xref: /freebsd/sys/netinet/tcp_subr.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_compat.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 #include <sys/mac.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #ifdef INET6
52 #include <sys/domain.h>
53 #endif
54 #include <sys/proc.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/protosw.h>
58 #include <sys/random.h>
59 
60 #include <vm/uma.h>
61 
62 #include <net/route.h>
63 #include <net/if.h>
64 
65 #define _IP_VHL
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 #include <netinet/in_pcb.h>
73 #ifdef INET6
74 #include <netinet6/in6_pcb.h>
75 #endif
76 #include <netinet/in_var.h>
77 #include <netinet/ip_var.h>
78 #ifdef INET6
79 #include <netinet6/ip6_var.h>
80 #endif
81 #include <netinet/tcp.h>
82 #include <netinet/tcp_fsm.h>
83 #include <netinet/tcp_seq.h>
84 #include <netinet/tcp_timer.h>
85 #include <netinet/tcp_var.h>
86 #ifdef INET6
87 #include <netinet6/tcp6_var.h>
88 #endif
89 #include <netinet/tcpip.h>
90 #ifdef TCPDEBUG
91 #include <netinet/tcp_debug.h>
92 #endif
93 #include <netinet6/ip6protosw.h>
94 
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #ifdef INET6
98 #include <netinet6/ipsec6.h>
99 #endif
100 #endif /*IPSEC*/
101 
102 #include <machine/in_cksum.h>
103 #include <sys/md5.h>
104 
105 int 	tcp_mssdflt = TCP_MSS;
106 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
107     &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
108 
109 #ifdef INET6
110 int	tcp_v6mssdflt = TCP6_MSS;
111 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
112 	CTLFLAG_RW, &tcp_v6mssdflt , 0,
113 	"Default TCP Maximum Segment Size for IPv6");
114 #endif
115 
116 #if 0
117 static int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
118 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
119     &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
120 #endif
121 
122 int	tcp_do_rfc1323 = 1;
123 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
124     &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
125 
126 int	tcp_do_rfc1644 = 0;
127 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
128     &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
129 
130 static int	tcp_tcbhashsize = 0;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
132      &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
133 
134 static int	do_tcpdrain = 1;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
136      "Enable tcp_drain routine for extra help when low on mbufs");
137 
138 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
139     &tcbinfo.ipi_count, 0, "Number of active PCBs");
140 
141 static int	icmp_may_rst = 1;
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
143     "Certain ICMP unreachable messages may abort connections in SYN_SENT");
144 
145 static int	tcp_isn_reseed_interval = 0;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
147     &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
148 
149 /*
150  * TCP bandwidth limiting sysctls.  Note that the default lower bound of
151  * 1024 exists only for debugging.  A good production default would be
152  * something like 6100.
153  */
154 static int	tcp_inflight_enable = 0;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
156     &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
157 
158 static int	tcp_inflight_debug = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
160     &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
161 
162 static int	tcp_inflight_min = 1024;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
164     &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
165 
166 static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
168     &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
169 
170 static void	tcp_cleartaocache(void);
171 static struct inpcb *tcp_notify(struct inpcb *, int);
172 
173 /*
174  * Target size of TCP PCB hash tables. Must be a power of two.
175  *
176  * Note that this can be overridden by the kernel environment
177  * variable net.inet.tcp.tcbhashsize
178  */
179 #ifndef TCBHASHSIZE
180 #define TCBHASHSIZE	512
181 #endif
182 
183 /*
184  * This is the actual shape of what we allocate using the zone
185  * allocator.  Doing it this way allows us to protect both structures
186  * using the same generation count, and also eliminates the overhead
187  * of allocating tcpcbs separately.  By hiding the structure here,
188  * we avoid changing most of the rest of the code (although it needs
189  * to be changed, eventually, for greater efficiency).
190  */
191 #define	ALIGNMENT	32
192 #define	ALIGNM1		(ALIGNMENT - 1)
193 struct	inp_tp {
194 	union {
195 		struct	inpcb inp;
196 		char	align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
197 	} inp_tp_u;
198 	struct	tcpcb tcb;
199 	struct	callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
200 	struct	callout inp_tp_delack;
201 };
202 #undef ALIGNMENT
203 #undef ALIGNM1
204 
205 /*
206  * Tcp initialization
207  */
208 void
209 tcp_init()
210 {
211 	int hashsize = TCBHASHSIZE;
212 
213 	tcp_ccgen = 1;
214 	tcp_cleartaocache();
215 
216 	tcp_delacktime = TCPTV_DELACK;
217 	tcp_keepinit = TCPTV_KEEP_INIT;
218 	tcp_keepidle = TCPTV_KEEP_IDLE;
219 	tcp_keepintvl = TCPTV_KEEPINTVL;
220 	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
221 	tcp_msl = TCPTV_MSL;
222 	tcp_rexmit_min = TCPTV_MIN;
223 	tcp_rexmit_slop = TCPTV_CPU_VAR;
224 
225 	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
226 	LIST_INIT(&tcb);
227 	tcbinfo.listhead = &tcb;
228 	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
229 	if (!powerof2(hashsize)) {
230 		printf("WARNING: TCB hash size not a power of 2\n");
231 		hashsize = 512; /* safe default */
232 	}
233 	tcp_tcbhashsize = hashsize;
234 	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
235 	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
236 					&tcbinfo.porthashmask);
237 	tcbinfo.ipi_zone = uma_zcreate("tcpcb", sizeof(struct inp_tp),
238 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
239 	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
240 #ifdef INET6
241 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
242 #else /* INET6 */
243 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
244 #endif /* INET6 */
245 	if (max_protohdr < TCP_MINPROTOHDR)
246 		max_protohdr = TCP_MINPROTOHDR;
247 	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
248 		panic("tcp_init");
249 #undef TCP_MINPROTOHDR
250 
251 	syncache_init();
252 }
253 
254 /*
255  * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
256  * tcp_template used to store this data in mbufs, but we now recopy it out
257  * of the tcpcb each time to conserve mbufs.
258  */
259 void
260 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
261 	struct tcpcb *tp;
262 	void *ip_ptr;
263 	void *tcp_ptr;
264 {
265 	struct inpcb *inp = tp->t_inpcb;
266 	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
267 
268 #ifdef INET6
269 	if ((inp->inp_vflag & INP_IPV6) != 0) {
270 		struct ip6_hdr *ip6;
271 
272 		ip6 = (struct ip6_hdr *)ip_ptr;
273 		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
274 			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
275 		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
276 			(IPV6_VERSION & IPV6_VERSION_MASK);
277 		ip6->ip6_nxt = IPPROTO_TCP;
278 		ip6->ip6_plen = sizeof(struct tcphdr);
279 		ip6->ip6_src = inp->in6p_laddr;
280 		ip6->ip6_dst = inp->in6p_faddr;
281 		tcp_hdr->th_sum = 0;
282 	} else
283 #endif
284 	{
285 	struct ip *ip = (struct ip *) ip_ptr;
286 
287 	ip->ip_vhl = IP_VHL_BORING;
288 	ip->ip_tos = 0;
289 	ip->ip_len = 0;
290 	ip->ip_id = 0;
291 	ip->ip_off = 0;
292 	ip->ip_ttl = 0;
293 	ip->ip_sum = 0;
294 	ip->ip_p = IPPROTO_TCP;
295 	ip->ip_src = inp->inp_laddr;
296 	ip->ip_dst = inp->inp_faddr;
297 	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
298 		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
299 	}
300 
301 	tcp_hdr->th_sport = inp->inp_lport;
302 	tcp_hdr->th_dport = inp->inp_fport;
303 	tcp_hdr->th_seq = 0;
304 	tcp_hdr->th_ack = 0;
305 	tcp_hdr->th_x2 = 0;
306 	tcp_hdr->th_off = 5;
307 	tcp_hdr->th_flags = 0;
308 	tcp_hdr->th_win = 0;
309 	tcp_hdr->th_urp = 0;
310 }
311 
312 /*
313  * Create template to be used to send tcp packets on a connection.
314  * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
315  * use for this function is in keepalives, which use tcp_respond.
316  */
317 struct tcptemp *
318 tcp_maketemplate(tp)
319 	struct tcpcb *tp;
320 {
321 	struct mbuf *m;
322 	struct tcptemp *n;
323 
324 	m = m_get(M_DONTWAIT, MT_HEADER);
325 	if (m == NULL)
326 		return (0);
327 	m->m_len = sizeof(struct tcptemp);
328 	n = mtod(m, struct tcptemp *);
329 
330 	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
331 	return (n);
332 }
333 
334 /*
335  * Send a single message to the TCP at address specified by
336  * the given TCP/IP header.  If m == 0, then we make a copy
337  * of the tcpiphdr at ti and send directly to the addressed host.
338  * This is used to force keep alive messages out using the TCP
339  * template for a connection.  If flags are given then we send
340  * a message back to the TCP which originated the * segment ti,
341  * and discard the mbuf containing it and any other attached mbufs.
342  *
343  * In any case the ack and sequence number of the transmitted
344  * segment are as specified by the parameters.
345  *
346  * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
347  */
348 void
349 tcp_respond(tp, ipgen, th, m, ack, seq, flags)
350 	struct tcpcb *tp;
351 	void *ipgen;
352 	register struct tcphdr *th;
353 	register struct mbuf *m;
354 	tcp_seq ack, seq;
355 	int flags;
356 {
357 	register int tlen;
358 	int win = 0;
359 	struct route *ro = 0;
360 	struct route sro;
361 	struct ip *ip;
362 	struct tcphdr *nth;
363 #ifdef INET6
364 	struct route_in6 *ro6 = 0;
365 	struct route_in6 sro6;
366 	struct ip6_hdr *ip6;
367 	int isipv6;
368 #endif /* INET6 */
369 	int ipflags = 0;
370 
371 	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
372 
373 #ifdef INET6
374 	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
375 	ip6 = ipgen;
376 #endif /* INET6 */
377 	ip = ipgen;
378 
379 	if (tp) {
380 		if (!(flags & TH_RST)) {
381 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
382 			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
383 				win = (long)TCP_MAXWIN << tp->rcv_scale;
384 		}
385 #ifdef INET6
386 		if (isipv6)
387 			ro6 = &tp->t_inpcb->in6p_route;
388 		else
389 #endif /* INET6 */
390 		ro = &tp->t_inpcb->inp_route;
391 	} else {
392 #ifdef INET6
393 		if (isipv6) {
394 			ro6 = &sro6;
395 			bzero(ro6, sizeof *ro6);
396 		} else
397 #endif /* INET6 */
398 	      {
399 		ro = &sro;
400 		bzero(ro, sizeof *ro);
401 	      }
402 	}
403 	if (m == 0) {
404 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
405 		if (m == NULL)
406 			return;
407 		tlen = 0;
408 		m->m_data += max_linkhdr;
409 #ifdef INET6
410 		if (isipv6) {
411 			bcopy((caddr_t)ip6, mtod(m, caddr_t),
412 			      sizeof(struct ip6_hdr));
413 			ip6 = mtod(m, struct ip6_hdr *);
414 			nth = (struct tcphdr *)(ip6 + 1);
415 		} else
416 #endif /* INET6 */
417 	      {
418 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
419 		ip = mtod(m, struct ip *);
420 		nth = (struct tcphdr *)(ip + 1);
421 	      }
422 		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
423 		flags = TH_ACK;
424 	} else {
425 		m_freem(m->m_next);
426 		m->m_next = 0;
427 		m->m_data = (caddr_t)ipgen;
428 		/* m_len is set later */
429 		tlen = 0;
430 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
431 #ifdef INET6
432 		if (isipv6) {
433 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
434 			nth = (struct tcphdr *)(ip6 + 1);
435 		} else
436 #endif /* INET6 */
437 	      {
438 		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
439 		nth = (struct tcphdr *)(ip + 1);
440 	      }
441 		if (th != nth) {
442 			/*
443 			 * this is usually a case when an extension header
444 			 * exists between the IPv6 header and the
445 			 * TCP header.
446 			 */
447 			nth->th_sport = th->th_sport;
448 			nth->th_dport = th->th_dport;
449 		}
450 		xchg(nth->th_dport, nth->th_sport, n_short);
451 #undef xchg
452 	}
453 #ifdef INET6
454 	if (isipv6) {
455 		ip6->ip6_flow = 0;
456 		ip6->ip6_vfc = IPV6_VERSION;
457 		ip6->ip6_nxt = IPPROTO_TCP;
458 		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
459 						tlen));
460 		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
461 	} else
462 #endif
463       {
464 	tlen += sizeof (struct tcpiphdr);
465 	ip->ip_len = tlen;
466 	ip->ip_ttl = ip_defttl;
467       }
468 	m->m_len = tlen;
469 	m->m_pkthdr.len = tlen;
470 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
471 #ifdef MAC
472 	if (tp != NULL) {
473 		/*
474 		 * Packet is associated with a socket, so allow the
475 		 * label of the response to reflect the socket label.
476 		 */
477 		mac_create_mbuf_from_socket(tp->t_inpcb->inp_socket, m);
478 	} else {
479 		/*
480 		 * XXXMAC: This will need to call a mac function that
481 		 * modifies the mbuf label in place for TCP datagrams
482 		 * not associated with a PCB.
483 		 */
484 	}
485 #endif
486 	nth->th_seq = htonl(seq);
487 	nth->th_ack = htonl(ack);
488 	nth->th_x2 = 0;
489 	nth->th_off = sizeof (struct tcphdr) >> 2;
490 	nth->th_flags = flags;
491 	if (tp)
492 		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
493 	else
494 		nth->th_win = htons((u_short)win);
495 	nth->th_urp = 0;
496 #ifdef INET6
497 	if (isipv6) {
498 		nth->th_sum = 0;
499 		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
500 					sizeof(struct ip6_hdr),
501 					tlen - sizeof(struct ip6_hdr));
502 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
503 					       ro6 && ro6->ro_rt ?
504 					       ro6->ro_rt->rt_ifp :
505 					       NULL);
506 	} else
507 #endif /* INET6 */
508       {
509         nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
510 	    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
511         m->m_pkthdr.csum_flags = CSUM_TCP;
512         m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
513       }
514 #ifdef TCPDEBUG
515 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
516 		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
517 #endif
518 #ifdef IPSEC
519 	if (ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
520 		m_freem(m);
521 		return;
522 	}
523 #endif
524 #ifdef INET6
525 	if (isipv6) {
526 		(void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL);
527 		if (ro6 == &sro6 && ro6->ro_rt) {
528 			RTFREE(ro6->ro_rt);
529 			ro6->ro_rt = NULL;
530 		}
531 	} else
532 #endif /* INET6 */
533       {
534 	(void) ip_output(m, NULL, ro, ipflags, NULL);
535 	if (ro == &sro && ro->ro_rt) {
536 		RTFREE(ro->ro_rt);
537 		ro->ro_rt = NULL;
538 	}
539       }
540 }
541 
542 /*
543  * Create a new TCP control block, making an
544  * empty reassembly queue and hooking it to the argument
545  * protocol control block.  The `inp' parameter must have
546  * come from the zone allocator set up in tcp_init().
547  */
548 struct tcpcb *
549 tcp_newtcpcb(inp)
550 	struct inpcb *inp;
551 {
552 	struct inp_tp *it;
553 	register struct tcpcb *tp;
554 #ifdef INET6
555 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
556 #endif /* INET6 */
557 
558 	it = (struct inp_tp *)inp;
559 	tp = &it->tcb;
560 	bzero((char *) tp, sizeof(struct tcpcb));
561 	LIST_INIT(&tp->t_segq);
562 	tp->t_maxseg = tp->t_maxopd =
563 #ifdef INET6
564 		isipv6 ? tcp_v6mssdflt :
565 #endif /* INET6 */
566 		tcp_mssdflt;
567 
568 	/* Set up our timeouts. */
569 	callout_init(tp->tt_rexmt = &it->inp_tp_rexmt, 0);
570 	callout_init(tp->tt_persist = &it->inp_tp_persist, 0);
571 	callout_init(tp->tt_keep = &it->inp_tp_keep, 0);
572 	callout_init(tp->tt_2msl = &it->inp_tp_2msl, 0);
573 	callout_init(tp->tt_delack = &it->inp_tp_delack, 0);
574 
575 	if (tcp_do_rfc1323)
576 		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
577 	if (tcp_do_rfc1644)
578 		tp->t_flags |= TF_REQ_CC;
579 	tp->t_inpcb = inp;	/* XXX */
580 	/*
581 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
582 	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
583 	 * reasonable initial retransmit time.
584 	 */
585 	tp->t_srtt = TCPTV_SRTTBASE;
586 	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
587 	tp->t_rttmin = tcp_rexmit_min;
588 	tp->t_rxtcur = TCPTV_RTOBASE;
589 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
590 	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
591 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
592 	tp->t_rcvtime = ticks;
593 	tp->t_bw_rtttime = ticks;
594         /*
595 	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
596 	 * because the socket may be bound to an IPv6 wildcard address,
597 	 * which may match an IPv4-mapped IPv6 address.
598 	 */
599 	inp->inp_ip_ttl = ip_defttl;
600 	inp->inp_ppcb = (caddr_t)tp;
601 	return (tp);		/* XXX */
602 }
603 
604 /*
605  * Drop a TCP connection, reporting
606  * the specified error.  If connection is synchronized,
607  * then send a RST to peer.
608  */
609 struct tcpcb *
610 tcp_drop(tp, errno)
611 	register struct tcpcb *tp;
612 	int errno;
613 {
614 	struct socket *so = tp->t_inpcb->inp_socket;
615 
616 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
617 		tp->t_state = TCPS_CLOSED;
618 		(void) tcp_output(tp);
619 		tcpstat.tcps_drops++;
620 	} else
621 		tcpstat.tcps_conndrops++;
622 	if (errno == ETIMEDOUT && tp->t_softerror)
623 		errno = tp->t_softerror;
624 	so->so_error = errno;
625 	return (tcp_close(tp));
626 }
627 
628 /*
629  * Close a TCP control block:
630  *	discard all space held by the tcp
631  *	discard internet protocol block
632  *	wake up any sleepers
633  */
634 struct tcpcb *
635 tcp_close(tp)
636 	register struct tcpcb *tp;
637 {
638 	register struct tseg_qent *q;
639 	struct inpcb *inp = tp->t_inpcb;
640 	struct socket *so = inp->inp_socket;
641 #ifdef INET6
642 	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
643 #endif /* INET6 */
644 	register struct rtentry *rt;
645 	int dosavessthresh;
646 
647 	/*
648 	 * Make sure that all of our timers are stopped before we
649 	 * delete the PCB.
650 	 */
651 	callout_stop(tp->tt_rexmt);
652 	callout_stop(tp->tt_persist);
653 	callout_stop(tp->tt_keep);
654 	callout_stop(tp->tt_2msl);
655 	callout_stop(tp->tt_delack);
656 
657 	/*
658 	 * If we got enough samples through the srtt filter,
659 	 * save the rtt and rttvar in the routing entry.
660 	 * 'Enough' is arbitrarily defined as the 16 samples.
661 	 * 16 samples is enough for the srtt filter to converge
662 	 * to within 5% of the correct value; fewer samples and
663 	 * we could save a very bogus rtt.
664 	 *
665 	 * Don't update the default route's characteristics and don't
666 	 * update anything that the user "locked".
667 	 */
668 	if (tp->t_rttupdated >= 16) {
669 		register u_long i = 0;
670 #ifdef INET6
671 		if (isipv6) {
672 			struct sockaddr_in6 *sin6;
673 
674 			if ((rt = inp->in6p_route.ro_rt) == NULL)
675 				goto no_valid_rt;
676 			sin6 = (struct sockaddr_in6 *)rt_key(rt);
677 			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
678 				goto no_valid_rt;
679 		}
680 		else
681 #endif /* INET6 */
682 		if ((rt = inp->inp_route.ro_rt) == NULL ||
683 		    ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr
684 		    == INADDR_ANY)
685 			goto no_valid_rt;
686 
687 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
688 			i = tp->t_srtt *
689 			    (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
690 			if (rt->rt_rmx.rmx_rtt && i)
691 				/*
692 				 * filter this update to half the old & half
693 				 * the new values, converting scale.
694 				 * See route.h and tcp_var.h for a
695 				 * description of the scaling constants.
696 				 */
697 				rt->rt_rmx.rmx_rtt =
698 				    (rt->rt_rmx.rmx_rtt + i) / 2;
699 			else
700 				rt->rt_rmx.rmx_rtt = i;
701 			tcpstat.tcps_cachedrtt++;
702 		}
703 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
704 			i = tp->t_rttvar *
705 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
706 			if (rt->rt_rmx.rmx_rttvar && i)
707 				rt->rt_rmx.rmx_rttvar =
708 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
709 			else
710 				rt->rt_rmx.rmx_rttvar = i;
711 			tcpstat.tcps_cachedrttvar++;
712 		}
713 		/*
714 		 * The old comment here said:
715 		 * update the pipelimit (ssthresh) if it has been updated
716 		 * already or if a pipesize was specified & the threshhold
717 		 * got below half the pipesize.  I.e., wait for bad news
718 		 * before we start updating, then update on both good
719 		 * and bad news.
720 		 *
721 		 * But we want to save the ssthresh even if no pipesize is
722 		 * specified explicitly in the route, because such
723 		 * connections still have an implicit pipesize specified
724 		 * by the global tcp_sendspace.  In the absence of a reliable
725 		 * way to calculate the pipesize, it will have to do.
726 		 */
727 		i = tp->snd_ssthresh;
728 		if (rt->rt_rmx.rmx_sendpipe != 0)
729 			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
730 		else
731 			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
732 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
733 		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
734 		    || dosavessthresh) {
735 			/*
736 			 * convert the limit from user data bytes to
737 			 * packets then to packet data bytes.
738 			 */
739 			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
740 			if (i < 2)
741 				i = 2;
742 			i *= (u_long)(tp->t_maxseg +
743 #ifdef INET6
744 				      (isipv6 ? sizeof (struct ip6_hdr) +
745 					       sizeof (struct tcphdr) :
746 #endif
747 				       sizeof (struct tcpiphdr)
748 #ifdef INET6
749 				       )
750 #endif
751 				      );
752 			if (rt->rt_rmx.rmx_ssthresh)
753 				rt->rt_rmx.rmx_ssthresh =
754 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
755 			else
756 				rt->rt_rmx.rmx_ssthresh = i;
757 			tcpstat.tcps_cachedssthresh++;
758 		}
759 	}
760     no_valid_rt:
761 	/* free the reassembly queue, if any */
762 	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
763 		LIST_REMOVE(q, tqe_q);
764 		m_freem(q->tqe_m);
765 		FREE(q, M_TSEGQ);
766 	}
767 	inp->inp_ppcb = NULL;
768 	soisdisconnected(so);
769 #ifdef INET6
770 	if (INP_CHECK_SOCKAF(so, AF_INET6))
771 		in6_pcbdetach(inp);
772 	else
773 #endif /* INET6 */
774 	in_pcbdetach(inp);
775 	tcpstat.tcps_closed++;
776 	return ((struct tcpcb *)0);
777 }
778 
779 void
780 tcp_drain()
781 {
782 	if (do_tcpdrain)
783 	{
784 		struct inpcb *inpb;
785 		struct tcpcb *tcpb;
786 		struct tseg_qent *te;
787 
788 	/*
789 	 * Walk the tcpbs, if existing, and flush the reassembly queue,
790 	 * if there is one...
791 	 * XXX: The "Net/3" implementation doesn't imply that the TCP
792 	 *      reassembly queue should be flushed, but in a situation
793 	 * 	where we're really low on mbufs, this is potentially
794 	 *  	usefull.
795 	 */
796 		INP_INFO_RLOCK(&tcbinfo);
797 		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
798 			INP_LOCK(inpb);
799 			if ((tcpb = intotcpcb(inpb))) {
800 				while ((te = LIST_FIRST(&tcpb->t_segq))
801 			            != NULL) {
802 					LIST_REMOVE(te, tqe_q);
803 					m_freem(te->tqe_m);
804 					FREE(te, M_TSEGQ);
805 				}
806 			}
807 			INP_UNLOCK(inpb);
808 		}
809 		INP_INFO_RUNLOCK(&tcbinfo);
810 	}
811 }
812 
813 /*
814  * Notify a tcp user of an asynchronous error;
815  * store error as soft error, but wake up user
816  * (for now, won't do anything until can select for soft error).
817  *
818  * Do not wake up user since there currently is no mechanism for
819  * reporting soft errors (yet - a kqueue filter may be added).
820  */
821 static struct inpcb *
822 tcp_notify(inp, error)
823 	struct inpcb *inp;
824 	int error;
825 {
826 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
827 
828 	/*
829 	 * Ignore some errors if we are hooked up.
830 	 * If connection hasn't completed, has retransmitted several times,
831 	 * and receives a second error, give up now.  This is better
832 	 * than waiting a long time to establish a connection that
833 	 * can never complete.
834 	 */
835 	if (tp->t_state == TCPS_ESTABLISHED &&
836 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
837 	      error == EHOSTDOWN)) {
838 		return inp;
839 	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
840 	    tp->t_softerror) {
841 		tcp_drop(tp, error);
842 		return (struct inpcb *)0;
843 	} else {
844 		tp->t_softerror = error;
845 		return inp;
846 	}
847 #if 0
848 	wakeup((caddr_t) &so->so_timeo);
849 	sorwakeup(so);
850 	sowwakeup(so);
851 #endif
852 }
853 
854 static int
855 tcp_pcblist(SYSCTL_HANDLER_ARGS)
856 {
857 	int error, i, n, s;
858 	struct inpcb *inp, **inp_list;
859 	inp_gen_t gencnt;
860 	struct xinpgen xig;
861 
862 	/*
863 	 * The process of preparing the TCB list is too time-consuming and
864 	 * resource-intensive to repeat twice on every request.
865 	 */
866 	if (req->oldptr == 0) {
867 		n = tcbinfo.ipi_count;
868 		req->oldidx = 2 * (sizeof xig)
869 			+ (n + n/8) * sizeof(struct xtcpcb);
870 		return 0;
871 	}
872 
873 	if (req->newptr != 0)
874 		return EPERM;
875 
876 	/*
877 	 * OK, now we're committed to doing something.
878 	 */
879 	s = splnet();
880 	INP_INFO_RLOCK(&tcbinfo);
881 	gencnt = tcbinfo.ipi_gencnt;
882 	n = tcbinfo.ipi_count;
883 	INP_INFO_RUNLOCK(&tcbinfo);
884 	splx(s);
885 
886 	sysctl_wire_old_buffer(req, 2 * (sizeof xig)
887 		+ n * sizeof(struct xtcpcb));
888 
889 	xig.xig_len = sizeof xig;
890 	xig.xig_count = n;
891 	xig.xig_gen = gencnt;
892 	xig.xig_sogen = so_gencnt;
893 	error = SYSCTL_OUT(req, &xig, sizeof xig);
894 	if (error)
895 		return error;
896 
897 	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
898 	if (inp_list == 0)
899 		return ENOMEM;
900 
901 	s = splnet();
902 	INP_INFO_RLOCK(&tcbinfo);
903 	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
904 	     inp = LIST_NEXT(inp, inp_list)) {
905 		INP_LOCK(inp);
906 		if (inp->inp_gencnt <= gencnt &&
907 		    cr_canseesocket(req->td->td_ucred, inp->inp_socket) == 0)
908 			inp_list[i++] = inp;
909 		INP_UNLOCK(inp);
910 	}
911 	INP_INFO_RUNLOCK(&tcbinfo);
912 	splx(s);
913 	n = i;
914 
915 	error = 0;
916 	for (i = 0; i < n; i++) {
917 		inp = inp_list[i];
918 		INP_LOCK(inp);
919 		if (inp->inp_gencnt <= gencnt) {
920 			struct xtcpcb xt;
921 			caddr_t inp_ppcb;
922 			xt.xt_len = sizeof xt;
923 			/* XXX should avoid extra copy */
924 			bcopy(inp, &xt.xt_inp, sizeof *inp);
925 			inp_ppcb = inp->inp_ppcb;
926 			if (inp_ppcb != NULL)
927 				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
928 			else
929 				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
930 			if (inp->inp_socket)
931 				sotoxsocket(inp->inp_socket, &xt.xt_socket);
932 			error = SYSCTL_OUT(req, &xt, sizeof xt);
933 		}
934 		INP_UNLOCK(inp);
935 	}
936 	if (!error) {
937 		/*
938 		 * Give the user an updated idea of our state.
939 		 * If the generation differs from what we told
940 		 * her before, she knows that something happened
941 		 * while we were processing this request, and it
942 		 * might be necessary to retry.
943 		 */
944 		s = splnet();
945 		INP_INFO_RLOCK(&tcbinfo);
946 		xig.xig_gen = tcbinfo.ipi_gencnt;
947 		xig.xig_sogen = so_gencnt;
948 		xig.xig_count = tcbinfo.ipi_count;
949 		INP_INFO_RUNLOCK(&tcbinfo);
950 		splx(s);
951 		error = SYSCTL_OUT(req, &xig, sizeof xig);
952 	}
953 	free(inp_list, M_TEMP);
954 	return error;
955 }
956 
957 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
958 	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
959 
960 static int
961 tcp_getcred(SYSCTL_HANDLER_ARGS)
962 {
963 	struct xucred xuc;
964 	struct sockaddr_in addrs[2];
965 	struct inpcb *inp;
966 	int error, s;
967 
968 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
969 	if (error)
970 		return (error);
971 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
972 	if (error)
973 		return (error);
974 	s = splnet();
975 	INP_INFO_RLOCK(&tcbinfo);
976 	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
977 	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
978 	if (inp == NULL) {
979 		error = ENOENT;
980 		goto outunlocked;
981 	}
982 	INP_LOCK(inp);
983 	if (inp->inp_socket == NULL) {
984 		error = ENOENT;
985 		goto out;
986 	}
987 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
988 	if (error)
989 		goto out;
990 	cru2x(inp->inp_socket->so_cred, &xuc);
991 out:
992 	INP_UNLOCK(inp);
993 outunlocked:
994 	INP_INFO_RUNLOCK(&tcbinfo);
995 	splx(s);
996 	if (error == 0)
997 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
998 	return (error);
999 }
1000 
1001 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1002     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1003     tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1004 
1005 #ifdef INET6
1006 static int
1007 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1008 {
1009 	struct xucred xuc;
1010 	struct sockaddr_in6 addrs[2];
1011 	struct inpcb *inp;
1012 	int error, s, mapped = 0;
1013 
1014 	error = suser_cred(req->td->td_ucred, PRISON_ROOT);
1015 	if (error)
1016 		return (error);
1017 	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1018 	if (error)
1019 		return (error);
1020 	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1021 		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1022 			mapped = 1;
1023 		else
1024 			return (EINVAL);
1025 	}
1026 	s = splnet();
1027 	INP_INFO_RLOCK(&tcbinfo);
1028 	if (mapped == 1)
1029 		inp = in_pcblookup_hash(&tcbinfo,
1030 			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1031 			addrs[1].sin6_port,
1032 			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1033 			addrs[0].sin6_port,
1034 			0, NULL);
1035 	else
1036 		inp = in6_pcblookup_hash(&tcbinfo, &addrs[1].sin6_addr,
1037 				 addrs[1].sin6_port,
1038 				 &addrs[0].sin6_addr, addrs[0].sin6_port,
1039 				 0, NULL);
1040 	if (inp == NULL) {
1041 		error = ENOENT;
1042 		goto outunlocked;
1043 	}
1044 	INP_LOCK(inp);
1045 	if (inp->inp_socket == NULL) {
1046 		error = ENOENT;
1047 		goto out;
1048 	}
1049 	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1050 	if (error)
1051 		goto out;
1052 	cru2x(inp->inp_socket->so_cred, &xuc);
1053 out:
1054 	INP_UNLOCK(inp);
1055 outunlocked:
1056 	INP_INFO_RUNLOCK(&tcbinfo);
1057 	splx(s);
1058 	if (error == 0)
1059 		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1060 	return (error);
1061 }
1062 
1063 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1064     CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1065     tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1066 #endif
1067 
1068 
1069 void
1070 tcp_ctlinput(cmd, sa, vip)
1071 	int cmd;
1072 	struct sockaddr *sa;
1073 	void *vip;
1074 {
1075 	struct ip *ip = vip;
1076 	struct tcphdr *th;
1077 	struct in_addr faddr;
1078 	struct inpcb *inp;
1079 	struct tcpcb *tp;
1080 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1081 	tcp_seq icmp_seq;
1082 	int s;
1083 
1084 	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1085 	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1086 		return;
1087 
1088 	if (cmd == PRC_QUENCH)
1089 		notify = tcp_quench;
1090 	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1091 		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1092 		notify = tcp_drop_syn_sent;
1093 	else if (cmd == PRC_MSGSIZE)
1094 		notify = tcp_mtudisc;
1095 	else if (PRC_IS_REDIRECT(cmd)) {
1096 		ip = 0;
1097 		notify = in_rtchange;
1098 	} else if (cmd == PRC_HOSTDEAD)
1099 		ip = 0;
1100 	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1101 		return;
1102 	if (ip) {
1103 		s = splnet();
1104 		th = (struct tcphdr *)((caddr_t)ip
1105 				       + (IP_VHL_HL(ip->ip_vhl) << 2));
1106 		INP_INFO_WLOCK(&tcbinfo);
1107 		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1108 		    ip->ip_src, th->th_sport, 0, NULL);
1109 		if (inp != NULL)  {
1110 			INP_LOCK(inp);
1111 			if (inp->inp_socket != NULL) {
1112 				icmp_seq = htonl(th->th_seq);
1113 				tp = intotcpcb(inp);
1114 				if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1115 			    		SEQ_LT(icmp_seq, tp->snd_max))
1116 					inp = (*notify)(inp, inetctlerrmap[cmd]);
1117 			}
1118 			if (inp)
1119 				INP_UNLOCK(inp);
1120 		} else {
1121 			struct in_conninfo inc;
1122 
1123 			inc.inc_fport = th->th_dport;
1124 			inc.inc_lport = th->th_sport;
1125 			inc.inc_faddr = faddr;
1126 			inc.inc_laddr = ip->ip_src;
1127 #ifdef INET6
1128 			inc.inc_isipv6 = 0;
1129 #endif
1130 			syncache_unreach(&inc, th);
1131 		}
1132 		INP_INFO_WUNLOCK(&tcbinfo);
1133 		splx(s);
1134 	} else
1135 		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1136 }
1137 
1138 #ifdef INET6
1139 void
1140 tcp6_ctlinput(cmd, sa, d)
1141 	int cmd;
1142 	struct sockaddr *sa;
1143 	void *d;
1144 {
1145 	struct tcphdr th;
1146 	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1147 	struct ip6_hdr *ip6;
1148 	struct mbuf *m;
1149 	struct ip6ctlparam *ip6cp = NULL;
1150 	const struct sockaddr_in6 *sa6_src = NULL;
1151 	int off;
1152 	struct tcp_portonly {
1153 		u_int16_t th_sport;
1154 		u_int16_t th_dport;
1155 	} *thp;
1156 
1157 	if (sa->sa_family != AF_INET6 ||
1158 	    sa->sa_len != sizeof(struct sockaddr_in6))
1159 		return;
1160 
1161 	if (cmd == PRC_QUENCH)
1162 		notify = tcp_quench;
1163 	else if (cmd == PRC_MSGSIZE)
1164 		notify = tcp_mtudisc;
1165 	else if (!PRC_IS_REDIRECT(cmd) &&
1166 		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1167 		return;
1168 
1169 	/* if the parameter is from icmp6, decode it. */
1170 	if (d != NULL) {
1171 		ip6cp = (struct ip6ctlparam *)d;
1172 		m = ip6cp->ip6c_m;
1173 		ip6 = ip6cp->ip6c_ip6;
1174 		off = ip6cp->ip6c_off;
1175 		sa6_src = ip6cp->ip6c_src;
1176 	} else {
1177 		m = NULL;
1178 		ip6 = NULL;
1179 		off = 0;	/* fool gcc */
1180 		sa6_src = &sa6_any;
1181 	}
1182 
1183 	if (ip6) {
1184 		struct in_conninfo inc;
1185 		/*
1186 		 * XXX: We assume that when IPV6 is non NULL,
1187 		 * M and OFF are valid.
1188 		 */
1189 
1190 		/* check if we can safely examine src and dst ports */
1191 		if (m->m_pkthdr.len < off + sizeof(*thp))
1192 			return;
1193 
1194 		bzero(&th, sizeof(th));
1195 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1196 
1197 		in6_pcbnotify(&tcb, sa, th.th_dport,
1198 		    (struct sockaddr *)ip6cp->ip6c_src,
1199 		    th.th_sport, cmd, notify);
1200 
1201 		inc.inc_fport = th.th_dport;
1202 		inc.inc_lport = th.th_sport;
1203 		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1204 		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1205 		inc.inc_isipv6 = 1;
1206 		syncache_unreach(&inc, &th);
1207 	} else
1208 		in6_pcbnotify(&tcb, sa, 0, (const struct sockaddr *)sa6_src,
1209 			      0, cmd, notify);
1210 }
1211 #endif /* INET6 */
1212 
1213 
1214 /*
1215  * Following is where TCP initial sequence number generation occurs.
1216  *
1217  * There are two places where we must use initial sequence numbers:
1218  * 1.  In SYN-ACK packets.
1219  * 2.  In SYN packets.
1220  *
1221  * All ISNs for SYN-ACK packets are generated by the syncache.  See
1222  * tcp_syncache.c for details.
1223  *
1224  * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1225  * depends on this property.  In addition, these ISNs should be
1226  * unguessable so as to prevent connection hijacking.  To satisfy
1227  * the requirements of this situation, the algorithm outlined in
1228  * RFC 1948 is used to generate sequence numbers.
1229  *
1230  * Implementation details:
1231  *
1232  * Time is based off the system timer, and is corrected so that it
1233  * increases by one megabyte per second.  This allows for proper
1234  * recycling on high speed LANs while still leaving over an hour
1235  * before rollover.
1236  *
1237  * net.inet.tcp.isn_reseed_interval controls the number of seconds
1238  * between seeding of isn_secret.  This is normally set to zero,
1239  * as reseeding should not be necessary.
1240  *
1241  */
1242 
1243 #define ISN_BYTES_PER_SECOND 1048576
1244 
1245 u_char isn_secret[32];
1246 int isn_last_reseed;
1247 MD5_CTX isn_ctx;
1248 
1249 tcp_seq
1250 tcp_new_isn(tp)
1251 	struct tcpcb *tp;
1252 {
1253 	u_int32_t md5_buffer[4];
1254 	tcp_seq new_isn;
1255 
1256 	/* Seed if this is the first use, reseed if requested. */
1257 	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1258 	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1259 		< (u_int)ticks))) {
1260 		read_random(&isn_secret, sizeof(isn_secret));
1261 		isn_last_reseed = ticks;
1262 	}
1263 
1264 	/* Compute the md5 hash and return the ISN. */
1265 	MD5Init(&isn_ctx);
1266 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1267 	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1268 #ifdef INET6
1269 	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1270 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1271 			  sizeof(struct in6_addr));
1272 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1273 			  sizeof(struct in6_addr));
1274 	} else
1275 #endif
1276 	{
1277 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1278 			  sizeof(struct in_addr));
1279 		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1280 			  sizeof(struct in_addr));
1281 	}
1282 	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1283 	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1284 	new_isn = (tcp_seq) md5_buffer[0];
1285 	new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1286 	return new_isn;
1287 }
1288 
1289 /*
1290  * When a source quench is received, close congestion window
1291  * to one segment.  We will gradually open it again as we proceed.
1292  */
1293 struct inpcb *
1294 tcp_quench(inp, errno)
1295 	struct inpcb *inp;
1296 	int errno;
1297 {
1298 	struct tcpcb *tp = intotcpcb(inp);
1299 
1300 	if (tp)
1301 		tp->snd_cwnd = tp->t_maxseg;
1302 	return (inp);
1303 }
1304 
1305 /*
1306  * When a specific ICMP unreachable message is received and the
1307  * connection state is SYN-SENT, drop the connection.  This behavior
1308  * is controlled by the icmp_may_rst sysctl.
1309  */
1310 struct inpcb *
1311 tcp_drop_syn_sent(inp, errno)
1312 	struct inpcb *inp;
1313 	int errno;
1314 {
1315 	struct tcpcb *tp = intotcpcb(inp);
1316 
1317 	if (tp && tp->t_state == TCPS_SYN_SENT) {
1318 		tcp_drop(tp, errno);
1319 		return (struct inpcb *)0;
1320 	}
1321 	return inp;
1322 }
1323 
1324 /*
1325  * When `need fragmentation' ICMP is received, update our idea of the MSS
1326  * based on the new value in the route.  Also nudge TCP to send something,
1327  * since we know the packet we just sent was dropped.
1328  * This duplicates some code in the tcp_mss() function in tcp_input.c.
1329  */
1330 struct inpcb *
1331 tcp_mtudisc(inp, errno)
1332 	struct inpcb *inp;
1333 	int errno;
1334 {
1335 	struct tcpcb *tp = intotcpcb(inp);
1336 	struct rtentry *rt;
1337 	struct rmxp_tao *taop;
1338 	struct socket *so = inp->inp_socket;
1339 	int offered;
1340 	int mss;
1341 #ifdef INET6
1342 	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1343 #endif /* INET6 */
1344 
1345 	if (tp) {
1346 #ifdef INET6
1347 		if (isipv6)
1348 			rt = tcp_rtlookup6(&inp->inp_inc);
1349 		else
1350 #endif /* INET6 */
1351 		rt = tcp_rtlookup(&inp->inp_inc);
1352 		if (!rt || !rt->rt_rmx.rmx_mtu) {
1353 			tp->t_maxopd = tp->t_maxseg =
1354 #ifdef INET6
1355 				isipv6 ? tcp_v6mssdflt :
1356 #endif /* INET6 */
1357 				tcp_mssdflt;
1358 			return inp;
1359 		}
1360 		taop = rmx_taop(rt->rt_rmx);
1361 		offered = taop->tao_mssopt;
1362 		mss = rt->rt_rmx.rmx_mtu -
1363 #ifdef INET6
1364 			(isipv6 ?
1365 			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1366 #endif /* INET6 */
1367 			 sizeof(struct tcpiphdr)
1368 #ifdef INET6
1369 			 )
1370 #endif /* INET6 */
1371 			;
1372 
1373 		if (offered)
1374 			mss = min(mss, offered);
1375 		/*
1376 		 * XXX - The above conditional probably violates the TCP
1377 		 * spec.  The problem is that, since we don't know the
1378 		 * other end's MSS, we are supposed to use a conservative
1379 		 * default.  But, if we do that, then MTU discovery will
1380 		 * never actually take place, because the conservative
1381 		 * default is much less than the MTUs typically seen
1382 		 * on the Internet today.  For the moment, we'll sweep
1383 		 * this under the carpet.
1384 		 *
1385 		 * The conservative default might not actually be a problem
1386 		 * if the only case this occurs is when sending an initial
1387 		 * SYN with options and data to a host we've never talked
1388 		 * to before.  Then, they will reply with an MSS value which
1389 		 * will get recorded and the new parameters should get
1390 		 * recomputed.  For Further Study.
1391 		 */
1392 		if (tp->t_maxopd <= mss)
1393 			return inp;
1394 		tp->t_maxopd = mss;
1395 
1396 		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1397 		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1398 			mss -= TCPOLEN_TSTAMP_APPA;
1399 		if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
1400 		    (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1401 			mss -= TCPOLEN_CC_APPA;
1402 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
1403 		if (mss > MCLBYTES)
1404 			mss &= ~(MCLBYTES-1);
1405 #else
1406 		if (mss > MCLBYTES)
1407 			mss = mss / MCLBYTES * MCLBYTES;
1408 #endif
1409 		if (so->so_snd.sb_hiwat < mss)
1410 			mss = so->so_snd.sb_hiwat;
1411 
1412 		tp->t_maxseg = mss;
1413 
1414 		tcpstat.tcps_mturesent++;
1415 		tp->t_rtttime = 0;
1416 		tp->snd_nxt = tp->snd_una;
1417 		tcp_output(tp);
1418 	}
1419 	return inp;
1420 }
1421 
1422 /*
1423  * Look-up the routing entry to the peer of this inpcb.  If no route
1424  * is found and it cannot be allocated the return NULL.  This routine
1425  * is called by TCP routines that access the rmx structure and by tcp_mss
1426  * to get the interface MTU.
1427  */
1428 struct rtentry *
1429 tcp_rtlookup(inc)
1430 	struct in_conninfo *inc;
1431 {
1432 	struct route *ro;
1433 	struct rtentry *rt;
1434 
1435 	ro = &inc->inc_route;
1436 	rt = ro->ro_rt;
1437 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1438 		/* No route yet, so try to acquire one */
1439 		if (inc->inc_faddr.s_addr != INADDR_ANY) {
1440 			ro->ro_dst.sa_family = AF_INET;
1441 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1442 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1443 			    inc->inc_faddr;
1444 			rtalloc(ro);
1445 			rt = ro->ro_rt;
1446 		}
1447 	}
1448 	return rt;
1449 }
1450 
1451 #ifdef INET6
1452 struct rtentry *
1453 tcp_rtlookup6(inc)
1454 	struct in_conninfo *inc;
1455 {
1456 	struct route_in6 *ro6;
1457 	struct rtentry *rt;
1458 
1459 	ro6 = &inc->inc6_route;
1460 	rt = ro6->ro_rt;
1461 	if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1462 		/* No route yet, so try to acquire one */
1463 		if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1464 			ro6->ro_dst.sin6_family = AF_INET6;
1465 			ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1466 			ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1467 			rtalloc((struct route *)ro6);
1468 			rt = ro6->ro_rt;
1469 		}
1470 	}
1471 	return rt;
1472 }
1473 #endif /* INET6 */
1474 
1475 #ifdef IPSEC
1476 /* compute ESP/AH header size for TCP, including outer IP header. */
1477 size_t
1478 ipsec_hdrsiz_tcp(tp)
1479 	struct tcpcb *tp;
1480 {
1481 	struct inpcb *inp;
1482 	struct mbuf *m;
1483 	size_t hdrsiz;
1484 	struct ip *ip;
1485 #ifdef INET6
1486 	struct ip6_hdr *ip6;
1487 #endif /* INET6 */
1488 	struct tcphdr *th;
1489 
1490 	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1491 		return 0;
1492 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1493 	if (!m)
1494 		return 0;
1495 
1496 #ifdef INET6
1497 	if ((inp->inp_vflag & INP_IPV6) != 0) {
1498 		ip6 = mtod(m, struct ip6_hdr *);
1499 		th = (struct tcphdr *)(ip6 + 1);
1500 		m->m_pkthdr.len = m->m_len =
1501 			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1502 		tcp_fillheaders(tp, ip6, th);
1503 		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1504 	} else
1505 #endif /* INET6 */
1506       {
1507 	ip = mtod(m, struct ip *);
1508 	th = (struct tcphdr *)(ip + 1);
1509 	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1510 	tcp_fillheaders(tp, ip, th);
1511 	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1512       }
1513 
1514 	m_free(m);
1515 	return hdrsiz;
1516 }
1517 #endif /*IPSEC*/
1518 
1519 /*
1520  * Return a pointer to the cached information about the remote host.
1521  * The cached information is stored in the protocol specific part of
1522  * the route metrics.
1523  */
1524 struct rmxp_tao *
1525 tcp_gettaocache(inc)
1526 	struct in_conninfo *inc;
1527 {
1528 	struct rtentry *rt;
1529 
1530 #ifdef INET6
1531 	if (inc->inc_isipv6)
1532 		rt = tcp_rtlookup6(inc);
1533 	else
1534 #endif /* INET6 */
1535 	rt = tcp_rtlookup(inc);
1536 
1537 	/* Make sure this is a host route and is up. */
1538 	if (rt == NULL ||
1539 	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST))
1540 		return NULL;
1541 
1542 	return rmx_taop(rt->rt_rmx);
1543 }
1544 
1545 /*
1546  * Clear all the TAO cache entries, called from tcp_init.
1547  *
1548  * XXX
1549  * This routine is just an empty one, because we assume that the routing
1550  * routing tables are initialized at the same time when TCP, so there is
1551  * nothing in the cache left over.
1552  */
1553 static void
1554 tcp_cleartaocache()
1555 {
1556 }
1557 
1558 /*
1559  * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1560  *
1561  * This code attempts to calculate the bandwidth-delay product as a
1562  * means of determining the optimal window size to maximize bandwidth,
1563  * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1564  * routers.  This code also does a fairly good job keeping RTTs in check
1565  * across slow links like modems.  We implement an algorithm which is very
1566  * similar (but not meant to be) TCP/Vegas.  The code operates on the
1567  * transmitter side of a TCP connection and so only effects the transmit
1568  * side of the connection.
1569  *
1570  * BACKGROUND:  TCP makes no provision for the management of buffer space
1571  * at the end points or at the intermediate routers and switches.  A TCP
1572  * stream, whether using NewReno or not, will eventually buffer as
1573  * many packets as it is able and the only reason this typically works is
1574  * due to the fairly small default buffers made available for a connection
1575  * (typicaly 16K or 32K).  As machines use larger windows and/or window
1576  * scaling it is now fairly easy for even a single TCP connection to blow-out
1577  * all available buffer space not only on the local interface, but on
1578  * intermediate routers and switches as well.  NewReno makes a misguided
1579  * attempt to 'solve' this problem by waiting for an actual failure to occur,
1580  * then backing off, then steadily increasing the window again until another
1581  * failure occurs, ad-infinitum.  This results in terrible oscillation that
1582  * is only made worse as network loads increase and the idea of intentionally
1583  * blowing out network buffers is, frankly, a terrible way to manage network
1584  * resources.
1585  *
1586  * It is far better to limit the transmit window prior to the failure
1587  * condition being achieved.  There are two general ways to do this:  First
1588  * you can 'scan' through different transmit window sizes and locate the
1589  * point where the RTT stops increasing, indicating that you have filled the
1590  * pipe, then scan backwards until you note that RTT stops decreasing, then
1591  * repeat ad-infinitum.  This method works in principle but has severe
1592  * implementation issues due to RTT variances, timer granularity, and
1593  * instability in the algorithm which can lead to many false positives and
1594  * create oscillations as well as interact badly with other TCP streams
1595  * implementing the same algorithm.
1596  *
1597  * The second method is to limit the window to the bandwidth delay product
1598  * of the link.  This is the method we implement.  RTT variances and our
1599  * own manipulation of the congestion window, bwnd, can potentially
1600  * destabilize the algorithm.  For this reason we have to stabilize the
1601  * elements used to calculate the window.  We do this by using the minimum
1602  * observed RTT, the long term average of the observed bandwidth, and
1603  * by adding two segments worth of slop.  It isn't perfect but it is able
1604  * to react to changing conditions and gives us a very stable basis on
1605  * which to extend the algorithm.
1606  */
1607 void
1608 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1609 {
1610 	u_long bw;
1611 	u_long bwnd;
1612 	int save_ticks;
1613 
1614 	/*
1615 	 * If inflight_enable is disabled in the middle of a tcp connection,
1616 	 * make sure snd_bwnd is effectively disabled.
1617 	 */
1618 	if (tcp_inflight_enable == 0) {
1619 		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1620 		tp->snd_bandwidth = 0;
1621 		return;
1622 	}
1623 
1624 	/*
1625 	 * Figure out the bandwidth.  Due to the tick granularity this
1626 	 * is a very rough number and it MUST be averaged over a fairly
1627 	 * long period of time.  XXX we need to take into account a link
1628 	 * that is not using all available bandwidth, but for now our
1629 	 * slop will ramp us up if this case occurs and the bandwidth later
1630 	 * increases.
1631 	 */
1632 	save_ticks = ticks;
1633 	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1634 		return;
1635 
1636 	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1637 	    (save_ticks - tp->t_bw_rtttime);
1638 	tp->t_bw_rtttime = save_ticks;
1639 	tp->t_bw_rtseq = ack_seq;
1640 	if (tp->t_bw_rtttime == 0)
1641 		return;
1642 	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1643 
1644 	tp->snd_bandwidth = bw;
1645 
1646 	/*
1647 	 * Calculate the semi-static bandwidth delay product, plus two maximal
1648 	 * segments.  The additional slop puts us squarely in the sweet
1649 	 * spot and also handles the bandwidth run-up case.  Without the
1650 	 * slop we could be locking ourselves into a lower bandwidth.
1651 	 *
1652 	 * Situations Handled:
1653 	 *	(1) Prevents over-queueing of packets on LANs, especially on
1654 	 *	    high speed LANs, allowing larger TCP buffers to be
1655 	 *	    specified, and also does a good job preventing
1656 	 *	    over-queueing of packets over choke points like modems
1657 	 *	    (at least for the transmit side).
1658 	 *
1659 	 *	(2) Is able to handle changing network loads (bandwidth
1660 	 *	    drops so bwnd drops, bandwidth increases so bwnd
1661 	 *	    increases).
1662 	 *
1663 	 *	(3) Theoretically should stabilize in the face of multiple
1664 	 *	    connections implementing the same algorithm (this may need
1665 	 *	    a little work).
1666 	 */
1667 #define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
1668 	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + 2 * tp->t_maxseg;
1669 
1670 	if (tcp_inflight_debug > 0) {
1671 		static int ltime;
1672 		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1673 			ltime = ticks;
1674 			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1675 			    tp,
1676 			    bw,
1677 			    tp->t_rttbest,
1678 			    tp->t_srtt,
1679 			    bwnd
1680 			);
1681 		}
1682 	}
1683 	if ((long)bwnd < tcp_inflight_min)
1684 		bwnd = tcp_inflight_min;
1685 	if (bwnd > tcp_inflight_max)
1686 		bwnd = tcp_inflight_max;
1687 	if ((long)bwnd < tp->t_maxseg * 2)
1688 		bwnd = tp->t_maxseg * 2;
1689 	tp->snd_bwnd = bwnd;
1690 }
1691 
1692