX: We never get this from ICMP, otherwise it makes an
1428 	 * excellent DoS attack on machines with many connections.
1429 	 */
1430 	else if (cmd == PRC_HOSTDEAD)
1431 		ip = NULL;
1432 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1433 		return;
1434 	if (ip != NULL) {
1435 		icp = (struct icmp *)((caddr_t)ip
1436 				      - offsetof(struct icmp, icmp_ip));
1437 		th = (struct tcphdr *)((caddr_t)ip
1438 				       + (ip->ip_hl << 2));
1439 		INP_INFO_WLOCK(&V_tcbinfo);
1440 		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1441 		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1442 		if (inp != NULL)  {
1443 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1444 			    !(inp->inp_flags & INP_DROPPED) &&
1445 			    !(inp->inp_socket == NULL)) {
1446 				icmp_tcp_seq = htonl(th->th_seq);
1447 				tp = intotcpcb(inp);
1448 				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1449 				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1450 					if (cmd == PRC_MSGSIZE) {
1451 					    /*
1452 					     * MTU discovery:
1453 					     * If we got a needfrag set the MTU
1454 					     * in the route to the suggested new
1455 					     * value (if given) and then notify.
1456 					     */
1457 					    bzero(&inc, sizeof(inc));
1458 					    inc.inc_faddr = faddr;
1459 					    inc.inc_fibnum =
1460 						inp->inp_inc.inc_fibnum;
1461 
1462 					    mtu = ntohs(icp->icmp_nextmtu);
1463 					    /*
1464 					     * If no alternative MTU was
1465 					     * proposed, try the next smaller
1466 					     * one.
1467 					     */
1468 					    if (!mtu)
1469 						mtu = ip_next_mtu(
1470 						 ntohs(ip->ip_len), 1);
1471 					    if (mtu < V_tcp_minmss
1472 						 + sizeof(struct tcpiphdr))
1473 						mtu = V_tcp_minmss
1474 						 + sizeof(struct tcpiphdr);
1475 					    /*
1476 					     * Only cache the MTU if it
1477 					     * is smaller than the interface
1478 					     * or route MTU.  tcp_mtudisc()
1479 					     * will do right thing by itself.
1480 					     */
1481 					    if (mtu <= tcp_maxmtu(&inc, NULL))
1482 						tcp_hc_updatemtu(&inc, mtu);
1483 					    tcp_mtudisc(inp, mtu);
1484 					} else
1485 						inp = (*notify)(inp,
1486 						    inetctlerrmap[cmd]);
1487 				}
1488 			}
1489 			if (inp != NULL)
1490 				INP_WUNLOCK(inp);
1491 		} else {
1492 			bzero(&inc, sizeof(inc));
1493 			inc.inc_fport = th->th_dport;
1494 			inc.inc_lport = th->th_sport;
1495 			inc.inc_faddr = faddr;
1496 			inc.inc_laddr = ip->ip_src;
1497 			syncache_unreach(&inc, th);
1498 		}
1499 		INP_INFO_WUNLOCK(&V_tcbinfo);
1500 	} else
1501 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1502 }
1503 #endif /* INET */
1504 
1505 #ifdef INET6
1506 void
1507 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1508 {
1509 	struct tcphdr th;
1510 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1511 	struct ip6_hdr *ip6;
1512 	struct mbuf *m;
1513 	struct ip6ctlparam *ip6cp = NULL;
1514 	const struct sockaddr_in6 *sa6_src = NULL;
1515 	int off;
1516 	struct tcp_portonly {
1517 		u_int16_t th_sport;
1518 		u_int16_t th_dport;
1519 	} *thp;
1520 
1521 	if (sa->sa_family != AF_INET6 ||
1522 	    sa->sa_len != sizeof(struct sockaddr_in6))
1523 		return;
1524 
1525 	if (cmd == PRC_MSGSIZE)
1526 		notify = tcp_mtudisc_notify;
1527 	else if (!PRC_IS_REDIRECT(cmd) &&
1528 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1529 		return;
1530 	/* Source quench is depreciated. */
1531 	else if (cmd == PRC_QUENCH)
1532 		return;
1533 
1534 	/* if the parameter is from icmp6, decode it. */
1535 	if (d != NULL) {
1536 		ip6cp = (struct ip6ctlparam *)d;
1537 		m = ip6cp->ip6c_m;
1538 		ip6 = ip6cp->ip6c_ip6;
1539 		off = ip6cp->ip6c_off;
1540 		sa6_src = ip6cp->ip6c_src;
1541 	} else {
1542 		m = NULL;
1543 		ip6 = NULL;
1544 		off = 0;	/* fool gcc */
1545 		sa6_src = &sa6_any;
1546 	}
1547 
1548 	if (ip6 != NULL) {
1549 		struct in_conninfo inc;
1550 		/*
1551 		 * XXX: We assume that when IPV6 is non NULL,
1552 		 * M and OFF are valid.
1553 		 */
1554 
1555 		/* check if we can safely examine src and dst ports */
1556 		if (m->m_pkthdr.len < off + sizeof(*thp))
1557 			return;
1558 
1559 		bzero(&th, sizeof(th));
1560 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1561 
1562 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1563 		    (struct sockaddr *)ip6cp->ip6c_src,
1564 		    th.th_sport, cmd, NULL, notify);
1565 
1566 		bzero(&inc, sizeof(inc));
1567 		inc.inc_fport = th.th_dport;
1568 		inc.inc_lport = th.th_sport;
1569 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1570 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1571 		inc.inc_flags |= INC_ISIPV6;
1572 		INP_INFO_WLOCK(&V_tcbinfo);
1573 		syncache_unreach(&inc, &th);
1574 		INP_INFO_WUNLOCK(&V_tcbinfo);
1575 	} else
1576 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1577 			      0, cmd, NULL, notify);
1578 }
1579 #endif /* INET6 */
1580 
1581 
1582 /*
1583  * Following is where TCP initial sequence number generation occurs.
1584  *
1585  * There are two places where we must use initial sequence numbers:
1586  * 1.  In SYN-ACK packets.
1587  * 2.  In SYN packets.
1588  *
1589  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1590  * tcp_syncache.c for details.
1591  *
1592  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1593  * depends on this property.  In addition, these ISNs should be
1594  * unguessable so as to prevent connection hijacking.  To satisfy
1595  * the requirements of this situation, the algorithm outlined in
1596  * RFC 1948 is used, with only small modifications.
1597  *
1598  * Implementation details:
1599  *
1600  * Time is based off the system timer, and is corrected so that it
1601  * increases by one megabyte per second.  This allows for proper
1602  * recycling on high speed LANs while still leaving over an hour
1603  * before rollover.
1604  *
1605  * As reading the *exact* system time is too expensive to be done
1606  * whenever setting up a TCP connection, we increment the time
1607  * offset in two ways.  First, a small random positive increment
1608  * is added to isn_offset for each connection that is set up.
1609  * Second, the function tcp_isn_tick fires once per clock tick
1610  * and increments isn_offset as necessary so that sequence numbers
1611  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1612  * random positive increments serve only to ensure that the same
1613  * exact sequence number is never sent out twice (as could otherwise
1614  * happen when a port is recycled in less than the system tick
1615  * interval.)
1616  *
1617  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1618  * between seeding of isn_secret.  This is normally set to zero,
1619  * as reseeding should not be necessary.
1620  *
1621  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1622  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1623  * general, this means holding an exclusive (write) lock.
1624  */
1625 
1626 #define ISN_BYTES_PER_SECOND 1048576
1627 #define ISN_STATIC_INCREMENT 4096
1628 #define ISN_RANDOM_INCREMENT (4096 - 1)
1629 
1630 static VNET_DEFINE(u_char, isn_secret[32]);
1631 static VNET_DEFINE(int, isn_last);
1632 static VNET_DEFINE(int, isn_last_reseed);
1633 static VNET_DEFINE(u_int32_t, isn_offset);
1634 static VNET_DEFINE(u_int32_t, isn_offset_old);
1635 
1636 #define	V_isn_secret			VNET(isn_secret)
1637 #define	V_isn_last			VNET(isn_last)
1638 #define	V_isn_last_reseed		VNET(isn_last_reseed)
1639 #define	V_isn_offset			VNET(isn_offset)
1640 #define	V_isn_offset_old		VNET(isn_offset_old)
1641 
1642 tcp_seq
1643 tcp_new_isn(struct tcpcb *tp)
1644 {
1645 	MD5_CTX isn_ctx;
1646 	u_int32_t md5_buffer[4];
1647 	tcp_seq new_isn;
1648 	u_int32_t projected_offset;
1649 
1650 	INP_WLOCK_ASSERT(tp->t_inpcb);
1651 
1652 	ISN_LOCK();
1653 	/* Seed if this is the first use, reseed if requested. */
1654 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1655 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1656 		< (u_int)ticks))) {
1657 		read_random(&V_isn_secret, sizeof(V_isn_secret));
1658 		V_isn_last_reseed = ticks;
1659 	}
1660 
1661 	/* Compute the md5 hash and return the ISN. */
1662 	MD5Init(&isn_ctx);
1663 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1664 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1665 #ifdef INET6
1666 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1667 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1668 			  sizeof(struct in6_addr));
1669 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1670 			  sizeof(struct in6_addr));
1671 	} else
1672 #endif
1673 	{
1674 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1675 			  sizeof(struct in_addr));
1676 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1677 			  sizeof(struct in_addr));
1678 	}
1679 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1680 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1681 	new_isn = (tcp_seq) md5_buffer[0];
1682 	V_isn_offset += ISN_STATIC_INCREMENT +
1683 		(arc4random() & ISN_RANDOM_INCREMENT);
1684 	if (ticks != V_isn_last) {
1685 		projected_offset = V_isn_offset_old +
1686 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1687 		if (SEQ_GT(projected_offset, V_isn_offset))
1688 			V_isn_offset = projected_offset;
1689 		V_isn_offset_old = V_isn_offset;
1690 		V_isn_last = ticks;
1691 	}
1692 	new_isn += V_isn_offset;
1693 	ISN_UNLOCK();
1694 	return (new_isn);
1695 }
1696 
1697 /*
1698  * When a specific ICMP unreachable message is received and the
1699  * connection state is SYN-SENT, drop the connection.  This behavior
1700  * is controlled by the icmp_may_rst sysctl.
1701  */
1702 struct inpcb *
1703 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1704 {
1705 	struct tcpcb *tp;
1706 
1707 	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1708 	INP_WLOCK_ASSERT(inp);
1709 
1710 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1711 	    (inp->inp_flags & INP_DROPPED))
1712 		return (inp);
1713 
1714 	tp = intotcpcb(inp);
1715 	if (tp->t_state != TCPS_SYN_SENT)
1716 		return (inp);
1717 
1718 	tp = tcp_drop(tp, errno);
1719 	if (tp != NULL)
1720 		return (inp);
1721 	else
1722 		return (NULL);
1723 }
1724 
1725 /*
1726  * When `need fragmentation' ICMP is received, update our idea of the MSS
1727  * based on the new value. Also nudge TCP to send something, since we
1728  * know the packet we just sent was dropped.
1729  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1730  */
1731 static struct inpcb *
1732 tcp_mtudisc_notify(struct inpcb *inp, int error)
1733 {
1734 
1735 	return (tcp_mtudisc(inp, -1));
1736 }
1737 
1738 struct inpcb *
1739 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1740 {
1741 	struct tcpcb *tp;
1742 	struct socket *so;
1743 
1744 	INP_WLOCK_ASSERT(inp);
1745 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1746 	    (inp->inp_flags & INP_DROPPED))
1747 		return (inp);
1748 
1749 	tp = intotcpcb(inp);
1750 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1751 
1752 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1753 
1754 	so = inp->inp_socket;
1755 	SOCKBUF_LOCK(&so->so_snd);
1756 	/* If the mss is larger than the socket buffer, decrease the mss. */
1757 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1758 		tp->t_maxseg = so->so_snd.sb_hiwat;
1759 	SOCKBUF_UNLOCK(&so->so_snd);
1760 
1761 	TCPSTAT_INC(tcps_mturesent);
1762 	tp->t_rtttime = 0;
1763 	tp->snd_nxt = tp->snd_una;
1764 	tcp_free_sackholes(tp);
1765 	tp->snd_recover = tp->snd_max;
1766 	if (tp->t_flags & TF_SACK_PERMIT)
1767 		EXIT_FASTRECOVERY(tp->t_flags);
1768 	tcp_output(tp);
1769 	return (inp);
1770 }
1771 
1772 #ifdef INET
1773 /*
1774  * Look-up the routing entry to the peer of this inpcb.  If no route
1775  * is found and it cannot be allocated, then return 0.  This routine
1776  * is called by TCP routines that access the rmx structure and by
1777  * tcp_mss_update to get the peer/interface MTU.
1778  */
1779 u_long
1780 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1781 {
1782 	struct route sro;
1783 	struct sockaddr_in *dst;
1784 	struct ifnet *ifp;
1785 	u_long maxmtu = 0;
1786 
1787 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1788 
1789 	bzero(&sro, sizeof(sro));
1790 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1791 	        dst = (struct sockaddr_in *)&sro.ro_dst;
1792 		dst->sin_family = AF_INET;
1793 		dst->sin_len = sizeof(*dst);
1794 		dst->sin_addr = inc->inc_faddr;
1795 		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1796 	}
1797 	if (sro.ro_rt != NULL) {
1798 		ifp = sro.ro_rt->rt_ifp;
1799 		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1800 			maxmtu = ifp->if_mtu;
1801 		else
1802 			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1803 
1804 		/* Report additional interface capabilities. */
1805 		if (cap != NULL) {
1806 			if (ifp->if_capenable & IFCAP_TSO4 &&
1807 			    ifp->if_hwassist & CSUM_TSO)
1808 				cap->ifcap |= CSUM_TSO;
1809 				cap->tsomax = ifp->if_hw_tsomax;
1810 		}
1811 		RTFREE(sro.ro_rt);
1812 	}
1813 	return (maxmtu);
1814 }
1815 #endif /* INET */
1816 
1817 #ifdef INET6
1818 u_long
1819 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1820 {
1821 	struct route_in6 sro6;
1822 	struct ifnet *ifp;
1823 	u_long maxmtu = 0;
1824 
1825 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1826 
1827 	bzero(&sro6, sizeof(sro6));
1828 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1829 		sro6.ro_dst.sin6_family = AF_INET6;
1830 		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1831 		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1832 		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1833 	}
1834 	if (sro6.ro_rt != NULL) {
1835 		ifp = sro6.ro_rt->rt_ifp;
1836 		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1837 			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1838 		else
1839 			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1840 				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1841 
1842 		/* Report additional interface capabilities. */
1843 		if (cap != NULL) {
1844 			if (ifp->if_capenable & IFCAP_TSO6 &&
1845 			    ifp->if_hwassist & CSUM_TSO)
1846 				cap->ifcap |= CSUM_TSO;
1847 				cap->tsomax = ifp->if_hw_tsomax;
1848 		}
1849 		RTFREE(sro6.ro_rt);
1850 	}
1851 
1852 	return (maxmtu);
1853 }
1854 #endif /* INET6 */
1855 
1856 #ifdef IPSEC
1857 /* compute ESP/AH header size for TCP, including outer IP header. */
1858 size_t
1859 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1860 {
1861 	struct inpcb *inp;
1862 	struct mbuf *m;
1863 	size_t hdrsiz;
1864 	struct ip *ip;
1865 #ifdef INET6
1866 	struct ip6_hdr *ip6;
1867 #endif
1868 	struct tcphdr *th;
1869 
1870 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1871 		return (0);
1872 	m = m_gethdr(M_NOWAIT, MT_DATA);
1873 	if (!m)
1874 		return (0);
1875 
1876 #ifdef INET6
1877 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1878 		ip6 = mtod(m, struct ip6_hdr *);
1879 		th = (struct tcphdr *)(ip6 + 1);
1880 		m->m_pkthdr.len = m->m_len =
1881 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1882 		tcpip_fillheaders(inp, ip6, th);
1883 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1884 	} else
1885 #endif /* INET6 */
1886 	{
1887 		ip = mtod(m, struct ip *);
1888 		th = (struct tcphdr *)(ip + 1);
1889 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1890 		tcpip_fillheaders(inp, ip, th);
1891 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1892 	}
1893 
1894 	m_free(m);
1895 	return (hdrsiz);
1896 }
1897 #endif /* IPSEC */
1898 
1899 #ifdef TCP_SIGNATURE
1900 /*
1901  * Callback function invoked by m_apply() to digest TCP segment data
1902  * contained within an mbuf chain.
1903  */
1904 static int
1905 tcp_signature_apply(void *fstate, void *data, u_int len)
1906 {
1907 
1908 	MD5Update(fstate, (u_char *)data, len);
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1914  *
1915  * Parameters:
1916  * m		pointer to head of mbuf chain
1917  * _unused
1918  * len		length of TCP segment data, excluding options
1919  * optlen	length of TCP segment options
1920  * buf		pointer to storage for computed MD5 digest
1921  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1922  *
1923  * We do this over ip, tcphdr, segment data, and the key in the SADB.
1924  * When called from tcp_input(), we can be sure that th_sum has been
1925  * zeroed out and verified already.
1926  *
1927  * Return 0 if successful, otherwise return -1.
1928  *
1929  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1930  * search with the destination IP address, and a 'magic SPI' to be
1931  * determined by the application. This is hardcoded elsewhere to 1179
1932  * right now. Another branch of this code exists which uses the SPD to
1933  * specify per-application flows but it is unstable.
1934  */
1935 int
1936 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1937     u_char *buf, u_int direction)
1938 {
1939 	union sockaddr_union dst;
1940 #ifdef INET
1941 	struct ippseudo ippseudo;
1942 #endif
1943 	MD5_CTX ctx;
1944 	int doff;
1945 	struct ip *ip;
1946 #ifdef INET
1947 	struct ipovly *ipovly;
1948 #endif
1949 	struct secasvar *sav;
1950 	struct tcphdr *th;
1951 #ifdef INET6
1952 	struct ip6_hdr *ip6;
1953 	struct in6_addr in6;
1954 	char ip6buf[INET6_ADDRSTRLEN];
1955 	uint32_t plen;
1956 	uint16_t nhdr;
1957 #endif
1958 	u_short savecsum;
1959 
1960 	KASSERT(m != NULL, ("NULL mbuf chain"));
1961 	KASSERT(buf != NULL, ("NULL signature pointer"));
1962 
1963 	/* Extract the destination from the IP header in the mbuf. */
1964 	bzero(&dst, sizeof(union sockaddr_union));
1965 	ip = mtod(m, struct ip *);
1966 #ifdef INET6
1967 	ip6 = NULL;	/* Make the compiler happy. */
1968 #endif
1969 	switch (ip->ip_v) {
1970 #ifdef INET
1971 	case IPVERSION:
1972 		dst.sa.sa_len = sizeof(struct sockaddr_in);
1973 		dst.sa.sa_family = AF_INET;
1974 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1975 		    ip->ip_src : ip->ip_dst;
1976 		break;
1977 #endif
1978 #ifdef INET6
1979 	case (IPV6_VERSION >> 4):
1980 		ip6 = mtod(m, struct ip6_hdr *);
1981 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
1982 		dst.sa.sa_family = AF_INET6;
1983 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1984 		    ip6->ip6_src : ip6->ip6_dst;
1985 		break;
1986 #endif
1987 	default:
1988 		return (EINVAL);
1989 		/* NOTREACHED */
1990 		break;
1991 	}
1992 
1993 	/* Look up an SADB entry which matches the address of the peer. */
1994 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1995 	if (sav == NULL) {
1996 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1997 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1998 #ifdef INET6
1999 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2000 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2001 #endif
2002 			"(unsupported)"));
2003 		return (EINVAL);
2004 	}
2005 
2006 	MD5Init(&ctx);
2007 	/*
2008 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2009 	 *
2010 	 * XXX The ippseudo header MUST be digested in network byte order,
2011 	 * or else we'll fail the regression test. Assume all fields we've
2012 	 * been doing arithmetic on have been in host byte order.
2013 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2014 	 * tcp_output(), the underlying ip_len member has not yet been set.
2015 	 */
2016 	switch (ip->ip_v) {
2017 #ifdef INET
2018 	case IPVERSION:
2019 		ipovly = (struct ipovly *)ip;
2020 		ippseudo.ippseudo_src = ipovly->ih_src;
2021 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2022 		ippseudo.ippseudo_pad = 0;
2023 		ippseudo.ippseudo_p = IPPROTO_TCP;
2024 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2025 		    optlen);
2026 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2027 
2028 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2029 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2030 		break;
2031 #endif
2032 #ifdef INET6
2033 	/*
2034 	 * RFC 2385, 2.0  Proposal
2035 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2036 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2037 	 * extended next header value (to form 32 bits), and 32-bit segment
2038 	 * length.
2039 	 * Note: Upper-Layer Packet Length comes before Next Header.
2040 	 */
2041 	case (IPV6_VERSION >> 4):
2042 		in6 = ip6->ip6_src;
2043 		in6_clearscope(&in6);
2044 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2045 		in6 = ip6->ip6_dst;
2046 		in6_clearscope(&in6);
2047 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2048 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2049 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2050 		nhdr = 0;
2051 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2052 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2053 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2054 		nhdr = IPPROTO_TCP;
2055 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2056 
2057 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2058 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2059 		break;
2060 #endif
2061 	default:
2062 		return (EINVAL);
2063 		/* NOTREACHED */
2064 		break;
2065 	}
2066 
2067 
2068 	/*
2069 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2070 	 * The TCP checksum must be set to zero.
2071 	 */
2072 	savecsum = th->th_sum;
2073 	th->th_sum = 0;
2074 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2075 	th->th_sum = savecsum;
2076 
2077 	/*
2078 	 * Step 3: Update MD5 hash with TCP segment data.
2079 	 *         Use m_apply() to avoid an early m_pullup().
2080 	 */
2081 	if (len > 0)
2082 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2083 
2084 	/*
2085 	 * Step 4: Update MD5 hash with shared secret.
2086 	 */
2087 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2088 	MD5Final(buf, &ctx);
2089 
2090 	key_sa_recordxfer(sav, m);
2091 	KEY_FREESAV(&sav);
2092 	return (0);
2093 }
2094 
2095 /*
2096  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2097  *
2098  * Parameters:
2099  * m		pointer to head of mbuf chain
2100  * len		length of TCP segment data, excluding options
2101  * optlen	length of TCP segment options
2102  * buf		pointer to storage for computed MD5 digest
2103  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2104  *
2105  * Return 1 if successful, otherwise return 0.
2106  */
2107 int
2108 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2109     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2110 {
2111 	char tmpdigest[TCP_SIGLEN];
2112 
2113 	if (tcp_sig_checksigs == 0)
2114 		return (1);
2115 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2116 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2117 
2118 			/*
2119 			 * If this socket is not expecting signature but
2120 			 * the segment contains signature just fail.
2121 			 */
2122 			TCPSTAT_INC(tcps_sig_err_sigopt);
2123 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2124 			return (0);
2125 		}
2126 
2127 		/* Signature is not expected, and not present in segment. */
2128 		return (1);
2129 	}
2130 
2131 	/*
2132 	 * If this socket is expecting signature but the segment does not
2133 	 * contain any just fail.
2134 	 */
2135 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2136 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2137 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2138 		return (0);
2139 	}
2140 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2141 	    IPSEC_DIR_INBOUND) == -1) {
2142 		TCPSTAT_INC(tcps_sig_err_buildsig);
2143 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2144 		return (0);
2145 	}
2146 
2147 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2148 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2149 		return (0);
2150 	}
2151 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2152 	return (1);
2153 }
2154 #endif /* TCP_SIGNATURE */
2155 
2156 static int
2157 sysctl_drop(SYSCTL_HANDLER_ARGS)
2158 {
2159 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2160 	struct sockaddr_storage addrs[2];
2161 	struct inpcb *inp;
2162 	struct tcpcb *tp;
2163 	struct tcptw *tw;
2164 	struct sockaddr_in *fin, *lin;
2165 #ifdef INET6
2166 	struct sockaddr_in6 *fin6, *lin6;
2167 #endif
2168 	int error;
2169 
2170 	inp = NULL;
2171 	fin = lin = NULL;
2172 #ifdef INET6
2173 	fin6 = lin6 = NULL;
2174 #endif
2175 	error = 0;
2176 
2177 	if (req->oldptr != NULL || req->oldlen != 0)
2178 		return (EINVAL);
2179 	if (req->newptr == NULL)
2180 		return (EPERM);
2181 	if (req->newlen < sizeof(addrs))
2182 		return (ENOMEM);
2183 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2184 	if (error)
2185 		return (error);
2186 
2187 	switch (addrs[0].ss_family) {
2188 #ifdef INET6
2189 	case AF_INET6:
2190 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2191 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2192 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2193 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2194 			return (EINVAL);
2195 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2196 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2197 				return (EINVAL);
2198 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2199 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2200 			fin = (struct sockaddr_in *)&addrs[0];
2201 			lin = (struct sockaddr_in *)&addrs[1];
2202 			break;
2203 		}
2204 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2205 		if (error)
2206 			return (error);
2207 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2208 		if (error)
2209 			return (error);
2210 		break;
2211 #endif
2212 #ifdef INET
2213 	case AF_INET:
2214 		fin = (struct sockaddr_in *)&addrs[0];
2215 		lin = (struct sockaddr_in *)&addrs[1];
2216 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2217 		    lin->sin_len != sizeof(struct sockaddr_in))
2218 			return (EINVAL);
2219 		break;
2220 #endif
2221 	default:
2222 		return (EINVAL);
2223 	}
2224 	INP_INFO_WLOCK(&V_tcbinfo);
2225 	switch (addrs[0].ss_family) {
2226 #ifdef INET6
2227 	case AF_INET6:
2228 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2229 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2230 		    INPLOOKUP_WLOCKPCB, NULL);
2231 		break;
2232 #endif
2233 #ifdef INET
2234 	case AF_INET:
2235 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2236 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2237 		break;
2238 #endif
2239 	}
2240 	if (inp != NULL) {
2241 		if (inp->inp_flags & INP_TIMEWAIT) {
2242 			/*
2243 			 * XXXRW: There currently exists a state where an
2244 			 * inpcb is present, but its timewait state has been
2245 			 * discarded.  For now, don't allow dropping of this
2246 			 * type of inpcb.
2247 			 */
2248 			tw = intotw(inp);
2249 			if (tw != NULL)
2250 				tcp_twclose(tw, 0);
2251 			else
2252 				INP_WUNLOCK(inp);
2253 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2254 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2255 			tp = intotcpcb(inp);
2256 			tp = tcp_drop(tp, ECONNABORTED);
2257 			if (tp != NULL)
2258 				INP_WUNLOCK(inp);
2259 		} else
2260 			INP_WUNLOCK(inp);
2261 	} else
2262 		error = ESRCH;
2263 	INP_INFO_WUNLOCK(&V_tcbinfo);
2264 	return (error);
2265 }
2266 
2267 SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2268     CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2269     0, sysctl_drop, "", "Drop TCP connection");
2270 
2271 /*
2272  * Generate a standardized TCP log line for use throughout the
2273  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2274  * allow use in the interrupt context.
2275  *
2276  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2277  * NB: The function may return NULL if memory allocation failed.
2278  *
2279  * Due to header inclusion and ordering limitations the struct ip
2280  * and ip6_hdr pointers have to be passed as void pointers.
2281  */
2282 char *
2283 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2284     const void *ip6hdr)
2285 {
2286 
2287 	/* Is logging enabled? */
2288 	if (tcp_log_in_vain == 0)
2289 		return (NULL);
2290 
2291 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2292 }
2293 
2294 char *
2295 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2296     const void *ip6hdr)
2297 {
2298 
2299 	/* Is logging enabled? */
2300 	if (tcp_log_debug == 0)
2301 		return (NULL);
2302 
2303 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2304 }
2305 
2306 static char *
2307 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2308     const void *ip6hdr)
2309 {
2310 	char *s, *sp;
2311 	size_t size;
2312 	struct ip *ip;
2313 #ifdef INET6
2314 	const struct ip6_hdr *ip6;
2315 
2316 	ip6 = (const struct ip6_hdr *)ip6hdr;
2317 #endif /* INET6 */
2318 	ip = (struct ip *)ip4hdr;
2319 
2320 	/*
2321 	 * The log line looks like this:
2322 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2323 	 */
2324 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2325 	    sizeof(PRINT_TH_FLAGS) + 1 +
2326 #ifdef INET6
2327 	    2 * INET6_ADDRSTRLEN;
2328 #else
2329 	    2 * INET_ADDRSTRLEN;
2330 #endif /* INET6 */
2331 
2332 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2333 	if (s == NULL)
2334 		return (NULL);
2335 
2336 	strcat(s, "TCP: [");
2337 	sp = s + strlen(s);
2338 
2339 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2340 		inet_ntoa_r(inc->inc_faddr, sp);
2341 		sp = s + strlen(s);
2342 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2343 		sp = s + strlen(s);
2344 		inet_ntoa_r(inc->inc_laddr, sp);
2345 		sp = s + strlen(s);
2346 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2347 #ifdef INET6
2348 	} else if (inc) {
2349 		ip6_sprintf(sp, &inc->inc6_faddr);
2350 		sp = s + strlen(s);
2351 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2352 		sp = s + strlen(s);
2353 		ip6_sprintf(sp, &inc->inc6_laddr);
2354 		sp = s + strlen(s);
2355 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2356 	} else if (ip6 && th) {
2357 		ip6_sprintf(sp, &ip6->ip6_src);
2358 		sp = s + strlen(s);
2359 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2360 		sp = s + strlen(s);
2361 		ip6_sprintf(sp, &ip6->ip6_dst);
2362 		sp = s + strlen(s);
2363 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2364 #endif /* INET6 */
2365 #ifdef INET
2366 	} else if (ip && th) {
2367 		inet_ntoa_r(ip->ip_src, sp);
2368 		sp = s + strlen(s);
2369 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2370 		sp = s + strlen(s);
2371 		inet_ntoa_r(ip->ip_dst, sp);
2372 		sp = s + strlen(s);
2373 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2374 #endif /* INET */
2375 	} else {
2376 		free(s, M_TCPLOG);
2377 		return (NULL);
2378 	}
2379 	sp = s + strlen(s);
2380 	if (th)
2381 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2382 	if (*(s + size - 1) != '\0')
2383 		panic("%s: string too long", __func__);
2384 	return (s);
2385 }
2386 
2387 /*
2388  * A subroutine which makes it easy to track TCP state changes with DTrace.
2389  * This function shouldn't be called for t_state initializations that don't
2390  * correspond to actual TCP state transitions.
2391  */
2392 void
2393 tcp_state_change(struct tcpcb *tp, int newstate)
2394 {
2395 #if defined(KDTRACE_HOOKS)
2396 	int pstate = tp->t_state;
2397 #endif
2398 
2399 	tp->t_state = newstate;
2400 	TCP_PROBE6(state_change, NULL, tp, NULL, tp, NULL, pstate);
2401 }
2402