xref: /freebsd/sys/netinet/tcp_subr.c (revision cca48a59de682fe40c6ac3b2bb4356d0e42f21dd)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/eventhandler.h>
45 #include <sys/hhook.h>
46 #include <sys/kernel.h>
47 #include <sys/khelp.h>
48 #include <sys/sysctl.h>
49 #include <sys/jail.h>
50 #include <sys/malloc.h>
51 #include <sys/refcount.h>
52 #include <sys/mbuf.h>
53 #ifdef INET6
54 #include <sys/domain.h>
55 #endif
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/protosw.h>
62 #include <sys/random.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/route.h>
67 #include <net/if.h>
68 #include <net/if_var.h>
69 #include <net/vnet.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_fib.h>
73 #include <netinet/in_kdtrace.h>
74 #include <netinet/in_pcb.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_icmp.h>
79 #include <netinet/ip_var.h>
80 #ifdef INET6
81 #include <netinet/ip6.h>
82 #include <netinet6/in6_fib.h>
83 #include <netinet6/in6_pcb.h>
84 #include <netinet6/ip6_var.h>
85 #include <netinet6/scope6_var.h>
86 #include <netinet6/nd6.h>
87 #endif
88 
89 #ifdef TCP_RFC7413
90 #include <netinet/tcp_fastopen.h>
91 #endif
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet/tcp_syncache.h>
98 #include <netinet/cc/cc.h>
99 #ifdef INET6
100 #include <netinet6/tcp6_var.h>
101 #endif
102 #include <netinet/tcpip.h>
103 #ifdef TCPPCAP
104 #include <netinet/tcp_pcap.h>
105 #endif
106 #ifdef TCPDEBUG
107 #include <netinet/tcp_debug.h>
108 #endif
109 #ifdef INET6
110 #include <netinet6/ip6protosw.h>
111 #endif
112 #ifdef TCP_OFFLOAD
113 #include <netinet/tcp_offload.h>
114 #endif
115 
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/xform.h>
119 #ifdef INET6
120 #include <netipsec/ipsec6.h>
121 #endif
122 #include <netipsec/key.h>
123 #include <sys/syslog.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 #include <sys/md5.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
132 #ifdef INET6
133 VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
134 #endif
135 
136 struct rwlock tcp_function_lock;
137 
138 static int
139 sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
140 {
141 	int error, new;
142 
143 	new = V_tcp_mssdflt;
144 	error = sysctl_handle_int(oidp, &new, 0, req);
145 	if (error == 0 && req->newptr) {
146 		if (new < TCP_MINMSS)
147 			error = EINVAL;
148 		else
149 			V_tcp_mssdflt = new;
150 	}
151 	return (error);
152 }
153 
154 SYSCTL_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
155     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
156     &sysctl_net_inet_tcp_mss_check, "I",
157     "Default TCP Maximum Segment Size");
158 
159 #ifdef INET6
160 static int
161 sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, new;
164 
165 	new = V_tcp_v6mssdflt;
166 	error = sysctl_handle_int(oidp, &new, 0, req);
167 	if (error == 0 && req->newptr) {
168 		if (new < TCP_MINMSS)
169 			error = EINVAL;
170 		else
171 			V_tcp_v6mssdflt = new;
172 	}
173 	return (error);
174 }
175 
176 SYSCTL_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
177     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
178     &sysctl_net_inet_tcp_mss_v6_check, "I",
179    "Default TCP Maximum Segment Size for IPv6");
180 #endif /* INET6 */
181 
182 /*
183  * Minimum MSS we accept and use. This prevents DoS attacks where
184  * we are forced to a ridiculous low MSS like 20 and send hundreds
185  * of packets instead of one. The effect scales with the available
186  * bandwidth and quickly saturates the CPU and network interface
187  * with packet generation and sending. Set to zero to disable MINMSS
188  * checking. This setting prevents us from sending too small packets.
189  */
190 VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_VNET | CTLFLAG_RW,
192      &VNET_NAME(tcp_minmss), 0,
193     "Minimum TCP Maximum Segment Size");
194 
195 VNET_DEFINE(int, tcp_do_rfc1323) = 1;
196 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_rfc1323), 0,
198     "Enable rfc1323 (high performance TCP) extensions");
199 
200 static int	tcp_log_debug = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
202     &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
203 
204 static int	tcp_tcbhashsize;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
206     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
207 
208 static int	do_tcpdrain = 1;
209 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
210     "Enable tcp_drain routine for extra help when low on mbufs");
211 
212 SYSCTL_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_VNET | CTLFLAG_RD,
213     &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
214 
215 static VNET_DEFINE(int, icmp_may_rst) = 1;
216 #define	V_icmp_may_rst			VNET(icmp_may_rst)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(icmp_may_rst), 0,
219     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
220 
221 static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
222 #define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_isn_reseed_interval), 0,
225     "Seconds between reseeding of ISN secret");
226 
227 static int	tcp_soreceive_stream;
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
229     &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
230 
231 #ifdef TCP_SIGNATURE
232 static int	tcp_sig_checksigs = 1;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
234     &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
235 #endif
236 
237 VNET_DEFINE(uma_zone_t, sack_hole_zone);
238 #define	V_sack_hole_zone		VNET(sack_hole_zone)
239 
240 VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
241 
242 static struct inpcb *tcp_notify(struct inpcb *, int);
243 static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
244 static void tcp_mtudisc(struct inpcb *, int);
245 static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
246 		    void *ip4hdr, const void *ip6hdr);
247 
248 
249 static struct tcp_function_block tcp_def_funcblk = {
250 	"default",
251 	tcp_output,
252 	tcp_do_segment,
253 	tcp_default_ctloutput,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	NULL,
259 	NULL,
260 	0,
261 	0
262 };
263 
264 int t_functions_inited = 0;
265 struct tcp_funchead t_functions;
266 static struct tcp_function_block *tcp_func_set_ptr = &tcp_def_funcblk;
267 
268 static void
269 init_tcp_functions(void)
270 {
271 	if (t_functions_inited == 0) {
272 		TAILQ_INIT(&t_functions);
273 		rw_init_flags(&tcp_function_lock, "tcp_func_lock" , 0);
274 		t_functions_inited = 1;
275 	}
276 }
277 
278 static struct tcp_function_block *
279 find_tcp_functions_locked(struct tcp_function_set *fs)
280 {
281 	struct tcp_function *f;
282 	struct tcp_function_block *blk=NULL;
283 
284 	TAILQ_FOREACH(f, &t_functions, tf_next) {
285 		if (strcmp(f->tf_fb->tfb_tcp_block_name, fs->function_set_name) == 0) {
286 			blk = f->tf_fb;
287 			break;
288 		}
289 	}
290 	return(blk);
291 }
292 
293 static struct tcp_function_block *
294 find_tcp_fb_locked(struct tcp_function_block *blk, struct tcp_function **s)
295 {
296 	struct tcp_function_block *rblk=NULL;
297 	struct tcp_function *f;
298 
299 	TAILQ_FOREACH(f, &t_functions, tf_next) {
300 		if (f->tf_fb == blk) {
301 			rblk = blk;
302 			if (s) {
303 				*s = f;
304 			}
305 			break;
306 		}
307 	}
308 	return (rblk);
309 }
310 
311 struct tcp_function_block *
312 find_and_ref_tcp_functions(struct tcp_function_set *fs)
313 {
314 	struct tcp_function_block *blk;
315 
316 	rw_rlock(&tcp_function_lock);
317 	blk = find_tcp_functions_locked(fs);
318 	if (blk)
319 		refcount_acquire(&blk->tfb_refcnt);
320 	rw_runlock(&tcp_function_lock);
321 	return(blk);
322 }
323 
324 struct tcp_function_block *
325 find_and_ref_tcp_fb(struct tcp_function_block *blk)
326 {
327 	struct tcp_function_block *rblk;
328 
329 	rw_rlock(&tcp_function_lock);
330 	rblk = find_tcp_fb_locked(blk, NULL);
331 	if (rblk)
332 		refcount_acquire(&rblk->tfb_refcnt);
333 	rw_runlock(&tcp_function_lock);
334 	return(rblk);
335 }
336 
337 
338 static int
339 sysctl_net_inet_default_tcp_functions(SYSCTL_HANDLER_ARGS)
340 {
341 	int error=ENOENT;
342 	struct tcp_function_set fs;
343 	struct tcp_function_block *blk;
344 
345 	memset(&fs, 0, sizeof(fs));
346 	rw_rlock(&tcp_function_lock);
347 	blk = find_tcp_fb_locked(tcp_func_set_ptr, NULL);
348 	if (blk) {
349 		/* Found him */
350 		strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
351 		fs.pcbcnt = blk->tfb_refcnt;
352 	}
353 	rw_runlock(&tcp_function_lock);
354 	error = sysctl_handle_string(oidp, fs.function_set_name,
355 				     sizeof(fs.function_set_name), req);
356 
357 	/* Check for error or no change */
358 	if (error != 0 || req->newptr == NULL)
359 		return(error);
360 
361 	rw_wlock(&tcp_function_lock);
362 	blk = find_tcp_functions_locked(&fs);
363 	if ((blk == NULL) ||
364 	    (blk->tfb_flags & TCP_FUNC_BEING_REMOVED)) {
365 		error = ENOENT;
366 		goto done;
367 	}
368 	tcp_func_set_ptr = blk;
369 done:
370 	rw_wunlock(&tcp_function_lock);
371 	return (error);
372 }
373 
374 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_default,
375 	    CTLTYPE_STRING | CTLFLAG_RW,
376 	    NULL, 0, sysctl_net_inet_default_tcp_functions, "A",
377 	    "Set/get the default TCP functions");
378 
379 static int
380 sysctl_net_inet_list_available(SYSCTL_HANDLER_ARGS)
381 {
382 	int error, cnt, linesz;
383 	struct tcp_function *f;
384 	char *buffer, *cp;
385 	size_t bufsz, outsz;
386 
387 	cnt = 0;
388 	rw_rlock(&tcp_function_lock);
389 	TAILQ_FOREACH(f, &t_functions, tf_next) {
390 		cnt++;
391 	}
392 	rw_runlock(&tcp_function_lock);
393 
394 	bufsz = (cnt+2) * (TCP_FUNCTION_NAME_LEN_MAX + 12) + 1;
395 	buffer = malloc(bufsz, M_TEMP, M_WAITOK);
396 
397 	error = 0;
398 	cp = buffer;
399 
400 	linesz = snprintf(cp, bufsz, "\n%-32s%c %s\n", "Stack", 'D', "PCB count");
401 	cp += linesz;
402 	bufsz -= linesz;
403 	outsz = linesz;
404 
405 	rw_rlock(&tcp_function_lock);
406 	TAILQ_FOREACH(f, &t_functions, tf_next) {
407 		linesz = snprintf(cp, bufsz, "%-32s%c %u\n",
408 		    f->tf_fb->tfb_tcp_block_name,
409 		    (f->tf_fb == tcp_func_set_ptr) ? '*' : ' ',
410 		    f->tf_fb->tfb_refcnt);
411 		if (linesz >= bufsz) {
412 			error = EOVERFLOW;
413 			break;
414 		}
415 		cp += linesz;
416 		bufsz -= linesz;
417 		outsz += linesz;
418 	}
419 	rw_runlock(&tcp_function_lock);
420 	if (error == 0)
421 		error = sysctl_handle_string(oidp, buffer, outsz + 1, req);
422 	free(buffer, M_TEMP);
423 	return (error);
424 }
425 
426 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, functions_available,
427 	    CTLTYPE_STRING|CTLFLAG_RD,
428 	    NULL, 0, sysctl_net_inet_list_available, "A",
429 	    "list available TCP Function sets");
430 
431 /*
432  * Target size of TCP PCB hash tables. Must be a power of two.
433  *
434  * Note that this can be overridden by the kernel environment
435  * variable net.inet.tcp.tcbhashsize
436  */
437 #ifndef TCBHASHSIZE
438 #define TCBHASHSIZE	0
439 #endif
440 
441 /*
442  * XXX
443  * Callouts should be moved into struct tcp directly.  They are currently
444  * separate because the tcpcb structure is exported to userland for sysctl
445  * parsing purposes, which do not know about callouts.
446  */
447 struct tcpcb_mem {
448 	struct	tcpcb		tcb;
449 	struct	tcp_timer	tt;
450 	struct	cc_var		ccv;
451 	struct	osd		osd;
452 };
453 
454 static VNET_DEFINE(uma_zone_t, tcpcb_zone);
455 #define	V_tcpcb_zone			VNET(tcpcb_zone)
456 
457 MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
458 MALLOC_DEFINE(M_TCPFUNCTIONS, "tcpfunc", "TCP function set memory");
459 
460 static struct mtx isn_mtx;
461 
462 #define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
463 #define	ISN_LOCK()	mtx_lock(&isn_mtx)
464 #define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
465 
466 /*
467  * TCP initialization.
468  */
469 static void
470 tcp_zone_change(void *tag)
471 {
472 
473 	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
474 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
475 	tcp_tw_zone_change();
476 }
477 
478 static int
479 tcp_inpcb_init(void *mem, int size, int flags)
480 {
481 	struct inpcb *inp = mem;
482 
483 	INP_LOCK_INIT(inp, "inp", "tcpinp");
484 	return (0);
485 }
486 
487 /*
488  * Take a value and get the next power of 2 that doesn't overflow.
489  * Used to size the tcp_inpcb hash buckets.
490  */
491 static int
492 maketcp_hashsize(int size)
493 {
494 	int hashsize;
495 
496 	/*
497 	 * auto tune.
498 	 * get the next power of 2 higher than maxsockets.
499 	 */
500 	hashsize = 1 << fls(size);
501 	/* catch overflow, and just go one power of 2 smaller */
502 	if (hashsize < size) {
503 		hashsize = 1 << (fls(size) - 1);
504 	}
505 	return (hashsize);
506 }
507 
508 int
509 register_tcp_functions(struct tcp_function_block *blk, int wait)
510 {
511 	struct tcp_function_block *lblk;
512 	struct tcp_function *n;
513 	struct tcp_function_set fs;
514 
515 	if (t_functions_inited == 0) {
516 		init_tcp_functions();
517 	}
518 	if ((blk->tfb_tcp_output == NULL) ||
519 	    (blk->tfb_tcp_do_segment == NULL) ||
520 	    (blk->tfb_tcp_ctloutput == NULL) ||
521 	    (strlen(blk->tfb_tcp_block_name) == 0)) {
522 		/*
523 		 * These functions are required and you
524 		 * need a name.
525 		 */
526 		return (EINVAL);
527 	}
528 	if (blk->tfb_tcp_timer_stop_all ||
529 	    blk->tfb_tcp_timer_activate ||
530 	    blk->tfb_tcp_timer_active ||
531 	    blk->tfb_tcp_timer_stop) {
532 		/*
533 		 * If you define one timer function you
534 		 * must have them all.
535 		 */
536 		if ((blk->tfb_tcp_timer_stop_all == NULL) ||
537 		    (blk->tfb_tcp_timer_activate == NULL) ||
538 		    (blk->tfb_tcp_timer_active == NULL) ||
539 		    (blk->tfb_tcp_timer_stop == NULL)) {
540 			return (EINVAL);
541 		}
542 	}
543 	n = malloc(sizeof(struct tcp_function), M_TCPFUNCTIONS, wait);
544 	if (n == NULL) {
545 		return (ENOMEM);
546 	}
547 	n->tf_fb = blk;
548 	strcpy(fs.function_set_name, blk->tfb_tcp_block_name);
549 	rw_wlock(&tcp_function_lock);
550 	lblk = find_tcp_functions_locked(&fs);
551 	if (lblk) {
552 		/* Duplicate name space not allowed */
553 		rw_wunlock(&tcp_function_lock);
554 		free(n, M_TCPFUNCTIONS);
555 		return (EALREADY);
556 	}
557 	refcount_init(&blk->tfb_refcnt, 0);
558 	blk->tfb_flags = 0;
559 	TAILQ_INSERT_TAIL(&t_functions, n, tf_next);
560 	rw_wunlock(&tcp_function_lock);
561 	return(0);
562 }
563 
564 int
565 deregister_tcp_functions(struct tcp_function_block *blk)
566 {
567 	struct tcp_function_block *lblk;
568 	struct tcp_function *f;
569 	int error=ENOENT;
570 
571 	if (strcmp(blk->tfb_tcp_block_name, "default") == 0) {
572 		/* You can't un-register the default */
573 		return (EPERM);
574 	}
575 	rw_wlock(&tcp_function_lock);
576 	if (blk == tcp_func_set_ptr) {
577 		/* You can't free the current default */
578 		rw_wunlock(&tcp_function_lock);
579 		return (EBUSY);
580 	}
581 	if (blk->tfb_refcnt) {
582 		/* Still tcb attached, mark it. */
583 		blk->tfb_flags |= TCP_FUNC_BEING_REMOVED;
584 		rw_wunlock(&tcp_function_lock);
585 		return (EBUSY);
586 	}
587 	lblk = find_tcp_fb_locked(blk, &f);
588 	if (lblk) {
589 		/* Found */
590 		TAILQ_REMOVE(&t_functions, f, tf_next);
591 		f->tf_fb = NULL;
592 		free(f, M_TCPFUNCTIONS);
593 		error = 0;
594 	}
595 	rw_wunlock(&tcp_function_lock);
596 	return (error);
597 }
598 
599 void
600 tcp_init(void)
601 {
602 	const char *tcbhash_tuneable;
603 	int hashsize;
604 
605 	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
606 
607 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
608 	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
609 		printf("%s: WARNING: unable to register helper hook\n", __func__);
610 	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
611 	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
612 		printf("%s: WARNING: unable to register helper hook\n", __func__);
613 	hashsize = TCBHASHSIZE;
614 	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
615 	if (hashsize == 0) {
616 		/*
617 		 * Auto tune the hash size based on maxsockets.
618 		 * A perfect hash would have a 1:1 mapping
619 		 * (hashsize = maxsockets) however it's been
620 		 * suggested that O(2) average is better.
621 		 */
622 		hashsize = maketcp_hashsize(maxsockets / 4);
623 		/*
624 		 * Our historical default is 512,
625 		 * do not autotune lower than this.
626 		 */
627 		if (hashsize < 512)
628 			hashsize = 512;
629 		if (bootverbose && IS_DEFAULT_VNET(curvnet))
630 			printf("%s: %s auto tuned to %d\n", __func__,
631 			    tcbhash_tuneable, hashsize);
632 	}
633 	/*
634 	 * We require a hashsize to be a power of two.
635 	 * Previously if it was not a power of two we would just reset it
636 	 * back to 512, which could be a nasty surprise if you did not notice
637 	 * the error message.
638 	 * Instead what we do is clip it to the closest power of two lower
639 	 * than the specified hash value.
640 	 */
641 	if (!powerof2(hashsize)) {
642 		int oldhashsize = hashsize;
643 
644 		hashsize = maketcp_hashsize(hashsize);
645 		/* prevent absurdly low value */
646 		if (hashsize < 16)
647 			hashsize = 16;
648 		printf("%s: WARNING: TCB hash size not a power of 2, "
649 		    "clipped from %d to %d.\n", __func__, oldhashsize,
650 		    hashsize);
651 	}
652 	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
653 	    "tcp_inpcb", tcp_inpcb_init, NULL, 0, IPI_HASHFIELDS_4TUPLE);
654 
655 	/*
656 	 * These have to be type stable for the benefit of the timers.
657 	 */
658 	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
659 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
660 	uma_zone_set_max(V_tcpcb_zone, maxsockets);
661 	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
662 
663 	tcp_tw_init();
664 	syncache_init();
665 	tcp_hc_init();
666 
667 	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
668 	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
669 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
670 
671 	/* Skip initialization of globals for non-default instances. */
672 	if (!IS_DEFAULT_VNET(curvnet))
673 		return;
674 
675 	tcp_reass_global_init();
676 
677 	/* XXX virtualize those bellow? */
678 	tcp_delacktime = TCPTV_DELACK;
679 	tcp_keepinit = TCPTV_KEEP_INIT;
680 	tcp_keepidle = TCPTV_KEEP_IDLE;
681 	tcp_keepintvl = TCPTV_KEEPINTVL;
682 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
683 	tcp_msl = TCPTV_MSL;
684 	tcp_rexmit_min = TCPTV_MIN;
685 	if (tcp_rexmit_min < 1)
686 		tcp_rexmit_min = 1;
687 	tcp_persmin = TCPTV_PERSMIN;
688 	tcp_persmax = TCPTV_PERSMAX;
689 	tcp_rexmit_slop = TCPTV_CPU_VAR;
690 	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
691 	tcp_tcbhashsize = hashsize;
692 	/* Setup the tcp function block list */
693 	init_tcp_functions();
694 	register_tcp_functions(&tcp_def_funcblk, M_WAITOK);
695 
696 	if (tcp_soreceive_stream) {
697 #ifdef INET
698 		tcp_usrreqs.pru_soreceive = soreceive_stream;
699 #endif
700 #ifdef INET6
701 		tcp6_usrreqs.pru_soreceive = soreceive_stream;
702 #endif /* INET6 */
703 	}
704 
705 #ifdef INET6
706 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
707 #else /* INET6 */
708 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
709 #endif /* INET6 */
710 	if (max_protohdr < TCP_MINPROTOHDR)
711 		max_protohdr = TCP_MINPROTOHDR;
712 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
713 		panic("tcp_init");
714 #undef TCP_MINPROTOHDR
715 
716 	ISN_LOCK_INIT();
717 	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
718 		SHUTDOWN_PRI_DEFAULT);
719 	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
720 		EVENTHANDLER_PRI_ANY);
721 #ifdef TCPPCAP
722 	tcp_pcap_init();
723 #endif
724 
725 #ifdef TCP_RFC7413
726 	tcp_fastopen_init();
727 #endif
728 }
729 
730 #ifdef VIMAGE
731 void
732 tcp_destroy(void)
733 {
734 	int error;
735 
736 	/*
737 	 * All our processes are gone, all our sockets should be cleaned
738 	 * up, which means, we should be past the tcp_discardcb() calls.
739 	 * Sleep to let all tcpcb timers really disappear and then cleanup.
740 	 * Timewait will cleanup its queue and will be ready to go.
741 	 * XXX-BZ In theory a few ticks should be good enough to make sure
742 	 * the timers are all really gone.  We should see if we could use a
743 	 * better metric here and, e.g., check a tcbcb count as an optimization?
744 	 */
745 	DELAY(1000000 / hz);
746 	tcp_hc_destroy();
747 	syncache_destroy();
748 	tcp_tw_destroy();
749 	in_pcbinfo_destroy(&V_tcbinfo);
750 	/* tcp_discardcb() clears the sack_holes up. */
751 	uma_zdestroy(V_sack_hole_zone);
752 	uma_zdestroy(V_tcpcb_zone);
753 
754 #ifdef TCP_RFC7413
755 	/*
756 	 * Cannot free the zone until all tcpcbs are released as we attach
757 	 * the allocations to them.
758 	 */
759 	tcp_fastopen_destroy();
760 #endif
761 
762 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_IN]);
763 	if (error != 0) {
764 		printf("%s: WARNING: unable to deregister helper hook "
765 		    "type=%d, id=%d: error %d returned\n", __func__,
766 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN, error);
767 	}
768 	error = hhook_head_deregister(V_tcp_hhh[HHOOK_TCP_EST_OUT]);
769 	if (error != 0) {
770 		printf("%s: WARNING: unable to deregister helper hook "
771 		    "type=%d, id=%d: error %d returned\n", __func__,
772 		    HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT, error);
773 	}
774 }
775 #endif
776 
777 void
778 tcp_fini(void *xtp)
779 {
780 
781 }
782 
783 /*
784  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
785  * tcp_template used to store this data in mbufs, but we now recopy it out
786  * of the tcpcb each time to conserve mbufs.
787  */
788 void
789 tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
790 {
791 	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
792 
793 	INP_WLOCK_ASSERT(inp);
794 
795 #ifdef INET6
796 	if ((inp->inp_vflag & INP_IPV6) != 0) {
797 		struct ip6_hdr *ip6;
798 
799 		ip6 = (struct ip6_hdr *)ip_ptr;
800 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
801 			(inp->inp_flow & IPV6_FLOWINFO_MASK);
802 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
803 			(IPV6_VERSION & IPV6_VERSION_MASK);
804 		ip6->ip6_nxt = IPPROTO_TCP;
805 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
806 		ip6->ip6_src = inp->in6p_laddr;
807 		ip6->ip6_dst = inp->in6p_faddr;
808 	}
809 #endif /* INET6 */
810 #if defined(INET6) && defined(INET)
811 	else
812 #endif
813 #ifdef INET
814 	{
815 		struct ip *ip;
816 
817 		ip = (struct ip *)ip_ptr;
818 		ip->ip_v = IPVERSION;
819 		ip->ip_hl = 5;
820 		ip->ip_tos = inp->inp_ip_tos;
821 		ip->ip_len = 0;
822 		ip->ip_id = 0;
823 		ip->ip_off = 0;
824 		ip->ip_ttl = inp->inp_ip_ttl;
825 		ip->ip_sum = 0;
826 		ip->ip_p = IPPROTO_TCP;
827 		ip->ip_src = inp->inp_laddr;
828 		ip->ip_dst = inp->inp_faddr;
829 	}
830 #endif /* INET */
831 	th->th_sport = inp->inp_lport;
832 	th->th_dport = inp->inp_fport;
833 	th->th_seq = 0;
834 	th->th_ack = 0;
835 	th->th_x2 = 0;
836 	th->th_off = 5;
837 	th->th_flags = 0;
838 	th->th_win = 0;
839 	th->th_urp = 0;
840 	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
841 }
842 
843 /*
844  * Create template to be used to send tcp packets on a connection.
845  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
846  * use for this function is in keepalives, which use tcp_respond.
847  */
848 struct tcptemp *
849 tcpip_maketemplate(struct inpcb *inp)
850 {
851 	struct tcptemp *t;
852 
853 	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
854 	if (t == NULL)
855 		return (NULL);
856 	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
857 	return (t);
858 }
859 
860 /*
861  * Send a single message to the TCP at address specified by
862  * the given TCP/IP header.  If m == NULL, then we make a copy
863  * of the tcpiphdr at th and send directly to the addressed host.
864  * This is used to force keep alive messages out using the TCP
865  * template for a connection.  If flags are given then we send
866  * a message back to the TCP which originated the segment th,
867  * and discard the mbuf containing it and any other attached mbufs.
868  *
869  * In any case the ack and sequence number of the transmitted
870  * segment are as specified by the parameters.
871  *
872  * NOTE: If m != NULL, then th must point to *inside* the mbuf.
873  */
874 void
875 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
876     tcp_seq ack, tcp_seq seq, int flags)
877 {
878 	struct tcpopt to;
879 	struct inpcb *inp;
880 	struct ip *ip;
881 	struct mbuf *optm;
882 	struct tcphdr *nth;
883 	u_char *optp;
884 #ifdef INET6
885 	struct ip6_hdr *ip6;
886 	int isipv6;
887 #endif /* INET6 */
888 	int optlen, tlen, win;
889 	bool incl_opts;
890 
891 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
892 
893 #ifdef INET6
894 	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
895 	ip6 = ipgen;
896 #endif /* INET6 */
897 	ip = ipgen;
898 
899 	if (tp != NULL) {
900 		inp = tp->t_inpcb;
901 		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
902 		INP_WLOCK_ASSERT(inp);
903 	} else
904 		inp = NULL;
905 
906 	incl_opts = false;
907 	win = 0;
908 	if (tp != NULL) {
909 		if (!(flags & TH_RST)) {
910 			win = sbspace(&inp->inp_socket->so_rcv);
911 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
912 				win = (long)TCP_MAXWIN << tp->rcv_scale;
913 		}
914 		if ((tp->t_flags & TF_NOOPT) == 0)
915 			incl_opts = true;
916 	}
917 	if (m == NULL) {
918 		m = m_gethdr(M_NOWAIT, MT_DATA);
919 		if (m == NULL)
920 			return;
921 		m->m_data += max_linkhdr;
922 #ifdef INET6
923 		if (isipv6) {
924 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
925 			      sizeof(struct ip6_hdr));
926 			ip6 = mtod(m, struct ip6_hdr *);
927 			nth = (struct tcphdr *)(ip6 + 1);
928 		} else
929 #endif /* INET6 */
930 		{
931 			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
932 			ip = mtod(m, struct ip *);
933 			nth = (struct tcphdr *)(ip + 1);
934 		}
935 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
936 		flags = TH_ACK;
937 	} else {
938 		/*
939 		 *  reuse the mbuf.
940 		 * XXX MRT We inherrit the FIB, which is lucky.
941 		 */
942 		m_freem(m->m_next);
943 		m->m_next = NULL;
944 		m->m_data = (caddr_t)ipgen;
945 		/* m_len is set later */
946 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
947 #ifdef INET6
948 		if (isipv6) {
949 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
950 			nth = (struct tcphdr *)(ip6 + 1);
951 		} else
952 #endif /* INET6 */
953 		{
954 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
955 			nth = (struct tcphdr *)(ip + 1);
956 		}
957 		if (th != nth) {
958 			/*
959 			 * this is usually a case when an extension header
960 			 * exists between the IPv6 header and the
961 			 * TCP header.
962 			 */
963 			nth->th_sport = th->th_sport;
964 			nth->th_dport = th->th_dport;
965 		}
966 		xchg(nth->th_dport, nth->th_sport, uint16_t);
967 #undef xchg
968 	}
969 	tlen = 0;
970 #ifdef INET6
971 	if (isipv6)
972 		tlen = sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
973 #endif
974 #if defined(INET) && defined(INET6)
975 	else
976 #endif
977 #ifdef INET
978 		tlen = sizeof (struct tcpiphdr);
979 #endif
980 #ifdef INVARIANTS
981 	m->m_len = 0;
982 	KASSERT(M_TRAILINGSPACE(m) >= tlen,
983 	    ("Not enough trailing space for message (m=%p, need=%d, have=%ld)",
984 	    m, tlen, (long)M_TRAILINGSPACE(m)));
985 #endif
986 	m->m_len = tlen;
987 	to.to_flags = 0;
988 	if (incl_opts) {
989 		/* Make sure we have room. */
990 		if (M_TRAILINGSPACE(m) < TCP_MAXOLEN) {
991 			m->m_next = m_get(M_NOWAIT, MT_DATA);
992 			if (m->m_next) {
993 				optp = mtod(m->m_next, u_char *);
994 				optm = m->m_next;
995 			} else
996 				incl_opts = false;
997 		} else {
998 			optp = (u_char *) (nth + 1);
999 			optm = m;
1000 		}
1001 	}
1002 	if (incl_opts) {
1003 		/* Timestamps. */
1004 		if (tp->t_flags & TF_RCVD_TSTMP) {
1005 			to.to_tsval = tcp_ts_getticks() + tp->ts_offset;
1006 			to.to_tsecr = tp->ts_recent;
1007 			to.to_flags |= TOF_TS;
1008 		}
1009 #ifdef TCP_SIGNATURE
1010 		/* TCP-MD5 (RFC2385). */
1011 		if (tp->t_flags & TF_SIGNATURE)
1012 			to.to_flags |= TOF_SIGNATURE;
1013 #endif
1014 
1015 		/* Add the options. */
1016 		tlen += optlen = tcp_addoptions(&to, optp);
1017 
1018 		/* Update m_len in the correct mbuf. */
1019 		optm->m_len += optlen;
1020 	} else
1021 		optlen = 0;
1022 #ifdef INET6
1023 	if (isipv6) {
1024 		ip6->ip6_flow = 0;
1025 		ip6->ip6_vfc = IPV6_VERSION;
1026 		ip6->ip6_nxt = IPPROTO_TCP;
1027 		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
1028 	}
1029 #endif
1030 #if defined(INET) && defined(INET6)
1031 	else
1032 #endif
1033 #ifdef INET
1034 	{
1035 		ip->ip_len = htons(tlen);
1036 		ip->ip_ttl = V_ip_defttl;
1037 		if (V_path_mtu_discovery)
1038 			ip->ip_off |= htons(IP_DF);
1039 	}
1040 #endif
1041 	m->m_pkthdr.len = tlen;
1042 	m->m_pkthdr.rcvif = NULL;
1043 #ifdef MAC
1044 	if (inp != NULL) {
1045 		/*
1046 		 * Packet is associated with a socket, so allow the
1047 		 * label of the response to reflect the socket label.
1048 		 */
1049 		INP_WLOCK_ASSERT(inp);
1050 		mac_inpcb_create_mbuf(inp, m);
1051 	} else {
1052 		/*
1053 		 * Packet is not associated with a socket, so possibly
1054 		 * update the label in place.
1055 		 */
1056 		mac_netinet_tcp_reply(m);
1057 	}
1058 #endif
1059 	nth->th_seq = htonl(seq);
1060 	nth->th_ack = htonl(ack);
1061 	nth->th_x2 = 0;
1062 	nth->th_off = (sizeof (struct tcphdr) + optlen) >> 2;
1063 	nth->th_flags = flags;
1064 	if (tp != NULL)
1065 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
1066 	else
1067 		nth->th_win = htons((u_short)win);
1068 	nth->th_urp = 0;
1069 
1070 #ifdef TCP_SIGNATURE
1071 	if (to.to_flags & TOF_SIGNATURE) {
1072 		tcp_signature_compute(m, 0, 0, optlen, to.to_signature,
1073 		    IPSEC_DIR_OUTBOUND);
1074 	}
1075 #endif
1076 
1077 	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1078 #ifdef INET6
1079 	if (isipv6) {
1080 		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1081 		nth->th_sum = in6_cksum_pseudo(ip6,
1082 		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
1083 		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
1084 		    NULL, NULL);
1085 	}
1086 #endif /* INET6 */
1087 #if defined(INET6) && defined(INET)
1088 	else
1089 #endif
1090 #ifdef INET
1091 	{
1092 		m->m_pkthdr.csum_flags = CSUM_TCP;
1093 		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1094 		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
1095 	}
1096 #endif /* INET */
1097 #ifdef TCPDEBUG
1098 	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
1099 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
1100 #endif
1101 	TCP_PROBE3(debug__output, tp, th, mtod(m, const char *));
1102 	if (flags & TH_RST)
1103 		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
1104 		    tp, nth);
1105 
1106 	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
1107 #ifdef INET6
1108 	if (isipv6)
1109 		(void) ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1110 #endif /* INET6 */
1111 #if defined(INET) && defined(INET6)
1112 	else
1113 #endif
1114 #ifdef INET
1115 		(void) ip_output(m, NULL, NULL, 0, NULL, inp);
1116 #endif
1117 }
1118 
1119 /*
1120  * Create a new TCP control block, making an
1121  * empty reassembly queue and hooking it to the argument
1122  * protocol control block.  The `inp' parameter must have
1123  * come from the zone allocator set up in tcp_init().
1124  */
1125 struct tcpcb *
1126 tcp_newtcpcb(struct inpcb *inp)
1127 {
1128 	struct tcpcb_mem *tm;
1129 	struct tcpcb *tp;
1130 #ifdef INET6
1131 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1132 #endif /* INET6 */
1133 
1134 	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
1135 	if (tm == NULL)
1136 		return (NULL);
1137 	tp = &tm->tcb;
1138 
1139 	/* Initialise cc_var struct for this tcpcb. */
1140 	tp->ccv = &tm->ccv;
1141 	tp->ccv->type = IPPROTO_TCP;
1142 	tp->ccv->ccvc.tcp = tp;
1143 	rw_rlock(&tcp_function_lock);
1144 	tp->t_fb = tcp_func_set_ptr;
1145 	refcount_acquire(&tp->t_fb->tfb_refcnt);
1146 	rw_runlock(&tcp_function_lock);
1147 	if (tp->t_fb->tfb_tcp_fb_init) {
1148 		(*tp->t_fb->tfb_tcp_fb_init)(tp);
1149 	}
1150 	/*
1151 	 * Use the current system default CC algorithm.
1152 	 */
1153 	CC_LIST_RLOCK();
1154 	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
1155 	CC_ALGO(tp) = CC_DEFAULT();
1156 	CC_LIST_RUNLOCK();
1157 
1158 	if (CC_ALGO(tp)->cb_init != NULL)
1159 		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
1160 			if (tp->t_fb->tfb_tcp_fb_fini)
1161 				(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1162 			refcount_release(&tp->t_fb->tfb_refcnt);
1163 			uma_zfree(V_tcpcb_zone, tm);
1164 			return (NULL);
1165 		}
1166 
1167 	tp->osd = &tm->osd;
1168 	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
1169 		if (tp->t_fb->tfb_tcp_fb_fini)
1170 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1171 		refcount_release(&tp->t_fb->tfb_refcnt);
1172 		uma_zfree(V_tcpcb_zone, tm);
1173 		return (NULL);
1174 	}
1175 
1176 #ifdef VIMAGE
1177 	tp->t_vnet = inp->inp_vnet;
1178 #endif
1179 	tp->t_timers = &tm->tt;
1180 	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
1181 	tp->t_maxseg =
1182 #ifdef INET6
1183 		isipv6 ? V_tcp_v6mssdflt :
1184 #endif /* INET6 */
1185 		V_tcp_mssdflt;
1186 
1187 	/* Set up our timeouts. */
1188 	callout_init(&tp->t_timers->tt_rexmt, 1);
1189 	callout_init(&tp->t_timers->tt_persist, 1);
1190 	callout_init(&tp->t_timers->tt_keep, 1);
1191 	callout_init(&tp->t_timers->tt_2msl, 1);
1192 	callout_init(&tp->t_timers->tt_delack, 1);
1193 
1194 	if (V_tcp_do_rfc1323)
1195 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
1196 	if (V_tcp_do_sack)
1197 		tp->t_flags |= TF_SACK_PERMIT;
1198 	TAILQ_INIT(&tp->snd_holes);
1199 	/*
1200 	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
1201 	 * is called.
1202 	 */
1203 	in_pcbref(inp);	/* Reference for tcpcb */
1204 	tp->t_inpcb = inp;
1205 
1206 	/*
1207 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1208 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
1209 	 * reasonable initial retransmit time.
1210 	 */
1211 	tp->t_srtt = TCPTV_SRTTBASE;
1212 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
1213 	tp->t_rttmin = tcp_rexmit_min;
1214 	tp->t_rxtcur = TCPTV_RTOBASE;
1215 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1216 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1217 	tp->t_rcvtime = ticks;
1218 	/*
1219 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
1220 	 * because the socket may be bound to an IPv6 wildcard address,
1221 	 * which may match an IPv4-mapped IPv6 address.
1222 	 */
1223 	inp->inp_ip_ttl = V_ip_defttl;
1224 	inp->inp_ppcb = tp;
1225 #ifdef TCPPCAP
1226 	/*
1227 	 * Init the TCP PCAP queues.
1228 	 */
1229 	tcp_pcap_tcpcb_init(tp);
1230 #endif
1231 	return (tp);		/* XXX */
1232 }
1233 
1234 /*
1235  * Switch the congestion control algorithm back to NewReno for any active
1236  * control blocks using an algorithm which is about to go away.
1237  * This ensures the CC framework can allow the unload to proceed without leaving
1238  * any dangling pointers which would trigger a panic.
1239  * Returning non-zero would inform the CC framework that something went wrong
1240  * and it would be unsafe to allow the unload to proceed. However, there is no
1241  * way for this to occur with this implementation so we always return zero.
1242  */
1243 int
1244 tcp_ccalgounload(struct cc_algo *unload_algo)
1245 {
1246 	struct cc_algo *tmpalgo;
1247 	struct inpcb *inp;
1248 	struct tcpcb *tp;
1249 	VNET_ITERATOR_DECL(vnet_iter);
1250 
1251 	/*
1252 	 * Check all active control blocks across all network stacks and change
1253 	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
1254 	 * requires cleanup code to be run, call it.
1255 	 */
1256 	VNET_LIST_RLOCK();
1257 	VNET_FOREACH(vnet_iter) {
1258 		CURVNET_SET(vnet_iter);
1259 		INP_INFO_WLOCK(&V_tcbinfo);
1260 		/*
1261 		 * New connections already part way through being initialised
1262 		 * with the CC algo we're removing will not race with this code
1263 		 * because the INP_INFO_WLOCK is held during initialisation. We
1264 		 * therefore don't enter the loop below until the connection
1265 		 * list has stabilised.
1266 		 */
1267 		LIST_FOREACH(inp, &V_tcb, inp_list) {
1268 			INP_WLOCK(inp);
1269 			/* Important to skip tcptw structs. */
1270 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1271 			    (tp = intotcpcb(inp)) != NULL) {
1272 				/*
1273 				 * By holding INP_WLOCK here, we are assured
1274 				 * that the connection is not currently
1275 				 * executing inside the CC module's functions
1276 				 * i.e. it is safe to make the switch back to
1277 				 * NewReno.
1278 				 */
1279 				if (CC_ALGO(tp) == unload_algo) {
1280 					tmpalgo = CC_ALGO(tp);
1281 					/* NewReno does not require any init. */
1282 					CC_ALGO(tp) = &newreno_cc_algo;
1283 					if (tmpalgo->cb_destroy != NULL)
1284 						tmpalgo->cb_destroy(tp->ccv);
1285 				}
1286 			}
1287 			INP_WUNLOCK(inp);
1288 		}
1289 		INP_INFO_WUNLOCK(&V_tcbinfo);
1290 		CURVNET_RESTORE();
1291 	}
1292 	VNET_LIST_RUNLOCK();
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Drop a TCP connection, reporting
1299  * the specified error.  If connection is synchronized,
1300  * then send a RST to peer.
1301  */
1302 struct tcpcb *
1303 tcp_drop(struct tcpcb *tp, int errno)
1304 {
1305 	struct socket *so = tp->t_inpcb->inp_socket;
1306 
1307 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1308 	INP_WLOCK_ASSERT(tp->t_inpcb);
1309 
1310 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
1311 		tcp_state_change(tp, TCPS_CLOSED);
1312 		(void) tp->t_fb->tfb_tcp_output(tp);
1313 		TCPSTAT_INC(tcps_drops);
1314 	} else
1315 		TCPSTAT_INC(tcps_conndrops);
1316 	if (errno == ETIMEDOUT && tp->t_softerror)
1317 		errno = tp->t_softerror;
1318 	so->so_error = errno;
1319 	return (tcp_close(tp));
1320 }
1321 
1322 void
1323 tcp_discardcb(struct tcpcb *tp)
1324 {
1325 	struct inpcb *inp = tp->t_inpcb;
1326 	struct socket *so = inp->inp_socket;
1327 #ifdef INET6
1328 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
1329 #endif /* INET6 */
1330 	int released;
1331 
1332 	INP_WLOCK_ASSERT(inp);
1333 
1334 	/*
1335 	 * Make sure that all of our timers are stopped before we delete the
1336 	 * PCB.
1337 	 *
1338 	 * If stopping a timer fails, we schedule a discard function in same
1339 	 * callout, and the last discard function called will take care of
1340 	 * deleting the tcpcb.
1341 	 */
1342 	tp->t_timers->tt_draincnt = 0;
1343 	tcp_timer_stop(tp, TT_REXMT);
1344 	tcp_timer_stop(tp, TT_PERSIST);
1345 	tcp_timer_stop(tp, TT_KEEP);
1346 	tcp_timer_stop(tp, TT_2MSL);
1347 	tcp_timer_stop(tp, TT_DELACK);
1348 	if (tp->t_fb->tfb_tcp_timer_stop_all) {
1349 		/*
1350 		 * Call the stop-all function of the methods,
1351 		 * this function should call the tcp_timer_stop()
1352 		 * method with each of the function specific timeouts.
1353 		 * That stop will be called via the tfb_tcp_timer_stop()
1354 		 * which should use the async drain function of the
1355 		 * callout system (see tcp_var.h).
1356 		 */
1357 		tp->t_fb->tfb_tcp_timer_stop_all(tp);
1358 	}
1359 
1360 	/*
1361 	 * If we got enough samples through the srtt filter,
1362 	 * save the rtt and rttvar in the routing entry.
1363 	 * 'Enough' is arbitrarily defined as 4 rtt samples.
1364 	 * 4 samples is enough for the srtt filter to converge
1365 	 * to within enough % of the correct value; fewer samples
1366 	 * and we could save a bogus rtt. The danger is not high
1367 	 * as tcp quickly recovers from everything.
1368 	 * XXX: Works very well but needs some more statistics!
1369 	 */
1370 	if (tp->t_rttupdated >= 4) {
1371 		struct hc_metrics_lite metrics;
1372 		u_long ssthresh;
1373 
1374 		bzero(&metrics, sizeof(metrics));
1375 		/*
1376 		 * Update the ssthresh always when the conditions below
1377 		 * are satisfied. This gives us better new start value
1378 		 * for the congestion avoidance for new connections.
1379 		 * ssthresh is only set if packet loss occured on a session.
1380 		 *
1381 		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
1382 		 * being torn down.  Ideally this code would not use 'so'.
1383 		 */
1384 		ssthresh = tp->snd_ssthresh;
1385 		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
1386 			/*
1387 			 * convert the limit from user data bytes to
1388 			 * packets then to packet data bytes.
1389 			 */
1390 			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
1391 			if (ssthresh < 2)
1392 				ssthresh = 2;
1393 			ssthresh *= (u_long)(tp->t_maxseg +
1394 #ifdef INET6
1395 			    (isipv6 ? sizeof (struct ip6_hdr) +
1396 				sizeof (struct tcphdr) :
1397 #endif
1398 				sizeof (struct tcpiphdr)
1399 #ifdef INET6
1400 			    )
1401 #endif
1402 			    );
1403 		} else
1404 			ssthresh = 0;
1405 		metrics.rmx_ssthresh = ssthresh;
1406 
1407 		metrics.rmx_rtt = tp->t_srtt;
1408 		metrics.rmx_rttvar = tp->t_rttvar;
1409 		metrics.rmx_cwnd = tp->snd_cwnd;
1410 		metrics.rmx_sendpipe = 0;
1411 		metrics.rmx_recvpipe = 0;
1412 
1413 		tcp_hc_update(&inp->inp_inc, &metrics);
1414 	}
1415 
1416 	/* free the reassembly queue, if any */
1417 	tcp_reass_flush(tp);
1418 
1419 #ifdef TCP_OFFLOAD
1420 	/* Disconnect offload device, if any. */
1421 	if (tp->t_flags & TF_TOE)
1422 		tcp_offload_detach(tp);
1423 #endif
1424 
1425 	tcp_free_sackholes(tp);
1426 
1427 #ifdef TCPPCAP
1428 	/* Free the TCP PCAP queues. */
1429 	tcp_pcap_drain(&(tp->t_inpkts));
1430 	tcp_pcap_drain(&(tp->t_outpkts));
1431 #endif
1432 
1433 	/* Allow the CC algorithm to clean up after itself. */
1434 	if (CC_ALGO(tp)->cb_destroy != NULL)
1435 		CC_ALGO(tp)->cb_destroy(tp->ccv);
1436 
1437 	khelp_destroy_osd(tp->osd);
1438 
1439 	CC_ALGO(tp) = NULL;
1440 	inp->inp_ppcb = NULL;
1441 	if (tp->t_timers->tt_draincnt == 0) {
1442 		/* We own the last reference on tcpcb, let's free it. */
1443 		if (tp->t_fb->tfb_tcp_fb_fini)
1444 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1445 		refcount_release(&tp->t_fb->tfb_refcnt);
1446 		tp->t_inpcb = NULL;
1447 		uma_zfree(V_tcpcb_zone, tp);
1448 		released = in_pcbrele_wlocked(inp);
1449 		KASSERT(!released, ("%s: inp %p should not have been released "
1450 			"here", __func__, inp));
1451 	}
1452 }
1453 
1454 void
1455 tcp_timer_discard(void *ptp)
1456 {
1457 	struct inpcb *inp;
1458 	struct tcpcb *tp;
1459 
1460 	tp = (struct tcpcb *)ptp;
1461 	CURVNET_SET(tp->t_vnet);
1462 	INP_INFO_RLOCK(&V_tcbinfo);
1463 	inp = tp->t_inpcb;
1464 	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1465 		__func__, tp));
1466 	INP_WLOCK(inp);
1467 	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1468 		("%s: tcpcb has to be stopped here", __func__));
1469 	tp->t_timers->tt_draincnt--;
1470 	if (tp->t_timers->tt_draincnt == 0) {
1471 		/* We own the last reference on this tcpcb, let's free it. */
1472 		if (tp->t_fb->tfb_tcp_fb_fini)
1473 			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
1474 		refcount_release(&tp->t_fb->tfb_refcnt);
1475 		tp->t_inpcb = NULL;
1476 		uma_zfree(V_tcpcb_zone, tp);
1477 		if (in_pcbrele_wlocked(inp)) {
1478 			INP_INFO_RUNLOCK(&V_tcbinfo);
1479 			CURVNET_RESTORE();
1480 			return;
1481 		}
1482 	}
1483 	INP_WUNLOCK(inp);
1484 	INP_INFO_RUNLOCK(&V_tcbinfo);
1485 	CURVNET_RESTORE();
1486 }
1487 
1488 /*
1489  * Attempt to close a TCP control block, marking it as dropped, and freeing
1490  * the socket if we hold the only reference.
1491  */
1492 struct tcpcb *
1493 tcp_close(struct tcpcb *tp)
1494 {
1495 	struct inpcb *inp = tp->t_inpcb;
1496 	struct socket *so;
1497 
1498 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1499 	INP_WLOCK_ASSERT(inp);
1500 
1501 #ifdef TCP_OFFLOAD
1502 	if (tp->t_state == TCPS_LISTEN)
1503 		tcp_offload_listen_stop(tp);
1504 #endif
1505 #ifdef TCP_RFC7413
1506 	/*
1507 	 * This releases the TFO pending counter resource for TFO listen
1508 	 * sockets as well as passively-created TFO sockets that transition
1509 	 * from SYN_RECEIVED to CLOSED.
1510 	 */
1511 	if (tp->t_tfo_pending) {
1512 		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1513 		tp->t_tfo_pending = NULL;
1514 	}
1515 #endif
1516 	in_pcbdrop(inp);
1517 	TCPSTAT_INC(tcps_closed);
1518 	TCPSTATES_DEC(tp->t_state);
1519 	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1520 	so = inp->inp_socket;
1521 	soisdisconnected(so);
1522 	if (inp->inp_flags & INP_SOCKREF) {
1523 		KASSERT(so->so_state & SS_PROTOREF,
1524 		    ("tcp_close: !SS_PROTOREF"));
1525 		inp->inp_flags &= ~INP_SOCKREF;
1526 		INP_WUNLOCK(inp);
1527 		ACCEPT_LOCK();
1528 		SOCK_LOCK(so);
1529 		so->so_state &= ~SS_PROTOREF;
1530 		sofree(so);
1531 		return (NULL);
1532 	}
1533 	return (tp);
1534 }
1535 
1536 void
1537 tcp_drain(void)
1538 {
1539 	VNET_ITERATOR_DECL(vnet_iter);
1540 
1541 	if (!do_tcpdrain)
1542 		return;
1543 
1544 	VNET_LIST_RLOCK_NOSLEEP();
1545 	VNET_FOREACH(vnet_iter) {
1546 		CURVNET_SET(vnet_iter);
1547 		struct inpcb *inpb;
1548 		struct tcpcb *tcpb;
1549 
1550 	/*
1551 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1552 	 * if there is one...
1553 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1554 	 *      reassembly queue should be flushed, but in a situation
1555 	 *	where we're really low on mbufs, this is potentially
1556 	 *	useful.
1557 	 */
1558 		INP_INFO_WLOCK(&V_tcbinfo);
1559 		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1560 			if (inpb->inp_flags & INP_TIMEWAIT)
1561 				continue;
1562 			INP_WLOCK(inpb);
1563 			if ((tcpb = intotcpcb(inpb)) != NULL) {
1564 				tcp_reass_flush(tcpb);
1565 				tcp_clean_sackreport(tcpb);
1566 			}
1567 			INP_WUNLOCK(inpb);
1568 		}
1569 		INP_INFO_WUNLOCK(&V_tcbinfo);
1570 		CURVNET_RESTORE();
1571 	}
1572 	VNET_LIST_RUNLOCK_NOSLEEP();
1573 }
1574 
1575 /*
1576  * Notify a tcp user of an asynchronous error;
1577  * store error as soft error, but wake up user
1578  * (for now, won't do anything until can select for soft error).
1579  *
1580  * Do not wake up user since there currently is no mechanism for
1581  * reporting soft errors (yet - a kqueue filter may be added).
1582  */
1583 static struct inpcb *
1584 tcp_notify(struct inpcb *inp, int error)
1585 {
1586 	struct tcpcb *tp;
1587 
1588 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
1589 	INP_WLOCK_ASSERT(inp);
1590 
1591 	if ((inp->inp_flags & INP_TIMEWAIT) ||
1592 	    (inp->inp_flags & INP_DROPPED))
1593 		return (inp);
1594 
1595 	tp = intotcpcb(inp);
1596 	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1597 
1598 	/*
1599 	 * Ignore some errors if we are hooked up.
1600 	 * If connection hasn't completed, has retransmitted several times,
1601 	 * and receives a second error, give up now.  This is better
1602 	 * than waiting a long time to establish a connection that
1603 	 * can never complete.
1604 	 */
1605 	if (tp->t_state == TCPS_ESTABLISHED &&
1606 	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1607 	     error == EHOSTDOWN)) {
1608 		if (inp->inp_route.ro_rt) {
1609 			RTFREE(inp->inp_route.ro_rt);
1610 			inp->inp_route.ro_rt = (struct rtentry *)NULL;
1611 		}
1612 		return (inp);
1613 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1614 	    tp->t_softerror) {
1615 		tp = tcp_drop(tp, error);
1616 		if (tp != NULL)
1617 			return (inp);
1618 		else
1619 			return (NULL);
1620 	} else {
1621 		tp->t_softerror = error;
1622 		return (inp);
1623 	}
1624 #if 0
1625 	wakeup( &so->so_timeo);
1626 	sorwakeup(so);
1627 	sowwakeup(so);
1628 #endif
1629 }
1630 
1631 static int
1632 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1633 {
1634 	int error, i, m, n, pcb_count;
1635 	struct inpcb *inp, **inp_list;
1636 	inp_gen_t gencnt;
1637 	struct xinpgen xig;
1638 
1639 	/*
1640 	 * The process of preparing the TCB list is too time-consuming and
1641 	 * resource-intensive to repeat twice on every request.
1642 	 */
1643 	if (req->oldptr == NULL) {
1644 		n = V_tcbinfo.ipi_count +
1645 		    counter_u64_fetch(VNET(tcps_states)[TCPS_SYN_RECEIVED]);
1646 		n += imax(n / 8, 10);
1647 		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1648 		return (0);
1649 	}
1650 
1651 	if (req->newptr != NULL)
1652 		return (EPERM);
1653 
1654 	/*
1655 	 * OK, now we're committed to doing something.
1656 	 */
1657 	INP_LIST_RLOCK(&V_tcbinfo);
1658 	gencnt = V_tcbinfo.ipi_gencnt;
1659 	n = V_tcbinfo.ipi_count;
1660 	INP_LIST_RUNLOCK(&V_tcbinfo);
1661 
1662 	m = counter_u64_fetch(VNET(tcps_states)[TCPS_SYN_RECEIVED]);
1663 
1664 	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1665 		+ (n + m) * sizeof(struct xtcpcb));
1666 	if (error != 0)
1667 		return (error);
1668 
1669 	xig.xig_len = sizeof xig;
1670 	xig.xig_count = n + m;
1671 	xig.xig_gen = gencnt;
1672 	xig.xig_sogen = so_gencnt;
1673 	error = SYSCTL_OUT(req, &xig, sizeof xig);
1674 	if (error)
1675 		return (error);
1676 
1677 	error = syncache_pcblist(req, m, &pcb_count);
1678 	if (error)
1679 		return (error);
1680 
1681 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1682 
1683 	INP_INFO_WLOCK(&V_tcbinfo);
1684 	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1685 	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1686 		INP_WLOCK(inp);
1687 		if (inp->inp_gencnt <= gencnt) {
1688 			/*
1689 			 * XXX: This use of cr_cansee(), introduced with
1690 			 * TCP state changes, is not quite right, but for
1691 			 * now, better than nothing.
1692 			 */
1693 			if (inp->inp_flags & INP_TIMEWAIT) {
1694 				if (intotw(inp) != NULL)
1695 					error = cr_cansee(req->td->td_ucred,
1696 					    intotw(inp)->tw_cred);
1697 				else
1698 					error = EINVAL;	/* Skip this inp. */
1699 			} else
1700 				error = cr_canseeinpcb(req->td->td_ucred, inp);
1701 			if (error == 0) {
1702 				in_pcbref(inp);
1703 				inp_list[i++] = inp;
1704 			}
1705 		}
1706 		INP_WUNLOCK(inp);
1707 	}
1708 	INP_INFO_WUNLOCK(&V_tcbinfo);
1709 	n = i;
1710 
1711 	error = 0;
1712 	for (i = 0; i < n; i++) {
1713 		inp = inp_list[i];
1714 		INP_RLOCK(inp);
1715 		if (inp->inp_gencnt <= gencnt) {
1716 			struct xtcpcb xt;
1717 			void *inp_ppcb;
1718 
1719 			bzero(&xt, sizeof(xt));
1720 			xt.xt_len = sizeof xt;
1721 			/* XXX should avoid extra copy */
1722 			bcopy(inp, &xt.xt_inp, sizeof *inp);
1723 			inp_ppcb = inp->inp_ppcb;
1724 			if (inp_ppcb == NULL)
1725 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1726 			else if (inp->inp_flags & INP_TIMEWAIT) {
1727 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1728 				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1729 			} else {
1730 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1731 				if (xt.xt_tp.t_timers)
1732 					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1733 			}
1734 			if (inp->inp_socket != NULL)
1735 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1736 			else {
1737 				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1738 				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1739 			}
1740 			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1741 			INP_RUNLOCK(inp);
1742 			error = SYSCTL_OUT(req, &xt, sizeof xt);
1743 		} else
1744 			INP_RUNLOCK(inp);
1745 	}
1746 	INP_INFO_RLOCK(&V_tcbinfo);
1747 	for (i = 0; i < n; i++) {
1748 		inp = inp_list[i];
1749 		INP_RLOCK(inp);
1750 		if (!in_pcbrele_rlocked(inp))
1751 			INP_RUNLOCK(inp);
1752 	}
1753 	INP_INFO_RUNLOCK(&V_tcbinfo);
1754 
1755 	if (!error) {
1756 		/*
1757 		 * Give the user an updated idea of our state.
1758 		 * If the generation differs from what we told
1759 		 * her before, she knows that something happened
1760 		 * while we were processing this request, and it
1761 		 * might be necessary to retry.
1762 		 */
1763 		INP_LIST_RLOCK(&V_tcbinfo);
1764 		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1765 		xig.xig_sogen = so_gencnt;
1766 		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1767 		INP_LIST_RUNLOCK(&V_tcbinfo);
1768 		error = SYSCTL_OUT(req, &xig, sizeof xig);
1769 	}
1770 	free(inp_list, M_TEMP);
1771 	return (error);
1772 }
1773 
1774 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1775     CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1776     tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1777 
1778 #ifdef INET
1779 static int
1780 tcp_getcred(SYSCTL_HANDLER_ARGS)
1781 {
1782 	struct xucred xuc;
1783 	struct sockaddr_in addrs[2];
1784 	struct inpcb *inp;
1785 	int error;
1786 
1787 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1788 	if (error)
1789 		return (error);
1790 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1791 	if (error)
1792 		return (error);
1793 	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1794 	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1795 	if (inp != NULL) {
1796 		if (inp->inp_socket == NULL)
1797 			error = ENOENT;
1798 		if (error == 0)
1799 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1800 		if (error == 0)
1801 			cru2x(inp->inp_cred, &xuc);
1802 		INP_RUNLOCK(inp);
1803 	} else
1804 		error = ENOENT;
1805 	if (error == 0)
1806 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1807 	return (error);
1808 }
1809 
1810 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1811     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1812     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1813 #endif /* INET */
1814 
1815 #ifdef INET6
1816 static int
1817 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1818 {
1819 	struct xucred xuc;
1820 	struct sockaddr_in6 addrs[2];
1821 	struct inpcb *inp;
1822 	int error;
1823 #ifdef INET
1824 	int mapped = 0;
1825 #endif
1826 
1827 	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1828 	if (error)
1829 		return (error);
1830 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1831 	if (error)
1832 		return (error);
1833 	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1834 	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1835 		return (error);
1836 	}
1837 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1838 #ifdef INET
1839 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1840 			mapped = 1;
1841 		else
1842 #endif
1843 			return (EINVAL);
1844 	}
1845 
1846 #ifdef INET
1847 	if (mapped == 1)
1848 		inp = in_pcblookup(&V_tcbinfo,
1849 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1850 			addrs[1].sin6_port,
1851 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1852 			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1853 	else
1854 #endif
1855 		inp = in6_pcblookup(&V_tcbinfo,
1856 			&addrs[1].sin6_addr, addrs[1].sin6_port,
1857 			&addrs[0].sin6_addr, addrs[0].sin6_port,
1858 			INPLOOKUP_RLOCKPCB, NULL);
1859 	if (inp != NULL) {
1860 		if (inp->inp_socket == NULL)
1861 			error = ENOENT;
1862 		if (error == 0)
1863 			error = cr_canseeinpcb(req->td->td_ucred, inp);
1864 		if (error == 0)
1865 			cru2x(inp->inp_cred, &xuc);
1866 		INP_RUNLOCK(inp);
1867 	} else
1868 		error = ENOENT;
1869 	if (error == 0)
1870 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1871 	return (error);
1872 }
1873 
1874 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1875     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1876     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1877 #endif /* INET6 */
1878 
1879 
1880 #ifdef INET
1881 void
1882 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1883 {
1884 	struct ip *ip = vip;
1885 	struct tcphdr *th;
1886 	struct in_addr faddr;
1887 	struct inpcb *inp;
1888 	struct tcpcb *tp;
1889 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1890 	struct icmp *icp;
1891 	struct in_conninfo inc;
1892 	tcp_seq icmp_tcp_seq;
1893 	int mtu;
1894 
1895 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1896 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1897 		return;
1898 
1899 	if (cmd == PRC_MSGSIZE)
1900 		notify = tcp_mtudisc_notify;
1901 	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1902 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1903 		notify = tcp_drop_syn_sent;
1904 	else if (PRC_IS_REDIRECT(cmd)) {
1905 		/* signal EHOSTDOWN, as it flushes the cached route */
1906 		in_pcbnotifyall(&V_tcbinfo, faddr, EHOSTDOWN, notify);
1907 		return;
1908 	}
1909 	/*
1910 	 * Hostdead is ugly because it goes linearly through all PCBs.
1911 	 * XXX: We never get this from ICMP, otherwise it makes an
1912 	 * excellent DoS attack on machines with many connections.
1913 	 */
1914 	else if (cmd == PRC_HOSTDEAD)
1915 		ip = NULL;
1916 	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1917 		return;
1918 
1919 	if (ip == NULL) {
1920 		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1921 		return;
1922 	}
1923 
1924 	icp = (struct icmp *)((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1925 	th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1926 	INP_INFO_RLOCK(&V_tcbinfo);
1927 	inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport, ip->ip_src,
1928 	    th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1929 	if (inp != NULL)  {
1930 		if (!(inp->inp_flags & INP_TIMEWAIT) &&
1931 		    !(inp->inp_flags & INP_DROPPED) &&
1932 		    !(inp->inp_socket == NULL)) {
1933 			icmp_tcp_seq = ntohl(th->th_seq);
1934 			tp = intotcpcb(inp);
1935 			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1936 			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1937 				if (cmd == PRC_MSGSIZE) {
1938 					/*
1939 					 * MTU discovery:
1940 					 * If we got a needfrag set the MTU
1941 					 * in the route to the suggested new
1942 					 * value (if given) and then notify.
1943 					 */
1944 				    	mtu = ntohs(icp->icmp_nextmtu);
1945 					/*
1946 					 * If no alternative MTU was
1947 					 * proposed, try the next smaller
1948 					 * one.
1949 					 */
1950 					if (!mtu)
1951 						mtu = ip_next_mtu(
1952 						    ntohs(ip->ip_len), 1);
1953 					if (mtu < V_tcp_minmss +
1954 					    sizeof(struct tcpiphdr))
1955 						mtu = V_tcp_minmss +
1956 						    sizeof(struct tcpiphdr);
1957 					/*
1958 					 * Only process the offered MTU if it
1959 					 * is smaller than the current one.
1960 					 */
1961 					if (mtu < tp->t_maxseg +
1962 					    sizeof(struct tcpiphdr)) {
1963 						bzero(&inc, sizeof(inc));
1964 						inc.inc_faddr = faddr;
1965 						inc.inc_fibnum =
1966 						    inp->inp_inc.inc_fibnum;
1967 						tcp_hc_updatemtu(&inc, mtu);
1968 						tcp_mtudisc(inp, mtu);
1969 					}
1970 				} else
1971 					inp = (*notify)(inp,
1972 					    inetctlerrmap[cmd]);
1973 			}
1974 		}
1975 		if (inp != NULL)
1976 			INP_WUNLOCK(inp);
1977 	} else {
1978 		bzero(&inc, sizeof(inc));
1979 		inc.inc_fport = th->th_dport;
1980 		inc.inc_lport = th->th_sport;
1981 		inc.inc_faddr = faddr;
1982 		inc.inc_laddr = ip->ip_src;
1983 		syncache_unreach(&inc, th);
1984 	}
1985 	INP_INFO_RUNLOCK(&V_tcbinfo);
1986 }
1987 #endif /* INET */
1988 
1989 #ifdef INET6
1990 void
1991 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1992 {
1993 	struct tcphdr th;
1994 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1995 	struct ip6_hdr *ip6;
1996 	struct mbuf *m;
1997 	struct ip6ctlparam *ip6cp = NULL;
1998 	const struct sockaddr_in6 *sa6_src = NULL;
1999 	int off;
2000 	struct tcp_portonly {
2001 		u_int16_t th_sport;
2002 		u_int16_t th_dport;
2003 	} *thp;
2004 
2005 	if (sa->sa_family != AF_INET6 ||
2006 	    sa->sa_len != sizeof(struct sockaddr_in6))
2007 		return;
2008 
2009 	if (cmd == PRC_MSGSIZE)
2010 		notify = tcp_mtudisc_notify;
2011 	else if (!PRC_IS_REDIRECT(cmd) &&
2012 		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
2013 		return;
2014 
2015 	/* if the parameter is from icmp6, decode it. */
2016 	if (d != NULL) {
2017 		ip6cp = (struct ip6ctlparam *)d;
2018 		m = ip6cp->ip6c_m;
2019 		ip6 = ip6cp->ip6c_ip6;
2020 		off = ip6cp->ip6c_off;
2021 		sa6_src = ip6cp->ip6c_src;
2022 	} else {
2023 		m = NULL;
2024 		ip6 = NULL;
2025 		off = 0;	/* fool gcc */
2026 		sa6_src = &sa6_any;
2027 	}
2028 
2029 	if (ip6 != NULL) {
2030 		struct in_conninfo inc;
2031 		/*
2032 		 * XXX: We assume that when IPV6 is non NULL,
2033 		 * M and OFF are valid.
2034 		 */
2035 
2036 		/* check if we can safely examine src and dst ports */
2037 		if (m->m_pkthdr.len < off + sizeof(*thp))
2038 			return;
2039 
2040 		bzero(&th, sizeof(th));
2041 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
2042 
2043 		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
2044 		    (struct sockaddr *)ip6cp->ip6c_src,
2045 		    th.th_sport, cmd, NULL, notify);
2046 
2047 		bzero(&inc, sizeof(inc));
2048 		inc.inc_fport = th.th_dport;
2049 		inc.inc_lport = th.th_sport;
2050 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
2051 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
2052 		inc.inc_flags |= INC_ISIPV6;
2053 		INP_INFO_RLOCK(&V_tcbinfo);
2054 		syncache_unreach(&inc, &th);
2055 		INP_INFO_RUNLOCK(&V_tcbinfo);
2056 	} else
2057 		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
2058 			      0, cmd, NULL, notify);
2059 }
2060 #endif /* INET6 */
2061 
2062 
2063 /*
2064  * Following is where TCP initial sequence number generation occurs.
2065  *
2066  * There are two places where we must use initial sequence numbers:
2067  * 1.  In SYN-ACK packets.
2068  * 2.  In SYN packets.
2069  *
2070  * All ISNs for SYN-ACK packets are generated by the syncache.  See
2071  * tcp_syncache.c for details.
2072  *
2073  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
2074  * depends on this property.  In addition, these ISNs should be
2075  * unguessable so as to prevent connection hijacking.  To satisfy
2076  * the requirements of this situation, the algorithm outlined in
2077  * RFC 1948 is used, with only small modifications.
2078  *
2079  * Implementation details:
2080  *
2081  * Time is based off the system timer, and is corrected so that it
2082  * increases by one megabyte per second.  This allows for proper
2083  * recycling on high speed LANs while still leaving over an hour
2084  * before rollover.
2085  *
2086  * As reading the *exact* system time is too expensive to be done
2087  * whenever setting up a TCP connection, we increment the time
2088  * offset in two ways.  First, a small random positive increment
2089  * is added to isn_offset for each connection that is set up.
2090  * Second, the function tcp_isn_tick fires once per clock tick
2091  * and increments isn_offset as necessary so that sequence numbers
2092  * are incremented at approximately ISN_BYTES_PER_SECOND.  The
2093  * random positive increments serve only to ensure that the same
2094  * exact sequence number is never sent out twice (as could otherwise
2095  * happen when a port is recycled in less than the system tick
2096  * interval.)
2097  *
2098  * net.inet.tcp.isn_reseed_interval controls the number of seconds
2099  * between seeding of isn_secret.  This is normally set to zero,
2100  * as reseeding should not be necessary.
2101  *
2102  * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
2103  * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
2104  * general, this means holding an exclusive (write) lock.
2105  */
2106 
2107 #define ISN_BYTES_PER_SECOND 1048576
2108 #define ISN_STATIC_INCREMENT 4096
2109 #define ISN_RANDOM_INCREMENT (4096 - 1)
2110 
2111 static VNET_DEFINE(u_char, isn_secret[32]);
2112 static VNET_DEFINE(int, isn_last);
2113 static VNET_DEFINE(int, isn_last_reseed);
2114 static VNET_DEFINE(u_int32_t, isn_offset);
2115 static VNET_DEFINE(u_int32_t, isn_offset_old);
2116 
2117 #define	V_isn_secret			VNET(isn_secret)
2118 #define	V_isn_last			VNET(isn_last)
2119 #define	V_isn_last_reseed		VNET(isn_last_reseed)
2120 #define	V_isn_offset			VNET(isn_offset)
2121 #define	V_isn_offset_old		VNET(isn_offset_old)
2122 
2123 tcp_seq
2124 tcp_new_isn(struct tcpcb *tp)
2125 {
2126 	MD5_CTX isn_ctx;
2127 	u_int32_t md5_buffer[4];
2128 	tcp_seq new_isn;
2129 	u_int32_t projected_offset;
2130 
2131 	INP_WLOCK_ASSERT(tp->t_inpcb);
2132 
2133 	ISN_LOCK();
2134 	/* Seed if this is the first use, reseed if requested. */
2135 	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
2136 	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
2137 		< (u_int)ticks))) {
2138 		read_random(&V_isn_secret, sizeof(V_isn_secret));
2139 		V_isn_last_reseed = ticks;
2140 	}
2141 
2142 	/* Compute the md5 hash and return the ISN. */
2143 	MD5Init(&isn_ctx);
2144 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
2145 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2146 #ifdef INET6
2147 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2148 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2149 			  sizeof(struct in6_addr));
2150 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2151 			  sizeof(struct in6_addr));
2152 	} else
2153 #endif
2154 	{
2155 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2156 			  sizeof(struct in_addr));
2157 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2158 			  sizeof(struct in_addr));
2159 	}
2160 	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
2161 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2162 	new_isn = (tcp_seq) md5_buffer[0];
2163 	V_isn_offset += ISN_STATIC_INCREMENT +
2164 		(arc4random() & ISN_RANDOM_INCREMENT);
2165 	if (ticks != V_isn_last) {
2166 		projected_offset = V_isn_offset_old +
2167 		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
2168 		if (SEQ_GT(projected_offset, V_isn_offset))
2169 			V_isn_offset = projected_offset;
2170 		V_isn_offset_old = V_isn_offset;
2171 		V_isn_last = ticks;
2172 	}
2173 	new_isn += V_isn_offset;
2174 	ISN_UNLOCK();
2175 	return (new_isn);
2176 }
2177 
2178 /*
2179  * When a specific ICMP unreachable message is received and the
2180  * connection state is SYN-SENT, drop the connection.  This behavior
2181  * is controlled by the icmp_may_rst sysctl.
2182  */
2183 struct inpcb *
2184 tcp_drop_syn_sent(struct inpcb *inp, int errno)
2185 {
2186 	struct tcpcb *tp;
2187 
2188 	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2189 	INP_WLOCK_ASSERT(inp);
2190 
2191 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2192 	    (inp->inp_flags & INP_DROPPED))
2193 		return (inp);
2194 
2195 	tp = intotcpcb(inp);
2196 	if (tp->t_state != TCPS_SYN_SENT)
2197 		return (inp);
2198 
2199 	tp = tcp_drop(tp, errno);
2200 	if (tp != NULL)
2201 		return (inp);
2202 	else
2203 		return (NULL);
2204 }
2205 
2206 /*
2207  * When `need fragmentation' ICMP is received, update our idea of the MSS
2208  * based on the new value. Also nudge TCP to send something, since we
2209  * know the packet we just sent was dropped.
2210  * This duplicates some code in the tcp_mss() function in tcp_input.c.
2211  */
2212 static struct inpcb *
2213 tcp_mtudisc_notify(struct inpcb *inp, int error)
2214 {
2215 
2216 	tcp_mtudisc(inp, -1);
2217 	return (inp);
2218 }
2219 
2220 static void
2221 tcp_mtudisc(struct inpcb *inp, int mtuoffer)
2222 {
2223 	struct tcpcb *tp;
2224 	struct socket *so;
2225 
2226 	INP_WLOCK_ASSERT(inp);
2227 	if ((inp->inp_flags & INP_TIMEWAIT) ||
2228 	    (inp->inp_flags & INP_DROPPED))
2229 		return;
2230 
2231 	tp = intotcpcb(inp);
2232 	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
2233 
2234 	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
2235 
2236 	so = inp->inp_socket;
2237 	SOCKBUF_LOCK(&so->so_snd);
2238 	/* If the mss is larger than the socket buffer, decrease the mss. */
2239 	if (so->so_snd.sb_hiwat < tp->t_maxseg)
2240 		tp->t_maxseg = so->so_snd.sb_hiwat;
2241 	SOCKBUF_UNLOCK(&so->so_snd);
2242 
2243 	TCPSTAT_INC(tcps_mturesent);
2244 	tp->t_rtttime = 0;
2245 	tp->snd_nxt = tp->snd_una;
2246 	tcp_free_sackholes(tp);
2247 	tp->snd_recover = tp->snd_max;
2248 	if (tp->t_flags & TF_SACK_PERMIT)
2249 		EXIT_FASTRECOVERY(tp->t_flags);
2250 	tp->t_fb->tfb_tcp_output(tp);
2251 }
2252 
2253 #ifdef INET
2254 /*
2255  * Look-up the routing entry to the peer of this inpcb.  If no route
2256  * is found and it cannot be allocated, then return 0.  This routine
2257  * is called by TCP routines that access the rmx structure and by
2258  * tcp_mss_update to get the peer/interface MTU.
2259  */
2260 u_long
2261 tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
2262 {
2263 	struct nhop4_extended nh4;
2264 	struct ifnet *ifp;
2265 	u_long maxmtu = 0;
2266 
2267 	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
2268 
2269 	if (inc->inc_faddr.s_addr != INADDR_ANY) {
2270 
2271 		if (fib4_lookup_nh_ext(inc->inc_fibnum, inc->inc_faddr,
2272 		    NHR_REF, 0, &nh4) != 0)
2273 			return (0);
2274 
2275 		ifp = nh4.nh_ifp;
2276 		maxmtu = nh4.nh_mtu;
2277 
2278 		/* Report additional interface capabilities. */
2279 		if (cap != NULL) {
2280 			if (ifp->if_capenable & IFCAP_TSO4 &&
2281 			    ifp->if_hwassist & CSUM_TSO) {
2282 				cap->ifcap |= CSUM_TSO;
2283 				cap->tsomax = ifp->if_hw_tsomax;
2284 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2285 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2286 			}
2287 		}
2288 		fib4_free_nh_ext(inc->inc_fibnum, &nh4);
2289 	}
2290 	return (maxmtu);
2291 }
2292 #endif /* INET */
2293 
2294 #ifdef INET6
2295 u_long
2296 tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
2297 {
2298 	struct nhop6_extended nh6;
2299 	struct in6_addr dst6;
2300 	uint32_t scopeid;
2301 	struct ifnet *ifp;
2302 	u_long maxmtu = 0;
2303 
2304 	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
2305 
2306 	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
2307 		in6_splitscope(&inc->inc6_faddr, &dst6, &scopeid);
2308 		if (fib6_lookup_nh_ext(inc->inc_fibnum, &dst6, scopeid, 0,
2309 		    0, &nh6) != 0)
2310 			return (0);
2311 
2312 		ifp = nh6.nh_ifp;
2313 		maxmtu = nh6.nh_mtu;
2314 
2315 		/* Report additional interface capabilities. */
2316 		if (cap != NULL) {
2317 			if (ifp->if_capenable & IFCAP_TSO6 &&
2318 			    ifp->if_hwassist & CSUM_TSO) {
2319 				cap->ifcap |= CSUM_TSO;
2320 				cap->tsomax = ifp->if_hw_tsomax;
2321 				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
2322 				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
2323 			}
2324 		}
2325 		fib6_free_nh_ext(inc->inc_fibnum, &nh6);
2326 	}
2327 
2328 	return (maxmtu);
2329 }
2330 #endif /* INET6 */
2331 
2332 /*
2333  * Calculate effective SMSS per RFC5681 definition for a given TCP
2334  * connection at its current state, taking into account SACK and etc.
2335  */
2336 u_int
2337 tcp_maxseg(const struct tcpcb *tp)
2338 {
2339 	u_int optlen;
2340 
2341 	if (tp->t_flags & TF_NOOPT)
2342 		return (tp->t_maxseg);
2343 
2344 	/*
2345 	 * Here we have a simplified code from tcp_addoptions(),
2346 	 * without a proper loop, and having most of paddings hardcoded.
2347 	 * We might make mistakes with padding here in some edge cases,
2348 	 * but this is harmless, since result of tcp_maxseg() is used
2349 	 * only in cwnd and ssthresh estimations.
2350 	 */
2351 #define	PAD(len)	((((len) / 4) + !!((len) % 4)) * 4)
2352 	if (TCPS_HAVEESTABLISHED(tp->t_state)) {
2353 		if (tp->t_flags & TF_RCVD_TSTMP)
2354 			optlen = TCPOLEN_TSTAMP_APPA;
2355 		else
2356 			optlen = 0;
2357 #ifdef TCP_SIGNATURE
2358 		if (tp->t_flags & TF_SIGNATURE)
2359 			optlen += PAD(TCPOLEN_SIGNATURE);
2360 #endif
2361 		if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) {
2362 			optlen += TCPOLEN_SACKHDR;
2363 			optlen += tp->rcv_numsacks * TCPOLEN_SACK;
2364 			optlen = PAD(optlen);
2365 		}
2366 	} else {
2367 		if (tp->t_flags & TF_REQ_TSTMP)
2368 			optlen = TCPOLEN_TSTAMP_APPA;
2369 		else
2370 			optlen = PAD(TCPOLEN_MAXSEG);
2371 		if (tp->t_flags & TF_REQ_SCALE)
2372 			optlen += PAD(TCPOLEN_WINDOW);
2373 #ifdef TCP_SIGNATURE
2374 		if (tp->t_flags & TF_SIGNATURE)
2375 			optlen += PAD(TCPOLEN_SIGNATURE);
2376 #endif
2377 		if (tp->t_flags & TF_SACK_PERMIT)
2378 			optlen += PAD(TCPOLEN_SACK_PERMITTED);
2379 	}
2380 #undef PAD
2381 	optlen = min(optlen, TCP_MAXOLEN);
2382 	return (tp->t_maxseg - optlen);
2383 }
2384 
2385 #ifdef IPSEC
2386 /* compute ESP/AH header size for TCP, including outer IP header. */
2387 size_t
2388 ipsec_hdrsiz_tcp(struct tcpcb *tp)
2389 {
2390 	struct inpcb *inp;
2391 	struct mbuf *m;
2392 	size_t hdrsiz;
2393 	struct ip *ip;
2394 #ifdef INET6
2395 	struct ip6_hdr *ip6;
2396 #endif
2397 	struct tcphdr *th;
2398 
2399 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
2400 		(!key_havesp(IPSEC_DIR_OUTBOUND)))
2401 		return (0);
2402 	m = m_gethdr(M_NOWAIT, MT_DATA);
2403 	if (!m)
2404 		return (0);
2405 
2406 #ifdef INET6
2407 	if ((inp->inp_vflag & INP_IPV6) != 0) {
2408 		ip6 = mtod(m, struct ip6_hdr *);
2409 		th = (struct tcphdr *)(ip6 + 1);
2410 		m->m_pkthdr.len = m->m_len =
2411 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2412 		tcpip_fillheaders(inp, ip6, th);
2413 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2414 	} else
2415 #endif /* INET6 */
2416 	{
2417 		ip = mtod(m, struct ip *);
2418 		th = (struct tcphdr *)(ip + 1);
2419 		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2420 		tcpip_fillheaders(inp, ip, th);
2421 		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2422 	}
2423 
2424 	m_free(m);
2425 	return (hdrsiz);
2426 }
2427 #endif /* IPSEC */
2428 
2429 #ifdef TCP_SIGNATURE
2430 /*
2431  * Callback function invoked by m_apply() to digest TCP segment data
2432  * contained within an mbuf chain.
2433  */
2434 static int
2435 tcp_signature_apply(void *fstate, void *data, u_int len)
2436 {
2437 
2438 	MD5Update(fstate, (u_char *)data, len);
2439 	return (0);
2440 }
2441 
2442 /*
2443  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2444  * search with the destination IP address, and a 'magic SPI' to be
2445  * determined by the application. This is hardcoded elsewhere to 1179
2446 */
2447 struct secasvar *
2448 tcp_get_sav(struct mbuf *m, u_int direction)
2449 {
2450 	union sockaddr_union dst;
2451 	struct secasvar *sav;
2452 	struct ip *ip;
2453 #ifdef INET6
2454 	struct ip6_hdr *ip6;
2455 	char ip6buf[INET6_ADDRSTRLEN];
2456 #endif
2457 
2458 	/* Extract the destination from the IP header in the mbuf. */
2459 	bzero(&dst, sizeof(union sockaddr_union));
2460 	ip = mtod(m, struct ip *);
2461 #ifdef INET6
2462 	ip6 = NULL;	/* Make the compiler happy. */
2463 #endif
2464 	switch (ip->ip_v) {
2465 #ifdef INET
2466 	case IPVERSION:
2467 		dst.sa.sa_len = sizeof(struct sockaddr_in);
2468 		dst.sa.sa_family = AF_INET;
2469 		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2470 		    ip->ip_src : ip->ip_dst;
2471 		break;
2472 #endif
2473 #ifdef INET6
2474 	case (IPV6_VERSION >> 4):
2475 		ip6 = mtod(m, struct ip6_hdr *);
2476 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2477 		dst.sa.sa_family = AF_INET6;
2478 		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2479 		    ip6->ip6_src : ip6->ip6_dst;
2480 		break;
2481 #endif
2482 	default:
2483 		return (NULL);
2484 		/* NOTREACHED */
2485 		break;
2486 	}
2487 
2488 	/* Look up an SADB entry which matches the address of the peer. */
2489 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2490 	if (sav == NULL) {
2491 		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2492 		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2493 #ifdef INET6
2494 			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2495 			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2496 #endif
2497 			"(unsupported)"));
2498 	}
2499 
2500 	return (sav);
2501 }
2502 
2503 /*
2504  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2505  *
2506  * Parameters:
2507  * m		pointer to head of mbuf chain
2508  * len		length of TCP segment data, excluding options
2509  * optlen	length of TCP segment options
2510  * buf		pointer to storage for computed MD5 digest
2511  * sav		pointer to security assosiation
2512  *
2513  * We do this over ip, tcphdr, segment data, and the key in the SADB.
2514  * When called from tcp_input(), we can be sure that th_sum has been
2515  * zeroed out and verified already.
2516  *
2517  * Releases reference to SADB key before return.
2518  *
2519  * Return 0 if successful, otherwise return -1.
2520  *
2521  */
2522 int
2523 tcp_signature_do_compute(struct mbuf *m, int len, int optlen,
2524     u_char *buf, struct secasvar *sav)
2525 {
2526 #ifdef INET
2527 	struct ippseudo ippseudo;
2528 #endif
2529 	MD5_CTX ctx;
2530 	int doff;
2531 	struct ip *ip;
2532 #ifdef INET
2533 	struct ipovly *ipovly;
2534 #endif
2535 	struct tcphdr *th;
2536 #ifdef INET6
2537 	struct ip6_hdr *ip6;
2538 	struct in6_addr in6;
2539 	uint32_t plen;
2540 	uint16_t nhdr;
2541 #endif
2542 	u_short savecsum;
2543 
2544 	KASSERT(m != NULL, ("NULL mbuf chain"));
2545 	KASSERT(buf != NULL, ("NULL signature pointer"));
2546 
2547 	/* Extract the destination from the IP header in the mbuf. */
2548 	ip = mtod(m, struct ip *);
2549 #ifdef INET6
2550 	ip6 = NULL;	/* Make the compiler happy. */
2551 #endif
2552 
2553 	MD5Init(&ctx);
2554 	/*
2555 	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2556 	 *
2557 	 * XXX The ippseudo header MUST be digested in network byte order,
2558 	 * or else we'll fail the regression test. Assume all fields we've
2559 	 * been doing arithmetic on have been in host byte order.
2560 	 * XXX One cannot depend on ipovly->ih_len here. When called from
2561 	 * tcp_output(), the underlying ip_len member has not yet been set.
2562 	 */
2563 	switch (ip->ip_v) {
2564 #ifdef INET
2565 	case IPVERSION:
2566 		ipovly = (struct ipovly *)ip;
2567 		ippseudo.ippseudo_src = ipovly->ih_src;
2568 		ippseudo.ippseudo_dst = ipovly->ih_dst;
2569 		ippseudo.ippseudo_pad = 0;
2570 		ippseudo.ippseudo_p = IPPROTO_TCP;
2571 		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2572 		    optlen);
2573 		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2574 
2575 		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2576 		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2577 		break;
2578 #endif
2579 #ifdef INET6
2580 	/*
2581 	 * RFC 2385, 2.0  Proposal
2582 	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2583 	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2584 	 * extended next header value (to form 32 bits), and 32-bit segment
2585 	 * length.
2586 	 * Note: Upper-Layer Packet Length comes before Next Header.
2587 	 */
2588 	case (IPV6_VERSION >> 4):
2589 		in6 = ip6->ip6_src;
2590 		in6_clearscope(&in6);
2591 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2592 		in6 = ip6->ip6_dst;
2593 		in6_clearscope(&in6);
2594 		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2595 		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2596 		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2597 		nhdr = 0;
2598 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2599 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2600 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2601 		nhdr = IPPROTO_TCP;
2602 		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2603 
2604 		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2605 		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2606 		break;
2607 #endif
2608 	default:
2609 		KEY_FREESAV(&sav);
2610 		return (-1);
2611 		/* NOTREACHED */
2612 		break;
2613 	}
2614 
2615 
2616 	/*
2617 	 * Step 2: Update MD5 hash with TCP header, excluding options.
2618 	 * The TCP checksum must be set to zero.
2619 	 */
2620 	savecsum = th->th_sum;
2621 	th->th_sum = 0;
2622 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2623 	th->th_sum = savecsum;
2624 
2625 	/*
2626 	 * Step 3: Update MD5 hash with TCP segment data.
2627 	 *         Use m_apply() to avoid an early m_pullup().
2628 	 */
2629 	if (len > 0)
2630 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2631 
2632 	/*
2633 	 * Step 4: Update MD5 hash with shared secret.
2634 	 */
2635 	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2636 	MD5Final(buf, &ctx);
2637 
2638 	key_sa_recordxfer(sav, m);
2639 	KEY_FREESAV(&sav);
2640 	return (0);
2641 }
2642 
2643 /*
2644  * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2645  *
2646  * Return 0 if successful, otherwise return -1.
2647  */
2648 int
2649 tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2650     u_char *buf, u_int direction)
2651 {
2652 	struct secasvar *sav;
2653 
2654 	if ((sav = tcp_get_sav(m, direction)) == NULL)
2655 		return (-1);
2656 
2657 	return (tcp_signature_do_compute(m, len, optlen, buf, sav));
2658 }
2659 
2660 /*
2661  * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2662  *
2663  * Parameters:
2664  * m		pointer to head of mbuf chain
2665  * len		length of TCP segment data, excluding options
2666  * optlen	length of TCP segment options
2667  * buf		pointer to storage for computed MD5 digest
2668  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2669  *
2670  * Return 1 if successful, otherwise return 0.
2671  */
2672 int
2673 tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2674     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2675 {
2676 	char tmpdigest[TCP_SIGLEN];
2677 
2678 	if (tcp_sig_checksigs == 0)
2679 		return (1);
2680 	if ((tcpbflag & TF_SIGNATURE) == 0) {
2681 		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2682 
2683 			/*
2684 			 * If this socket is not expecting signature but
2685 			 * the segment contains signature just fail.
2686 			 */
2687 			TCPSTAT_INC(tcps_sig_err_sigopt);
2688 			TCPSTAT_INC(tcps_sig_rcvbadsig);
2689 			return (0);
2690 		}
2691 
2692 		/* Signature is not expected, and not present in segment. */
2693 		return (1);
2694 	}
2695 
2696 	/*
2697 	 * If this socket is expecting signature but the segment does not
2698 	 * contain any just fail.
2699 	 */
2700 	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2701 		TCPSTAT_INC(tcps_sig_err_nosigopt);
2702 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2703 		return (0);
2704 	}
2705 	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2706 	    IPSEC_DIR_INBOUND) == -1) {
2707 		TCPSTAT_INC(tcps_sig_err_buildsig);
2708 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2709 		return (0);
2710 	}
2711 
2712 	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2713 		TCPSTAT_INC(tcps_sig_rcvbadsig);
2714 		return (0);
2715 	}
2716 	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2717 	return (1);
2718 }
2719 #endif /* TCP_SIGNATURE */
2720 
2721 static int
2722 sysctl_drop(SYSCTL_HANDLER_ARGS)
2723 {
2724 	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2725 	struct sockaddr_storage addrs[2];
2726 	struct inpcb *inp;
2727 	struct tcpcb *tp;
2728 	struct tcptw *tw;
2729 	struct sockaddr_in *fin, *lin;
2730 #ifdef INET6
2731 	struct sockaddr_in6 *fin6, *lin6;
2732 #endif
2733 	int error;
2734 
2735 	inp = NULL;
2736 	fin = lin = NULL;
2737 #ifdef INET6
2738 	fin6 = lin6 = NULL;
2739 #endif
2740 	error = 0;
2741 
2742 	if (req->oldptr != NULL || req->oldlen != 0)
2743 		return (EINVAL);
2744 	if (req->newptr == NULL)
2745 		return (EPERM);
2746 	if (req->newlen < sizeof(addrs))
2747 		return (ENOMEM);
2748 	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2749 	if (error)
2750 		return (error);
2751 
2752 	switch (addrs[0].ss_family) {
2753 #ifdef INET6
2754 	case AF_INET6:
2755 		fin6 = (struct sockaddr_in6 *)&addrs[0];
2756 		lin6 = (struct sockaddr_in6 *)&addrs[1];
2757 		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2758 		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2759 			return (EINVAL);
2760 		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2761 			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2762 				return (EINVAL);
2763 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2764 			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2765 			fin = (struct sockaddr_in *)&addrs[0];
2766 			lin = (struct sockaddr_in *)&addrs[1];
2767 			break;
2768 		}
2769 		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2770 		if (error)
2771 			return (error);
2772 		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2773 		if (error)
2774 			return (error);
2775 		break;
2776 #endif
2777 #ifdef INET
2778 	case AF_INET:
2779 		fin = (struct sockaddr_in *)&addrs[0];
2780 		lin = (struct sockaddr_in *)&addrs[1];
2781 		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2782 		    lin->sin_len != sizeof(struct sockaddr_in))
2783 			return (EINVAL);
2784 		break;
2785 #endif
2786 	default:
2787 		return (EINVAL);
2788 	}
2789 	INP_INFO_RLOCK(&V_tcbinfo);
2790 	switch (addrs[0].ss_family) {
2791 #ifdef INET6
2792 	case AF_INET6:
2793 		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2794 		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2795 		    INPLOOKUP_WLOCKPCB, NULL);
2796 		break;
2797 #endif
2798 #ifdef INET
2799 	case AF_INET:
2800 		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2801 		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2802 		break;
2803 #endif
2804 	}
2805 	if (inp != NULL) {
2806 		if (inp->inp_flags & INP_TIMEWAIT) {
2807 			/*
2808 			 * XXXRW: There currently exists a state where an
2809 			 * inpcb is present, but its timewait state has been
2810 			 * discarded.  For now, don't allow dropping of this
2811 			 * type of inpcb.
2812 			 */
2813 			tw = intotw(inp);
2814 			if (tw != NULL)
2815 				tcp_twclose(tw, 0);
2816 			else
2817 				INP_WUNLOCK(inp);
2818 		} else if (!(inp->inp_flags & INP_DROPPED) &&
2819 			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2820 			tp = intotcpcb(inp);
2821 			tp = tcp_drop(tp, ECONNABORTED);
2822 			if (tp != NULL)
2823 				INP_WUNLOCK(inp);
2824 		} else
2825 			INP_WUNLOCK(inp);
2826 	} else
2827 		error = ESRCH;
2828 	INP_INFO_RUNLOCK(&V_tcbinfo);
2829 	return (error);
2830 }
2831 
2832 SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2833     CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_WR | CTLFLAG_SKIP, NULL,
2834     0, sysctl_drop, "", "Drop TCP connection");
2835 
2836 /*
2837  * Generate a standardized TCP log line for use throughout the
2838  * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2839  * allow use in the interrupt context.
2840  *
2841  * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2842  * NB: The function may return NULL if memory allocation failed.
2843  *
2844  * Due to header inclusion and ordering limitations the struct ip
2845  * and ip6_hdr pointers have to be passed as void pointers.
2846  */
2847 char *
2848 tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2849     const void *ip6hdr)
2850 {
2851 
2852 	/* Is logging enabled? */
2853 	if (tcp_log_in_vain == 0)
2854 		return (NULL);
2855 
2856 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2857 }
2858 
2859 char *
2860 tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2861     const void *ip6hdr)
2862 {
2863 
2864 	/* Is logging enabled? */
2865 	if (tcp_log_debug == 0)
2866 		return (NULL);
2867 
2868 	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2869 }
2870 
2871 static char *
2872 tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2873     const void *ip6hdr)
2874 {
2875 	char *s, *sp;
2876 	size_t size;
2877 	struct ip *ip;
2878 #ifdef INET6
2879 	const struct ip6_hdr *ip6;
2880 
2881 	ip6 = (const struct ip6_hdr *)ip6hdr;
2882 #endif /* INET6 */
2883 	ip = (struct ip *)ip4hdr;
2884 
2885 	/*
2886 	 * The log line looks like this:
2887 	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2888 	 */
2889 	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2890 	    sizeof(PRINT_TH_FLAGS) + 1 +
2891 #ifdef INET6
2892 	    2 * INET6_ADDRSTRLEN;
2893 #else
2894 	    2 * INET_ADDRSTRLEN;
2895 #endif /* INET6 */
2896 
2897 	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2898 	if (s == NULL)
2899 		return (NULL);
2900 
2901 	strcat(s, "TCP: [");
2902 	sp = s + strlen(s);
2903 
2904 	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2905 		inet_ntoa_r(inc->inc_faddr, sp);
2906 		sp = s + strlen(s);
2907 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2908 		sp = s + strlen(s);
2909 		inet_ntoa_r(inc->inc_laddr, sp);
2910 		sp = s + strlen(s);
2911 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2912 #ifdef INET6
2913 	} else if (inc) {
2914 		ip6_sprintf(sp, &inc->inc6_faddr);
2915 		sp = s + strlen(s);
2916 		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2917 		sp = s + strlen(s);
2918 		ip6_sprintf(sp, &inc->inc6_laddr);
2919 		sp = s + strlen(s);
2920 		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2921 	} else if (ip6 && th) {
2922 		ip6_sprintf(sp, &ip6->ip6_src);
2923 		sp = s + strlen(s);
2924 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2925 		sp = s + strlen(s);
2926 		ip6_sprintf(sp, &ip6->ip6_dst);
2927 		sp = s + strlen(s);
2928 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2929 #endif /* INET6 */
2930 #ifdef INET
2931 	} else if (ip && th) {
2932 		inet_ntoa_r(ip->ip_src, sp);
2933 		sp = s + strlen(s);
2934 		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2935 		sp = s + strlen(s);
2936 		inet_ntoa_r(ip->ip_dst, sp);
2937 		sp = s + strlen(s);
2938 		sprintf(sp, "]:%i", ntohs(th->th_dport));
2939 #endif /* INET */
2940 	} else {
2941 		free(s, M_TCPLOG);
2942 		return (NULL);
2943 	}
2944 	sp = s + strlen(s);
2945 	if (th)
2946 		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2947 	if (*(s + size - 1) != '\0')
2948 		panic("%s: string too long", __func__);
2949 	return (s);
2950 }
2951 
2952 /*
2953  * A subroutine which makes it easy to track TCP state changes with DTrace.
2954  * This function shouldn't be called for t_state initializations that don't
2955  * correspond to actual TCP state transitions.
2956  */
2957 void
2958 tcp_state_change(struct tcpcb *tp, int newstate)
2959 {
2960 #if defined(KDTRACE_HOOKS)
2961 	int pstate = tp->t_state;
2962 #endif
2963 
2964 	TCPSTATES_DEC(tp->t_state);
2965 	TCPSTATES_INC(newstate);
2966 	tp->t_state = newstate;
2967 	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2968 }
2969